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Abstract. We present a downscaling approach for the study

of wave-induced extreme water levels at a location on a bar-

rier island in Yucatán (Mexico). Wave information from a

30-year wave hindcast is validated with in situ measure-

ments at 8 m water depth. The maximum dissimilarity al-

gorithm is employed for the selection of 600 representative

cases, encompassing different combinations of wave charac-

teristics and tidal level. The selected cases are propagated

from 8 m water depth to the shore using the coupling of

a third-generation wave model and a phase-resolving non-

hydrostatic nonlinear shallow-water equation model. Ex-

treme wave run-up, R2 %, is estimated for the simulated

cases and can be further employed to reconstruct the 30-

year time series using an interpolation algorithm. Down-

scaling results show run-up saturation during more ener-

getic wave conditions and modulation owing to tides. The

latter suggests that the R2 % can be parameterized using a

hyperbolic-like formulation with dependency on both wave

height and tidal level. The new parametric formulation is in

agreement with the downscaling results (r2
= 0.78), allow-

ing a fast calculation of wave-induced extreme water lev-

els at this location. Finally, an assessment of beach vulner-

ability to wave-induced extreme water levels is conducted at

the study area by employing the two approaches (reconstruc-

tion/parameterization) and a storm impact scale. The 30-year

extreme water level hindcast allows the calculation of beach

vulnerability as a function of return periods. It is shown that

the downscaling-derived parameterization provides reason-

able results as compared with the numerical approach. This

methodology can be extended to other locations and can be

further improved by incorporating the storm surge contribu-

tions to the extreme water level.

1 Introduction

The assessment of beach vulnerability in low-lying areas is

important for coastal managers and decision makers. Fur-

thermore, these coastal systems are particularly sensitive

to climate change effects, such as mean sea level increase

and storm intensification (Wong et al., 2014). Thus, it is

anticipated that low-lying areas will experience more se-

vere coastal flooding and beach erosion during the following

decades.

The beach vulnerability can be estimated by comparing

extreme water level elevations to those of the beach mor-

phology features (Sallenger, 2000). For instance, the storm

impact scale proposed by Sallenger (2000) couples the fluid

forcing and the beach morphology by examining the rela-

tionship between the dune height and the water level due to

the storm surge, wave setup, and extreme run-up. This ap-

proach was validated in Stockdon et al. (2007) for a stretch

of coast in North Carolina. Stockdon et al. (2007) employed

lidar-derived measures of pre-storm dune and berm elevation

and hurricane-induced water levels to hindcast the poten-

tial storm impact regime to the landfalls of Hurricane Bon-

nie (1998) and Hurricane Floyd (1999), which were further

compared to the observed response. More recently, long-term
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observations were employed together with a run-up parame-

terization in order to determine the return periods correlated

to the storm impact scale on the coast of Oregon (Serafin and

Ruggiero, 2014).

A great effort has been devoted to the development of

methodologies for storm surge estimation (e.g., Lin et al.,

2010; Irish et al., 2011). However, less attention has been

given to the development of reliable approaches for the es-

timation of wave-induced run-up. Wave run-up is often cal-

culated using parameterizations based on field observations

(e.g., Ruessink et al., 1998; Ruggiero et al., 2001, 2004;

Stockdon et al., 2006; Senechal et al., 2011). However, their

performance is questionable during extreme wave condi-

tions (Stockdon et al., 2014). Furthermore, run-up parame-

terizations are strongly dependent on the beach morphology

features, tidal level elevation, and wave forcing conditions.

Therefore, a universal run-up parameterization is not avail-

able and site-specific parameterizations should be developed.

The advent of nonlinear phase-resolving wave transfor-

mation numerical models allows the simulation of wave

run-up in a wave-by-wave basis. Different approaches have

been developed with different degree of sophistication, in-

cluding nonlinear shallow-water equation (NLSWE) mod-

els (e.g., Kobayashi and Wurjanto, 1992; Raubenheimer and

Guza, 1996; Zijlema et al., 2011), Boussinesq-type models

(e.g., Wei et al., 1999; Chen et al., 2003), Reynolds-averaged

Navier–Stokes models (e.g., Lin and Liu, 1998; Losada et al.,

2008), and large eddy simulation (Christensen, 2006; Zhou

et al., 2014) models. The capabilities of more sophisticated

approaches for addressing the study of small-scale processes

demand higher computational cost. Non-hydrostatic NL-

SWE models (e.g., SWASH (Simulating WAves till SHore))

allow us to overcome some of the limitations in classic NL-

SWE models by incorporating wave dispersion in the simu-

lations. This numerical approach has been employed for the

study of extreme water levels on a fringing reef lagoon (e.g.,

Torres-Freyermuth et al., 2012), wave run-up on beaches

(e.g., Ruju et al., 2014; Guimarao et al., 2015), and infra-

gravity shoreline dissipation (e.g., de Bakker et al., 2014).

Furthermore, the potential for the run-up parameterization

has been shown in Brinkkemper et al. (2013).

The characterization of small-scale coastal processes such

as run-up from long-term data sets requires the implementa-

tion of a statistical method. Downscaling of wave conditions

for the study of nearshore processes is possible through data

reduction using a rigorous statistic approach (Camus et al.,

2011a; Guanche et al., 2013). Camus et al. (2011a) employed

a hybrid downscaling methodology to transfer wave climate

to coastal areas. They show that interpolating simulated re-

sults using a radial basis function provides good estimates

to characterize a complete year of hourly sea states and that

the decrease of the error is negligible considering a subset of

cases. This methodology was further extended to reconstruct

time series of stability parameters on vertical breakwaters by

Guanche et al. (2013). Therefore, combining numerical mod-

els with statistical methods provides a means to characterize

coastal dynamics and reduce the computational cost.

