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Abstract. The forecasting of inundation levels during ty-
phoons requires that multiple objectives be taken into ac-
count, including the forecasting capacity with regard to vari-
ations in water level throughout the entire weather event, the
accuracy that can be attained in forecasting peak water levels,
and the time at which peak water levels are likely to occur.
This paper proposed a means of forecasting inundation levels
in real time using monitoring data from a water-level gauging
network. ARMAX was used to construct water-level fore-
cast models for each gauging station using input variables
including cumulative rainfall and water-level data from other
gauging stations in the network. Analysis of the correlation
between cumulative rainfall and water-level data makes it
possible to obtain the appropriate accumulation duration of
rainfall and the time lags associated with each gauging sta-
tion. Analyses on cross-site water levels as well as on cu-
mulative rainfall enable the identification of associate sites
pertaining to each gauging station that share high correla-
tions with regard to water level and low mutual information
with regard to cumulative rainfall. Water-level data from the
identified associate sites are used as a second input variable
for the water-level forecast model of the target site. Three in-
dices were considered in the selection of an optimal model:
the coefficient of efficiency (CE), error in the stage of peak
water level (ESP), and relative time shift (RTS). A multi-
objective genetic algorithm was employed to derive an op-
timal Pareto set of models capable of performing well in the
three objectives. A case study was conducted on the Xinnan
area of Yilan County, Taiwan, in which optimal water-level
forecast models were established for each of the four water-
level gauging stations in the area. Test results demonstrate
that the model best able to satisfy ESP exhibited significant

time shift, whereas the models best able to satisfy CE and
RTS provide accurate forecasts of inundations when varia-
tions in water level are less extreme.

1 Introduction

Typhoons are common weather events in subtropical regions
of the Pacific, between July and October. Heavy rains carried
in by typhoons often lead to the severe inundation of low-
lying areas, which can damage property and even threaten the
safety of human lives. Limitations in funding for construction
of flood control systems pose limits to the protective capac-
ity of structural measures for disaster mitigation. When the
scale of a typhoon exceeds construction design limits, non-
structural means are required to prevent disasters associated
with typhoons. The real-time forecasting of changes in inun-
dation depth in the hours after a typhoon is a crucial factor in
the planning of relief operations.

Considerable research has been conducted on inundation
simulations and forecasting techniques, most of which can be
roughly divided into two approaches: numerical simulations
and black-box modelings. In numerical simulations, various
physical phenomena that occur between rainfall and inunda-
tion are examined before carrying out theoretical derivations
using mathematical analysis, after which solutions are ob-
tained by numerical methods. This approach is based on a
sound theoretical foundation and enables a clear representa-
tion of the physical mechanisms associated with inundation.
The accuracy of the results makes them particularly useful
in the forecasting of inundation in the absence of on-site ob-
servation data. However, this type of approach requires con-
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siderable computing resources and can be very time con-
suming, which makes it difficult to provide forecast infor-
mation in real time for immediate disaster relief actions dur-
ing typhoons. Black-box modelings are implemented in an
entirely different manner. The process that occurs between
rainfall and inundation is regarded as a black box, and no
attempt is made to understand the underlying physical mech-
anisms. Rather, the relationships between inputs and out-
puts of the system are analyzed as a means of creating a
black-box model. Although this approach is unable to ex-
plain the physical phenomena, it provides an accurate repre-
sentation of the relationship between inputs and outputs. Cal-
culations can generally be completed more rapidly (Karlsson
and Yakowitz, 1987), and information related to future varia-
tions in water-level in inundated areas can be obtained in real
time, which can be immensely helpful to decision making
and disaster prevention.

A number of studies have applied black-box models to the
problems of inundation or flooding. Karunanithi et al. (1994)
proposed a cascade-correlation algorithm for the selection
of neural network architectures and training algorithms and
obtained encouraging results with regard to flow prediction.
Thirumalaiah and Deo (1998) proposed the training of neu-
ral networks using a selected sequence of previous flood
observations at a specific location to enable real-time flood
forecasting. Toth et al. (2000) compared the advantages and
limitations of the auto-regressive moving average, artificial
neural network (ANN), and non-parametric nearest-neighbor
method in rainfall–runoff forecasting. They concluded that
time series analysis is far more accurate than simple rain-
fall predictions of a heuristic nature. Chang and Chen (2001)
proposed a counter-propagation fuzzy-neural network capa-
ble of automatically generating rules for use in clustering in-
put data to enable streamflow prediction. Nayak et al. (2005)
employed fuzzy computation in the development of a real-
time flood forecasting model. They concluded that the recur-
sive use of a one-step-ahead forecast model to predict flow
using longer lead times produces results better than those
achieved using independent fuzzy models for the forecast-
ing of flow under various lead times. Chen et al. (2006) con-
structed a flood forecast model using an adaptive neuro-fuzzy
inference system (ANFIS). Their results demonstrated that
ANFIS is superior to back-propagation neural network. Ro-
manowicz et al. (2008) developed a data-based mechanis-
tic methodology for the derivation of nonlinear dependence
between water levels measured at gauging stations along a
river. Kia et al. (2012) developed a flood model using vari-
ous flood causative factors using ANN techniques and geo-
graphic information system (GIS) for the modeling and sim-
ulation of flood-prone areas in the southern parts of Peninsu-
lar Malaysia. Pan et al. (2011) presented a real-time rainfall-
inundation forecasting model using a hybrid neural network
based on a synthetic database of inundation potential. Shiri et
al. (2012) compared the performance of gene expression pro-
gramming (GEP), ANFIS, and ANNs in the forecasting of

