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Abstract. Timely detection of tsunamis with water level
records is a critical but logistically challenging task because
of outliers and gaps. Since tsunami detection algorithms re-
quire several hours of past data, outliers could cause false
alarms, and gaps can stop the tsunami detection algorithm
even after the recording is restarted. In order to avoid such
false alarms and time delays, we propose the Tsunami Ar-
rival time Detection System (TADS), which can be applied to
discontinuous time series data with outliers. TADS consists
of three algorithms, outlier removal, gap filling, and tsunami
detection, which are designed to update whenever new data
are acquired. After calibrating the thresholds and parame-
ters for the Ulleung-do surge gauge located in the East Sea
(Sea of Japan), Korea, the performance of TADS was dis-
cussed based on a 1-year dataset with historical tsunamis and
synthetic tsunamis. The results show that the overall perfor-
mance of TADS is effective in detecting a tsunami signal su-
perimposed on both outliers and gaps.

1 Introduction

A tsunami is one of the most devastating natural phenom-
ena, and it can be caused by several events, such as earth-
quakes, submarine landslides, subaerial landslides, volcanic
eruptions, asteroid and comet impacts, and man-made ex-
plosions (Pugh and Woodworth, 2014). The eastern coast
of the Korean Peninsula is not exempt from tsunamis: the
peculiar topographic conditions of the East Sea, where the
Yamato Rise strongly affects the propagation of tsunamis,
cause high tsunami energy concentration at the coast (Cho
and Lee, 2013). A low probability exists for tsunamis to oc-
cur in the East Sea. However, if and when they do occur,

they pose a high risk of damage to not only Korea but also
to neighboring countries. For example, two tsunamis in 1983
and 1993, which originated near the western coast of Akita
and Hokkaido, Japan, respectively, caused severe damage
along the eastern coast of the Korean Peninsula (Fig. 1).

The Korea Meteorological Administration (KMA), as the
government’s meteorological organization, is responsible for
issuing information on tsunamis. To monitor tsunamis, the
KMA has operated a surge gauge (aerial ultrasonic type)
at Ulleung-do since 1999. Ulleung-do, located in the East
Sea, plays a critical role in tsunami hazard mitigation of
the Korean Peninsula because it can confirm the approach
of tsunamis 30 min or more before they impact the eastern
coast (Fig. 1). However, when the Tōhoku, Japan, tsunami
occurred in 2011, even though a post analysis revealed it to
be a small tsunami (less than 0.3 m), the KMA could not an-
nounce important properties of the tsunami, such as its ar-
rival time and wave height, in a press release because of its
lack of a tsunami detection system (Yoon et al., 2012). In
the aftermath of the Tōhoku tsunami, the National Institute
of Meteorological Sciences (NIMS), a government-affiliated
organization of the KMA, saw the necessity of developing a
tsunami detection system that automatically provides prompt
notification.

Because of the infrequent occurrence of large tsunamis
in the East Sea, an important technical requirement for de-
tecting tsunamis using the Ulleung-do surge gauge is a sen-
sitive tsunami detection algorithm. To detect a tsunami au-
tomatically, several tsunami detection algorithms have been
developed around the world based on specific purposes and
limitations. Mofjeld (1997) developed a deep-ocean assess-
ment and reporting of tsunamis (DART) algorithm that uses
a cubic polynomial fit to the data over the preceding 3 h
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Figure 1. Study area and locations of the Ulleung-do surge gauge (red circle), tide stations (yellow circles), Yamato Rise (red dotted circle),
and the epicenters of the 1983 and 1993 earthquakes (red stars).

(Meinig et al., 2005). Several refinements to this algorithm
were proposed. Beltrami (2008) modified the DART algo-
rithm based on the artificial neural networks (ANNs) to up-
date the coefficients of every sampling interval. Because the
DART algorithm does not provide information on tsunami
height but only on arrival time, Beltrami (2011) extended
the length of the interval between the actual and prediction
times. Bressan and Tinti (2012) proposed a tsunami early de-
tection algorithm (TEDA) designed to detect an anomalous
water level based on two slope-based algorithms: tsunami
detection and secure detection. The TEDA was successfully
calibrated and tested on both synthetic tsunamis and histori-
cal tsunami records (Bressan and Tinti, 2012; Bressan et al.,
2013). Pérez et al. (2013) introduced a real-time automatic
tsunami detection algorithm based on a variance method that
was developed within the TRANSFER (Tsunami Risk and
Strategies for the European Region) project. However, there
was no attempt to combine several tsunami detection algo-
rithms to not only detect weak tsunami signals but also to
reduce the probability of false alarms.

The Ulleung-do surge gauge often experiences unexpected
gaps or missing points that cause major difficulties in de-
tecting tsunamis. These difficulties are explained by occur-
rences such as a failure of the recording or interruption of

the communication network, aging equipment, and mistakes
by field staff (Ustoorikar and Deo, 2008). When data are lost
or incomplete, the tsunami detection algorithms that require
several hours of data get stopped even after the recording is
restarted. For long gaps that are expected to include complex
patterns, existing interpolation methods might not be suit-
able to fill the gaps. Thus, several kinds of soft computing
techniques for long gaps have been developed. These include
chaos theory, genetic programming, empirical orthogonal
functions, and artificial neural networks (ANNs) (Elshorbagy
et al., 2002; Nitsure et al., 2014; Tolkova, 2009; Pashova and
Popova, 2011). Recently, Lee and Park (2016) developed a
gap-filling algorithm based on ANNs and an end-point fixing
method (EPFM). Although the soft computing techniques are
quite accurate, these applications require considerable com-
puting time. In order to overcome these kinds of shortcom-
ings, Lee and Park (2015) developed a gap-filling algorithm
that is similar to Lee and Park’s (2016) method, but they
used a moving average filter rather than ANNs. However,
these methods mentioned above are unnecessarily complex
for short gaps where linear change is expected and so a lin-
ear interpolation may be enough. Thus, in order to deal with
gaps efficiently, a tsunami detection system requires a gap-
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Figure 2. Time series of the Ulleung-do surge gauge with a special weather report from the KMA. The dotted rectangles represent the
following advisories: wind wave (blue), strong wind (green), and heavy snow (purple). The filled rectangle represents a heavy snow warning
(purple). The red vertical line labeled “2011 Tōhoku Earthquake” denotes the time of the earthquake.

filling algorithm that applies different methods depending on
the gap size.