The aim of this work is to present a methodology for the

assessment of wave-induced vulnerability at a location on a

barrier island located in Yucatán (Mexico). The methodol-

ogy combines numerical, statistical, and probabilistic meth-

ods for the estimation of wave-induced water levels associ-

ated with return periods. Moreover, this approach allows the

derivation of a site-specific run-up parameterization for the

study area. The outline of this paper is the following. Firstly,

the study area location and characteristics are described in

Sect. 2. The methodology for downscaling wave conditions

in order to obtain a 30-year run-up hindcast is presented in

Sect. 3. Section 4 presents the reconstruction of the extreme

water level time series, the derivation of a new run-up pa-

rameterization, and an assessment of beach vulnerability in

the study area. An uncertainty analysis regarding the use of

wave hindcast information is presented in Sect. 5. Finally,

concluding remarks and future work are presented (Sect. 6).

2 Study area

Dzilam de Bravo is located on a barrier island in the north-

ern Yucatán Peninsula (Fig. 1). The coastline is fronted by

a 200 km wide continental shelf with a very mild (1 : 1000)

beach slope (Enriquez et al., 2010). The tidal regime is

micro-tidal and wave conditions in the study area are dom-

inated by local sea breezes and mesoscale meteorological

events (cold fronts) known as Nortes (Appendini et al.,

2013). Furthermore, less frequent hurricane events can also

affect the study area. According to Mendoza et al. (2013), the

Yucatán coast is more vulnerable to flood than to erosion dur-

ing the impact of storms. Dzilam de Bravo is characterized

by submarine dune fields (Cuevas et al., 2013) that induce a

complex nearshore wave transformation. Cuevas et al. (2013)

characterized the submarine dunes by means of sub-bottom

seismological profiles, finding at Dzilam de Bravo a mean

dune height ranging from 0.8 to 1.0 m and a mean dune wave

length of 98–120 m, predominantly moving northwestward.

These sedimentary deposits (see Fig. 2) might play an im-

portant role in wave energy dissipation, providing a natural

protection from storms to this site.

The beach profile at Dzilam de Bravo was measured using

the Differential Global Positioning System (DGPS) and ex-

tended landward with terrestrial lidar information acquired

in 2011. Moreover, the beach profile was further extended

offshore to a water depth of 10 m assuming an equilibrium

profile according to Dean (1991). Wave information at 8 m

water depth is available from a 30-year hindcast (1979–

2008) for the Gulf of Mexico and the Western Caribbean

Sea (Appendini et al., 2014). These data were estimated

by means of a third-generation spectral model forced with

wind data from the North American Regional Reanalysis

(NARR) (Mesinger et al., 2006). The numerical model was
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Figure 1. Location map indicating the study site (Dzilam de Bravo) at the barrier island backed by the wetlands and the mainland of Yucatán

Peninsula, the position of the hindcast nodes used for the simulations, and the ADCP location in between Chuburna and Yucalpeten ports.
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Figure 2. Beach profile indicating the dune crest (Dhigh= 2.27 m)

and dune base (Dlow= 0.8 m) elevations with respect to still water

level.

calibrated/validated in deep waters with wave buoys (Ap-

pendini et al., 2013) and altimeter information (Appendini

et al., 2014). Data measured with an acoustic Doppler cur-

rent profiler (ADCP) located near the study area, between

Chuburná and Yucalpetén (see Fig. 1) at approximately 8.5 m

water depth, were available for a 2.5-year period (June 2010–

December 2012). Comparison of the in situ data and wave

hindcast information (NODE12972, Fig. 1) presents good

correlation between the model and observations forHs . 1 m

(see Fig. 3). The model underestimates Hs for values be-

tween 1.2 and 1.7, whereas hindcast data overestimate ob-

servations for Hs & 1.7 m. The differences can be ascribed

to the relative coarse resolution of the wind data employed

to generate the 30-year wave hindcast by Appendini et al.

(2013, 2014) for resolving wave generation by local winds

and the lack of high-resolution bathymetry available for this

area in the ETOPO1 (Amante and Eakins, 2009). However,

an overall good agreement is observed between model and

data. Thus, in this study a wave hindcast node located at ap-

proximately 10 m water depth in front of Dzilam de Bravo

(NODE11583, Fig. 1) was selected as the offshore boundary

condition (Hs, Tp, θ ).

3 Methods

We extended a methodology to downscale wave information

to the nearshore as proposed by Camus et al. (2011a) and

Guanche et al. (2013) for the assessment of storm impact

on barred beaches. The methodology is as follows. Firstly,

a subset of wave conditions is selected from the 3-hourly

30-year wave hindcast. Then, the selected sea states, with

the corresponding tidal level, are propagated from deep wa-

ters to the shore by employing numerical models. Extreme

run-up is computed and further employed for calculating a

30-year run-up hindcast by means of interpolation. Subse-

quently, the 30-year run-up information was employed in or-

der to derive a run-up parameterization for the study area.