daily stream flow. They concluded that the GEP model out-
performed the ANN and ANFIS models. Chen et al. (2012)
utilized an ANN model and an ANFIS model to correct cal-
culations in a two-dimensional hydrodynamic model used for
the prediction of storm surge height during typhoon events.
Najafzadeh and Zahii (2015) proposed the use of a neuro-
fuzzy-based group method of data handling as an adaptive
learning network for the prediction of flow discharge in
straight compound channels.

In this study, we sought to develop a method for the fore-
casting of inundation levels, based on data from a water-level
gauging network during typhoons. We also performed a case
study in which crucial model input variables were obtained
by analyzing records from previous typhoons. Autoregres-
sive moving average with exogenous inputs (ARMAX) was
used to construct rainfall and water-level relationship mod-
els of the gauging stations, and three indices were defined
for the evaluation of model performance. A Pareto optimal
model set was identified for the three indices using a multi-
objective genetic algorithm (MOGA). Predicted water levels
were compared with measured data to examine the perfor-
mance of the optimal models subjected to each index.

This paper is organized as follows. The environmental
background of the study area is introduced in Sect. 2. In
Sect. 3, we explain ARMAX and the data analysis methods
used to find suitable model input variables. We also intro-
duce the indices used for the evaluation of the models. Sec-
tion 4 presents the method used to identify the Pareto op-
timal model set for the evaluation indices using a MOGA.
Section 5 discusses the forecasting capability of the optimal
models for each objective based on search results. Conclu-
sions follow in Sect. 6.

2 Study area

Yilan County (Fig. 1) is situated in the northeastern part of
Taiwan. It has a subtropical monsoon climate and is famed
for its rainy weather. With over 200 rain days per year,
the annual average precipitation ranges between 2000 and
2500 mm. Yilan is bordered by mountains to the west and
the ocean to the east. Typhoons are common in summer and
autumn. Statistically, an average of two to three typhoons
hit Taiwan each year, 45 % of which make landfall in Yilan
County (Pan et al., 2014). Severe inundations quickly form
in low-lying areas during typhoons. Among the inundation-
prone regions, the area of Xinnan is one of the worst.

The Xinnan area (Fig. 1) is located near the mouths of two
major waterways in the county: the Meifu drainage water-
way to the north and the Lanyang River to the south. Flat ter-
rain dips to the east, and its eastern border abuts the Pacific.
The average elevation in the area is just about 2 m above sea
level. During typhoons, water levels in the two major water-
ways rise swiftly from large inflows upriver. The levees of the
two waterways prevent runoff in the area from being drained
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Table 1. Water-level gauging network in Xinnan area.

Gauging station
Location

Elevation above sea level (m)
Longitude Latitude

Zhongnanxing 121.7877 24.7239 1.94
Xinnan 121.8012 24.7250 0.78
Sijie 121.8083 24.7234 0.13
Meifu 121.8156 24.7191 0.23

Table 2. Historical typhoon events recorded by SNTIX.

Typhoon Year Time of official typhoon Affecting Cumulative Maximum rainfall
sea warning issued: period (h) rainfall (mm) intensity (mm h−1)
hour (UTC), day/month

Songda 2011 02:30, 27 May 36 191.5 28.5
Nanmadol 2011 05:30, 27 Aug 99 159.5 26.5
Saola 2012 20:30, 30 Jul 90 506.0 35.5
Soulik 2013 08:30, 11 Jul 63 138.0 30.0
Trami 2013 11:30, 20 Aug 45 160.0 21.5
Usagi 2013 23:30, 19 Sep 63 158.0 24.0
Matmo 2014 17:30, 21 Jul 54 107.5 34.0
Fung-wong 2014 08:30, 19 Sep 72 79.5 37.5
Soudelor 2015 11:30, 6 Aug 69 462.5 86.0
Dujuan 2015 08:30, 27 Sep 57 226.0 41.5
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Figure 1. Xinnan area in Yilan County, Taiwan.

out effectively, which soon leads to severe inundation. The
safety and property of residents are in risk during typhoons,
which underlines the need for effective disaster prevention
measures.

