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Abstract. A method for semiautomated landslide detection

and mapping, with the ability to separate source and run-out

areas, is presented in this paper. It combines object-based

image analysis and a support vector machine classifier and

is tested using a GeoEye-1 multispectral image, sensed 3

days after a major damaging landslide event that occurred on

Madeira Island (20 February 2010), and a pre-event lidar dig-

ital terrain model. The testing is developed in a 15 km2 wide

study area, where 95 % of the number of landslides scars are

detected by this supervised approach. The classifier presents

a good performance in the delineation of the overall land-

slide area, with commission errors below 26 % and omission

errors below 24 %. In addition, fair results are achieved in

the separation of the source from the run-out landslide areas,

although in less illuminated slopes this discrimination is less

effective than in sunnier, east-facing slopes.

1 Introduction

Landslides are complex mass movements that occur on hill

slopes due to the action of gravity; they play an important

role in the evolution of landforms, while constituting a se-

rious natural hazard in many regions throughout the world.

Landslides can involve flowing, sliding, toppling, or falling

and are commonly associated with a trigger: slope failures

generally occur within minutes after an earthquake, hours to

days after a snowmelt, and days to weeks after an intense

rainfall (Guzzetti et al., 2012; Malamud et al., 2004). Ur-

ban expansion into hilly or mountainous regions results in

more people being exposed to the hazard, thus increasing

landslide risk. Nowadays, landslides claim thousands of lives

every year and result in extensive infrastructure and prop-

erty damage (Malamud et al., 2004; Yang and Chen, 2010;

Holbling et al., 2012). Landslide susceptibility and hazard

assessment are important tools in land-use planning, in par-

ticular to avoid urban expansion into vulnerable areas, thus

reducing future economic and human losses. Past landslides

are one of the best indicators of future landslide activity, and

mapping landslides is therefore an essential step in hazard as-

sessment (Bucknam et al., 2001; Lahousse et al., 2011; Ak-

soy et al., 2012; Guzzetti et al., 2012).

1.1 Landslide inventories

An inventory map records the location and, when known,

the date of occurrence and type of landslides that have

left discernible traces in an area (Malamud et al., 2004).

A landslide-event inventory consists of all the slope failures

associated with a single trigger such as an earthquake, rain-

storm, or snowmelt and is useful to determine the residual

risk in the aftermath of the event, as a guide for emergency

and recovery efforts, and to validate landslide susceptibil-

ity and hazard models (Malamud et al., 2004; Barlow et al.,

2006; Guzzetti et al., 2012; Mondini et al., 2013, 2014). Im-

mediately after the event, individual landslides are easy to

recognize, even in the case of small and shallow landslides

such as soil slips or debris flows, and detailed mapping car-

ried out shortly after the landslide event leads in general to

a significantly complete inventory (Malamud et al., 2004).

This notwithstanding, landslide inventories are generally in-

complete, both in what concerns the area covered and the

time period investigated, a serious drawback for landslide

hazard studies (Malamud et al., 2004; Van Westen et al.,

2006).
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Landslide inventories traditionally used to be derived by

visual interpretation of aerial photographs and field surveys.

The latter can lead to comprehensive and precise landslide

inventories, but they are often hindered by cost effectiveness

and logistical constraints, particularly over large or remote

areas (Yang and Chen, 2010). Interpretation of stereoscopic

aerial photography (whereby the interpreter detects and clas-

sifies landslides based on experience and on the analysis of

changes in the form, shape, position, or appearance of the to-

pographic surface) remains a common method to recognize

landslides, despite being an empirical and subjective tech-

nique (Guzzetti et al., 2012). Aerial photographs, which can

accurately depict the distribution and contours of landslides

in a region, are seldom available in a timely manner, thus re-

stricting the ability to prepare event and seasonal inventory

maps repeatedly and for large areas (Martha et al., 2010; Ak-

soy et al., 2012; Guzzetti et al., 2012). In this context, and

if the persistence of cloud cover is not an issue, satellite im-

agery emerges as a uniquely reliable tool for timely mapping

of landslides and damage assessment over large and inacces-

sible areas (Barlow et al., 2006; Joyce et al., 2008; Aksoy

et al., 2012; Holbling et al., 2012; Xu et al., 2015).