Detecting tsunamis using the Ulleung-do surge gauge
is logistically challenging because onshore measurements
are usually associated with high background noise (Joseph,
2011). In addition, outliers are derived from various prob-
lems related to meteorological events or electrical malfunc-
tions occurring in water level sensor data streams, for ex-
ample (Fig. 2). When the outliers are mixed with normal
data, the tsunami detection algorithms that require several
hours of past data could cause a false alarm. Because out-
lier removal (as well as the anomaly detection, despiking,
and noise removal) has been researched for a long time, vari-
ous techniques have been developed. Ehrentreich and Sümm-
chen (2001) used a wavelet transform method to remove the
spikes from the Raman spectra. Feuerstein et al. (2009) de-
veloped a despiking algorithm based on filtering methods us-
ing clinical data. Goring and Nikora (2002) and Jesson et
al. (2013) presented a phase-space thresholding method that
is applied to automated post-processing software to remove
spikes from acoustic Doppler velocimeter data (Jesson et al.,
2015). However, these methods require a complete set of data
or data in a batch. Thus, they are not suitable for real-time or
near real-time applications (Hill et al., 2009). To perform in
real time or near real time, the outlier removal algorithm must
consider the data stream sequentially or the outlier should be
detected immediately after it appears. Several studies have
defined a window that steps through the data stream to oper-
ate in real time. The most up-to-date survey on the window-
based outlier removal algorithm was provided by Gupta et
al. (2014). Yamanishi and Takeuchi (2002) developed an on-
line discounting learning algorithm that gradually forgets the
effect of past data. Hill et al. (2009) developed an outlier re-
moval algorithm based on dynamic Bayesian networks that
adds new state variables over time. Hill and Minsker (2010)
developed an outlier removal algorithm based on a data-
driven univariate autoregressive model and corresponding
prediction interval. However, most of these algorithms that

predict the subsequent set of chronologically sequential data
using soft computing techniques require huge memory and
considerable computation time. Thus, the tsunami detection
system requires an outlier removal algorithm that could ob-
viate outliers very quickly within the time interval of data
acquisition.

Overall, a tsunami detection system should be designed
for the detection of a tsunami signal superimposed on both
an outlier and gap. This study presents a tsunami detec-
tion system applicable to discontinuous time series data with
outliers, which we call TADS (Tsunami Arrival time De-
tection System). The 10 s interval data of the Ulleung-do
surge gauge recorded from 1 to 31 March 2011 were em-
ployed to calibrate the parameters of TADS, in which not
only outliers and gaps but also the 2011 Tōhoku tsunami sig-
nals were included (Fig. 2). Outliers that may have resulted
from meteorological events were found in similar periods
identified in special weather reports. In addition, suspicious
gaps lasting 6 h were found in the data of the day before the
2011 Tōhoku earthquake. After calibrating the parameters,
the performance of TADS was demonstrated based on a 1-
year dataset with historical tsunamis and synthetic tsunamis.

2 TADS (Tsunami Arrival time Detection System)

TADS is basically comprised of three major algorithms that
are designed to operate within the time interval of data ac-
quisition (Fig. 3): (1) outlier removal algorithm (red dotted
box), which is divided into three modes: start mode, keep
mode, and end mode; (2) gap-filling algorithm (blue dotted
box), which is divided into two sub-algorithms depending on
gap sizes: SGFA (Short Gap-Filling Algorithm) and LGFA
(Long Gap-Filling Algorithm); and (3) tsunami detection al-
gorithm (green dotted box), which is divided into three sub-
algorithms: DART, SLOPE, and TIDE. The alarm is divided
into three levels depending on TDI (Tsunami Detection In-

www.nat-hazards-earth-syst-sci.net/16/2603/2016/ Nat. Hazards Earth Syst. Sci., 16, 2603–2622, 2016



2606 J.-W. Lee et al.: Tsunami arrival time detection system applicable to discontinuous time series data

1. Outlier removal  

    algorithm 

Event period? 

Water level d  ata

Yes 

No 

Start 

Event period? 

Yes 

No 

Mode? 

Start mode Keep mode End mode 

Gap size? 

SGFA LGFA 

2. Gap-filling  
    algorithm 

DART SLOPE TIDE 

3. Tsunami detection 

    algorithm 

TDI? 

Warning Advisory Watch 

No 

Long Short 

0 

1 

2 

1 or 2 3 4 

0 

Figure 3: Flow of the TADS (Tsunami Arrival time Detection System). The system is 

composed of three major algorithms: outlier removal (red dotted box), gap filling (blue 

dotted box) and tsunami detection (green dotted box). SGFA stands for Short Gap Filling 

Algorithm; LGFA stands for Long Gap Filling Algorithm; TDI stands for Tsunami 

Detection Index. 

Figure 3. Flow of TADS. The system is composed of three major
algorithms: outlier removal (red dotted box), gap filling (blue dotted
box), and tsunami detection (green dotted box). SGFA stands for
Short Gap-Filling Algorithm; LGFA stands for Long Gap-Filling
Algorithm; TDI stands for Tsunami Detection Index.

dex), the degree of tsunami detection triggered: warning, ad-
visory, and watch.

Since most of the tsunami detection algorithm is de-
signed to detect a wave that changes more than expected, the
tsunami detection algorithm can not distinguish a tsunami
from a record that contains contributions from swells, lo-

cal seiches, storm surges, and so on (Joseph, 2011). If the
tsunami detection algorithm is applied to the data of the
Ulleung-do surge gauge without any restriction, then the
tsunami alarm will be issued for not only tsunamis but also
for every event mentioned above. Also, even though the out-
lier removal and gap-filling algorithms are useful for the
tsunami detection system, these algorithms could distort a
tsunami wave. The outlier removal algorithm could remove
a tsunami wave by misunderstanding a tsunami wave as an
outlier. Furthermore, the gap-filling algorithm could overes-
timate or underestimate a tsunami wave, which could mis-
lead to a false alarm. For these reasons, we introduced a con-
cept of an event period: during an event period, the TADS
bypasses the outlier removal and gap-filling algorithms and
checks for the alarm with the tsunami detection algorithm,
while outside an event period, TADS bypasses the alarm of
the tsunami detection algorithm. Since earthquakes are re-
sponsible for approximately 82 % of tsunamis according to
the tsunami database (Joseph, 2011), we confined the starting
point of the event period to the origin time based on seismic
information. Conversely, the end point of the event period is
set to the estimated time when a tsunami sufficiently elapses
based on a numerical simulation. In the remainder of this sec-
tion, the methodology of each algorithm will be described in
detail. How the parameters of TADS are determined will be
explained in the next session.

2.1 Outlier removal algorithm

An outlier removal algorithm performs one of the three
modes at every new data acquisition. The initiation is set
to the start mode, and it searches for the point at which the
outlier begins based on several starting conditions. Once the
outlier is detected, the outlier removal algorithm removes the
outlier and changes the mode to the keep mode for the next
datum. The keep mode continues to remove the data until
meeting the predefined time steps. Then the mode is changed
to the end mode, which keeps removing the data until satisfy-
ing one of the ending conditions. Once the ending condition
is triggered, the mode returns to the start mode. The full pro-
cess of modes and conditions are described below.

2.1.1 Start mode

The basic concept of the start mode is that the point at which
the difference in wave height between neighboring points
surpasses the threshold is designated as an outlier (Fig. 4a).
In order to deal with gaps (which will be explained later),
a moving window of the most recent 7-point data, in which
each point is numbered in ascending order from zero to six
going backwards in time, is defined. Figure 4a shows the case
where point 3 and point 6 are gaps. The wave height and its
time information of point are hereafter referred to as h and
t with a subscript indicating the point number. Point 5 is the
target point that determines whether the point is an outlier
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Table 1. Conditions and thresholds of an outlier removal algorithm.