In an attempt to better understand local inundation condi-
tions during typhoons, the Water Resources Agency estab-
lished the Surveillance Network for Typhoon Inundation in
the Xinnan Area (SNTIX) in 2011. The network includes
four gauging stations receiving water-level data on-site in
the area and a data transmission system receiving precipita-
tion observation data from the QPESUMS (Quantitative Pre-
cipitation Estimation and Segregation using Multiple Sensor;

Gourley et al., 2002) of the Central Weather Bureau. Table 1
lists detailed information related to the gauging stations, the
locations of which are marked in Fig. 1. SNTIX reports local
inundation levels via radio transmission every 10 min dur-
ing typhoons, while QPESUMS transmits 10 min rainfall in
the area via internet connection at the same frequency. Fig-
ure 2 presents the water levels recorded by SNTIX at gaug-
ing stations and the QPESUMS rainfall data during Typhoon
Trami in 2013. QPESUMS was developed jointly by the Cen-
tral Weather Bureau and the National Severe Storm Labora-
tory (NSSL) in 2002, with a view to improving the accu-
racy of quantitative rainfall forecasts. QPESUMS comprises
eight Doppler radar stations, each of which scans a radius
of approximately 230 km. The system divides Taiwan into
441× 56 grids, each covering 1.25× 1.25 km2. Rainfall es-
timation is achieved by obtaining readings from 406 rainfall
gauges and 45 ground stations for adjustments. QPESUMS
forecasts future rainfall patterns by predicting the movement
paths of cloud cells. Data are provided for a wide range of
applications, including typhoon rainfall forecasts (Lee et al.,
2006), river flooding forecasts (Vieux et al., 2003), and land-
slide forecasts (Chen et al., 2007).

Since its implementation, SNTIX has recorded data from
10 typhoon events, as shown in Table 2. In addition to pro-
viding rainfall and water-level information at the time of the
typhoon, these records can also be used to develop water-
level forecast models for gauging stations.
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Figure 2. Rainfall and water-level data recorded by SNTIX during
typhoon Trami.

3 Model construction

To plan effective disaster prevention and relief operations
during typhoons, it is crucial that one has the capacity to
forecast inundation levels developing in the following hours.
In the Xinnan area, inundation develops swiftly during ty-
phoons, so forecasting must be quick and effective in or-
der to provide sufficient lead time for decision making and
operational planning. Thus, we adopted the ARMAX black-
box model for the construction of water-level forecast mod-
els for gauging stations. It should be noted that during ty-
phoons, response plans rely more heavily on water levels
than on runoff. We therefore based the forecast model on
this study in the relationship between rainfall and water level
rather than on the relationship between rainfall and runoff,
as was common in many studies. Moreover, the rainfall and
water-level data in this study were not processed in the con-
ventional manner, in which the data are normalized by the
maximum and minimum values before performing model re-
gression, considering the fact that this information cannot
be obtained while a typhoon is in progress. To enable real-
time water-level forecasting during typhoons, we designed
the water-level forecast model using raw rainfall and water-
level data as inputs with the forecast water level of the next
time step as the output.

3.1 ARMAX model

ARMAX (Box and Jenkins, 1976) is a linear black-box
model that merges the AR model (Yule, 1927) and MA model
(Slutzky, 1937) for time series analysis. It takes into account
the influence of other external variables in the forecasting of

future changes in dynamic systems. The model is as follows:

A(q)y (t)=

nu∑
i=1

Bi (q)ui (t − nki)+C (q)e(t), (1)

where y denotes the output of the system, ui stands for the
exogenous input for input i, nu indicates the number of in-
puts, nki is the time lag for each input, e is the error term, and
A(q), Bi (q), and C (q) are the polynomial functions com-
posed of time shift operator q.

In this study, y represents the water levels recorded at the
gauging stations. To make full use of monitoring data from
the surveillance network, each water-level model contains
two exogenous inputs: rainfall data u1 from QPESUMS and
water-level data u2 from an associate gauging station. The
structure of the model is determined by the number of terms
in the four polynomial functions A(q), B1 (q), B2 (q), and
C (q) and the time lags of the two exogenous inputs, nk1 and
nk2. The coefficients of four polynomial functions can be ob-
tained by calibrating rainfall and water-level data.

3.2 Determination of input variables

In this study, we set the cumulative rainfall as the first input
variable. After calculating the cumulative rainfall of various
durations from 1 to 30 h, the results are subjected to corre-
lation analysis using water-level data from the target site to
derive the correlation coefficient (CC), which is defined as

CC(x,y)=
cov(x,y)
σxσy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)
2
√∑n

i=1(yi − y)
2
, (2)

where cov refers to the covariance between variables x and y,
σx and σy are the standard deviations of x and y, respectively,
and n denotes the number of data points. CC ranges from−1
to 1, which indicate perfect negative correlation and perfect
positive correlation between x and y, while a CC value of 0
indicates the complete absence of correlation.

