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Abstract. This paper examines the effects of climate change
and drought on agricultural incomes in Spanish rural areas.
Present research has focused on the effects of these extreme
climatological events through response functions, consider-
ing effects on crop productivity and average incomes. Among
the impacts of droughts, we focused on potential effects on
income distribution. The study of the effects on abnormally
dry periods is therefore needed in order to perform an anal-
ysis of diverse social aspects in the long term. We estimate
crop production functions for a range of Mediterranean crops
in Spain and we use a measure of the decomposition of in-
equality to estimate the impact of climate change and drought
on yield disparities. Certain adaptation measures may require
a better understanding of risks by the public to achieve gen-
eral acceptance. We provide empirical estimations for the
marginal effects of the two impacts considered: farms’ av-
erage income and income distribution. Our estimates con-
sider crop production response to both biophysical and socio-
economic aspects to analyse long-term implications on com-
petitiveness and disparities. As for the results, we find dispar-
ities in the adaptation priorities depending on the crop and the
region analysed.

1 Introduction

Climate-change-induced impacts on society have captured
an important part of the attention of environmental research
in the last decades, usually estimated in a two-step pro-
cess, where in a first phase physical units are calculated
(changes in crop yield, life expectancy, sea level rise, num-
ber of species, etc.), while in a second step macroeconomic
models are employed in order to translate the first result into

monetary units (Ciscar et al., 2011; Watkins et al., 2005).
Market equilibrium approaches are avoided here. We con-
sider the economic revenues of the farms directly to estimate
the impact of drought on income inequality. We then make a
projection in terms of these econometric results without any
additional assumption about market behaviour. In general,
individuals and firms are modelled as representative agents
within, respectively, one region and one market sector. This
implies assuming the same socio-economic types of prefer-
ences across the world and across economies (Michetti and
Zampieri, 2014). As an alternative we consider market issues
directly through incomes at farm level which may reveal an-
other part of the picture. This is also interesting in order to
understand the expected impacts over producers.

Even if income inequality has been revealed as one of
the most important drivers for significant changes in the
socio-political framework in the European Union (EU) af-
ter the 2008 economic crisis and with equitable growth now
at the forefront of economic debate (Piketty, 2013), not so
much attention has been placed on the distributional effects
of climate change extreme events and hazards on economic
outputs. Economic evaluation efforts have been focused on
risks at the average level, but it is becoming clear that adap-
tation policy needs to face climate-driven income inequal-
ity (Quiroga et al., 2015). There are important references
in literature pointing towards an increase in food inequal-
ity induced by climate change (Wheeler and von Braun,
2013; Pindyck, 2013; Marino and Ribot, 2012) based on
non-monetary units like yields or ingested calories. To date
there has been little empirical research on how and where
climate change interventions are shaping income inequality.
This is indeed important in the agricultural sector due to its
intrinsical link to rural development. It is also relevant in
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terms of EU Common Agricultural Policy (CAP, 2nd Pil-
lar) and it is closely related to ecosystem conservation at
the same time – through decoupling subsidies and develop-
ing agro-environmental programmes, which also affect for-
est area, that has significantly increased in Spain in the last
decade as a result of land abandonment, with implications
for conservation policies, forest landscape connectivity, etc.
(Martín-Martín et al., 2013). Crop yield changes, as a re-
sponse to climate change projections, have been estimated in
many relevant studies dealing with climate change impacts
(Rosenzweig et al., 2004; González-Zeas et al., 2014; Lo-
bell et al., 2014), and the Mediterranean region in particular
has been identified as a major hotspot due to the expected
increase in drought risk (Garrote et al., 2007). As for the
Spanish case, climate change will probably increase water
conflicts among sectors, as well as an improvement in the
efficiency of water use, which will be essential to maintain
environmental flows and therefore ecosystem sustainability.
In this context we have analysed the response of rain-fed
crops to climate conditions including extreme events such
as drought. Here we have selected crops best representing
Mediterranean crop systems. Cereals, grapes, and olives are
the three basic products of Mediterranean agriculture, the
ones representing a higher proportion of harvested area, but
also with an important cultural heritage in the region. Table 1
shows the percentage of total agricultural rain-fed area ded-
icated to the selected crops. We can see that they account
for more than 50 % of the rain-fed crop systems. Although
agriculture does not represent a high proportion of gross do-
mestic product (GDP) in Spain (less than 3 %), more than
3000 farms highly depend on these crops as their main ac-
tivity. Due to the significant agricultural land abandonment
in Spain (Beilin et al., 2014) the economic effects on these
three crops are also important for the wider analysis of rural
development.

Our main goal of the paper is to study drought-induced
changes in the distribution of incomes that are based on agri-
cultural output. We estimate crop production functions to
simulate factor productivity in order to then calculate the re-
sponse of income distribution to climate change. Particular
attention is directed towards the economic outputs of crops.
The value of production (in monetary units) is what we con-
sider a change in income. The database we analyse provides
results on the monetary value of production, which is used
to check the factors’ productivity, which is general practice
when the focus is on the monetary units instead of physi-
cal units. This choice is important here since results allow us
to analyse the change in the monetary units as a response to
changes in the determinants (both observable and not observ-
able).

Production is usually affected by unobserved factors. The
way in which these influences can be separated from the ef-
fects of more tangible and traditional inputs – such as land,
labour, or capital – is at the heart of a new debate. Differ-
ent approaches to the appropriate identification strategies for

Table 1. Cultivation of cereals, grapes, and olives in Spain.

Area in Percentage Number of
Spain of total farms in

(106 ha) agricultural the study
rain-fed area

Total agricultural
rain-fed area 13.7 – –
Cereals 5.0 37 2250
Grapes 1.9 14 503
Olives 0.7 5 401
Total of all three crops 7.7 56 3154

Source: MAGRAMA (2015) and own elaboration.

addressing endogeneity and collinearity problems have ap-
peared over the last years. The aim is to avoid simultane-
ity and selection biases that are common in most produc-
tion function estimates (Petrick and Kloss, 2013; Yasar et
al., 2008). We estimate the production function using the ap-
proach provided by Olley and Pakes (1996), which allows
control of both traditional inputs and state variables – such
as climate – to be combined and different kinds of biases
to be avoided, such as those resulting from the exit of inef-
ficient farms. This model allows the effect of unobservable
inputs such as soil quality, human capital of the labour force,
farmer’s effort, etc, to be accounted for.

Our study is centred on Spanish farms located in the
Mediterranean agroclimatic region. The present situation
does not allow for much optimism. Explicit restrictions on
water availability have been introduced in most of the Span-
ish river basins and there are big socio-economic conflicts,
especially in the agricultural sector. Extraordinarily bad gov-
ernance practices related to water and irrigators have been
reported, especially in relation to water rights in Spain. In
the Tagus river basin, especially in the case of Western Man-
cha, the lack of clear definition of water rights currently cre-
ates critical conflicts with estimated thousands of illegal ab-
stractors. To achieve more effective water governance in the
area, it is necessary to create an enabling environment, which
facilitates efficient private and public sector initiatives and
stakeholder involvement in articulating needs (De Stefano et
al., 2013; Rogers et al., 2006).