1.2 Automated methods for landslide mapping

Visual interpretation of satellite imagery remains extremely

demanding in terms of resources and time, especially when

dealing with numerous multi-scale landslides affecting wide

areas, such as rainfall-induced shallow landslides. Applying

automated methods can contribute to more efficient landslide

mapping and updating of existing inventories, and in recent

years the number and variety of approaches has rapidly in-

creased (Guzzetti et al., 2012; Holbling et al., 2012; Marc and

Hovius, 2015). Landslides can display highly heterogeneous

sizes, demanding information with higher spatial resolutions

in order to produce complete event inventories. Very high-

resolution (VHR) multispectral images, acquired by space-

borne sensors with sub-metric precision, such as Ikonos,

QuickBird, GeoEye, or WorldView, are increasingly consid-

ered the best option for landslide mapping (Van Westen et al.,

2008), but these new levels of spatial detail present new chal-

lenges to state-of-the-art image analysis tools (Kurtz et al.,

2014).

In recent years, several semiautomated methods have been

developed to tackle such difficulties, using specific classifi-

cation schemes that target single post-event optical images

(Cheng et al., 2013; Moosavi et al., 2014) or, when suitable

pre-event data are available, exploit pre- and post-event im-

age changes (e.g., Lu et al., 2011; Mondini et al., 2011a,

b). In the latter case, great care has to be taken in the co-

registration and radiometric correction procedures. Ideally,

pre-event and post-event images should be acquired at the

same time of the year and with similar view angle and so-

lar illumination, but this is often not feasible (Guzzetti et al.,

2012).

Semiautomated approaches to landslide mapping can be

classed, according to the type of image element used, as

“pixel based” (e.g., Chang et al., 2007; Yang and Chen,

2010; Chini et al., 2011; Cheng et al., 2013; Mondini et al.,

2013, 2011a, b) or “object based” (e.g., Aksoy et al., 2012;

Holbling et al., 2012, 2015; Lacroix et al., 2013; Lahousse

et al., 2011; Lu et al., 2011; Martha et al., 2010, 2011, 2012,

2013; Stumpf et al., 2011, 2014; Van Den Eeckhaut et al.,

2012). When applied to very high spatial resolution images,

pixel-based methods often exhibit a “salt and pepper” ap-

pearance (Van Westen et al., 2008; Guzzetti et al., 2012)

which requires image post-processing. The “object-oriented”

approach, however, groups image pixels into homogeneous

objects, with shape, size, neighboring, and textural features

in addition to spectral information (Aksoy et al., 2012). With

both approaches, supervised and unsupervised classification

schemes have been adopted, based on algorithms such as

maximum likelihood (Nichol et al., 2005; Borghuis et al.,

2007; Danneels et al., 2007), K nearest neighbor (Cheng

et al., 2013; Li et al., 2013), artificial neural networks (Nichol

et al., 2005; Danneels et al., 2007; Moosavi et al., 2014),

random forests (Stumpf et al., 2011, 2014), or support vec-

tor machines (SVMs; Pisani et al., 2012; Van Den Eeckhaut

et al., 2012; Moosavi et al., 2014). Novel object-based ap-

proaches for automated landslide mapping include the clas-

sification of different landslide types (Martha et al., 2010),

identification of landslides from panchromatic imagery only

through strong reliance on texture measures (Martha et al.,

2012), or the detection and mapping of forested landslides

resorting to lidar data (Van Den Eeckhaut et al., 2012).

The separation of the landslide-affected region into source,

transport, and deposition areas is important to support post-

event mitigation actions, since sediments deposited by land-

slides are likely to become source materials in subsequent

events (Mondini et al., 2011a; Lira et al., 2013). More gen-

erally, the assessment of the volume of sediments produced,

displaced, and deposited by landslides is important for sus-

ceptibility and hazard evaluation (Guzzetti et al., 2009).