Figure 3a–d present the results of correlation analysis per-
taining to water-level data from various gauging stations and
cumulative rainfall of various durations. The black round
dots in the figures mark the average CC values of each ty-
phoon event, and the tops and bottoms of the bars indicate
the maximum and minimum CC values among the events.
The variations in the average CC in the figures clearly show
that the average CC increases with the duration of cumula-
tive rainfall, reaches a peak, and then declines gradually. This
phenomenon is apparent in all of the gauging stations. How-
ever, the duration of cumulative rainfall corresponding to the
peak average CC can vary. Table 3 lists the peak average
CC, the corresponding duration of cumulative rainfall, and
the maximum and minimum CCs measured at each station.
As can be seen, the peak average fluctuates roughly between
0.7 and 0.9, which indicates that a certain degree of correla-
tion exists between water level and cumulative rainfall at the
stations. The table also shows that the duration of cumulative
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Table 3. Correlation coefficient (CC) between water-level and cumulative rainfall with average peak and the associated duration of cumulative
rainfall.

Gauging site
CC between water-level and cumulative rainfall

Duration of cumulative rainfall (h)
Average peak Maximum Minimum 1CC

Zhongnanxing 0.91 0.95 0.86 0.10 18
Xinnan 0.82 0.96 0.65 0.31 20
Sijie 0.70 0.97 0.30 0.68 20
Meifu 0.72 0.96 0.01 0.95 25

rainfall corresponding to the peak average CC is longer in
stations located further downward in the area. For instance,
the duration of cumulative rainfall corresponding to the peak
average CC at the Zhongnanxing station, which is at higher
ground in the area, is 18 h, whereas the duration at the Meifu
station, which is closest to the sea, is 25 h. We speculate that
this might be associated with the time needed for water to ag-
gregate and move downward. The table also presents a slight
decrease in the peak average CC as the station falls closer to
the sea as well as a greater difference between the maximum
and minimum CC values. It is possible that this is because
water levels at locations closer to the sea are influenced by
ocean tides, which somewhat reduces its correlation with cu-
mulative rainfall.

After identifying the duration of cumulative rainfall with
the highest correlation for each gauging station, we analyzed
the time lags between water levels and cumulative rainfall.
We shifted back the cumulative rainfall data one time step
at a time (each time step is 10 min) and calculated the CCs
between water level and cumulative rainfall for each station.
Figure 4a–d display the results of cross-correlation analysis
for water levels and cumulative rainfall at each station. As
can be seen, the peak average CC for each station occurred
at zero lag, and the average CC decreases as the leg length-
ened. This indicates that no time lag exists between water
level and cumulative rainfall. Furthermore, the figures show
that as the lag increased, not only the average but also the
maximum and minimum CCs decreased, and the difference
between the maximum and minimum CCs (1CC) gradually
increased. This demonstrates that for all events the correla-
tion between water level and cumulative rainfall during ty-
phoons diminishes with the length of the lag.

To make full use of the water-level records from the gaug-
ing stations, we identified an associate station for each exist-
ing station and used the water levels from the associate sta-
tion as a second input variable of the forecast models. Gen-
erally speaking, the input and output of a model require a
higher degree of correlation, while in between the input vari-
ables a lower mutual information (MI) is expected (Bowden
et al., 2005; Talei et al., 2010; Maier et al., 2010) in order to
ensure that the information provided to the model from the

inputs are not redundant. MI is defined as

MI(x,y)=
1
2

log(
|Cxx |

∣∣Cyy∣∣
|C|

), (3)

where C is the covariance matrix defined as

C =

[
Cxx Cxy
Cyx Cyy

]
, (4)

where Cxx and Cyy are the variance of variables x and y,
respectively, Cxy and Cyx are the covariance of variables x
and y, and |C| is the absolute value of the determinant of the
covariance matrix. An MI value equal to 0 indicates com-
plete independence between x and y, while a higher MI value
indicates stronger dependence between x and y (Fraser and
Swinney, 1986; Moon et al., 1995).

To find an associate site with which the water-level data
have a high CC with that of the target site while having a low
MI with the identified cumulative rainfall of that specific site,
we combined the two indices into

R = CC+ (1−MI). (5)

The MI value presents the degree of dependence between the
input variables; i.e., 1−MI reflects the degree of indepen-
dence between input variables. The candidate site with the
highest R value was designated as the associate site for a
given target site. This approach in which MI is taken into ac-
count in the selection of model inputs has been employed in
previous studies (Talei et al., 2010; Elshorbagy et al., 2010;
He et al., 2011).