This paper is organized as follows: Sect. 2 focuses on the
steps within the methodology, models, and data. Section 2.1
details the climate change scenarios considered for the sim-
ulations; Sect. 2.2 presents the econometric model for the
Olley and Pakes crop production estimation, Mediterranean
crops, and Gini index decomposition. Section 2.3 explains
the Gini index for measuring income distribution and the de-
composition for calculating the marginal effects of drought.
Sections 3.1 to 3.3 present the results for the production func-
tions, the simulations of marginal effects of drought for the
different scenarios, and the calculations for the changes in
farms’ income distribution.

Nat. Hazards Earth Syst. Sci., 16, 1369–1385, 2016 www.nat-hazards-earth-syst-sci.net/16/1369/2016/



S. Quiroga and C. Suárez: Climate change effects on rural income distribution 1371

36  

 1 
 2 
Figure 1 Steps of methodology 3 
 4 

5 

Step 1
Characterization of 
productivity drivers

Nature state patterns
•Climatic spatial information

•River basin locations
•Drought characterization 

(SPI )

Management input 
factors

•Labour, materials (fertilizers, energy)
•Land, capital, investment

Step 2 Characterization of crop productivity
• Olley and Pakes production functions
•Climate risk semi-elasticities estimates

Step 4 Climate change scenarios
• A1B, E1 (CO2 representative concentration pathways)

Step 5 Projections of crop production and income 
distribution

• Simulations of crop production and Lorenz curves 
(GINI index) for the selected scenarios

Step 3
Income distribution 
decomposition

Characterization of inequalities
• GINI index decomposition

•Marginal effects of drivers (climate change, drought)

Production functions of 
income response

Selection of climate change 
scenarios

Climate-induced effects on
rural income inequalities

Figure 1. Steps of methodology.

2 Methods

This paper provides an assessment of income distribution as
a response to a climate-change-induced increase in droughts
in the Mediterranean. Our analysis integrates two essential
components of the economic perspective of adaptation pol-
icy: productivity and equity. We first analyse the drivers for
the agricultural systems’ production through a semiparamet-
ric method using 1990–2013 data for production in monetary
terms at the farm level in different river basins in Spain. We
have integrated biophysical and socio-economic databases to
characterize the nature state variables and management fac-
tors. Second, we explore the distributional aspects computing
the marginal effect of changes on seasonal rainfall distribu-
tion, using a decomposition of the standard Gini coefficient
to then simulate production and income distribution accord-
ing to these climate scenarios. Figure 1 summarizes the steps
on the methodology.

2.1 Agricultural production function simultaneous
estimates: observed inputs and unobserved
productivity shocks

We first need to define and estimate a production function.
The Olley and Pakes (1996) approach assumes that incum-
bent farms decide at the beginning of each period whether
to continue to participate in farming activity depending on
their productivity level, which in turn depends on their pro-
duction factors (it corrects the selection bias). To this end,
investment (ii t ) is considered as a proxy for the unobserved
productivity shocks. Additionally, this method corrects the
simultaneity bias arising from the fact that farms choose their

level of input once they know their level of productivity. Most
of the studies in the literature using Olley–Pakes methodol-
ogy assume a Cobb–Douglas production function (see Rizov
et al., 2013 and Kazukauskas et al., 2010, as recent exam-
ples focused on EU farm data). Since this is the functional
form more commonly accepted, we assumed it for our study.
The robustness of this method has been proved previously
in Petrick and Kloss (2013). Simultaneity exists between the
choice of inputs and productivity since productive farms are
more likely to make capital investments to increase the future
value of the farm. Therefore, the farm’s decision to invest in
further capital implies that future productivity is increasing
in the current productivity shock, so farms that experience a
large positive productivity shock in period t will invest more
in period t + 1. The Olley and Pakes (1996) semiparametric
method accounts for these issues.

There is also a selection bias caused by the fact that farms
only stay in business if the liquidation value is smaller than
the anticipated future value of profits. Controlling for this se-
lection bias requires a second step to estimate survival prob-
abilities. In our implementation, we estimate the probability
of survival by fitting a Probit model. Details on the produc-
tion function are reported in Appendix A. In order to anal-
yse the effects of climate we can examine these coefficients
that represent climate elasticity (or semi-elasticity to be more
precise), that can be defined as the percentage change in the
function’s output as a result of a one-unit change in the level
of a climate variable. For example, the average temperature
coefficient indicates the percentage change in monetary out-
come for the farms due to an increase in 1 ◦C in the average
temperature.
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Marginal product – the change in output resulting from
employing one more unit of a particular input, assuming
other variables are kept constant (Brewer, 2010) – has been
calculated for when the drought effect is analysed.

2.2 Measuring rural income distribution:
a decomposition of the Gini index with regard to
social equity

To characterize the inequality level generated by agricultural
output, we use the Gini coefficient decomposition proposed
by Pyatt et al. (1980) and Shorrocks (1982), and extended by
López-Feldman et al. (2007), which includes the marginal
effects of different sources on overall yield inequality, focus-
ing on the impact of water-related variables. The Gini coef-
ficient is probably the most common inequality measure be-
cause of its simplicity and its desirable properties. In a gen-
eral context, it fulfils the properties of mean independence,
population size independence, symmetry, and Pigou–Dalton
transfer sensitivity (Haughton and Khandker, 2009). How-
ever, this tool presents two main shortcomings: (i) difficult
decomposability as entropy measures, and (ii) difficult sta-
tistical testability for the significance of changes in the in-
dex over time. Haughton and Khandker (2009) suggested
that the latter is not a real problem because confidence in-
tervals can usually be produced by means of bootstrap tech-
niques. Taking these considerations into account, we use this
approach. This concentration ratio is widely used in many
fields of economics as well as in ecology and agronomics,
but there are fewer applications in agricultural and environ-
mental economics together (Quiroga et al., 2014; Sadras and
Bongiovanni, 2004; Seekell et al., 2011). In a general con-
text, it ranges from zero (equal distribution) to one (perfect
inequality).

The decomposition of the overall Gini into specific source
factor effects was derived from Lerman and Yitzhaki (1985).
It is a good measure to help to understand the determinants
of inequality, and allows the effect of small changes in a spe-
cific source of yield (or, in this case, income) on inequality
to be estimated, while the other sources’ constant is main-
tained. In this paper, we include drought as a source factor. If
we consider the relationship between drought and crop yield,
the interpretation of Gini decomposition will be the follow-
ing: (i) if drought as a source represents a large share of total
crop yield, it could probably have a large impact on inequal-
ity; (ii) if crop yield is equally distributed, it cannot affect
inequality, even if its magnitude is large; and (iii) if this crop
yield source is large and unequally distributed, it could either
increase or decrease inequality, depending on which farmers,
at which points in the crop yield distribution, earn it.

Here we use the Lorenz curves as the most common Gini
index representation to analyse how rural inequality responds
to climate-change-induced drought. The Lorenz curves rep-
resent the cumulative distribution function of income distri-
bution. Since a perfectly equal income distribution would be

one in which every farmer has the same income, this could be
represented by the line y = x, also called the “perfect equal-
ity” or “equi-distribution” line. In this hypothetical case,N%
of rural population would always have N% of the rural in-
come. The Gini index corresponds to the area between the
Lorenz curve and the equi-distribution line.