Finally, the storm impact for different return periods can be

obtained using both numerical results and the new parame-

terization. This methodology assumes that the dissimilarity

in offshore wave conditions leads to comparable dissimilar-

ity in the run-up data. This assumption is supported by the

strong correlation between run-up and offshore wave con-

ditions reported in previous research (e.g., Stockdon et al.,

2007). It would be expected that only small differences in

dissimilarity could arise when run-up height saturates under

extreme conditions (e.g., Senechal et al., 2011).

3.1 Selection of wave conditions

The available 30-year wave hindcast (Appendini et al., 2014)

consists of a total of 87 664 sea states (Hs, Tp, and θ ), one
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Figure 3. (a) Time series section of observed and hindcast significant wave height and (b) Q–Qplot showing the comparison between ADCP

wave data and modeled hindcast data at a location close to the study area. Solid line in (b) indicates perfect correlation.

every 3 h. Due to the computational effort involved to down-

scale the complete data set for all sea states, it is desirable

to obtain a representative subset. A comparison of selection

algorithms applied for the analysis of wave climate is pre-

sented in Camus et al. (2011b). They found that the subset

of wave conditions obtained by implementing the maximum

dissimilarity algorithm (MDA) was representative of the va-

riety of sea states and therefore appropriate for downscaling

wave climate.

The aim of the MDA, described in detail in Camus et al.

(2011a, b) and Guanche et al. (2013) for coastal engineer-

ing applications, is to identify the most dissimilar subset of

multivariate vectors (i.e., wave parameters) in a database.

Therefore, the extracted subset of M vectors represents the

diversity of the data set consisting of N n-dimensional vec-

tors. In this study, the multivariate data include significant

wave height, Hs, peak period, Tp, mean wave direction, θm,

and mean sea level, Zm. Wave parameters were obtained

from the wave hindcast, while the time series of sea level

corresponds to the astronomical tide prediction for this area

(www.predmar.cicese.mx) during the same time period.

Following the procedure described in Camus et al. (2011a)

and Guanche et al. (2013), the multivariate data at deepwater

are defined as

X∗i =Hs,i,Tp,i,θm,i,Zm,i; i = 1 . . ., N, (1)

where N corresponds to the 87 664 sea states from the 30-

year wave hindcast. The first step in the methodology de-

scribed in Camus et al. (2011a) is to normalize the vector

components so they can be evenly weighted in the similarity

criterion, defined by the Euclidean distance. Special consid-

eration should be made for the circular variable (direction)

when it is adapted to a linear scale, since it is recorded in

a continuous scale where 0 and 360◦ are identical. There-

fore, the circular distance should be implemented in that case

where the maximum distance in the circle is equal to π . The

sample data consisting of N dimensionless vectors are de-

fined as

Xi =Hi, Ti, θi, Zi; i = 1 . . ., N, (2)

from which a set of M vectors D1 . . . DM is selected by

means of the MDA.

The selection starts by transferring one vector from the

data sample to the subsetD. Then, the rest of the M − 1 vec-

tors are selected calculating the dissimilarity between each

of the remaining elements in the database and the elements

in the subset, transferring the most dissimilar one to the sub-

set, considering the MaxMin version of the algorithm as pro-

posed by Camus et al. (2011a). This procedure is repeated

iteratively until the M elements are selected.

For instance, having a subset of R(R≤M), the dissimilar-

ity among vector i of the data sample N −R and the j vec-

tors of the R subset is determined as

dij = ||Xi −Dj ||; i = 1, . . ., N −R; j = 1, . . ., R. (3)

Then the dissimilarity between vector i and subset R,

di,subset, is obtained as

di,subset =min||Xi −Dj ||; i = 1, . . ., N −R; j = 1, . . ., R. (4)

Now, having calculated the N −R dissimilarities, the fol-

lowing data to be selected have the maximum di,subset. In this

work, the Euclidean distance was computed using the Dis-

tanceMatrix algorithm developed by Fasshauer (2007), mod-

ified for the case of the directional parameters considering

the circular distance as described in Camus et al. (2011a) and

given by the following expression:

||Xi −Dj || =

√√√√√√
(
Hi −H

D
j

)2

+

(
Ti − T

D
j

)2

+

(
Zi −Z

D
j

)2

+

(
min

(
|θi − θ

D
j |, 2− |θi − θ

D
j |

)2
) . (5)

The final step is to denormalize the selected subset using

D∗j =H
D
s,j ,T

D
s,j , θ

D
s,j , Z

D
s,j ; j = 1, . . ., M. (6)

Here, a total of M = 600 sea states were selected that ad-

equately represent the whole sample, and their distribution

uniformly covers the area of the input data as well as its bor-

ders (Fig. 4). It is also worth considering that the selected

sea states are well distributed along the time series of wave

parameters and sea level (Fig. 7).