Table 4 lists the event-averaged CCs between water-level
data from each target site and their candidate sites, as well as
the event-averaged MI of the first input variable (i.e., iden-
tified cumulative rainfall) of the target site and the water-
level data from the candidate sites. The table also presents
the R values for each pair of sites. The asterisk notes the
highest R values for each site, and the corresponding can-
didate sites were those selected as associate sites. The asso-
ciate sites that were eventually selected for each target site
are displayed at the bottom of Table 4. It is noted that the
R values of Xinnan and Sijie stations and of Meifu and Sijie
stations are practically identical, and thus either Xinnan or
Meifu station can be selected as the associate station for Si-
jie. In the present study, the Xinnan station was selected due

www.nat-hazards-earth-syst-sci.net/16/1897/2016/ Nat. Hazards Earth Syst. Sci., 16, 1897–1909, 2016



1902 H.-T. Ouyang: Multi-objective optimization of typhoon inundation forecast models

Table 4. Selection of associate site for the second model input based on CC and MI .

Candidate site

Target site

CC between cross-site water levels MI between water-level input from candidate R (∗highest)
site and cumulative rainfall input for target site

Zhongnanxing Xinnan Sijie Meifu Zhongnanxing Xinnan Sijie Meifu Zhongnanxing Xinnan Sijie Meifu

Zhongnanxing NA 0.81 0.76 0.70 NA 0.70 0.65 0.59 NA 1.12 1.11 1.11
Xinnan 0.81 NA 0.94 0.95 0.88 NA 0.72 0.66 0.94 NA 1.22∗ 1.29∗

Sijie 0.76 0.94 NA 0.95 0.88 0.87 NA 0.66 0.88 1.08 NA 1.29
Meifu 0.70 0.95 0.95 NA 0.68 0.81 0.73 NA 1.02∗ 1.14∗ 1.22 NA

Selected associate site Meifu Meifu Xinnan Xinnan

Table 5. Input variables for the water-level forecast models.

Gauging site
Inputs

Cumulative rainfall (mm) Water level (m)

Duration (h) Lag Associate site Lag

Zhongnanxing 18 0 Meifu
Xinnan 20 0 Sijie
Sijie 20 0 Xinnan
Meifu 25 0 Xinnan

to its slightly higherR value (to the third digit). The same sit-
uation applies for Meifu station where both Xinnan and Sijie
have practically identical R values, and Xinnan was selected
as the associate station for Meifu.

To elucidate the meaning of the time lag prior to variations
in water-level data from target sites and their associate sites,
we followed the previous analysis method in shifting water-
level data from the associate sites one time step at a time. We
then calculated the CCs between the water-level data from
the target site and the associate site until we reached 30 time
steps. The results in Fig. 5 show that the event-averaged CCs
are all highest at zero lag. As the lag increases, the aver-
age, maximum, and minimum CCs of each station decrease,
and the difference between the maximum and minimum CCs
gradually increases. This is a clear indication that no time
lag exists between variations in water level measured at tar-
get sites and at their associate sites. It is noted that, as shown
in Fig. 5d, the mean CC for Meifu seems to be stationary for
small time lags. The location of Meifu station is at the outlet
of the area where it is close to the sea, as seen in Fig. 1. The
water level at this site is likely to be influenced by factors
other than rainfall and water level at the associate site (for
example, tidal level of the sea). As a result, the cross-CC of
Meifu to the associate site is the lowest compared to that of
the other sites, as seen in Fig. 5d compared to Fig. 5a–c. This
rather less connection of the cross-site water levels might re-
sult in the somewhat stationary CC for small time lags. Still,
as shown in Fig. 5d, while the mean CC seems to be station-
ary for small time lags, the gradually expanding deviation
between the maximum and minimum CCs of all the events

suggests a zero lag between the water levels at Meifu and its
associate site.

The above data analysis makes it possible to determine the
input variables of the water-level models for each station as
well as their time lags, as shown in Table 5. The first input
variable is cumulative rainfall, and the duration of cumulative
rainfall in the various stations are not the same; however, all
of the time lags are 0. The second input variable is water-
level data from the associate site for which the time lags are
also 0.

3.3 Model evaluation

The performance of each model was evaluated using the
three indices below.

1. Nash–Sutcliffe coefficient of efficiency (CE) was pro-
posed by Nash and Sutcliffe (1970) to assess the fore-
casting capacity of hydrological models. It is defined as

CE= 1−

n∑
t=1

[
yobs (t)− yest (t)

]2
n∑
t=1

[
yobs (t)− yobs

]2 , (6)

where yobs and yest denote the observed and estimated
water levels, yobs is the average observed water level,
and n indicates the number of data items. The CE value
represents the goodness of fit between the observed data
and the forecast results of the model; a CE value closer
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Figure 3. Correlations between water-level and cumulative rainfall
over various durations: (a) Zhongnanxing station; (b) Xinnan sta-
tion; (c) Sijie station; (d) Meifu station.

to 1 means that the water-level forecasts more closely
match the observation data.

 

(a) 

 

(b) 

 

(c) 

 

(d) 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
C

Lag 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
C

Lag 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
C

Lag 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

C
C

Lag 

Figure 4. Cross-correlations between water level and cumulative
rainfall with various time lags (10 min per lag): (a) Zhongnanxing
station; (b) Xinnan station; (c) Sijie station; (d) Meifu station (cor-
relation coefficient less than -0.2 is not shown).