A detailed description of Gini decomposition can be found
in Appendix B.

2.3 Data

Since our model considers the interrelation among manage-
ment factors and climate state variables, it was necessary to
combine several socio-economic and biophysical databases
for the analysis. Table 2 shows detailed information about
the variables we used, the units and source of the data, and
main descriptive statistics. We have used the SABI database
(Iberian Balance sheet Analysis System), which provides in-
formation about farm production in monetary terms, man-
agement factors (land, labour, and capital), and spatial farm
location. The SABI database is produced jointly by Bureau
van Dijk and Informa and comes from the financial infor-
mation that farms must present to the Companies Registra-
tion Office. It is an annual survey which looks at a panel of
representative Spanish agricultural farms and contains bal-
ance sheet data, cash flow, and other data. Our database is an
unbalanced panel observed over the period 1990–2013. The
most difficult issue with an unbalanced panel is precisely de-
termining the origin of the lack of balance: (1) if the reason
a farm leaves the sample is not correlated with the idiosyn-
cratic error (those unobserved factors that change over time
and affect profits), then the unbalanced panel causes no prob-
lems. (2) If the reason a farm leaves the sample is correlated
with the idiosyncratic error, then the resulting sample can
cause biased estimators. One advantage of the mechanics of
Olley and Pakes (1996) (as it is explained in the Appendix A)
is that it takes into account the selection bias resulting from
the exit of inefficient farms.

SABI also provides information about the major digit
NACE codes (National Classification of Economic Activi-
ties) to which the farms belong. The data are at the farm level
and they are provided for different sectors. Here we have
analysed the farms from 1990 to 2013 in the most important
sectors regarding Mediterranean representative crops: the ce-
real sector (NACE code A1.1.1), the grape sector (NACE
code A1.2.1), and the olive sector (NACE code A1.2.6). Our
sample includes all the farms providing information for the
selected sectors.

The SABI database provides the data in real currency (cur-
rent EUR), so to consider real increase in purchase capacity
and discount the effect of market price increases, we have
deflated the current monetary variables into real values with
1990 as the base year, using national account data for Spain
(INE, Spanish National Statistics Bureau). Climatic infor-
mation for the period 1990–2013 has been collected from
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Table 2. Description and descriptive statistics of the variables used in the analysis.

Type Name Definition Unit Source (∗) Cereals Grapes Olives

Mean SD Mean SD Mean SD

So
ci

o-
ec

on
om

ic
an

d
m

an
ag

em
en

tf
ac

to
rs

Total crop Thousands
Yi t production at of 1990 EUR SABI, INE 330.9 1470.7 263.5 766.2 181.4 375.8

farm i in year t

Li t Total employment Number of SABI, INE 8.9 29.8 7.6 29.8 9.8 14.3
at farm i in year t workers

Mi t Materials (fertilizers, Thousands SABI, INE 276.5 1274.4 200.3 684.3 125.7 362.1
pesticides,energy, etc.) of 1990 EUR

Ki t Capital assets Thousands SABI, INE 647.1 1480.6 707.7 1471.9 821.2 1740.0
(machinery, of 1990 EUR
tractors, etc.)

Ai t Land Thousands SABI, INE 196.3 1530.4 192.8 777.6 139.1 788.5
of 1990 EUR

Ii t Investment Thousands Own 93.1 608.6 115.0 444.1 108.3 617.9
of 1990 EUR elaboration

from SABI

t Time trend: Year Own – – – – – –
t = 1 for 1991, sequence elaboration
t = 23 for 2013

B
io

ph
ys

ic
al

fa
ct

or
s

T_soni t Average seasonal ◦C AEMET 16.9 2.7 16.3 2.6 17.9 2.0
temperature at
site i in the year t
(Sept, Oct, Nov)

T_djfi t Average seasonal
temperature at ◦C AEMET 8.5 3.0 7.9 2.8 9.5 2.3
site i in the year t
(Dec, Jan, Feb)

T_mami t Average seasonal ◦C AEMET 15.0 2.5 14.1 2.3 15.8 1.9
temperature at
site i in the year t
(Mar, Apr, May)

Prec_soni t Total seasonal mm AEMET 154.2 78.4 171.8 103.9 167.8 85.3
precipitation at
site in the year t
(Sep, Oct, Nov)

Prec_defi t Total seasonal mm AEMET 139.2 124.8 129.0 118.4 175.9 149.3
precipitation at
site i in the year t
(Dec, Jan, Feb)

Prec_mami t Total seasonal mm AEMET 131.8 60.3 143.5 79.6 147.1 72.4
precipitation at
site in the year t
(Mar, Apr, May)

Prec_jjai t Total precipitation mm AEMET 37.6 39.8 56.2 49.4 26.3 35.9
at a site in the year t
(Jun, Jul, Aug)

Droughti t Dummy variable 1 or 0 as Own 55.0 % – 49.0 % – 54.1 % –
(1 for dry years, a function of elaboration
0 in other cases) SPI from AEMET

River_basini Dummy variables for 1 or 0 as Own
river basin selection: a function elaboration
(1) Duero of the area from SABI 5.8 % – 7.1 % – 0.6 % –
(2) Ebro 12.8 % – 14.1 % – 2.1 % –
(3) Guadalquivir 23.8 % – 7.9 % – 55.1 % –
(4) Guadiana 5.1 % – 1.6 % – 3.1 % –
(5) Tajo 26.6 % – 24.6 % – 16.8 % –

(∗) Iberian Balance sheet Analysis System (SABI); Spanish National Statistics Bureau (INE), State Meteorological Agency in Spain (AEMET). SD denotes standard deviation.
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AEMET (State Meteorological Agency in Spain). Table 2
presents the descriptive analysis of the variables used.

The current work uses each firm’s sales volume and it is
converted into real terms. With regard to the inputs, labour
is measured as the number of workers. In this type of study,
the standard practice is to define labour in terms of hours
worked but this information is not available. Capital quantity
is defined as the market value of capital assets (machinery,
tractors, etc.) owned by the farms, in constant prices. Land is
defined as the real value in monetary terms for the planting
area for every farm, so this is not constant during the consid-
ered period. Every year farms declare the value of their prop-
erties (which can be sold or bought). This value, expressed
in real terms to avoid inflation effects, is what we consider as
land input. Although we do not have information about real
land use, which does not only depend on the variation of the
amount and value of planting area but also on the competition
between the use of a portion of land amongst different scopes
(abandonment, urban, afforestation, food production, energy
production etc.), which constitutes a limitation, we can cap-
ture the evolution of agricultural land value. Material is de-
fined as intermediate spending carried out in the production
process (fertilizers, pesticides, energy, etc.). The farm invest-
ment is calculated according to the proposal by Lewellen and
Badrinath (1997) as follows:

ii t = nfi t − nfi t−1+ bdi t ,

where nf is net fixed assets and bd is book depreciation ex-
penses. Theoretically, the model mentioned in the last sec-
tion requires investment to be strictly positive to invert the in-
vestment function. In their empirical implementation, Olley
and Pakes (1996) drop all observations with zero investment.
Other authors have noted that in practice, zero investment
is often observed and that the methodology seems to work
even when the theory is violated (see, for example, Pavcnik,
2002). Therefore, our approach will be to retain all the ob-
servations with zero investment but also introduce dummy
variables (dummy variables for zero investment interacting
with state inputs) to account for these observations, as in
Blalock and Gertler (2004) and Breunig and Wong (2008).
As a robusticity check, we estimated the model dropping
all of the observations with zero investment and the result-
ing coefficient estimates, similar to those reported below.
We add t , which is a variable included here to measure the
Hicks-neutral technical change that is common among firms
in the same sector and autonomous region. A Hicks-neutral
technical change is a change in the production function of
a farm that satisfies certain economic neutrality conditions.
A change is considered to be Hicks-neutral if the change
does not affect the balance of labour and capital in the prod-
ucts’ production function. Factor-neutral (also called Hicks-
neutral) technological change is assumed, either explicitly or
implicitly, in most of the standard techniques for measuring
productivity, ranging from the classic growth decompositions

of Solow (1957) and Hall (1988) to the recent structural es-
timators for production functions (Olley and Pakes, 1996;
Levinsohn and Petrin, 2003; Ackerberg et al., 2006).

In our paper, we measure Hicks-neutral technological
progress with the time trend in production function. As-
suming neutral technical change implies that the coefficients
of the interactions between the yearly trend and the input
variables are zero. We also tried to estimate a non-neutral
technical progress, but the resulting coefficients were not
significant, so the Hicks-neutral technological progress was
deemed appropriate.

Drought characterization is always a difficult task, given
the spatial and temporal properties of drought and no single
accepted definition (Tsakiris et al., 2007). In the most general
sense, drought originates from a deficiency of precipitation
over an extended period of time – usually a season or more
– resulting in a water shortage for some activity group or en-
vironmental sector (NDMC, 2015). Operational definitions
help define the onset, severity, and end of droughts. No single
operational definition of drought works in all circumstances,
and this is a big part of why policymakers, resource plan-
ners, and others have more trouble recognizing and planning
for drought than they do for other natural disasters (NDMC,
2015). To characterize drought in this study, we take the com-
monly used Standardized Precipitation Index (SPI, McKee
et al., 1993). Broadly considered, this index is based on the
probability of precipitation for any timescale. It is calculated
as the difference in accumulated precipitation between a se-
lected aggregation period and the average precipitation for
that same period. We have introduced the SPI in a dummy
form since we are also interested in the direct effect of tem-
perature and precipitation and we wanted to avoid collinear-
ity problems with the SPI since it is constructed from precip-
itation data. This approach has been used before in some pre-
vious analysis in Spain (Iglesias and Quiroga, 2007; Quiroga
and Iglesias, 2009; Iglesias et al., 2010; Garrote et al., 2007).
We have used SPI to characterize drought since it is widely
used and more comparable across regions with different cli-
mates than other more complex indexes such as the Palmer
Drought Severity Index (PDSI). SPI does not consider tem-
perature, which is responsible for affecting evapotranspira-
tion, but we have considered temperature effects among the
explanatory variables of the model. However, other limita-
tions include SPI not considering the intensity of precipita-
tion and its potential impacts on runoff, streamflow, and wa-
ter availability within the system of interest (Keyantash and
National Center for Atmospheric Research Staff, 2015).

We have introduced a geographical variable to capture the
differences among river basin locations (Fig. 2) to reflect that
climate and management patterns vary across the basins and
so do the crop processes and farmers’ incomes. All 10 river
basins are represented in the analysis since there are a num-
ber of farms included in each of the basins. However, we in-
troduced a dummy variable for differentiating the effects on
five of them: Duero, Ebro, Guadalquivir, Guadiana, and Tajo.
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Figure 2. Spanish river basins.

This allows us to compare differential marginal effects for
these important basins. For example, if we have a significant
and positive effect on the variable capturing the Duero river
basin effect, this indicates that for this basin the effects are
higher than the average effects. For the river basins not repre-
sented we just have the average value as reference. Introduc-
ing dummy variables allocates differential marginal effects
with respect to the representative average value. We consider
the most important river basins to allocate these differences.

2.4 Climate change scenarios and drought in the
Mediterranean

We analyse the response of crop production to climate
change through simulations responding to climate scenar-
ios derived from Representative Concentration Pathways of
global emissions for the 2050s, the A1B scenarios with a
balanced emphasis on all energy sources (around 850 ppm
of CO2) and the E1 scenarios representing stabilization
(458 ppm of CO2); although basin-level data have not been
developed for the new representative concentration pathways
(RCPs) in Spain (as can be seen at Rogelj et al., 2012), the
equivalence can suggest that A1B ranges between RCP and
RCP8.5, and E1 corresponds to RCP4.5. Although this pa-
per focuses on the priorities for adaptation, we want to place
these priorities in terms of mitigation efforts. Adaptation and
mitigation are dependent on each other (IPCC, 2014). The
greater the effort in mitigation (i.e. a more stringent target is
foreseen in CO2 concentration reduction in 2100), the lower
the cost of adaptation to climate change will be (although,
of course, some unavoidable effects remain independent of
mitigation efforts). The source of climate data is the Uni-
versity of East Anglia (Christensen et al., 2011) and these
data have been fully described in Iglesias et al. (2012a). A1B
represents a balanced emphasis on all energy sources with

CO2 level in 2080 of about 850 ppm. E1 is the so-called
global “2 ◦C stabilization” scenario that is characterized by
atmospheric concentrations of 498 ppm CO2 in the 2080s.
These last-generation socio-economic scenarios were not de-
veloped in the PRUDENCE project but new climate projec-
tions have been developed under the Climate Cost project
(Christensen et al., 2011; Iglesias et al., 2012a). To address
uncertainty we use several climate models driven by these
Representative Concentration Pathways: A1B: DMIEH5-4;
A1B:HADGEM-1 and the E1: DMICM3-1; E1: DMICM3-
2; E1: HADGEM2-1.

Table 3 presents the average values for the seasonal aver-
age temperatures and total precipitations.

The two selected scenarios represent important differences
in mitigation policies. The E1 scenario corresponds to the fu-
ture emission pathway that is required to limit global warm-
ing to no more than 2 ◦C above pre-industrial levels and the
allowable level of CO2 emissions in this greenhouse gas sta-
bilization scenario corresponds to limiting global warming
below this EU target. Significant and early policy actions
are required in mitigating greenhouse gas emissions to limit
global warming to no more than 2 ◦C above pre-industrial
levels. In the greenhouse gas stabilization, the allowable CO2
emissions increase has to be steadily reduced, resulting in
a decrease of 56 % in year 2050 and almost 100 % in year
2100. (Roeckner et al., 2011). On the other hand, the A1B
scenario is part of the Special Report on Emissions Scenar-
ios (SRES) scenario families and has been the focus of model
intercomparison studies. E1 and A1B illustrative marker sce-
narios are about 490 and 850 ppm respectively (IPCC, 2007;
Christensen et al., 2011; Roeckner et al., 2011). Since the Eu-
ropean Union is targeting important efforts for mitigation, we
have focused on scenarios in line with recent policy agree-
ments.

Drought projections have been made considering the pro-
jected expected changes in precipitation patterns as a result
of climate change. SPI has been calculated from climate
change projections for the selected scenarios. In addition,
since we want to consider the general effect of temperature
variation due to climate change, we have also included the
climate variables directly as determinants.