3.2 Propagation of selected wave conditions

Wave propagation from 8 m water depth to the shore-

line was performed employing the coupling of a spectral
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Figure 4. Significant wave height (Hs) against wave period (Tp) and mean direction corresponding to the 30-year wave hindcast data, and

astronomical tide (Z), showing the distribution of the selected cases using the MDA algorithm for M = 600.

wave model (Simulating WAves Nearshore, SWAN; Booij

et al., 1999) and a phase-resolving nonlinear non-hydrostatic

model (SWASH; Zijlema et al., 2011). The SWAN model

is a third-generation wave model for coastal regions, based

on a Eulerian formulation of the discrete spectral balance of

action density, which accounts for wind generation, white-

capping, triad and quadruplet wave–wave interactions, bot-

tom friction, and wave-induced wave breaking (Booij et al.,

1999). The SWASH model employs the nonlinear shallow

water equations, including terms for non-hydrostatic pres-

sure, which makes the model suitable for simulating wave

transformation due to nonlinear wave–wave interactions in

both surf and swash zones, wave–current interaction, wave

breaking, and wave run-up. Wave breaking is included in the

model based upon the bore formation concept. Flooding and

drying of grid cells is important for a correct run-up simula-

tion. In this model, no special features are needed to model

dry cells accurately when the time step is chosen correctly,

as flooding never happens faster than one grid size per time

step (Zijlema et al., 2011).

The SWAN model is run in stationary one-dimensional

mode (mesh size 1 m) along the section from 8 to 4 m water

depth and forced with a JONSWAP distance was computed

using the spectrum at the offshore boundary. The wave en-

ergy spectrum at 4 m depth calculated by the SWAN model

is employed as the seaward boundary forcing for the SWASH

model (Fig. 5). The SWASH domain extends from 4 m water

depth to the shoreline with a mesh size of 0.1 m. The initial

time step is 0.025 s with a maximum Courant number of 0.5.

Simulations were sampled for 2 170 s, after 530 s of spin-up

time.

3.3 Model data analysis: extreme water level

calculation

The instantaneous water level elevation, η(t), relative to

mean sea level was extracted from the SWASH simulations

for each sea state propagated as the height of the bottom

profile at the location of the wet–dry interface with respect

to time (Fig. 6a). This location was tracked as the first grid
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Figure 5. Beach profile at Dzilam showing the section correspond-

ing to simulations performed by the SWAN model (10–4 m depth)

and the section for SWASH simulations (4 m depth to shore). Dotted

line represents the mean sea level.

point in which the water depth was less than 0.005 m in or-

der to obtain a continuous time series. Subsequently, the ex-

treme run-up was calculated from the run-up maxima (R)

following the work by Stockdon et al. (2006) as the 2 % ex-

ceedance value (Fig. 6b). Additionally, the mean value of

the wave run-up time series (< η >), which corresponds to a

super-elevation of the mean water level due to the presence of

waves known as the wave setup (Longuet-Higgins and Stew-

art, 1964), was obtained for each case. Following Sallenger

(2000) and Stockdon et al. (2007) we define the extreme wa-

ter levels Rhigh=R2 %+Z and Rlow=< η >+Z for each

simulated case.

3.4 Reconstruction of the extreme water level (Rhigh)

time series: radial basis function (RBF)

interpolation

The extreme water levels, Rhigh and Rlow, associated with

each of the 600 selected sea states were employed to re-

construct the 30-year-long time series. Notice that the storm

surge is not included in Z for this work but can be in-

corporated. The extreme water level time series reconstruc-

tion is performed by means of an interpolation technique

based on the RBFs. This is an exact interpolation tech-

nique, given that the interpolated surface always passes ex-

actly through the data points, and is suitable for multivari-

www.nat-hazards-earth-syst-sci.net/16/167/2016/ Nat. Hazards Earth Syst. Sci., 16, 167–180, 2016
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ate scattered data interpolation. Franke (1982) tested the per-

formance of about 30 methods for scattered data interpo-

lation, finding that the best and second best were methods

based on RBFs. This method has been previously imple-

mented in diverse applications such as the reconstruction of

topographic surfaces based on coordinate data (Hardy, 1971)

and, more recently, for the downscaling of wave parameters

(Camus et al., 2011a; Guanche et al., 2013). Following the

method presented in Camus et al. (2011a) and considering

that Xi ={Hsi , Tpi , θmi , Zi}; i= 1, . . . , N represents each

sea state in the 30-year-long time series and Dj ={H
D
sj , T Dpj ,

θDmj , ZDj }; j = 1, . . . , M represents each one of the M = 600

selected cases associated with a value of Rhigh, and the inter-

polation function is given by

RBF(Xi)= p(Xi)+

M∑
j=1

aj8
(
||Xi −Dj ||

)
, (7)

where 8 is the radial basis function, ||.|| denotes the Eu-

clidean norm, p(Xi)= b0+ b1Hsi + b2 Tpi + b3 θmi + b4Zi ,

and 8 is a Gaussian function defined as

8||Xi −Dj || = exp

(
−
||Xi −Dj ||

2

2c2

)
, (8)

where the points Dj , j = 1, . . . , M are the centers of the

RBF approximation and c is a shape parameter that must be

carefully selected since it has a strong influence on the accu-

racy of the solution (Rippa, 1999). The interpolation based

on RBF was performed by means of an algorithm developed

by Fasshauer (2007) which incorporates the algorithm pro-

posed by Rippa (1999) for the selection of an optimal value

for the shape parameter c. The selection is performed by min-

imizing the root mean square error (RMSE) of a data fit based

on a radial interpolant for which one of the centers was left

out (“leave-one-out cross validation” approach).

The coefficient b of the monomials and the coefficient a of

the RBF are obtained by the interpolation conditions (Camus

et al., 2011a):

RBF
(
Dj
)
= fj

(
Dj
)
=Dp,j ; j = 1, . . ., M, (9)

where Dp,j are the real functions defined by the calculated

extreme water level values Rhigh which correspond to the M

selected sea states (Dj ).