Mode Category Condition Condition Threshold Threshold
name name

Start SIF1 (h6=NaN)
S01. abs (h5–hg) > THh THh 7 cm

SIF2 (h6 6=NaN)
S02. (sgn(h4–h5)≥ 0) and (h4–h5 > TH4) TH4 3 cm
S03. (sgn(h4–h5) < 0) and (h4–h5 <−TH_4) TH_4 3 cm
S04. (sgn(h3–h5)≥ 0) and (h3–h5 > TH3) TH3 3 cm
S05. (sgn(h3–h5) < 0) and (h3–h5 <−TH_3) TH_3 9 cm
S06. (sgn(h2–h5)≥ 0) and (h2–h5 > TH2) TH2 3 cm
S07. (sgn(h2–h5) < 0) and (h2–h5 <−TH_2) TH_2 10 cm
S08. (sgn(h1–h5)≥ 0) and (h1–h5 > TH1) TH1 4 cm
S09. (sgn(h1–h5) < 0) and (h1–h5 <−TH_1) TH_1 10 cm
S10. (sgn(h0–h5)≥ 0) and (h0–h5 > TH0) TH0 4 cm
S11. (sgn(h0–h5) < 0) and (h0–h5 <−TH_0) TH_0 10 cm

End EIF1 (h5=NaN)
E01. (sgn(h4–h6) 6= S or 0) and (abs(hs–h6)≤THS1) THS1 2 cm

EIF2 (h5 6=NaN) and (h6=NaN)
E02. (sgn(h4–h5) 6= S or 0) and (abs(hs–h5)≤THS1)

EIF3 (h5 6=NaN) and (h6 6=NaN)
E03. (sgn(hs–h5)=−1) and (S=−1)
E04. (sgn(hs–h5)= 1) and (S= 1)
E05. (abs(hs–h5)≤ 1) and (ts–t5 > THD1) THD1 10 points
E06. (abs(hs–h5)≤ 2) and (ts–t5 > THD2) THD2 20 points
E07. (sgn(h6–h5)= S) and (abs(h6–h5)≥THS2) and THS2 3 cm

(abs(hs–h5)≤THS3) THS3 5 cm
E08. (abs(hs–h2)≤THS3) and (abs(hs–h3)≤THS3) and

(abs(hs–h4)≤THS3) and (abs(hs–h5)≤THS3)
E09. (tg > THD1) and (abs(hs–h5) < THS4) THS4 2 cm

or not. In other words, point 5 is designated as an outlier if
the data within the moving window satisfy one of the start-
ing conditions. For example, as shown in Fig. 4a, if the dif-
ference between h2 and h5 exceeds a given threshold TH2
(i.e., h2–h5 > TH2), then the target point (point 5) is consid-
ered as an outlier. The information of the target point (sign S,
wave height hs, and its timing ts), which will be used in the
end mode, is stored in memory. The sign S is based on a sign
function of a real number x and can be expressed as

sgn(x)=


−1 if x < 0,

0 if x = 0,

1 if x > 0
. (1)

The total starting conditions and thresholds are listed in Ta-
ble 1. The backgrounds and the details of each condition are
described below. One common problem in the start mode is
the presence of gaps in the data stream because the differ-
ence in wave height between neighboring points can not be
calculated if a gap exists. For example, if point 3 is a gap, the
difference in wave height between point 5 and point 3 can
not be obtained. In order to deal with gaps, the start mode
stores a wave height (hg) of one point before the target point
and counts the length of gaps (tg) whenever the target point

meets a gap (Fig. 4a). Also, the starting conditions are di-
vided into two categories depending on whether point 6, one
point before the target point, is a gap or not. SIF1 is the con-
dition where point 6 is a gap, while SIF2 is the condition
where point 6 is not a gap. For SIF1, to catch an outlier that
starts right after the gaps, the target point (point 5) is desig-
nated as an outlier if the absolute value of the difference be-
tween h5 and hg exceeds a given threshold THh (called S01).
For SIF2, the target point is designated as an outlier if the dif-
ference between h5 and the wave heights of the other points
from point 0 to point 4 exceeds a given threshold assigned
depending on not only the distance between points but also
the sign of the water level change. TH0, TH1, TH2, TH3,
and TH4 are the thresholds for cases in which the sign of
the difference between h5 and the wave heights of the other
points from point 0 to point 4 is a positive number (plus sign)
or zero. By contrast, TH_0, TH_1, TH_2, TH_3, and TH_4
are the thresholds for the cases in which the sign of differ-
ence is a negative number (minus sign). The corresponding
conditions are called S02–S11. In summary, the start mode
designates the target point as an outlier and is changed to
the keep mode if one of the starting conditions (S01–S11) is
satisfied.
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Figure 4. Schematic sketch of each mode of the outlier removal al-
gorithm: (a) start mode, (b) keep mode, (c) end mode. The water
level data are represented as circles, and a gray box indicates the
moving window. Red circles indicate detected outliers, and condi-
tions are written in red.

2.1.2 Keep mode

The intermediate points between two points triggered at start
mode are always outliers. Thus, the keep mode obviates
the unnecessary procedure of the start mode to determine
whether the target point is an outlier or not for the interme-
diate points. The outlier removal algorithm keeps the keep
mode for a certain time step depending on the thresholds that
were triggered at the start mode: no time step for THh, TH4,
or TH_4; one-time step for TH3 and TH_3; two-time step for
TH2 and TH_2; three-time step for TH1 and TH_1; four-time
step for TH0 and TH_0. For example, as shown in Fig. 4a,
if point 5 was designated as an outlier because the difference
between h2 and h5 exceeded TH2 (i.e., h2–h5 > TH2) at the
start mode, then the intermediate points, point 3 and point 4
in Fig. 4a (which became point 4 and point 5 in Fig. 4b) were
designated as outliers at the keep mode. In other words, the

outlier removal algorithm keeps removing the data for a two-
time step (because the outlier was designated by TH2) and
then changes the mode to the end mode.

2.1.3 End mode

The end mode continues to remove the data until satisfying
one of the ending conditions combined with sub-conditions,
which is related to wave height, sign, and time span. For ex-
ample, as shown in Fig. 4c, the ending conditions are com-
binations of several sub-conditions such as the water level
retreating back to normal (e.g., |hs–h5| ≤THS1), the slope
of the water level changing (e.g., sgn(h6–h5) 6= S), or quite a
long time passing by (e.g., ts–t5 > THD1).