Mondini et al. (2011a, 2013) developed semiautomated

pixel-based approaches to map landslides into source and

run-out areas (defined as the union of transport and depo-

sitional areas), using a single post-event image and pre- and

post-event image changes, respectively. Recently, Holbling

et al. (2015) developed an object-based approach for semiau-

tomated landslide change detection, with the ability to sep-

arate landslide sources from debris flow/sediment transport

areas. Van Den Eeckhaut et al. (2012) also separate landslide

source area and run-out but, in contrast to the previous au-

thors, they use lidar data instead of optical imagery.

1.3 Layout of the present work

In this work we develop and test a methodology for semiauto-

mated landslide recognition and mapping of landslide source

and run-out areas. The method combines object-based image
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Figure 1. Location of Madeira Island, in the North Atlantic, with the most affected basins during the 2010 event superimposed on a DTM.

Our study area is delimited by the rectangle located over Funchal basins. HB: hydrographic basin. Adapted from Lira et al. (2013).

analysis and an SVM supervised learning algorithm, and it

is tested with information from VHR multispectral imagery

acquired after a landslide event, together with a pre-event

high-resolution (4 m) lidar digital terrain model (DTM). Our

motivation to develop a procedure targeting post-event im-

ages solely, instead of change detection approaches, stems

from the extreme difficulties often experienced in the co-

registration of pre-event and post-event images in very steep

regions (Pollard et al., 2010). Madeira Island, where our

method was tested, is an example of a region where accu-

rate co-registration was not possible (Chini et al., 2011). We

test the approach on a GeoEye-1 multispectral image (0.5 m

panchromatic band) acquired 3 days after an exceptionally

heavy rainfall episode in February 2010 that triggered thou-

sands of shallow landslides and flash floods across Madeira

Island, in the North Atlantic, and claimed 45 lives (Lira et al.,

2013). Section 2 describes the imagery and ancillary data

used in the study and the preparation of a landslide inventory

to evaluate the results. Section 3 presents the procedures for

semiautomated landslide mapping and quality assessment.

The results are presented in Sect. 4, followed by a brief dis-

cussion and conclusion in Sect. 5.

2 Data

2.1 Study area and imagery data sets

Madeira Island (Fig. 1), with a population of 250 000 inhab-

itants, has a long record of flash floods, with at least 30 flash

flood events of significant intensity registered since the be-

ginning of the 19th century (Baioni, 2011; Lira et al., 2013).

These flash floods usually last a few hours, during which

a large amount of sediment is transported downstream very

rapidly and with very high energy. Large part of the trans-

ported material is sourced by shallow landslides triggered

upstream by the heavy precipitation (Lira et al., 2013). The

combination of rough and steep terrain (mean slope angle

37 %) with intense rainfall provides the conditions for fre-

quent and widespread landslides on Madeira.

On 20 February 2010 an extreme rainfall event followed

a prolonged precipitation period (Luna et al., 2011; Couto

et al., 2012; Fragoso et al., 2012; Teixeira et al., 2014). In the

first hours of the morning rainfall values reached more than

the double of the monthly average, triggering landslides and

exceptionally strong flash floods that affected severely the

municipalities of Funchal (home to half of the island popula-

tion) and Ribeira Brava (Lira et al., 2013).

Our study area (15 km2 area rectangle in Fig. 1) covers

one of the regions most affected by the 2010 landslide event

on Madeira, in the south sector of the island, enclosing the

main drainage basins upstream from the city of Funchal.

Three days after the disaster, the GeoEye-1 satellite was pro-

grammed, in the scope of the GMES SAFER project, to ac-

quire images over Madeira. The post-event image (Fig. 2)

comprises four spectral bands (R, G, B, and near-infrared,

or NIR) with 2.0 m spatial resolution and one panchromatic

band with 0.5 m spatial resolution. Figure 2b shows the sed-

iments transported downhill by the flood, flowing into the

ocean in Funchal downtown area. Ancillary data used in this

study include pre-event (2007) and post-event (May 2010)
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Figure 2. Details of GeoEye-1 pan-sharpened RGB image acquired over Madeira 3 days after the flash floods.

orthophotos acquired by airplane, with 0.4 m resolution, and

a lidar pre-event DTM with 4 m resolution. The lidar data

were acquired in 2009 with a Leica ALS50 airborne map-

ping system, with original point density 1 m−2.