3 Results

3.1 Olley and Pakes production functions’ estimates

Table 4 shows the estimates for the nature state drivers and
management factors’ elasticities of the statistical function of
yield response for the selected Mediterranean crops in the
analysis. We observe that the marginal effects are as expected
with regard to traditional inputs; that is, the management fac-
tors positively affect the increase in productivity. We observe
that the effect of size (land) is not relevant in determining
crop production in Spain; that is, there are not significant
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Table 3. Climate change scenarios: average values for medium temperature and total precipitation under the selected climate change scenarios
for the period 2070–2100. GCMs denote general circulation models.

Emission GCM/ CO2 Prec_son Prec_djf Prec_mam Prec_jja T _son T _djf T _mam T _jja
scenario downscaling targets (2050) (mm) (mm) (mm) (mm) (◦C) (◦C) (◦C) (◦C)

(ppm)

A1B BCM2_1 850 −73.3 −41.0 −83.4 −40.5 2.3 1.9 3.0 3.3
A1B CNCM3_1 850 −77.3 −54.8 −105.5 −77.0 3.5 2.1 3.5 4.9
A1B DMIEH5_4 850 −81.9 −88.0 −92.4 −149.9 4.1 2.3 3.1 5.2
A1B EGMAM_1 850 −13.5 10.2 −100.1 −68.9 3.2 2.7 2.8 3.7

E1 BCM2_1 490 −58.2 −47.2 −24.6 −11.1 1.1 1.0 0.9 1.5
E1 CNCM3_1 490 −56.7 −8.9 −70.7 1.9 1.3 0.8 1.0 1.4
E1 DMIEH5_4 490 −11.9 17.5 −11.9 −0.2 1.3 1.6 1.4 1.6
E1 EGMAM_1 490 4.7 −6.1 −31.8 −58.8 1.7 1.2 1.2 1.6

Table 4. Olley–Pakes estimates for the factors’ elasticities of the statistical function of income response for cereal, grape’ and olive sectors
(baseline: 1991–2013).

Cereals Grapes Olives

Coef SE Coef SE Coef SE

Land −0.0452 (0.036) 0.1237 (0.142) −0.0285 (0.077)
Capital −0.0497 (0.020)b 0.0381 (0.086) 0.0521 (0.086)
Labour 0.2935 (0.017)a 0.3814 (0.032)a 0.2827 (0.032)a

Material 0.7805 (0.015)a 0.6440 (0.033)a 0.6743 (0.044)a

T −0.0012 (0.002) −0.0069 (0.005) −0.0113 (0.008)

T _son – – – – 0.0406 (0.017)b

T _djf – – −0.0243 (0.013)c
−0.0551 (0.016)a

T _mam −0.0189 (0.008)b – – – –
Prec_son −0.0001 (0.000) 0.0002 (0.000) −0.0002 (0.000)
Prec_def −0.0001 (0.000)b

−0.0003 (0.000) 0.0000 (0.000)
Prec_mam 0.0002 (0.000) 0.0002 (0.000) 0.0004 (0.000)
Prec_jja 0.0006 (0.000)c 0.0008 (0.000)a

−0.0006 (0.001)
Drought −0.0309 (0.019)c

−0.0178 (0.029) −0.0860 (0.051)c

Duero 0.0767 (0.052) −0.0175 (0.114) −1.3191 (0.602)b

Ebro 0.1224 (0.045)a 0.0173 (0.078) 0.2656 (0.129)b

Guadalquivir 0.0434 (0.035) 0.0156 (0.116) 0.0605 (0.083)
Guadiana 0.0225 (0.059) 0.4534 (0.150)a 0.1171 (0.198)
Tajo −0.2184 (0.048)a

−0.0776 (0.073) −0.2626 (0.101)a

Obs 17 157 3488 3028
Farms 2250 503 401

Note: standard errors (SEs) in OP model are bootstrapped using 50 replications. a Significant at the 1 % level. b Significant at
the 5 % level. c Significant at the 10 % level. Coef denotes the coefficient.

productivity differences between big and small farms. This
result is quite common in literature (Petrick and Kloss, 2013;
Yasar et al., 2008). With regard to climate drivers, we find in
general that average temperatures have a positive effect and
the same is true for precipitation. Droughts appear to be the
most important factor for external productivity shocks. In ad-
dition, we have tested collinearity problems between precip-
itation variables and SPI and considering the matrix of cor-

relations and the variance inflation factors, we conclude that
there is no problem among factors to be concerned about.

This effect is crop-specific and it is more important in the
case of olives. This is due to the climatic conditions of this
rain-fed Mediterranean crop, located basically in the south-
ern areas which have critical water availability shortages dur-
ing drought.
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Table 5. Gini decomposition for drought by crop and river basin.

Crop River basin G Sk=Drought Gk=Drought Rk=Drought % Change [95 % conf. interval]

Duero 0.561 0.003 0.413 −0.051 −0.32 [−0.35 −0.28]
Ebro 0.704 0.002 0.424 −0.022 −0.21 [−0.23 −0.18]

Cereals Guadalquivir 0.729 0.002 0.398 −0.039 −0.17 [−0.19 −0.16]
Guadiana 0.664 0.002 0.412 −0.009 −0.18 [−0.21 −0.16]
Tajo 0.714 0.003 0.466 −0.056 −0.27 [−0.32 −0.21]

Duero 0.651 0.002 0.399 −0.054 −0.23 [−0.29 −0.19]
Ebro 0.642 0.002 0.408 −0.028 −0.23 [−0.27 −0.18]

Grapes Guadalquivir 0.769 0.001 0.444 0.025 −0.10 [−0.17 −0.08]
Guadiana 0.3642 0.004 0.395 0.303 −0.27 [−0.44 −0.15]
Tajo 0.644 0.003 0.522 0.045 −0.28 [−0.34 −0.23]

Duero 0.694 0.008 0.500 −0.167 −0.91 [−0.79 −0.32]
Ebro 0.720 0.002 0.539 0.077 −0.18 [−0.32 −0.09]

Olives Guadalquivir 0.609 0.003 0.426 −0.009 −0.35 [−0.39 −0.31]
Guadiana 0.550 0.004 0.403 −0.011 −0.46 [−0.64 −0.23]
Tajo 0.485 0.005 0.412 −0.029 −0.50 [−0.61 −0.42]

3.2 Simulations of drought-driven production changes

Table 5 shows the Gini coefficient for the total income, and
the marginal effects of the increase of drought on the farms’
income distribution for the main river basins in Spain. We
observe that the most unequal distribution of incomes is pre-
sented in the Duero river basin for cereals, in the Guadiana
for grapes, and in the Tagus river basin for olives. We find
that the increase in drought occurrence will reduce the Gini
index in all the cases studied, meaning it will increase the in-
equality for the rural incomes. Although the effects are not
large, they are mostly significant.

The estimation of the percentage change of this rural in-
equality allows us to explain the changes in the Gini index
as a response to changes in the precipitation patterns due to
climate change.