The total ending conditions and the thresholds are listed
in Table 1. The backgrounds and the details of each con-
dition are described below. Similar to the start mode, one
common problem of the end mode is the presence of gaps
in the data stream. In order to deal with gaps, the ending
conditions divide into three categories depending on whether
point 5 and point 6 are a gap or not. EIF1 is the condition
where point 5 is a gap, EIF2 is the condition where point 5
should not be a gap and only point 6 is a gap, and EIF3 is
the condition where neither point 5 nor point 6 is a gap. For
EIF1, if not only the sign is reversed with S (sgn(h4–h6) 6= S

or 0) but the water level also retreats back to the normal water
level (abs(hs–h6)≤THS1), then the algorithm stops remov-
ing the data (called E01). For EIF2, since point 5 is not a gap
any more, a similar condition with E01 (sgn(h4–h5) 6= S or 0
and abs(hs–h5)≤THS1) is applied where point 5 is used in-
stead of point 6 (called E02). For EIF3, the end mode stops
if the sign is reversed from negative to positive ((sgn(hs–
h5)=−1) and (S=−1)) or vice versa ((sgn(hs–h5)= 1) and
(S= 1)), and these conditions are called E03 and E04, re-
spectively. Also, the end mode stops if a certain time passes
(ts− t5 > THD1) and the water level retreats back to the nor-
mal water level (abs(hs–h5)≤ 1), and this condition is called
E05. If quite a long time passes (ts–t5 > THD2), more re-
laxed condition (abs(hs–h5)≤ 2) than E05 is applied and this
condition is called E06. Another ending condition is required
to deal with long outliers because of the tide that changes the
mean water level. In other words, the end point of long out-
liers within flood tide or ebb tide would not retreat back to the
normal water level. Thus, in order to deal with long outliers,
two ending conditions are introduced. One way is to stop the
end mode if the sign is reversed with S (sgn(h6–h5)= S) and
the water level changes abruptly (abs(h6–h5)≥THS2), even
though water level does not retreat back to the normal water
level yet (abs(hs–h5)≤THS3), and this condition is called
E07. Another way is to stop the end mode if all four consec-
utive water levels do not retreat back to normal but are under
a certain range (called E08). In order to deal with long gaps,
if the outlier starts after long gaps (tg > THD1) and the water
level retreats back to normal (abs(hs–h5) < THS4), the end
mode stops and this condition is called E09. In summary, the
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Table 2. Parameters of a gap-filling algorithm.

Algorithm Parameter Value Description

nLGFA 4 h Standard gap size whether applying SGFA or LGFA

SGFA N_inter 2 points Number of points from the last point before the gap

LGFA mvLGFA 10 min Time interval that is used to calculate the moving-averaged data
windowsize 2 Factor to determine the size of target window
npastdata 100 Factor to determine the size of past dataset, msearch

end mode stops removing the data and reverts to start mode
if one of the ending conditions (E01–E09) is satisfied.

2.2 Gap-filling algorithm

Because the gap-filling algorithm is activated after the outlier
removal algorithm, the gaps of the original data and the out-
liers removed by the outlier removal algorithm are subject to
the gap-filling algorithm. The first step is to count the gap
size nGap. Whenever a gap ends, the gap-filling algorithm
performs one of the sub-algorithms (SGFA and LGFA) de-
pending on predefined criterion nLGFA (Table 2). If the gap
exists but its size is smaller than nLGFA, the SGFA is applied.
If the gap size is greater than or equal to nLGFA, the LGFA is
applied. The full process of sub-algorithms and parameters is
described below.

2.2.1 SGFA (Short Gap-Filling Algorithm)

Depending on gap sizes, the SGFA is again divided into two
categories: one point gap and short gaps (Fig. 5). For one
point gap, the gap is replaced by the wave height just before
the gap (h(tgap)=h(tgap− 1)), where tgap is the time of the
gap. For short gaps (1 < nGap < nLGFA), linear interpolation
is applied to fill the gap. If we use only one point for the linear
interpolation, the results do not fit well because of a tempo-
rary water level fluctuation just before short gaps. Thus, the
number of points before short gaps (N_inter) is used for the
linear interpolation (Table 2).

2.2.2 LGFA (Long Gap-Filling Algorithm)

The LGFA is divided into three steps (Fig. 6). The first step
is to filter out background noise by applying a MAF (moving
average filter) on a window of length mvLGFA (Fig. 6a and
Table 2) and define a target window, which consists of the
gaps, the boundary points EP1 and EP2, and target data. EP1
is the end point just before where gaps start, while EP2 is the
end point just after where gaps end. The target data are the
data just before the gap and they will be used to look for the
data suitable for filling the gap in the next step. The size of
the target window is proportional to the gap size (window-
size× (nGap+ 2)), where windowsize is a factor that deter-
mines the size of the window (Table 2).

t 
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Figure 5: Schematic sketch of SGFA of the gap filling 

algorithm: (a) one point gap, (b) short gaps. The water-

level data are represented as circles and a gray dotted 
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the data used to fill the gaps and red circles indicate 

gap-filled data.  

Figure 5. Schematic sketch of SGFA of the gap-filling algorithm:
(a) one point gap, (b) short gaps. The water level data are repre-
sented as circles, and a gray dotted box indicates the location of
gaps. Blue circles indicate the data used to fill the gaps and red cir-
cles indicate gap-filled data.

The second step is to find the most suitable data to fill the
gaps (Fig. 6b). The LGFA hypothesizes that the gaps will
follow the trend of the past water level movement. Thus, the
most suitable data for gaps are the data that show the most
similar trend with those of the target data. In order to find
the most suitable data, search window and search data are
set to the same size as the target window and the target data,
respectively. The MAE (mean absolute error) between the
target data and the search data is calculated while the search
window moves back over the length of msearch from the EP1.
The msearch is proportional to the size of the target window
(npastdata×windowsize× (nGap+ 2)), where npastdata is a
factor. The search window that shows minimum MAE is se-
lected for gap filling (Table 2).

The last step is to fill the gaps (Fig. 6c). The SW (search
window) data, which are the remaining data of the search
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Figure 6. Schematic sketch of LGFA of the gap-filling algorithm:
(a) target window (blue tone), (b) search window (red tone), (c) end-
point fixing method. The water level data are represented as circles,
and a gray dotted box indicates the location of gaps. MAF stands
for moving average filter. The moving-averaged data are referred to
as hmv.

window after concealing the search data, are rebalanced by
the EPFM (end-point fixing method) to keep the continuity
of the time series. The EPFM fixes the first and last points
of SW data to the EP1 and EP2 and linearly balances the
intermediate data using the following equation:

HEP(t)=Hori(t)+
b− a

d
(t − c)+ a for c ≤ t ≤ c+ d, (2)

where HEP(t) is the water level after the EPFM is applied
(red circle in Fig. 6c), Hori(t) is the water level before the
EPFM is applied (translucent red circle in Fig. 6c), a is the
difference between the start point of SW data and EP1, b is
the difference between the end point of SW data and EP2, c is
the time of the start point of SW data, and d is the time span
of SW data. Finally, the resulting data, called SWEP (search
window end-point fixed) data, replace the gaps.