2.2 Landslide inventory

A landslide reference data set was prepared to train and

evaluate the semiautomated method, by thorough revision of

a previous inventory produced by Lira et al. (2013), based on

delimitation of contours on the post-event GeoEye-1 image

and assisted by visual interpretation of the orthophotos. Af-

ter the revision of its contours, the landslides were classified

according to the type of movement (Varnes, 1978; Cruden

and Varnes, 1996; Zêzere, 2002), resorting to several data

sources besides the imagery, namely field work reports and

photographic evidence. The large majority of mass move-

ments were shallow translational slides and debris flows. The

latter are the fastest and most destructive type of landslide

and important sources of sediment to channel networks; most

begin as translational slides that liquefy (Gabet and Mudd,

2006; Sidle and Ochiai, 2006). For the drainage basins of

the Funchal and Ribeira Brava municipalities, 3207 shal-

low translational slides, 795 debris flows, and 59 rotational

slides were inventoried. Furthermore, source and run-out ar-

eas were mapped separately inside the disturbed region. In

the case of shallow translational slides, the separation was

based on the darker appearance of the source areas (corre-

sponding to freshly uncovered deep soil) which contrasted

with the brighter run-out areas characterized by disturbed

and/or bent vegetation and superficial layers of soil. For the

debris flow tracks, darker, fresher-looking areas were inter-

preted as scoured sectors acting as important sources of ma-

terial. This is expected to occur in the steepest sectors of the

drainage network (e.g., Schurch et al., 2011; Theule et al.,

2014; Tiranti et al., 2015), which is the case of our study area.

The distinction between source and run-out areas was easier

for fresh translational slides than for debris flows, but in both

cases the process was affected by considerable uncertainty.

Given the absence of anomalous precipitation in the months

following the event (IPMA, 2010), we were able to minimize

the mapping errors to some extent by re-interpreting the same

landslides on the orthophotos acquired a few months later

(May, 2010), when all loose material had been washed away

from run-out areas. Often the landslides are composed of a

shallow translational slide that further develops into debris

flows (as reported and illustrated for Madeira Island in Lira

et al., 2013, Fig. 2). In such cases we divided the source area

into primary and secondary sources: the former category cor-

responds to the shallow translational slide and the latter to

scoured areas within debris flow tracks. Secondary sources

were also separated as seemingly fresh slides occurring in-

side shallow translational run-out regions.

3 Method

The methodology followed is schematically represented in

Fig. 3. The pre-processing consisted of fusing the 0.5 m

resolution panchromatic band with the lower-resolution R–

G–B–NIR bands and orthorectifying the GeoEye-1 post-

event image, using the orthophotos and the lidar DTM,

as described in Lira et al. (2013). The pan-sharpening

band fusion was performed with the Gram–Schmidt method

available in ENVI software (http://www.exelisvis.com/docs/

GramSchmidtSpectralSharpening.html). The procedure in-

volved the co-registration of the image bands (even though

no shift had been observed in the original channels) followed

by interpolation and resampling with the nearest neighbor

method. We have measured the error introduced by the pan-

sharpening process using the spectral quality indices (vary-

ing between 0 and 1) computed with ENVI which ranged

between 0.88 and 0.96 for the four pan-sharpened bands.

Segmentation tests using co-registered stacks of the origi-
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Figure 3. Diagram of the landslide mapping methodology.

nal bands were compared with segmentation using the pan-

sharpened image, clearly indicating the superior performance

of the latter, as expected from previous studies (e.g., Sarkar

and Kanungo, 2004). The study area (with 15 km2, depicted

in Figs. 1 and 5) was divided into a training area, from

which the examples for learning were taken, and two smaller

validation areas (totaling 3 km2), which did not contribute

with examples for the training (see delimitation of training

and validation areas in Fig. 5). The validation areas count

a total of 85 landslides, comparing with about 115 used

as examples in the training area. Inventory data belonging

to the training area were used to select optimal segmenta-

tion parameters. Following segmentation/merging steps to

delineate the structures or objects in the images, the clas-

sification into landslide/non-landslide or source/non-source

classes was performed using a set of describing features of

spectral, textural, and spatial nature.