2. Error in the stage of peak water-level (ESP) is calculated
by

ESP=

∣∣yp,est− yp,obs
∣∣

dp,obs
, (7)
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Figure 5. Cross-correlations of between-site water levels with var-
ious time lags (10 min per lag): (a) Zhongnanxing station; (b) Xin-
nan station; (c) Sijie station; (d) Meifu station.

where yp,obs and yp,est denote the peak observed and es-
timated water levels, respectively, and dp,obs is the peak
observed water depth. ESP represents the error between
the peak observed water level and the forecast results
of the model. A smaller ESP value means that the es-
timated peak water levels more closely match the ob-
served values.

3. Relative time shift (RTS): previous researches have
shown that using historical data to forecast future
changes often results in time shift errors between
the forecast and measured hydrographs (Dawson and
Wilby, 1999; Jain et al., 2004; de Vos and Rientjes,
2005). To evaluate the time shift error of forecast water
levels, we shifted the forecast water-level hydrograph
back by 1 to 18 time steps and then calculated the CE
values. The time step corresponding to the highest CE
value is the time shift error (δ) of the water-level model.
This method was also adopted by de Vos and Rientjes
(2005) and Talei et al. (2010). The RTS of the models in
this study was defined as

RTS=
δ

Lt
, (8)

where δ denotes the time shift error of the model, andLt
is the prediction lead time of the model. A smaller RTS
refers to a smaller time shift error between the forecast
and observed water levels.

The determination of the prediction lead time depends
on the required action time for relief operations during
typhoons, such as evacuating people from the flooded
area. In practice, it would be better to have at least 3 h
ahead to warrant a smooth operation. Thus, Lt is set to
be 3 h for discussion in the present study. However, it
should be noted that the proposed methodology is ap-
plicable to any prediction lead time.

3.4 Cross validation

Cross validation (Geisser, 1993) was adopted for model cali-
bration and typhoon event validation. For each model with a
designated model structure (i.e., the number of terms for each
of the four polynomials A(q), B1 (q), B2 (q), and C (q)), a
single typhoon event was first selected for model validation
and all the other nine events were used to calibrate the set of
the model parameters (i.e., the coefficients of the four poly-
nomials). The procedure was repeated by selecting another
event for validation and all the other events for calibration.
Each time the CE, ESP, and RTS scores from the validation
case were computed and recorded. In turn, all of the typhoon
events were validated, and the performance of this model
structure was then represented by the averaged CE, ESP, and
RTS over all the validation cases. This procedure was inte-
grated with a MOGA introduced in the following to search
for the optimal models that perform well in all the three in-
dices for each gauging station.

4 Multi-objective optimization

The three indices, CE (to assess the capacity of a model to
simulate entire typhoon events), ESP (to assess peak wa-
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ter levels), and RTS (to determine the time at which a peak
water level occurs), each provide crucial element to disas-
ter prevention operations during typhoons and must therefore
be considered simultaneously. Unfortunately, it is difficult to
weigh the importance of each element. Thus, we employed
multi-objective optimization to search for models capable of
performing well in all three indices.

4.1 Objective functions and Design variables

The design goals included a larger CE and smaller ESP and
RTS. Thus, we defined the objective function as follows:

Objective 1 : minimize(1−CE), (9)

Objective 2 : minimizeESP, (10)

Objective 3 : minimizeRTS, (11)

where CE, ESP, and RTS denote the typhoon-event averages
of the three indices.

As mentioned previously, the structure of the ARMAX
model is determined by the polynomial functions A(q),
B1 (q), B2 (q), and C (q) and the time lags of the two exoge-
nous inputs, nk1 and nk2. The time lags can be derived from
previous data analysis. The analysis of time lag between cu-
mulative rainfall and water levels at the associate site shows
that the time lags between the two inputs and the output of
the model are both 0. QPESUMS is able to provide forecasts
on rainfall in the following time step; therefore, we set nk1 to
0 in order to incorporate the rainfall predictions provided by
QPESUMS within the models. Because we have only real-
time monitoring values (rather than forecast values) for the
water level at associate sites, we set nk2 to 1. Thus, the struc-
ture of the model is determined by the remaining number
of terms in the polynomial functions. Thus, we set the de-
sign variables as the number of terms in the four polynomial
functions, which are integers and limited the range of each
design variable to between 1 and 10 in order to preserve the
simplicity of the model.

4.2 Multi-objective genetic algorithm

A lack of continuous relationships between the structure of
the model and the objective function makes it impossible to
obtain the optimal value of this problem using a gradient-
based method. Based on the characteristics of the problem,
we employed a genetic algorithm (GA) as a tool for opti-
mization due to the fact that GAs do not require the Hessian
matrix of the objective function to derive the optimal solution
for each design variable. Furthermore, the fact that GAs can
search for global optimums (Goldberg, 1989) makes this an
extremely suitable approach to the identification of an ideal
model.