Figure 3 shows the marginal effects on production and
changes in income distribution. While the impacts on aver-
age production in monetary terms depend on the crop and
the location, showing a negative or positive impact, we ob-
serve that the changes in the Gini index values are always ex-
pected to be negative and they are lower in magnitude; that
is, the expected effects on inequality point towards a worse
situation in the context of climate-change-induced extreme
events such as drought. The magnitude depends on the crop
type. We observe that olives are the crop with the highest
probability of having higher risk and also of generating more
inequality in rural areas, while the opposite is evident for
grapes. The grape industry in Spain is highly technified and
can be described as a very intensive crop system. This makes
a difference in terms of the effects of climate change. Aspects
such as improvements in varieties are not observed in the
database but are observed by the farmers, and so considered
within the model as unobservable effects increasing produc-
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Figure 3. Marginal effects of drought events on crop production and
income distribution for the selected crops in the main river basins in
Spain.

tivity. This kind of effect can also increase the adaptive ca-
pacity of the system; therefore we see very different results
in this industry with a higher adaptive capacity, which im-
plies less vulnerability to change in climate extremes. On the
other hand, olive and cereal crops are crops that are more ex-
tensive, labour-based, and for which fewer technical systems
are used, which make them more dependent on climate fac-
tors. We observe that the Tagus river basin is the one where
the greatest impact is noted due to droughts. These marginal
effects can be used as a basis for understanding the priori-
ties in adaptation policy. The impacts on cereals are highly
dependent on the location. Since our analysis suggests some
losses due to the marginal effect of drought on production,
this could affect competitiveness in the long term. From the
economic point of view, the long term is not linked to a spe-
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Figure 4. Lorenz curves (Gini index) for the selected crops under the baseline (1990–2013) and climate change scenarios (A1B, E1);
(1) baseline, (2–5) climate change scenarios.

cific timescale, but it is considered when farms are able to
adjust all costs, whereas in the short term, farms are only able
to influence prices through adjustments made to production
levels. Since our model considers investment responding to
the final outcome, these production losses can influence in-
vestment, especially in the Tagus river basin. Since Fig. 3
suggests that different crops and regions have different ex-
pected marginal effects (i.e. income losses), different prior-
ities should be given for defining public support for adapta-
tion.

The effect on income distribution seems to be low in mag-
nitude and this can be due to some compensation through
market prices. This result appears to indicate that the mitiga-
tion of agricultural losses is being compensated through the
worsening of consumer welfare. Here we do not calculate
this effect, but we find that it would be interesting to extend
the effects on consumption for future research. Some results
can be found in literature in terms of changes in certainty
equivalent wealth for producers and based on yields (t h−1)

(Ciscar et al., 2011; Quiroga and Iglesias, 2009) but less at-
tention has been placed on consumer income.

3.3 Evolution of income distribution as a response to
drought

From the marginal effect on income distribution we have
simulated its evolution as a response to changes in potential
drought and climate variables through temperature and pre-
cipitation forecasting in the different climate change scenar-
ios selected for the study (see Sect. 2.4). Figure 4 shows the
resulting Lorenz curves (Gini index representation) to anal-
yse how rural inequality responds to climate-change-induced
drought. As we have mentioned in the methodology, the
Lorenz curves represent the cumulative distribution function
of income distribution. The greater the difference between
the line and the so-called perfect equality or equi-distribution
line, the higher the Gini index and the worse the distribution
of incomes. In Fig. 4 we show the evolution of the curve from
the baseline (1990–2013) to the climate change scenarios for
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2080 (A1B and E1 concentration pathways simulated by four
different climate models and downscaling).

These curves show for the bottom percentage of farmers
(x axis), what percentage of the total agricultural income
(y axis) they have, and what percentage can be considered
a measure of inequality. We observe that the effects are not
huge in terms of income distribution, but they are negative
for all the crops and for the different scenarios, so climate-
change-induced drought increase will definitely worsen rural
inequality. In addition, we observe that the sector in which
the income inequality will rise is the olive sector, followed by
the cereals sector. In the case of grape production, the sim-
ulated effect on inequality is not significant. Since drought
events will be suffered by all the farmers independently of
their income level, our results suggest that at least in rain-
fed crops, investment, which is mostly made by farmers with
higher incomes, would not be enough to compensate the ex-
pected losses, because in other cases we will expect a very
critical effect on income distribution as a consequence of
drought. Although the EU White paper for adaptation (COM,
2009) indicates that there is great room for adaptation in the
agricultural sector, these results suggest that in the case of
drought, the adaptation measures should prioritize water re-
source management. A limitation of this study is the fact that
we do not analyse the effects on irrigated crops. The chal-
lenge for this kind of analysis is that data on spatial resolu-
tion for water availability have to be linked to information
at the farm level. In a further step, remote sensing methods
could help to better characterize information on water use.

We observe in Fig. 4 that the projected scenarios are very
similar for the different models considered; that is, the re-
sults we obtain for income distribution changes are very ro-
bust in terms of the different models considered. Slightly
larger differences appear among the different mitigation tar-
gets (A1B and E1). In Table 6 we have analysed these dif-
ferences, considering the quantification of uncertainty in our
model as well. We have computed the mean-comparison test
for the projected income distribution response to climate sce-
narios in relation to the current climate baseline. We show
the t statistic and p value for the null hypothesis of hav-
ing no significant differences among the scenarios with re-
spect to the baseline. A p value over 10 % means that the
results show no statistical significant differences in inequal-
ity, while the opposite applies when the p value is less than
10 %. We observe that only some of the scenarios consider-
ing A1B concentration pathways produce significant effects
on income distribution. Although the olive crop shows a big-
ger effect at a glance, we can see that considering the uncer-
tainty of the model, these impacts are not significant (this is
due to a bigger standard error in the model of this crop). The
scenarios for the A1B concentration pathways have a bigger
effect on income distribution than those for the E1 concen-
tration pathways, both in magnitude and confidence level; so
mitigation policies can help to reduce the effects of climate
change on social equity.

Here we do not explicitly analyse rural communities, but
income distribution at the farm level. However, we think that
a worsening in the distribution of farms’ incomes will affect
social issues in these rural communities. We observe that the
most important effects are expected on the olive crop in the
southern areas in Spain. The increase in income inequality
in these rural communities can be very important in terms
of social conflicts since this region is mostly based on agri-
cultural outcomes with very low development of industry.
This problem we find in Spain could be the same in other
Mediterranean countries where southern areas are also very
much driven by the olive crop sector. Another limitation in
this study is that we do not explicitly consider the role of
CAP subsidies which are in fact very important, particularly
in this area. Further analysis could include separated incomes
from market and from CAP subsidies to explicitly examine
the agricultural policy effects. However, since farm income
and its distribution seem to be affected by climate change
and drought challenges, the role of CAP seems to be revised
in order to help competitiveness and income redistribution
functions.

Here we consider the contribution of the studied crops to
farmers’ production and the effect of these losses on income
distribution. However, we do not analyse cross-compensation
or adaptation measures explicitly (i.e. crop rotation, change
in varieties, part-time non-agricultural incomes, etc). Farm-
ers of course can make several important decisions to adapt
to the expected losses and it would be interesting in further
analyses to take these compensation effects on income dis-
parities into account. Therefore, adaptation measures should
be designed considering both economic and social aspects.