3.1 Segmentation

The partition of the pan-sharpened and orthorectified

GeoEye-1 image into objects was achieved with ENVI’s

feature extraction module, which performs image segmen-

tation followed by merging of the segmented regions. Im-

age segmentation involved computation of a gradient im-

age for each of the (R, G, B, NIR) fused bands using a So-

bel edge detection operator (Sobel, 1968), followed by con-

version to a single-band map, where each pixel retains the

maximum gradient across the bands. A watershed algo-

rithm (Beucher and Lantuéjoul, 1979; Roerdink and Mei-

jster, 2001) is then applied, flooding the map starting with

the lowest gradient values (the most uniform part of the ob-

jects) to the highest gradient values (the edges). A selectable

scale parameter can modify the gradient map, thus control-

ling the minimum contrast of the object edges (Roerdink and

Meijster, 2001; Jin, 2012; http://www.exelisvis.com/docs/

BackgroundSegmentationAlgorithm.html). A higher value

of this parameter diminishes the local sensitivity, which usu-

ally results in fewer and larger image objects. In the post-

segmentation merging step, the spectral similarities of ob-

jects are evaluated and merged if their spectral properties are

similar. To this effect, the mean spectral values for each band,

in each adjacent object, and their Euclidean distance are

computed, using the full lambda schedule method (Robinson

et al., 2002). A selectable merge parameter modifies the spec-

tral distance threshold below which two adjacent objects can

be merged , hence controlling the homogeneity of the pix-

els within the final segmented regions (http://www.exelisvis.

com/docs/BackgroundMergeAlgorithms.html).

Our goals in the segmentation/merging procedure were,

first, to outline the landslides source and run-out areas, in-

cluding the smallest of them, with as much accuracy as pos-

sible; and second to avoid the division of these features into

many objects, so as not to obscure its recognizable landslide

shape. In a sense, we searched for a balance between over-

segmentation and under-segmentation – bearing in mind that

the former is always preferable (Martha et al., 2010) – in

an attempt to capture the geometric attributes of the land-

slide source and run-out areas (such as elongation or round-

ness) with minimum loss of accuracy in the delineation of

contours. We tested several scale (5, 10, 20, 30, 40, 50, 60,

and 70) and merge (30, 50, 70, 85, 90, and 95) parameters

and superposed the final segmented regions onto the land-

slide inventory (solely in the training area) to find, by visual

interpretation, the most appropriate combination to our case

study (which turned out to be scale value 40 and merge value

90). Figure 4 shows details of the comparison between the in-

ventory landslide delineation and our final choice for image

partition. In the absence of an inventory map, the comparison

can be made directly with the pan-sharpened RGB GeoEye-1

image also shown in the figure.

3.2 Object features

From (i) the four pan-sharpened bands of GeoEye-1, (ii)

a calculated vegetation index (NDVI), and (iii) three topo-

graphic indexes derived from a 4 m resolution DTM (Ta-

ble 1), a set of describing features of spectral, textural, and

spatial natures were computed for each object of the final

partitioned image. In Table 1, “curvature profile” refers to the

curvature of the surface in the direction of slope and “curva-

ture plan” refers to the curvature of the surface perpendicular

to the slope direction.

The information from the nine input layers in Table 1 was

used to compute the full set of spectral, textural, and spatial

features available on ENVI’s feature extraction (as described
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Figure 4. Details of GeoEye-1 pan-sharpened RGB image, showing the partition segments resulting from the chosen segmentation/merging

parameters: scale 40, merge 90; white contour is the inventory landslide delineation; black contour is the image partition.

Table 1. Layers used in classification.