2.3 Tsunami detection algorithm

The tsunami detection algorithm performs three parallel sub-
algorithms, denoted by DART, SLOPE, and TIDE, during
every new data acquisition. There are four total thresholds:
THDART for DART, THIS and THCF for SLOPE, and THTIDE
for TIDE. If any kind of threshold is triggered, the TDI
is counted in increments of one and lasts for a time inter-
val tdetect. Thus, the TDI ranges from zero (all thresholds
are not triggered) to four (all thresholds are triggered). The
higher the TDI is, the more likely a tsunami is detected.
When the TDI is equal to 4, a warning alarm (red) is acti-
vated; when the TDI is equal to 3, an advisory alarm (or-
ange) is activated; finally, when the TDI is equal to 2 or 1,
a watch alarm (yellow) is activated. The full process of sub-
algorithms and parameters is described below.

2.3.1 DART

The DART is an amplitude-based algorithm that uses a cubic
polynomial fit to predict the water level (Fig. 7a). The pre-
dicted water level can be obtained by a cubic polynomial fit
to the data stored over the preceding 3 h and 10 min and can
be expressed as

hDART(t)=

3∑
i=0

ωihi

(
t − 1−

300
1t
− i

3600
1t

)
, (3)

where hDART is the predicted water level, h is the 10 min
average of the measured water level, 1t is a sampling in-
terval expressed in seconds, and ωi are the coefficients
calculated by applying Newton’s forward divided differ-
ence formula (Mofjeld, 1997). The DART index (DI)
is defined as the absolute value of the difference be-
tween the measured water level and the predicted water
level (DI(t)= |h(t)−hDART(t)|). The DART assumes that
tsunami detection occurs when the DI surpasses the thresh-
old:

DI(tnow)≥ THDART. (4)

2.3.2 SLOPE

The SLOPE is a slope-based algorithm designed to detect a
tsunami with an impulsive front (Fig. 7b). Using the same
terminology as Bressan and Tinti (2011), the average slope
IST (t) is calculated by a least square fitting over the time in-
terval IIS(t) of length tIS. The Tideuns(t) is the average IST (t)

over time interval ITide(t) of length tGTide going back from
the past time tGTide. The tide slope estimation Tide(t) is cal-
culated by averaging the Tideuns(t) over an interval length
tsm. Now, the detided instantaneous slope IS(t) could be ob-
tained by subtracting the tide slope estimation from the aver-
age slope (IS(t)= IST (t)−Tide(t)). The background slope
BS(t) is calculated by Eq. (5) over time interval IBS(t) of
length tBS going back from the past time tg.
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Figure 7. Schematic sketch of the tsunami detection algorithm: (a) DART, (b) SLOPE, (c) TIDE. From top to bottom panels: the procedures
of how the indexes, DI, IS, CF, and TI (red boxes), are calculated from the water level data. Each index (red circle) is calculated using the
past data (blue circles) and the intermediate outputs (yellow circles) whenever new data are acquired.

BS(t)= standard deviation of IS(t ′) ·
√

2; t ′ ∈ IBS (5)

Finally, we could get the control function CF(t), which is a
ratio of the absolute value of the detided instantaneous slope
to the background slope (CF(t)= |IS(t)|/BS(t)). The SLOPE

assumes that tsunami detection occurs when the absolute val-
ues of the detided instantaneous slope and the control func-
tion surpasses the thresholds, respectively:
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|IS(tnow) | ≥ THIS (6)
CF(tnow)≥ THCF. (7)

2.3.3 TIDE

The TIDE is an amplitude-based algorithm that uses a har-
monic analysis (Fig. 7c). The sampled data hs(t) are col-
lected from the water level data h(t) regularly spaced at a
sampling interval tsample over the preceding time tBP. When
the event period starts, the T_TIDE is activated to pre-
dict the tide data hTide(t) over the period tBP+ tFP. The
T_TIDE is a classical harmonic analysis program that eval-
uates the tidal constituents (frequency, amplitude, phase,
etc.). A detailed description can be found in Pawlowicz et
al. (2002). The detided water level data hDetide(t) are ob-
tained by subtracting the tide data from the water level
data (hDetide(t)=h(t)−hTide(t)). The average detided data
hMean(t) over the time interval tmean, which starts from the
most recent data, are then obtained. The tide index (TI) is
defined as the difference between the detided water level
and the mean water level (TI(t)=hDetide(t)−hMean(t)). The
TIDE assumes that tsunami detection occurs when the abso-
lute value of TI surpasses the threshold:

|TI(tnow) | ≥ THTIDE. (8)

3 Calibration of TADS

In order to calibrate the TADS, the water level data of the
Ulleung-do surge gauge recorded from 1 to 31 March 2011
were employed. After calibrating several parameters and
thresholds of algorithms, the event period, which starts when
an earthquake occurs and lasts until a tsunami sufficiently
passes by, was set to 8 h after the 2011 Tōhoku earthquake
based on the results of a numerical simulation (Lee et al.,
2015).

3.1 Calibration of outlier removal algorithm

Since several equivocal outliers are hardly distinguishable,
we used the tide estimation predicted by the T_TIDE to cali-
brate the outlier removal algorithm. After setting the thresh-
olds of the outlier removal algorithm to arbitrary values, we
compared the outlier’s removed data with the tide estimation.
Whenever the outlier removal algorithm failed to remove the
data, which showed a large discrepancy between the water
level data and the tide estimation, we modulated the thresh-
olds. Conversely, whenever the outlier removal algorithm re-
moved the data, which showed a small discrepancy between
the water level data and the tide estimation, we also mod-
ulated the thresholds. The abovementioned process was re-
peated until the thresholds converged to a certain value. The
resulting values of thresholds are listed in Table 1.

Table 3. Examples of a gap-filling algorithm. The information of
window and the mean absolute error (MAE) between the predicted
data and measured data are listed.

Gap Time of starting point (LT) MAE
size (cm)
(h)

Target window Search window
3 31 Mar 2011 05:31:10 20 Mar 2011 07:26:20 0.58
12 21 Mar 2011 21:07:10 19 Mar 2011 07:55:10 2.08
24 17 Mar 2011 15:21:40 3 Mar 2011 16:19:10 3.22
36 21 Mar 2011 15:36:00 18 Mar 2011 01:26:20 4.56

Figure 8 shows nine examples of results obtained using
the outlier removal algorithm based on the calibrated thresh-
olds. Figure 8a shows a case in which two types of outliers
are clearly detected: one that slowly increases and gradually
decreases and another that sharply increases and suddenly
decreases. Figure 8b and c show cases in which the long-
term outliers that offset the data are also perfectly detected.
Figure 8d and h present cases in which the long-term out-
liers with gaps are clearly detected, which allows the algo-
rithm to manage the missing data. Figure 8e shows the dou-
ble outliers. Here, the second outliers appear immediately af-
ter the first outliers. Figure 8f shows the meteorological out-
liers when a wind wave advisory was in effect for the far
East Sea. Figure 8g presents a case in which approximately
10 min of gaps exist in the data stream. It should be noted
that the point immediately after a gap is classified as normal.
Figure 8i shows the instantaneously oscillating outliers that
maintain for approximately 10 min. We should focus on the
points classified as normal among outliers in Fig. 8a, e, and i
that prevent long-term gaps because the performance of the
gap-filling algorithm (which will be explained later) is in in-
versely proportional to the gap size.