4 Discussion and conclusions

This paper focuses on the effects of droughts and climate
change on agricultural production and rural income dis-
tribution. We have estimated the drivers for production in
monetary units and we find that traditional inputs such as
labour, capital, and intermediate consumptions (energy, fer-
tilizers, pesticides, etc.) positively affect production as ex-
pected. However, there are also nature state variables, such
as drought, temperature increase, or precipitation decreases,
which are not controlled by the farmers, but can produce im-
portant productivity shocks. We have estimated the elasticity
for these shocks and we have especially focused on drought
effects on productivity losses.

The relatively complex methodology used allows us to fo-
cus on the economic aspects of climate change and drought
impacts on agriculture. We estimate directly in monetary
units. For this purpose, we used economic information about
marketable outputs and inputs (such as cost of labour, cap-
ital, intermediate consumptions – energy, fertilizers, etc.) in
monetary terms. However, there are other factors such as soil
quality or farmer’s effort that are not causing a marginal cost
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Table 6. Mean-comparison test (t statistic and p value for H0: mean differences= 0) for the income distribution responding to the different
climate change scenarios with respect to the current climate baseline.

Emission scenario GCM model/downscaling Cereals Grapes Olives

t stat p value t stat p value t stat p value

A1B BCM2_1 1.91 0.06 1.41 0.15 0.00 0.99
A1B CNCM3_1 2.71 0.01 1.92 0.06 −1.00 0.31
A1B DMIEH5_4 3.36 0.00 2.71 0.01 −2.12 0.03
A1B EGMAM_1 2.72 0.00 2.16 0.03 0.22 0.82
E1 BCM2_1 0.33 0.74 0.52 0.60 0.02 0.97
E1 CNCM3_1 0.58 0.56 0.56 0.57 0.14 0.89
E1 DMIEH5_4 0.65 0.51 0.71 0.47 0.65 0.51
E1 EGMAM_1 1.52 0.12 1.20 0.23 −0.42 0.67

Note: white cells indicate no significant differences. Bold values indicate significant differences at the 10 % level.

in terms of input, but have an important effect on the produc-
tion. The Olley–Pakes method allows us to consider these
unobservable factors and obtain non-biased estimations, al-
though these factors are not directly considered as explana-
tory variables.

According to previous literature, the losses produced by
drought conditions are crop-specific and they depend on lo-
cation. The same can be shown in this analysis (Parry et
al., 2004; Iglesias et al., 2012a; Lobell et al., 2008). The
climate-change-induced and drought-induced losses in phys-
ical yields (t h−1) have been largely analysed in the litera-
ture, and they are expected to be very high for some of the
crops analysed here, especially in the southern and eastern re-
gions in Spain. However, the analysis of incomes has not cap-
tured so much attention. As we have mentioned in the text,
the changes in production in monetary terms, although also
crop- and location-specific, are not as high as those estimated
in actual quantities yielded. Of course, in market economies,
prices are expected to play a role adjusting the scarcity in
physical goods, and this seems to be exactly the case here.
Even when international agricultural goods are present, mar-
ket prices seem to respond to yield losses at the local level
and incomes are affected, though to a lesser degree. This is
very important because it transfers the affected community
from being producers to consumers.

With regard to income distribution we have estimated the
marginal effects of drought on the Gini coefficient and we
have observed that the effects are not large but they are neg-
ative for all the crops analysed whatever the river basin con-
sidered. The Tagus river basin is the one that shows the most
important effects in both production loss and income inequal-
ity, and with respect to the sectors analysed, the olive sec-
tor is where the greatest impacts are noted. The results are
policy-relevant since adaptation policy for agricultural sys-
tems and water resource distribution could consider priori-
tizing the most affected basins and sectors.

When simulating climate change conditions our results
show that income distribution can be expected to get worse,

although the effects are higher on the production loss than on
the inequality increase. The scenarios based on A1B concen-
tration pathways produce higher effects on income distribu-
tion than those based on E1 concentration pathways, so mit-
igation policies can reduce the vulnerability of low-income
rural communities.

The results achieved are relevant since although the re-
lationship between climate change and inequality has been
identified to be very important (IPCC, 2014; UNDP, 2010;
López-Feldman, 2015), there are still few empirical studies
quantifying the effects on income distribution. Most of the
studies addressing distributional aspects are based on food
security – yields or ingested calories, poverty or development
indicators. These kinds of studies are very important and
pertinent in order to analyse the global situation where de-
veloped and non-developed countries are present. However,
in the context of the EU or the OECD developed countries,
sometimes these kinds of measures (literacy levels, access
to water, ingested calories, etc.) are not adequate enough to
describe the situation of a loss in income distribution. For
this reason, we find that our results can provide a better pic-
ture for analysing the worsening situation of farmers in de-
veloped countries, since they address the direct impacts con-
sidering farmers’ incomes in real terms. We have found that
the differences in terms of income distribution are not as se-
vere as those reported in studies that analyse solely physical
impacts (Iglesias et al., 2010), which suggests an important
role of market prices in stabilizing farmers’ outcomes. Al-
though most of the studies project important crop produc-
tion to be reduced due to climate change in Spain (Iglesias
et al., 2012a; López-Gunn et al., 2012), our results could
imply rural incomes not suffering the most through agricul-
ture losses but consumers’ welfare being the most greatly af-
fected. We have not analysed consumers’ welfare here di-
rectly. However, since important effects on crop production
can be expected while we do not predict very big impacts on
income, probably, this lack of expected impacts is due to a
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smoothing effect through prices, which in fact highly affects
consumers’ welfare.

Concerning adaptation, we have found that the Tagus river
basin is the most affected region with regard to changes in
the average income of farmers. This would imply that larger
efforts for adaptation should be made in this area, where wa-
ter resources’ management becomes a key element for adap-
tation. Tagus river basin has been pointed to be one of the
basins where pressures will be increased to a more substan-
tial degree in terms of unsatisfied demand. Having the high-
est magnitude effects in terms of monetary outcomes and
consequences on inequality will increase the already exist-
ing conflicts among different water users and water manage-
ment challenges including potential changes in the interbasin
water transfer schemes with the Segura river basin. A total
of 9.8 km3 of water has been transferred in 30 years, during
which the interbasin water transfer has been operative. Of
this, 60 % has been used for irrigated agriculture in the south-
east region in Spain; 38 % has been dedicated to complement
drinking water supply in the region; other uses include trans-
fer water to the Tablas de Damiel National Park, a wetland
ecosystem in the Guadiana River basin (Pittock et al., 2009).
Therefore, the increasing pressures do not only have implica-
tions for socio-economic issues, but also on the ecosystem.