GAs are based on Darwin’s theory of natural selection.
Since Holland (1973) developed a sound mathematical foun-
dation based on this principle, GAs have been widely ap-
plied in a variety of fields to solve problems that could not

otherwise be solved using conventional methods. In GAs,
the individuals in a group are viewed as possible solutions
to the problem under discussion. The individuals are rated
according to their performance as they pertain to the ob-
jective functions and constraints. Superior performance in-
creases the chance of passing on genes to the next gener-
ation. Through this process, the overall performance of the
population gradually evolves and improves. After evolving
for several generations, individuals with optimal genes (i.e.,
those that dominate the population) are adopted as the opti-
mal solutions to the problem. GAs conduct optimization by
assessing the performance of individuals in the population,
which makes them ideally suited to solving problems with
multiple objectives.

In MOGA, the first generation of models for each gaug-
ing sites were produced by randomly specifying the number
of terms of the four polynomials and C (q), for each of the
models. The performance of each model was evaluated by
the three indices, obtained by the cross validation procedure
introduced in Sect. 3.4. MOGA then produced the next gen-
eration of models based on the performance of each individ-
ual model. The procedure iterated until a stopping criterion
was reached. Through this process, the whole generation of
models gradually evolved, and a Pareto model set containing
models that perform well in all three indices was gradually
generated. In the present study, the population size in MOGA
was set at 50 for each gauging site and the Pareto fraction at
0.35. The maximum number of evolutionary generations was
200, and the MOGA was set to terminate after the results
stalled for more than 20 generations.

5 Results and discussion

The result of the MOGA is a Pareto optimal set. All of the
models in this set are un-dominated, which means that at
least one of their three indices (CE, ESP, and RTS) is not sur-
passed by that of any other model. We selected the models
with the best performance in all three indices from the Pareto
optimal set, the results of which are as shown in Table 6.
We listed three models for each gauging station and named
them according to their location. For example, the models for
Zhongnanxing station are Z1, Z2, and Z3. Among the three
model types, model type 1 achieved the highest average CE,
model type 2 achieved the lowest average ESP, and model
type 3 achieved the lowest average RTS. The table lists four
integer design variables for each model, indicating the num-
ber of terms in A(q), B1 (q), B2 (q), and C (q). The table
also displays the scores of each model type on the three in-
dices, wherein the score marked with an asterisk achieved the
optimal value for that index.

Using data from Typhoon Saola, a water-level forecast was
performed using the models of each gauging station with a
lead time of 3 h. We then compared the results with the ob-
served values, as is shown in Fig. 6a–d. The results in Fig. 6a

www.nat-hazards-earth-syst-sci.net/16/1897/2016/ Nat. Hazards Earth Syst. Sci., 16, 1897–1909, 2016



1906 H.-T. Ouyang: Multi-objective optimization of typhoon inundation forecast models

Table 6. Models selected from the Pareto optimal model set using the best scores for each of the three objectives (∗ best score).

Gauging site Model Objective Design variables CE ESP RTS

Zhongnanxing
Z1 max CE [9 9 4 8] 0.82∗ 0.14 0.42

Z2 min ESP [1 4 1 1] 0.73 0.03∗ 0.84

Z3 min RTS [10 10 8 6] 0.69 0.19 0.36∗

Xinnan
X1 max CE [10 4 6 3] 0.82∗ 0.06 0.38

X2 min ESP [1 2 2 3] 0.67 0.03∗ 0.99

X3 min RTS [5 5 4 3] 0.72 0.20 0.17∗

Sijie
S1 max CE [8 3 2 1] 0.66∗ 0.12 0.68

S2 min ESP [1 1 1 2] 0.50 0.04∗ 0.99

S3 min RTS [3 6 7 6] 0.10 0.26 0.33∗

Meifu
M1 max CE [8 8 6 8] 0.65∗ 0.21 0.57

M2 min ESP [1 1 5 3] 0.55 0.02∗ 0.97

M3 min RTS [9 5 7 5] 0.33 0.22 0.23∗
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Figure 6. Comparison of model predictions (3 h lead time) and measured data at (a) Zhongnanxing station; (b) Xinnan station; (c) Sijie
station; (d) Meifu station.

show that the forecast water levels from the three models of
the Zhongnanxing station (furthest from the sea) are roughly
identical to the observed water levels, indicating that the fore-
cast results are very accurate. No significant differences were
observed among the forecast results of the three model types.