Spectral bands (GeoEye-1) Vegetation index (GeoEye-1) Topographic index (pre-event lidar DTM)

RED (50 cm) NDVI (50 cm) Slope (4 m)

GREEN (50 cm) Aspect (4 m)

BLUE (50 cm) Curvature profile (4 m)

NIR (50 cm) Curvature plan (4 m)

in www.exelisvis.com/docs/Example_Based_Classification.

html), resulting in 86 features for use in the object-based

classification. We visually inspected the 86 color-coded ob-

ject feature maps of the study area and excluded the noisiest

ones, which resulted in 75 maps remaining maps correspond-

ing to features that could bring some actual knowledge into

the classification. In many cases, the feature maps were clear

enough to allow identification of landscape signatures such

as landslides, riverbeds, or slope changes. Training the SVM

using either the selected group of features or the full set of

features available led to very similar results, indicating low

sensitivity of the algorithm to feature selection. We therefore

chose to use all spectral, textural, and spatial object features

available, as shown in Table 2.

3.3 Supervised classification

Classification was based on the SVM algorithm (Cortes and

Vapnik, 1995; Vapnik, 1995), a supervised non-parametric

statistical learning technique which separates the data set into

groups or classes in a way consistent with the training ex-

amples. SVMs are gaining popularity in the remote sensing

field, including landslide mapping (Van Den Eeckhaut et al.,

2012; Moosavi et al., 2014), due to their ability to handle

data with unknown statistical distributions and small train-

ing sets, as is often the case in this field (Mountrakis et al.,

2011). SVMs are binary classifiers whose aim is to find the

decision region boundary that separates the data set char-

acteristics or features into two regions in the feature space.

The SVM chooses the boundary (optimal hyperplane) with

the maximum safety margin to the closest training features

(termed support vectors), hence maximizing the margin be-

tween the classes. The linearization of the decision boundary
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Table 2. Features used for object-based learning.

Categories Features

Spectral features – Mean The spectral mean, SD, max, and min value

– Standard deviation of the pixels inside the segmented region

– Maximum are computed for each spectral band,

– Minimum vegetation, and topographic indexes.

Texture features – Range A 3 × 3 moving window computes range,

– Variance variance, and entropy of the pixels inside it,

– Entropy followed by averaging inside the segmented region.

Spatial features – Area – Elongation

– Length – Major length

– Compactness – Minor length

– Roundness – Rectangular fit

– Form factor – Main direction

– Convexity – Number of holes

Figure 5. GeoEye-1 pan-sharpened RGB image over the study area (15 km2) showing the results of object-based SVM (RBF) landslide

mapping. The area automatically classified as landslide (yellow fill) is compared to inventory reference data (red contours). Outlines of

validation areas 1 and 2 also shown.

is achieved through the use of kernel functions which map

the training data into a higher-dimensional space in which

the two classes can be linearly separated by a hyperplane.

As referred before, the study area (with 15 km2, see Fig. 5)

was divided into a training area, from which the examples

for learning were taken, and two smaller validation areas (to-

taling 3 km2). Care was taken to ensure that the validation

areas contained regions characterized by diverse land cover

and solar illumination. Example objects in the training set

were retrieved from the reference inventory map and repre-

sent a small percentage (1 %, about 1350 out of 130 400) of

all the objects classified. Despite the larger dimensions of the

training region, the number of landslides selected as training

examples was similar to the amount of landslides appearing

in the validation areas, in part due to a higher concentration

of landslides in the latter. The choice of examples was expert-

driven, aiming at sampling the diverse characteristics of each

class.