3.2 Calibration of gap-filling algorithm

After calibrating the thresholds of the outlier removal algo-
rithm, we calibrated the parameters of the gap-filling algo-
rithm that ensure the best performance for the Ulleung-do
surge gauge data (Table 2). The N_inter, which is the num-
ber of points for linear interpolation, was set to two points
for two reasons: one point was insufficient to prevent the
slope distortion provoked by temporary water level fluctu-
ation, while a value greater than two points did not show no-
tably different performance. To calibrate the remaining pa-
rameters, we intentionally omitted water levels in some pe-
riods and ran the gap-filling algorithm to predict the gaps,
which were intentionally omitted. Then, the predicted water
levels of gaps and the water level data that were intentionally
omitted were compared. The abovementioned process was
repeated until the algorithm ensured the best performance
where the MAE between the intentionally omitted data and
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Figure 8. Examples of an outlier removal algorithm using calibrated thresholds. The gray line with a circle represents the original data, and
the black line with a circle represents the outlier-removed data.

the predicted data showed the smallest value. We considered
34 cases of gap sizes from 3 to 36 h with 1 h intervals, and
31 datasets from 12 to 29 March 2011 with 50 000 s inter-
vals. Finally, criterion nLGFA, the standard gap size to decide
whether to apply SGFA or LGFA, was set to be 4 h, which
is the maximum value within the boundary where the same
performance between SGFA and LGFA is guaranteed.

Figure 9 shows four examples of the results obtained with
the LGFA. Table 3 provides the information of window and
the MAE between predicted data and measured data for those
four examples. After selecting the data of search window
(gray line), which shows the most similar trends with those of
the target data (black line), the SWEP data (blue line) were
compared with the data intentionally omitted (red line). It
should be noted that the EPFM improves the accuracy of pre-
diction in most cases. For example, Fig. 9a and b show cases
in which the target data and the search data are similar but
the SW data are not fit with the data intentionally omitted.
Because the EPFM enforces the end point of the SW data to
match the end point of the measured data, the SWEP data
show a good agreement with the data intentionally omitted.
However, as shown in Fig. 9c and d, the EPFM is less effec-
tive for the cases in which the end point of the SW data is
similar to that of the data intentionally omitted. We should
note that even though comparatively lower accuracy is ob-

tained as the gap size increases, because the longest gaps of
the Ulleung-do surge gauge between 1 and 31 March are ap-
proximately 6 h, the LGFA performs reliably in alleviating
the gap-filling problem.

3.3 Calibration of tsunami detection algorithm

The parameters of the tsunami detection algorithm are listed
in Table 4. The parameters of DART were calculated by ap-
plying Newton’s forward divided difference formula for the
case of 10 s interval data of the Ulleung-do surge gauge. The
parameters of SLOPE were set to the same values of Bressan
and Tinti (2011), which were tested with a sufficient number
of samples. The parameters of TIDE were set to the values as
the total computing time allows. For example, the sampling
interval tsample was set to 1 min to accelerate the calculation
of harmonic analysis. Also, we assumed that the dataset of
10 days is enough for harmonic analysis (tBP= 10 days) and
the tsunami would not last longer than 2 days (tFP= 2 days).
Lastly, the averaging interval tmean was set to 1 h to filter out
the high-frequency component.

After fixing the parameters, the thresholds of the tsunami
detection algorithm were calibrated based on the record of
the 2011 Tōhoku tsunami. Since there is no absolute standard
of the tsunami’s arrival time, the thresholds should compro-
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Figure 9. Examples of the gap-filling algorithm using the calibrated parameters when the gap sizes are (a) 3 h, (b) 12 h, (c) 24 h, and (d) 36 h.
The left panel shows the time series. The black lines represent the target data, and the gray lines represent the data of the selected search
window. Blue lines represent the SWEP data; red lines represent the measured data that were intentionally omitted. The right panel shows the
scatter plot between the predicted data (or the SWEP data) and the measured data. The color point represents the frequency of data plotted
inside the circle with a radius of 1 cm.

mise with preciseness. As the thresholds are set to large val-
ues, the rate of false alarm would decrease while the rate of
miss would increase, and vice versa. Thus, after setting the
thresholds to arbitrary values, we modulated the thresholds
within the range of values that do not cause any false alarm
or miss the alarm by visual inspection.

Figure 10 shows the part of the calibration process
of the tsunami detection algorithm. For the sake of
simplicity, the threshold configuration (THDART= 5 cm,
THIS= 0.01 cm s−1, THCF= 4, THTIDE= 5 cm) will be col-
lectively referred to as one that is a standard value of
the normalized threshold. As the normalized thresholds in-
crease, all kinds of detection rates decrease and all kinds
of start times of detection increase. The detection rate of
CF becomes zero when the normalized threshold is greater
than 1.34 (Fig. 10b). For that reason, the warning alarm dis-
appears when the normalized threshold is greater than 1.34
(Fig. 10d). Even though both IS and CF derive from the

SLOPE, the detection rate of CF yields more sensitive re-
sults than the detection rate of IS does. By contrast, two
amplitude-based algorithms (DART and TIDE) show simi-
lar patterns of both detection rate and start time of detection.
We should note that if the normalized threshold is set to less
than 0.4, one or more thresholds are triggered within 8 min,
which thus represents a false alarm (Fig. 10c). By contrast, if
the normalized threshold is set to greater than 1.06, the start
time of the warning alarm is 16 min or more, which is the
moment when the steep fluctuation in the water level has al-
ready passed (Fig. 10e). Thus, to prevent both a false alarm
and a missed alarm, the normalized threshold should be set in
the range of 0.4 to 1.06. In this study, we set the normalized
threshold to one.
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Table 4. Parameters and thresholds of a tsunami detection algorithm.