Moreover, we have found that the olive sector should be
considered as a priority in terms of both farms’ incomes and
social equity. Studying the role of CAP subsidies will be im-
portant to address this challenge in the future. The olive sec-
tor is the most important agricultural sector in the south of
the Mediterranean and represents an important factor for ru-
ral development in the area. Olive oil farms in Spain are on
average bigger and have a higher labour productivity than
elsewhere. Labour is the most important cost for these farms,
the family labour representing around 50 % of total costs. In
addition, olive farms in Spain have suffered on average un-
favourable trends in income indicators, with income falling
by about a third in the last decades (EU FADN, 2012). There-
fore, the predicted increase in inequality could increase mi-
gration out of the rural areas, affecting land use and rural
development in Spain.
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Appendix A: Agricultural production function
simultaneous estimates: observed inputs and unobserved
productivity shocks

The Olley and Pakes (1996) approach assumes that incum-
bent farms decide at the beginning of each period whether to
continue to participate in farming activity, a decision made
according to their productivity level, which in turn depends
on each farm’s production factor (it corrects the selection
bias). To this end, investment (ii t ) is considered as a proxy
for the unobserved productivity shocks. In addition, this
method corrects the simultaneity bias arising from the fact
that farms choose their level of input once they know their
level of productivity.

We assume that farmers produce a homogeneous product
with Cobb–Douglas technology, and that the factors under-
lying profitability differences among firms are neutral effi-
ciency differences. The production function is

yi t = β0+βl li t +βmmi t +βkki t +βaai t +
∑
j

δj cj i t + ui t (A1)

ui t =�i t + ηi t ,

where yi t is the log output for farm i in period t ; li t , mi t ,
ki t and ai t are the log values of labour, material, capital, and
land inputs; cj i t are biophysical variables (climate and river
basin); �i t is the productivity shock that is observed by the
farm but not by the econometrician (for example machine
breakdowns); and ηi t is an unexpected productivity shock
that is unobserved by both the decision-maker and the econo-
metrician. Thus,�i t and ηi t are unobserved. The distinction
is that �i t is a state variable in the farm’s decision prob-
lem, and hence a determinant of both liquidation and input
demand decisions, while ηi t is not (see Petrick and Kloss
(2013) for an extended typology of farm production factors).

Simultaneity exists between the choice of inputs and pro-
ductivity since productive farms are more likely to make
capital investments to increase the future value of the farm.
Then, the farm’s decision to invest in further capital, ii t , also
depends on capital stock, land, and the firm’s productivity
shock:

ii t = I (�i t ,ki t ,ai t ) . (A2)

This investment decision equation implies that future produc-
tivity is increasing in the current productivity shock, so farms
that experience a large positive productivity shock in period
t will invest more in period t + 1.

The Olley and Pakes (1996) semiparametric method ac-
counts for these issues. Applying this method first involves
using the investment decision function to control for the cor-
relation between the error term and the inputs. This is based
on the assumption that future productivity is strictly increas-
ing with respect to �i t , so farms that observe a positive pro-
ductivity shock in period t will invest more in that period, for
any ki t and ai t . Provided that ii t is strictly positive, we can

write the inverse function for the unobserved shock �i t as

�i t = h(ii t ,ki t ,ai t ) . (A3)

This function can thus be used to control for the simultaneity
problem. Substituting those equations into production func-
tion yields

yi t = βl li t +βmmi t +
∑
j

δj cj i t +ϕ (ii t ,ki t ,ai t )+ ηi t , (A4)

where

ϕ (ii t ,ki t ,ai t )= β0+βkki t +βaai t +h(ii t ,ki t ,ai t ) . (A5)

We approximate ϕ (.) with a second-order polynomial series
in land, capital, and investment. The partially linear equa-
tion can be estimated by ordinary least squares. The coeffi-
cient estimates for variable inputs (labour and material) will
be consistent and asymptotically normal estimates of the co-
efficients in the linear part of the model (Andrews, 1991) be-
cause ϕ (.) controls for unobserved productivity, and thus the
error term is no longer correlated to the inputs. This allows us
to estimate βl and βm without requiring identification of βk
and βa , so more work is required to disentangle the effects of
capital and age on the investment decision from their effect
on output.

There is also a selection bias since farms only stay in busi-
ness if the liquidation value is smaller than the anticipated
future value of profits. Achieving this requires a second step
to estimate survival probabilities (Pi t ), which will then allow
us to control for selection bias. In our implementation, we es-
timate the probability of survival by fitting a probit model on
ii, t−1, ki, t−1, ai, t−1, as well as their squares and cross prod-
ucts. This can be viewed as a nonparametric estimator of the
index function. If the predicted probabilities from this model
are P̂i t ,

Pr(χi t = 1)= φ
(
ii, t−1,ki, t−1,ai, t−1

)
. (A6)

In the third step, we identify the coefficient βk , where pro-
ductivity is assumed to evolve according to a first-order
Markov process. We fit the following equation by non-linear
least squares in order to obtain βk:

yi t −
_

β l li t −
_

βmmi t −
∑
j

δ̂j cj i t = βkki t +βaai t

+ g
(
ϕ̂t−1−βkki,t−1−βaai, t−1, P̂i t

)
+ ξi t + ηi t , (A7)

where the unknown function g (.) is approximated by a
second-order polynomial in

ϕ̂t−1−βkki,t−1−βaai,t−1 and P̂i t .

Finally, we use the efficient coefficients’ estimates to build
a measure of farm-level production for the i farm at the
time t .
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Appendix B: Measuring rural income distribution:
a decomposition of the Gini index on equity

To characterize the size of inequality of the agricultural out-
put, we use the Gini coefficient decomposition proposed by
Pyatt et al. (1980) and Shorrocks (1982). As developed in
López-Feldman et al. (2007), each source’s contribution to
the Gini coefficient could be observed as the product of its
share on total output, its own source’s Gini coefficient, and
its correlation with the total output and can be expressed as

Gtot =

K∑
k=1

SkGkRk, (B1)

where Gtot represents the Gini coefficient for the total yield;
Sk is the share of component k in the total yield; this brings
up the question of how important the source is with re-
spect to total yield. Gk represents the relative Gini of source
k, this part attempts to measure how equally or unequally
distributed the income source is; Rk is the Gini correla-
tion between yield from source k and the total yield dis-
tribution Rk = Cov {ykF(y)}

/
Cov {ykF (yk)} , which leads

to the question of how the income source and the distri-
bution of total income are correlated. This decomposition
of the Gini coefficient is a good measure to help us under-
stand the determinants of inequality, and allows us to es-
timate the effect of small changes in a specific source of
yield (income) on inequality, maintaining the other sources
at a constant level. Consequently, the decomposition of the
overall Gini into specific source factor effects was derived
from Lerman and Yitzhaki (1985). The authors show that
the partial derivative of the overall Gini coefficient with re-
spect to a percent change e in the source factor k is equal to
∂Gtot
∂ek
= Sk (GkRk −Gtot).

In this paper we include drought as a source factor. As we
mentioned before, if we consider the relationship between
drought and crop yield, the interpretation of this decomposi-
tion will be the following: if drought source represents a large
share of total crop yield, it could probably have a large impact
on inequality. If crop yield is equally distributed (Gk = 0), it
cannot affect inequality, even if its magnitude is large. How-
ever, if this crop yield source is large and unequally dis-
tributed (Sk and Gk are large), it could either increase or
decrease inequality, depending on which farmers, at which
points in the crop yield distribution, earn it. If the crop yield
source (drought) is unequally distributed and flows dispro-
portionately towards those at the top of the crop yield distri-
bution (Rk is positive and large), its contribution to inequal-
ity will be positive. However, if it is unequally distributed
but targets poor farmers, the crop yield source may have an
equalizing effect on crop yield distribution.
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