The forecast results of the other three gauging stations in
Fig. 6b, c, and d by the three types of models present different
characteristics. Model type 2 (X2, S2, and M2) shows good
performance in predicting peak water levels while exhibiting

a time shift between the measured water levels and the water-
level forecast. Model type 2 emphasizes the need to minimize
error in peak water levels; therefore, it is likely that variations
in the water-level forecasts from this model closely follow
the changes in measured water levels with a certain degree of
lag. In contrast, model type 1 (Z1, X1, S1, and M1) differs
little from type 3 (Z3, X3, S3, and M3) in Fig. 6b–d, both of
which achieve perfect forecasts as water levels dropped but
produce slight time lags as water levels rose. This is particu-
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Figure 7. Comparison of model performance: (a) CE; (b) ESP; (c)
RTS.

larly apparent at the Sijie station in Fig. 6c and at the Meifu
station in Fig. 6d, where water levels rose swiftly. However,
the time shift errors presented by model types 1 and 3 are still
smaller than 3 h. Considering that the lead time used in these
model forecasts was 3 h, any time shift error of less than 3 h
means that the results retain reference value for disaster pre-
vention operations during typhoons. It is worth noting that,
as shown in Fig. 6, the predicted hydrographs exhibit cer-
tain fluctuation compared to the data. The reason for this is
that the input of the models includes rainfall data recorded
with a frequency of 10 min. As seen in Fig. 2, the rainfall
data record appears to be fluctuating through the event. As
a result, the hydrographs predicted by the models also dis-
play certain fluctuations. However, the trend of the predic-
tions still matches the observations.

Figure 7a–c present the variation of CE, ESP, and RTS,
respectively, among the models. As shown in Fig. 7a, com-

pared to the type 2 and type 3 models, model type 1 (Z1,
X1, S1, and M1) exhibit higher mean CEs as well as smaller
deviations between the max and the min. Among the four
type 1 models, models Z1 and X1 achieve higher mean CE
than models S1 and M1. The reason for this might be that the
locations of Sijie station and Meifu station are more closer
to the sea and the water levels at these sites might be influ-
enced by other factors (such as tidal levels) not accounted for
in the models. Figure 7b shows the variation of ESP among
the models. It is clearly seen that type 2 models (Z2, X2,
S2, and M2) display mean ESP values much lower than the
other two types of models. The deviations of ESP for type 2
models are also much smaller compared to those of the other
types of models. This demonstrates the good performance
of type 2 models on peak water-level prediction. As seen in
Fig. 7b, type 3 models (Z3, X3, S3, and M3) appear to dis-
play poorer performance on peak water-level prediction, in-
dicated by higher mean ESP as well as larger deviations. It
is noted that, while type 2 models exhibit very low ESP on
peak water prediction, they also suffer from severe time shift
errors, as signified by the rather high RTS of these models
shown in Fig. 7c. In contrast, type 3 models (Z3, X3, S3, and
M3) exhibit much lower mean RTS than the type 2 models. In
comparing the RTS performance of type 1 and type 3 models,
it appears that model Z3 performs slightly better than Z1 at
Zhongnanxing station, while at the other stations, the type 3
models achieve rather better RTS scores than type 1 models.

In summary, type 1 models achieve the best score on CE
with moderate performance on ESP and RTS. Type 2 and
type 3 models display somewhat opposite characteristics.
Type 2 models exhibit good performance on predicting the
peak water level but also show rather severe time shift errors.
In contrast, type 3 models achieve good scores on RTS but
perform poorly on ESP.

6 Conclusions

An approach integrating ARMAX and MOGA for the fore-
casting in inundation levels during typhoons has been pro-
posed. The developed methodology makes use of water-
level data from a network of gauging stations in conjunc-
tion with rainfall forecast data to construct ARMAX-based
inundation-level forecast models at each gauging site. Suit-
able input variables and associated time lags in the water-
level models were identified by analyzing the cross-site mu-
tual information and cross-correlations. The performance of
the models were assessed on three aspects: (1) the bulk pre-
diction ability signified by CE, (2) the accuracy on predicting
the peak water level represented by ESP, and (3) the time shift
error indicated by RTS. A MOGA was employed to identify
the optimal model structures by searching for a Pareto op-
timal set of models capable of performing well in the three
indices (CE, ESP, and RTS). Optimal models that each ob-
tained the best score on the three indices were selected from
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the Pareto model set. Comparisons with measured water lev-
els show that the models emphasizing ESP (model type 2)
resulted in accurate prediction on the peak water levels but
also show noticeable time lag. The models emphasizing CE
(model type 1) and RTS (model type 3) provided an accu-
rate indication of variations in water levels with no lag while
water levels were dropping, yet a slight time lag when wa-
ter levels were rising. Comparisons on the variations of per-
formance indices among the models indicate that, in general,
type 1 models present the best performance on CE with mod-
est ESP and RTS. Type 2 models achieve very good perfor-
mance on ESP but suffer from time shift errors. In contrast,
type 3 models display good performance on RTS, though
they are somewhat poorer on ESP. The results show that the
proposed methodology is capable of deriving optimal mod-
els each showing good performance on the three indices. All
three types of models together provide thorough information
in a real-time manner and are expected to be of help for dis-
aster prevention operations during typhoons.

7 Data availability

The data set is available at: http://fhy.wra.gov.tw/fhy/Alert/
Water.
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