Subsequently, the Rhigh time series can be reconstructed

for the 30-year period by means of the RBF as follows (see

bottom panel of Fig. 7):

Rhigh,i = RBFRhigh

({
Dj ,Rhigh,j (j = 1, . . ., M)

}
, Xi

)
, (10)

where i= 1, . . . , N .

Similarly, the wave-induced mean water level time se-

ries, Rlow=< η >+Z, is reconstructed following the same

methodology with M = 600.

Camus et al. (2011a) compared the reconstructed time se-

ries for a range of M values (i.e., M = 25, 100, and 1000)

against simulated time series of N = 8784, finding that the

error obtained in the estimation of wave parameters is almost

negligible considering only M = 100 cases. Therefore, they

recommend that for the specific application of transformation

of wave climate from deep to shallow waters, 100≤M ≤ 200

is an adequate number of cases. Guanche et al. (2013) vali-

dated their interpolated values with those calculated analyt-

ically, finding that the reconstructed series with more than

100–200 cases out of 500 000 cases reached values of less

than 1 % error, and with 500 cases the error made is almost

negligible.

In this work, a sensitive analysis on the dependency of

Rhigh to the number of cases employed for the reconstruction

was conducted forM = 50, 100, 200, 300, 400, 500, 600. The

mean and standard deviation of each time series were com-

puted, finding that for M> 300 cases the variability of these

statistic parameters is insignificant (not shown).

3.5 Run-up parameterization

The reconstructed 30-year extreme water level time series

provides a mean to correlate R2 % to offshore wave condi-

tions. The run-up is obtained by subtracting the astronomical
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Figure 7. Time series of the wave hindcast data (Hs, Tp, θ ), sea-level (Z), and interpolated run-up value (Rhigh=R2 %+Z), indicating the

selected/simulated cases.

tide Z from Rhigh for each case. Different run-up parameter-

izations from the literature (Ruggiero et al., 2001; Senechal

et al., 2011) were employed and calibrated using the down-

scaled data. Furthermore, due to the observed modulation of

run-up by tides (e.g., Guedes et al., 2011), a new parameter-

ization of run-up and setup was derived for the study area as

a function of the tidal level and wave conditions employing

the 30-year R2 % data.

3.6 Extreme value analysis of Rhigh and Rlow

In order to incorporate the probability to a given extreme wa-

ter level, the annual maxima of Rhigh and Rlow were fitted

to the generalized extreme value (GEV) distribution of Jenk-

inson (1955), which has been widely employed for model-

ing extremes of natural phenomena. The GEV distribution is

given by

F(x;k,µ,σ )= exp
[
−{1− k(x−µ)/σ }1/k

]
, k 6= 0

= exp[−exp{−(x−µ)/σ }], k = 0 (11)

where µ and σ are the location and scale parameters, respec-

tively, and the shape parameter k determines which extreme-

value distribution is represented: Gumbel (k= 0), Fréchet

(k > 0), and Weibull (k < 0). WAFO-group (2000) toolbox

was used for the GEV model, in which the parameter esti-

mation methods used are the maximum likelihood method

(Prescott and Walden, 1980) and the probability-weighted

moments method (Hosking et al., 1985). The latter was se-

lected for parameter estimation since it is more suitable for

Table 1. Storm impact scale regimes (Sallenger, 2000; Stockdon

et al., 2007).

Regime Description

Swash Rhigh<Dlow

Collision Dhigh>Rhigh>Dlow

Overwash Rhigh>Dhigh

Inundation Rlow>Dhigh

small samples (N = 15, 25) (Hosking et al., 1985) and re-

sulted in a better goodness of fit to the annual maxima data.

The estimated parameters for Rhigh yearly maxima are the

shape parameter k= 0.3057 with a 95 % confidence interval,

and location and scale parameters estimated to µ= 1.5739

and σ = 0.1238. Regarding the Rlow annual maxima data,

the estimated parameters are k= 0.3184, µ= 0.7247, and

σ = 0.0896.

3.7 Storm impact scale

A storm impact scale for barrier islands that considers the

magnitude of fluid forcing (storm-induced water levels) rel-

ative to beach morphology (dune/berm elevation) was first

proposed by Sallenger (2000). The model defines four storm

impact regimes (Table 1) depending on the relative relation-

ship between the sand dune/beach berm elevation and the

storm-induced water levels. The elevation measures are de-

fined as Rlow (the sum of storm surge, astronomical tide,
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Figure 8. Linear fit to (a) R2 % values associated with high water level (Z≥Z5 %= 0.32 m, darker gray dots) and comparison to Ruggiero

et al. (2001) and Brinkkemper et al. (2013) parameterizations; (b) setup values (all and high water levels) compared to Stockdon et al. (2006)

parameterization. The dotted line corresponds to the linear fit performed to the entire set of data.

and wave setup), Rhigh (the sum of storm surge, astronom-

ical tide, and R2 %), Dhigh (dune crest), and Dlow (dune toe).

The results of the extreme value analysis of Rhigh and Rlow

for different return periods were correlated with the beach

morphology features (i.e., Dhigh and Dlow) derived from the

lidar data.

4 Results

The 30-year time series of Rhigh (Fig. 7) and Rlow (not

shown) reconstructed by means of the RBF interpolation of

the simulated cases are further employed for the parameter-

ization of run-up and setup and an assessment of the vul-

nerability of the beach by means of the storm impact scale

proposed by Sallenger (2000).