Algorithm Parameter/ Value Description
threshold

DART ω0 2.1957 Coefficient calculated by Newton’s forward divided difference formula
ω1 −2.2038 Coefficient calculated by Newton’s forward divided difference formula
ω2 1.3233 Coefficient calculated by Newton’s forward divided difference formula
ω3 −0.3152 Coefficient calculated by Newton’s forward divided difference formula
THDART 5 cm Threshold for the detection condition of DART: DI(tnow)≥THDART

SLOPE tIS 10 min Time interval used to compute the instantaneous slope, IST (t)

tTide 1 h Time interval used to compute the tide slope estimation, Tideuns(t)
tGTide 16 min Gap time to make Tideuns(t) independent from an incoming anomalous wave
tsm 6 min Time interval to reduce oscillations of the tidal slope due to long period waves
tBS 1 h Time interval used to calculate the background slope signal, BS(t)
tg 15 min Delay time to reduce the correlation between IS(t) and BS(t)
THIS 0.01 cm s−1 Threshold for the detection condition of SLOPE: |IS(tnow)| ≥THIS
THCF 4 Threshold for the detection condition of SLOPE: CF(tnow)≥THCF

TIDE tsample 1 min Sampling interval to compute the tide estimation, hTide(t)
tBP 10 days Time interval of past data used to compute the tide estimation, hTide(t)
tFP 2 days Time interval used to predict the tide estimation, hTide(t)
tmean 1 h Time interval used to compute the average detided data, hMean(t)

THTIDE 5 cm Threshold for the detection condition of TIDE: |TI(tnow)| ≥THTIDE
tdetect 10 min Duration time of detection

4 Performance of TADS

The performance of TADS was evaluated by using three
types of data. First, the 2011 Tōhoku tsunami data of the
Ulleung-do surge gauge were used to investigate the overall
performance based on the real tsunami record. Second, the
water level data of the Ulleung-do surge gauge recorded from
1 January 2011 to 31 December 2011 were used to investi-
gate the performance of the outlier removal and gap-filling
algorithms. Third, several synthetic tsunamis were used to
demonstrate the performance of the tsunami detection.

4.1 2011 Tōhoku tsunami

Figure 11 illustrates the comprehensive results of TADS
based on the calibrated thresholds, where the application to
the 2011 Tōhoku tsunami data of the Ulleung-do surge gauge
is shown. Looking at the comprehensive results of TADS
based on the calibrated thresholds, the outlier removal algo-
rithm removes the outliers that appear a few minutes after
the end of the event period. On the other hand, the abrupt
water level change measured twice approximately 19 h af-
ter the 2011 Tōhoku earthquake was not designated as an
outlier. For these reasons, all thresholds except THCF were
triggered for that moment outside the event period. However,
we should note that the tsunami detection algorithm, which
skips the alarm for the event period, prevents the occurrence
of a false alarm.

The Ulleung-do surge gauge went offline on
10 March 2011 at 03:10:00 LT and restarted the recording

on 10 March 2011 at 09:29:00 LT. Fortunately, the gaps
were filled with the LGFA of the gap-filling algorithm
immediately after the gauge restarted the recording. It
should be noted that the tsunami detection algorithm might
have missed the alarm without the gap-filling algorithm if
the gauge had gone offline just before the 2011 Tōhoku
earthquake.

There are warning alarms that appeared on 11 March 2011
at 14:58:30 LT (approximately 12 min after the 2011 Tōhoku
earthquake struck) and remained for approximately 15 min
(Fig. 11a). The watch alarm with an intermittent advisory
alarm followed the warning alarm. If we recall that the ar-
rival time, which can be recognized in the records by eye
inspection, was about 8 min (Fig. 10), the delay time of the
warning alarm was about 4 min, which is quite acceptable for
practical use.

Since the 2011 Tōhoku tsunami was a tsunami caused by
an earthquake, the event period could be defined properly and
the tsunami was well detected. However, tsunamis can re-
sult from submarine landslides, subaerial landslides, volcanic
eruptions, atmospheric disturbances, asteroid and comet im-
pacts, and man-made explosions (Pugh and Woodworth,
2014). Korea has experienced meteotsunamis in both 2007
and 2008, which engulfed a part of the western coast of the
Korean Peninsula, causing two and nine casualties, respec-
tively (Yoon et al., 2014). Thus, future studies should attempt
to link the event period with the information related to land-
slides, volcanic activity, and atmospheric pressure to cope
with several types of tsunamis.
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Figure 10. Examples of the tsunami detection algorithm using the calibrated parameters when the normalized threshold changes from
zero to two with 0.02 intervals. (a) The 2011 Tōhoku tsunami recorded in the Ulleung-do surge gauge. The colored circle represents the
start point of each alarm (red: warning, orange: advisory, yellow: watch) when the normalized threshold is set to one (THDART= 5 cm,
THIS= 0.01 cm s−1, THCF= 4, THTIDE= 5 cm). For each index (DI, IS, CF, and TI), (b) detection rate during the event period and (c) start
time of detection are given. For each alarm (warning, advisory, and watch), (d) alarm rate during the event period and (e) start time of alarm
are given. The gray shade region marks the range of the normalized threshold where a false or missed alarm occurs.

4.2 Performance of outlier removal and gap-filling
algorithms

Figure 12 shows the results of outlier removal and gap-filling
algorithms based on the calibrated thresholds. It is observed
that most of the conspicuous outliers that are related to me-
teorological events are well removed. This could also be
checked by comparing the scatter plots where most of the
outliers that stand out from the majority of the data are re-
moved and the correlation increases after applying the al-
gorithms. However, due to the outliers that remain inside a
batch of outliers, it is seen that the SGFA (blue line in Fig. 12)
fails to fill short gaps in a few cases. The LGFA (red line in
Fig. 12) successfully fills long gaps following the trend of
the tide estimation except in the case of May where the gaps
appear in front of constant water level data sustained by the
malfunctioning of the surge gauge. Since the target data are

constant water level data for this case, the results of LGFA
show the same results as those of the linear interpolation.

Of course, it is always possible that some outliers remain
or gaps are not correctly filled. However, it should be noted
that both the outlier removal algorithm and the gap-filling
algorithm significantly reduce the chance of discontinuous
data with outliers entering the tsunami detection algorithm,
which is the main objective of these developments.

4.3 Performance of tsunami detection algorithm

In order to investigate the performance of the tsunami detec-
tion algorithm, the algorithm should be tested based on an
extensive number of tsunamis. However, the 2011 Tōhoku
tsunami is the only case that was recorded in the Ulleung-do
surge gauge. For stations having insufficient tsunami records,
Beltrami and Risio (2011) examined their tsunami detection
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Figure 11. Performance test of TADS for the case of the 2011 Tōhoku tsunami. Blue vertical lines show the event period from 11 March
14:46 LT to 11 March 22:46 LT. For clarity, the records near the tsunami arrival time are zoomed in on the right side. (a) Time series of the
Ulleung-do surge gauge after applying the TADS (black line) where outliers are marked by a gray line and gap-filled data are marked by a
blue line (SGFA) and red line (LGFA). Vertical lines represent the alarm: warning (red), advisory (orange), and watch (yellow). Four indices
of the tsunami detection algorithm are given: (b) DI, (c) IS, (d) CF, and (e) TI. Red horizontal lines represent the thresholds and gray vertical
lines mark the time whenever thresholds are triggered.

algorithm with synthetic tsunami signals in which ideal si-
nusoidal tsunamis were superimposed on ideal wind waves
based on JONSWAP (Joint North Sea Wave Project) wave
spectra. In addition, Bressan et al. (2013) tested their tsunami
detection algorithm with synthetic tsunami signals in which
the results of numerical simulations were superimposed on
the tide gauge record of possible circumstances (e.g., calm
or rough sea). Risio and Beltrami (2014) estimated the per-
formance of the tsunami detection algorithm with historical
tsunami signals, in which the record of the DART buoy was
superimposed on the wind wave, which in turn was synthe-
sized by means of the random-phase method. Thus, we intro-
duced several synthetic tsunamis to demonstrate the perfor-
mance of the tsunami detection.