We conducted several tests in order to choose the optimal

SVM kernel function and set the corresponding parameters,

namely the penalty parameter (which controls how examples

located on the wrong side of the decision boundary are penal-
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ized) and the sigma function parameter (which defines the ra-

dius of influence of each training sample). Within the ENVI

image processing environment, the SVM classifier was tested

using different kernel functions (linear, polynomial (degrees

2–6), sigmoid, and radial basis function (RBF)). This was

first done in an expedite manner, by visual inspection of the

match between results and reference data in the training ar-

eas, and led to the choice of an RBF function with sigma

value 0.03 and penalty parameter 100. These tests were fur-

ther refined, following Yang (2011), through a sensitivity

analysis of the SVM parameters, using quantitative measures

of the match between results and reference data in the vali-

dation areas. For RBF and degree 2 polynomial kernels, we

exploited the range of sigma values between 0.01 and 0.30,

fixing the ENVI’s penalty parameter at the default value of

100. Furthermore, for the RBF kernel we tested the SVM

with penalty values in the range from 1 to 1000 and sigma

values of 0.03, 0.04, and 0.2. Finally, the SVM was tested for

the degree 2 polynomial kernel, with sigma values of 0.03

and 0.04 and penalty values in the range from 100 to 250.

The best prediction accuracy was achieved with the RBF ker-

nel, with sigma value 0.03 and penalty parameter 200, but

the results varied very little with respect to those of our ex-

pedite test. The classification confidence threshold was set to

90 %, i.e., objects with less than 90 % confidences in each

class were set to unclassified.

To address our multi-class classification problem (land-

slide source; landslide run-out; all others) we started by us-

ing two “one-against-all approaches”, in which a landslide-

against-all and a source-against-all classifier were designed

to derive the classes “landslide”, “landslide source”, and “all

others”; subsequently, the class “landslide run-out” was ob-

tained from spatial subtraction of classes “landslide” and

“landslide source”. The feature information used by the SVM

classifier was described in Sect. 3.2 and is listed in Tables 1

and 2. The features associated with landslide/non-landslide

examples or source/non-source examples are plotted by the

algorithm into its corresponding feature spaces for definition

of the decision boundaries. Then the entire image is classi-

fied: for each one-against-all approach, and for each object

on the image, the SVM maps its spectral, spatial, and tex-

tural characteristics into the feature space and, depending

on which side of the decision boundary it plots, classifies

it accordingly. The set of features used by the “landslide-

against-all” classifier was the same employed by the “source-

against-all” classifier. However, from qualitative analysis of

the feature maps produced for each of the (over 80) spectral,

textural, and geometric attributes, we can state that spectral

measures were the primary discriminant for source areas, fol-

lowed by geometric attributes (e.g., elongation) and texture.

The DTM used was acquired before the 2010 landslide event,

so it does not represent surface changes occurred during it.

Nevertheless, it provides unique geomorphic features (such

as slope, aspect, and curvature) to each segmented object,

assisting the classifier decision. The use of this information

proved in our case very useful to diminish the ambiguity pre-

sented by objects with similar spectral characteristics located

in flat areas.

3.4 Accuracy assessment

For assessment of the accuracy of the match between the

classified image and the reference data, we compared the

classification results in the validation areas with the land-

slide inventory map (Lahousse et al., 2001; Holbling et al.,

2012) and followed standard metrics derived from the error

or confusion matrix built from the two data sets (Congalton,

1991; Foody, 2002). In assessing the accuracy of results, we

have separated the landslide/not-landslide classification from

the source/run-out/not-landslide classification. In the latter

case, we weighted equally the three possible classification

errors or, in order words, we did not consider a lesser mis-

take to misclassify as source or run-out an object belonging

to a landslide, instead of giving that same label to an object

outside the landslide. The accuracy metrics computed were

the overall accuracy (acc), which gives the proportion of area

correctly classified, expressed as a percentage; the kappa in-

dex of agreement (k), a measure of reliability which gives the

proportion of agreement corrected for chance between two

cases; and the omission (false negatives) and commission

(false positive) errors. It is important to note that the overall

accuracy is not a useful metric to evaluate classifiers in ap-

plications with imbalanced class distributions (i.e., when the

number of samples in different classes varies greatly) such

as in our case and in many other real-world applications (He

et al., 2009). Since the overall accuracy gives us the percent-

age of pixels correctly classified, the result is that, with im-

balanced data sets, the performance of the classifier on the

class of interest (e.g., landslide) will have much less effect

on the overall accuracy than the performance on the majority

class (not-landslide). Because of this, when discussing our

accuracy results we use the false positive rates (FPRs) and

false negative rates (FNRs) of the class of interest (landslide

or source, depending on the one-against-all approach). The

overall accuracy values appear solely in Table 3 for comple-

tion reasons.