4.1 Run-up parameterization

Beach vulnerability is often evaluated using run-up param-

eterizations (e.g., Stockdon et al., 2007; Serafin and Rug-

giero, 2014). Therefore, the development of suitable param-

eterizations is important for vulnerability studies. The ex-

treme run-up results, obtained from the reconstructed ex-

treme water levels, are further analyzed in terms of their re-

lationship with offshore wave parameters, beach conditions,

and astronomical tide. For that purpose, the 5 % exceedance

value of water level according to the astronomical tide Z

was found for high (Z≥Z5 %= 0.32 m) and low water level

(Z≤Z5 %=−0.32 m), while for the mean water level the

values considered were 0.05≥Z≥−0.05 m. Analyzing the

behavior of the R2 % and < η > values it was clear that they

are modulated/saturated by the tides/wave energy conditions.

Table 2. Zero intercept linear regression toR2 % values with respect

to (SHsL0)
1/2 and< η > values with respect to βf(H0L0)

1/2, con-

sidering the whole set of data and those associated with high water

level (HWL) (Z≥Z5 %= 0.32 m), correlation (r2), and root mean

square error (RMSE) in meters.

Slope r2 RMSE (m)

R2 % all 0.1889 0.7135 0.11

R2 % HWL 0.2442 0.8738 0.0976

< η>all 0.1550 0.6513 0.0284

< η>HWL 0.2217 0.7382 0.0335

Firstly, a linear relationship for R2 % is employed, as pro-

posed by Ruggiero et al. (2001), which depends on deepwa-

ter wave parameters (Hs, L0= g T
2/2π ) and beach slope, S.

Deepwater wave parameters correspond to the wave hindcast

data, while the value of S= 0.09 was considered according to

Brinkkemper et al. (2013). This parameterization describes

remarkably well the behavior of the values corresponding

to high water level (Z≥Z5 %= 0.32 m, darker gray dots in

Fig. 8a) and is very similar to the best fit (zero intercept)

to the data associated with high water (solid line). Further-

more, a relationship obtained in a previous study (Brinkkem-

per et al., 2013) performed on the same area but employ-

ing the results of only five simulations, corresponding to

energetic wave conditions associated with high water level

(Fig. 8a, dash-dot line), is almost identical to the one ob-

tained on this study for all values corresponding to high water

level (Fig. 8a, solid line). Even though the r2 value of the lin-

ear fit (zero intercept) is satisfactory (r2
= 0.87) for the case

of high water level, these linear relationships are only valid

up to a value (1.1 .R2 % . 1.3 m) where saturation in maxi-

Nat. Hazards Earth Syst. Sci., 16, 167–180, 2016 www.nat-hazards-earth-syst-sci.net/16/167/2016/



G. Medellín et al.: Downscaling run-up 175

Figure 9. Hyperbolic tangent fit of R2 % and < η > values associated with (a, d) high water level (Z≥Z5 %= 0.32 m), (b, e) mean water

level (0.05≥Z≥−0.05 m), and (c, f) low water level (Z≤Z5 %=−0.32 m), represented by the darker gray dots. Comparison to Senechal

et al. (2011) and Brinkkemper et al. (2013) expressions in (a) for R2 % values associated with high water level.

mum run-up values is observed for more energetic conditions

((SHsL0)
1/2 & 4 m). The linear fit performed to the whole

data set (dotted line) showed a lower r2 value and a higher

RMSE (see Table 2). Regarding the setup values, the linear

parameterization proposed by Stockdon et al. (2006) is em-

ployed, which includes the deepwater wavelength, L0(T0),

and the foreshore slope, βf. This formulation lies on the up-

per limit of the data (Fig. 8b, dashed line), better describing

the values associated with high water even though it differs

from the linear fit (zero intercept) to those values. The r2 cor-

responding to the linear fit associated with high water values

is greater than that obtained by considering the whole data

set. Similarly to run-up values, saturation and a dependency

on water level are observed for setup values. The saturation

value for setup associated with high water level is around

0.35 m.

Due to the observed saturation of run-up and setup val-

ues associated with the water level (astronomical tide), a

more suitable hyperbolic-like relationship is employed. This

saturation was previously examined by Brinkkemper et al.

(2013) following the relationship proposed by Senechal et al.

(2011). It was found that for Hs & 1.5 m the saturation value

of R2 % varies accordingly with water level (Fig. 9). There-

fore, a hyperbolic tangent relationship was fitted through

the method of least squares separating the data in high

(Z≥Z5 %= 0.32 m), mean (0.05≥Z≥−0.05 m), and low

(Z≤Z5 %=−0.32 m) water levels. For each set of data a hy-

perbolic tangent fit was performed (Fig. 9), obtaining accept-

able values of r2 and RMSE (Table 3). The relationship pro-

posed by Senechal et al. (2011) falls on the upper limit of the

data corresponding to high water level. The tanh argument

of the relationship presented in Senechal et al. (2011) and

that obtained in this study for high water level are almost the

same (0.39H0 and 0.4H0) and very similar to that obtained

by Brinkkemper et al. (2013) of 0.5H0. However, the satura-

tion value in the case of Senechal et al. (2011) is much higher

(2.14 m) than that obtained by Brinkkemper et al. (2013) of

1.62 m, which is exactly the same as the one obtained in the

present study.