The historical 1983 Akita tsunami (Mw= 7.8) and the
1993 Hokkaido tsunami (Mw= 7.7) were recorded in sev-
eral tide stations operated by the Korea Hydrographic and
Oceanographic Agency (KHOA). Among the records, three
records of the tide stations were selected, which are well pre-
served so that continuous records can be obtained. One is
the record of the Ulleung-do tide station in 1983, and others
are the records of the Ulleung-do and Pohang tide stations
in 1993. Also, even though the amplitude was very small,
the 2011 Tōhoku tsunami was recorded in several tide sta-
tions. We selected two records of tide stations, Tongyeong
and Seongsanpo, which were recorded continuously. The lo-
cation of tide stations can be found in Fig. 1.
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Figure 12: Performance test of the outlier removal and gap filling algorithms. (Left) Time-series of the Ulleung-do surge gauge after applying 

both outlier removal and gap filling algorithms (black line). Outliers are marked by a gray line and gap-filled data are marked by a blue line 
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Figure 12.

For the tsunami detection algorithm, one of the important
performance indicators is the delay time between the actual
arrival time and the time of the first alarm. In order to in-
vestigate the delay time, we set the standard arrival time to
the arrival time records in the report on tsunami occurrence
(KHOA, 2015). However, if the original records are applied
to the tsunami detection algorithm directly, it is hard to in-
vestigate the delay time correctly because of the false alarm

caused by the background records, which are all different de-
pending on the specific local characteristics. Thus, after ex-
tracting the tsunami records by detiding the original records,
the tsunami records of 24 h were superimposed on the back-
ground records of the Ulleung-do surge gauge. The result-
ing time series with the alarm level (red, orange, and yellow)
are illustrated in Fig. 13. The records of the Ulleung-do tide
station show a similar trend with the 2011 Tōhoku tsunami
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Figure 12. Performance test of the outlier removal and gap-filling algorithms. Left panels: time series of the Ulleung-do surge gauge after
applying both outlier removal and gap-filling algorithms (black line). Outliers are marked by a gray line and gap-filled data are marked by
a blue line (SGFA) and a red line (LGFA). The yellow box in March indicates the event period. Scatter plots show the comparison between
before and after applying both outlier removal and gap-filling algorithms (middle and right). The mean value of each axis in the scatter plot
is fixed to zero by subtracting the mean value of each datum from its data. The color point represents the frequency of data plotted inside the
circle with a radius of 1 cm. The right corner represents the correlation coefficients.
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Figure 13. Synthetic tsunami records combining the records of
tide stations with the background records of the Ulleung-do surge
gauge: (a) 1983 ULD (Ulleung-do), (b) 1993 ULD (Ulleung-
do), (c) 1993 POH (Pohang), (d) 2011 TOY (Tongyeong), and
(e) 2011 SSP (Seongsanpo). For clarity, the records near the tsunami
arrival time are zoomed in on the right side. The arrival time is fixed
to 15 June 2011, and the event period is set to 24 h. Vertical lines
represent the alarm: warning (red), advisory (orange), and watch
(yellow).

record of the Ulleung-do surge gauge where the amplitude re-
lented after the tsunami arrived (Fig. 13a and b). Conversely,
the records of the Pohang, Tongyeong, and Seongsanpo tide
stations oscillate consistently (Fig. 13c–e). In general, one
could expect that the larger the tsunami amplitude during the
same time period, the shorter the delay time is. Indeed, the
delay time was shorter than about 5 min for the records of
the historical tsunamis (Fig. 13a–c), while the delay time was
longer than about 10 min for the records of the 2011 Tōhoku
tsunami (Fig. 13d and e). Because of the small amplitude,
the record of the Tongyeong tide station shows the warning
alarm (red vertical line) at about 9 h after the arrival time, and
the record of the Seongsanpo tide station shows no warning
alarm. However, it should be noted that the tsunami detec-
tion algorithm detects a weak tsunami, which is hard to dis-
tinguish by visual inspection.
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Figure 14. Performance test of the tsunami detection algorithm.
The delay times are depicted distinctly depending on the types
of synthetic tsunamis: 1983 ULD (rectangle), 1993 ULD (circle),
1993 POH (diamond), 2011 TOY (triangle), and 2011 SSP (cross).
The types of alarms are depicted distinctly: warning (red), advisory
(orange), and watch (yellow).

For further investigation of the relationship between the
first wave slope and the delay time, 100 cases of synthetic
tsunami records were built. The detided tsunami records
were multiplied by the factor changing from 0.1 to 2.0 with
0.1 intervals, and then the records were superimposed on the
background records. Figure 14 shows the delay times of each
alarm level (red, orange, and yellow) against the first wave
slope of all 100 cases. The first wave slope was defined as
the rate of change in the water level between the point of ar-
rival time and the local maximum point that appears after the
arrival time with respect to time. As we expected, the dis-
tribution shows that the first wave slope and the delay time
are in inverse proportion. If the first wave slope is less than
about 0.15 cm min−1, which is the case of tsunamis that ar-
rive with slowly increasing waves, the tsunami detection al-
gorithm could not issue the warning alarm for any case. How-
ever, it should be noted that the tsunami detection algorithm
ensures performance when an alarm for the first wave slope
larger than 1 cm min−1 can be sent within 10 min. In other
words, the results show that the tsunami detection algorithm
could detect a tsunami whose amplitude is larger than 10 cm
within 10 min.

5 Conclusion

In the present study, we proposed a Tsunami Arrival time
Detection System (TADS) applicable to discontinuous time
series data with outliers. In order to avoid false alarms and
time delays, TADS comprises three major algorithms: out-
lier removal, gap filling, and tsunami detection. The out-
lier removal algorithm is designed to remove outliers very
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quickly within the time interval of data acquisition. The gap-
filling algorithm is designed to fill gaps efficiently by ap-
plying different methods depending on the gap size. The
tsunami detection algorithm is designed to not only detect
weak tsunamis but also to reduce false alarms by combining
several algorithms.

TADS recognized the tsunami within a few minutes af-
ter its arrival for the 2011 Tōhoku tsunami record from
the Ulleung-do surge gauge. Applying TADS to the 1 year
dataset and synthetic tsunamis also proved that the overall
performance of TADS is effective at detecting a tsunami sig-
nal superimposed on both the outliers and gaps. We expect
that the efficiency and simplicity of TADS will enable its
wide application in tsunami monitoring areas as a support
tool that averts calamity by providing a rapid confirmation of
tsunami generation.

6 Data availability

The Ulleung-do surge gauge data are not available to the pub-
lic. For scientific collaboration and data usage, interested re-
searchers are asked to contact the authors.
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