Thus, in order to obtain a generalized expression for the

prediction of the 2 % exceedance value of run-up (R2 %) and

setup (< η >) as a function ofH0 and Z, a simple linear rela-

tionship was fitted to the hyperbolic tangent fit parameters, a

and b (Table 3), with r2 values of 0.99 and 0.95, respectively,

in the case of the run-up fit and 0.97 and 0.63 for setup fit

parameters. The generalized expression obtained for R2 % is

given by
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Figure 10. Reconstructed R2 % values obtained from the RBF interpolation correlated against R2 % values obtained from (a) linear vs. hyper-

bolic tangent fits; (b) hyperbolic tangent fit to allR2 % values vs. those corresponding to waves approaching from the north (337.5≤ θ ≤ 22.5);

(c) comparison of a time series section of reconstructed vs. parameterized R2 % values.

Table 3. Hyperbolic tangent fit to R2 % values,

R2 %= a tanh(bH0), and < η > values corresponding to high

water level (HWL), mean water level (MWL), and low water level

(LWL). Correlation (r2) and root mean square error (RMSE) in

meters.

a b r2 RMSE (m)

R2 % HWL 1.62 0.39 0.859 0.103

R2 % MWL 1.08 0.45 0.766 0.097

R2 % LWL 0.59 0.58 0.642 0.057

< η>HWL 0.35 0.53 0.866 0.024

< η>MWL 0.25 0.41 0.797 0.019

< η>LWL 0.20 0.43 0.648 0.018

R2 % = a · tanh(b ·H0) , (12)

whereH0 is the deepwater wave height, a= 1.615Z+ 1.098,

and b=−0.297Z+ 0.476 m. A similar expression was ob-

tained for the case of the setup, with a= 0.23Z+ 0.27 and

b= 0.15Z+ 0.46.

The run-up and setup were calculated with the linear and

the generalized expressions, the latter depending only on the

deepwater wave height and the astronomical tide. The val-

ues obtained through the linear parameterization showed a

greater dispersion for more energetic conditions with respect

to the values obtained using the hyperbolic parameterization,

due to the saturation of wave run-up not accounted for on the

linear relationship, showing a correlation of 0.73 with respect

to the reconstructed run-up values (Fig. 10a). Regarding the

hyperbolic parameterization, the parameterized values were

compared to the reconstructed values obtaining, for the case

of the R2 %, an r2 value of 0.78 considering the whole set

and an r2
= 0.86 considering only the waves approaching

from the north (NNW, N, NNE): 22.5>θ > 337.5 (Fig. 10b).

Regarding the setup, < η >, the correlation obtained for the

whole data set is 0.75 and is 0.86 for the data associated with

waves arriving from the north (not shown). For both cases,

R2 % and < η >, the dispersion is greater for smaller values,

R2 % . 0.5 m and< η >. 0.1 m, and for waves arriving with

an angle 22.5<θ < 337.5.

The overall modulation of run-up and setup (not shown)

due to wave height and astronomical tide is captured by

the generalized hyperbolic parameterization and better illus-

trated in the reconstructed vs. parameterized run-up time se-

ries (Fig. 10c). Some deviations are observed but the general

behavior is reproduced satisfactorily as compared to the lin-

ear parameterization where overestimation of run-up maxima

is observed and the modulation of the run-up due to tides is

not well captured (Fig. 10c, dashed line).

4.2 Extreme water levels

The reconstruction of the 30-year extreme water levels al-

lows us to determine the corresponding return periods. In

order to do that, a GEV distribution is fitted to the 30-year
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Table 4. Return values for Rhigh corresponding to 5-, 10-, 50-, and

100-year return periods with the 95 % confidence bounds values.

Return period Rhigh

Reconstructed Parameterized

(yr) (m) (m)

5 1.723 1.796

10 1.775 1.844

50 1.856 1.905

100 1.88 1.92

(reconstructed) Rhigh time series. Figure 11 shows the return

level extrapolation of Rhigh for the 100-year return period

with the 95 % confidence bounds (100 · (1−α), α= 0.05).

Similarly, the extreme analysis for Rlow can be performed.

These parameters can be employed in order with associate

the storm impact scale to a given return period (e.g., Serafin

and Ruggiero, 2014). Additionally, the same procedure was

followed for the parameterized values of R2 % obtained by

the generalized expression described in the previous section,

incorporating the contribution of Z to obtain the Rhigh and

Rlow 30-year time series.

The values ofRhigh associated with a 5-, 10-, 50-, and 100-

year return periods obtained from the reconstructed time se-

ries are smaller than the ones predicted from the parameter-

ized time series for all return periods (Table 4). However, the

Rlow values predicted from the reconstructed time series are

greater than the parameterized Rlow values (Table 5) for all

return periods (5, 10, 50, and 100 years).

4.3 Beach vulnerability assessment on a barrier island

Using the 30-year-long time series of Rhigh (missing surge)

andRlow (missing surge), obtained by means of both the RBF

interpolation and the parameterizations, together with the to-

pographic elevations (Dhigh and Dlow) obtained from the li-

dar, the storm impact regimes can be estimated.

Based on the return values of Rhigh and Rlow (Tables 4

and 5) corresponding to a 5-, 10-, 50-, and 100-year re-

turn period, the associated storm impact regime “collision”

(Dhigh>Rhigh>Dlow) was found (Table 6). This regime

would occur even if the storm surge were not considered

to cause long-lasting erosion and the possibility of sediment

not returning from offshore. However, considering a typical

storm surge elevation of≈ 0.5 m associated with the frequent

cold fronts in the study area in addition to the mean return

values of Rhigh would result in water elevations that would

exceed the dune crest for a return period of 10 years or more

(Table 6, Fig. 11), leading to the “overwash” Rhigh>Dhigh

storm impact regime, where run-up overtops the dune and

the sand transported landward does not return seaward to the

beach under post-storm conditions.

Table 5. Return values for Rlow corresponding to 5-, 10-, 50-, and

100-year return periods with the 95 % confidence bounds values.

Return period Rlow

Reconstructed Parameterized

(yr) (m) (m)

5 0.7962 0.7861

10 0.8265 0.8142

50 0.8711 0.8543

100 0.8835 0.8651

Table 6. Storm impact regimes corresponding to the 5-, 10-, 50-,

and 100-year return values of Rhigh and Rlow, considering a value

of Dhigh and Dlow of 2.27 and 0.8 m, respectively, and a typical

value of storm surge (≈ 0.5 m).

Return Rhigh Rlow Storm impact regime

period (m) (m) No storm surge With storm surge

(yr)

5 1.723 0.7962 collision collision

10 1.775 0.8265 collision overwash

50 1.856 0.8711 collision overwash

100 1.88 0.8835 collision overwash

The storm impact scale is a valuable tool for predicting

coastal response to storms (with an accuracy that depends on

the regime) as well as for analyzing the longshore variabil-

ity of coastal change in a stretch of coast (Stockdon et al.,

2007). However, in this work, the longshore variability is not

evaluated since a single beach profile is considered.

5 Discussion

In order to evaluate the impact associated with driving the

model with wave hindcast information, we employed the

same methodology followed in this work but using the ADCP

wave data. We selected 60 conditions from the available 3-

year measurement period in order to conduct beach run-up

simulations. The same analysis was conducted using wave

hindcast information during the same period.

Figure 12 shows a comparison between reconstructed time

series of R2 % derived from measured and hindcasted wave

data for the same time period used in Fig. 3. Wave run-up

obtained from hindcasted wave data is poorly reproduced

for less energetic conditions but satisfactorily describes the

upper envelope of wave run-up values with respect to mea-

sured wave data (Fig. 12a). Run-up estimates seem reli-

able for storm waves approaching from the north (NNW,

N, NNE), despite differences in offshore wave height (see

Fig. 3). These differences can be ascribed to the fact that the

run-up calculations based on hindcast information are com-

pensated by the slight overprediction of the peak wave pe-
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Figure 11. Return value extrapolation of (a) Rhigh and (b) Rlow in the GEV model with the 95 % confidence bounds.
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Figure 12. (a) Reconstructed time series of R2 % for a selected period obtained by using measured (ADCP) and hindcasted wave data;

(b) Q–Q plot showing the comparison between R2 % obtained using hindcasted and measured wave conditions for the entire 3-year period.

riod. Due to this compensation by the wave period, extreme

run-up heights retrieved from model runs with the hindcasted

data as input are in good agreement with those retrieved from

the model runs with measurements as input (Fig. 12b). For

mean wave conditions, however, the run-up is consistently

overpredicted.

A summary of the extreme run-up statistics is shown in

Table 7 for all wave conditions and storm conditions only.

The correlation coefficient for the whole period is very poor

(r2
= 0.43 and RMSE= 0.23) due to a limited wave hind-

cast resolution for resolving local processes (i.e., sea/land-

breezes). However, the correlation increases significantly

(r2
= 0.80 and RMSE= 0.16) when constraining the analysis

to storm waves associated with Nortes. For storm conditions,

relative errors of the run-up statistics between hindcast and

measured data are smaller than 20 % with a relative error of

only 4 % for the maximum R2 %. The latter suggests that the

methodology employed in the present work is valid, since

we are focused on the study of extreme events. However, the

use of high-resolution wind fields for driving wave genera-

tion models is necessary for the study of wave run-up under

mean conditions.

Table 7. Extreme run-up statistics for measured and hindcasted

wave conditions during a 3-year time period (2011–2013). The er-

ror analysis and statistics correspond to all wave conditions and only

storm conditions.

R2 % All wave conditions Storm conditions only

statistics ADCP Hindcast ADCP Hindcast

r2 (RMSE) 0.43 (0.23) 0.80 (0.16)

Maximum 1.72 1.65 1.72 1.65

Mean 0.25 0.43 0.46 0.55

Median 0.24 0.40 0.45 0.52

SD 0.31 0.30 0.36 0.35

6 Conclusions

Extreme water levels on a barrier island, located on the north-

ern Yucatán Peninsula, are investigated using a downscaling

approach based on wave hindcast information. Wave run-up

on the study area presents a dependency on offshore wave

height and tidal elevation. A new parameterization which in-

corporates saturation and tidal modulation is derived from

the downscaling information. Both downscaling results and

the run-up parameterization provided similar results in terms

of return periods and the storm impact at this location. The

uncertainty analysis of the impact of employing wave hind-
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cast information suggests that it does not significantly affect

the extreme water level analysis. Future work will be devoted

to conducting the model calibration using run-up measure-

ments and to the inclusion of the storm surge contributions

in the extreme water levels. These two aspects need to be ad-

dressed in order to achieve a more reliable analysis of beach

vulnerability in this area.
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