4 Results

Following the methodology already described, landslide

classification maps were produced for the 15 km2 wide study

area located within one of the regions most affected by the

2010 landslide event on Madeira. In this section we present,

evaluate, and discuss the results, which are divided into two

parts: (i) landslide recognition and delineation and (ii) inter-

nal mapping of source and run-out areas.
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Table 3. Accuracy measures for landslide recognition (landslide-against-all classifier) and separation of landslide source and run-out (source-

against-all classifier), for different validation regions (VAL 1 and VAL 2). Two cases are distinguished, depending on whether reference data

source areas are primary sources only or include secondary sources (seemingly fresh slides occurring inside the run-out area).

Landslides Primary sources Primary and secondary sources

acc k FNR FPR acc k FNR FPR acc k FNR FPR

VAL 1 98.2 0.80 17.6 19.9 98.4 0.34 24.9 77.2 98.4 0.48 36.7 60.3

VAL 2 96.1 0.73 25.6 23.8 97.6 0.48 18.9 64.7 97.4 0.58 37.5 44.1

acc: overall accuracy (%); k: Kappa index; FNR: false negative rate (%); FPR: false positive rate (%).

Figure 6. Details of the previous figure, showing the comparison between classified landslides (yellow fill) and inventory reference data (red

contours) in the validation regions 1 (a) and 2 (b). FPR (or commission error) gives the ratio of the number of pixels incorrectly classified

as landslide by the total number of pixels in the landslide class. FNR (or omission error) gives the ratio of the number of pixels actually

belonging to a landslide but missed by the classifier, by the total number of pixels in the landslide inventory.

4.1 Landslide recognition

Figure 5 presents, for the overall study area, the object-based

image classification of landslides, using the SVM machine-

learning algorithm with the RBF kernel, as described before.

To illustrate the performance of the approach, the semiau-

tomatically recognized landslides are compared, in terms of

overlapping area, to the inventory reference data (yellow fill

and red contours in Fig. 5, respectively). We observe a re-

markably accurate semiautomated depiction of the landslide

areas, both in the training and validation regions. Landslides

not successfully detected are located in areas obscured by

shadows, an unavoidable hindrance in this approach.

In Fig. 6 the detailed mapping of the landslide areas is

presented for the validation regions 1 and 2, which did not

contribute with examples for learning. The figure also sum-

marizes the accuracy metrics computed from the error matrix

built for each of the validation areas, yielding good results for

both of them, with commission errors below 26 % and omis-

sion errors below 24 % (see also Table 3). Note that we did

not try to apply post-processing filters to exclude very small

objects falsely identified as landslides but such a procedure

would have reduced the commission errors.

Validation area 2, which contains a poorly illuminated

slope, displays somewhat poorer accuracy in the classifica-

tion of the overall area affected by a landslide. However, this

problem is overcome by the source-against-all classification

results (next Sect. 4.2), which performed well in what con-

cerns landslide recognition: 61 out of 63 landslides were de-

tected in this region, which compares with 20 out of 22 land-
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Figure 7. Classified landslide sources (red fill) and run-out (yellow fill) compared to inventory reference data (red contours delineate the

landslide; blue contours delineate the source area). In the examples shown, source areas are defined either as primary sources only (in b,

validation region 2) or also including secondary sources of sediment (in a, validation region 1). GeoEye-1 pan-sharpened RGB composite as

base image. The area inside the dashed outline corresponds to Fig. 8.

slides in validation region 1 (see Fig. 7a and b). These values

correspond to the detection of 95 % of the landslides scars in

the validation areas.

4.2 Separation of source and run-out areas

Figure 7 displays the results of the semiautomated map-

ping of landslide source and landslide run-out (transport

plus deposition) in the validation areas 1 and 2, using again

the object-based and SVM machine-learning approaches de-

scribed in Sect. 3.

In Fig. 8 a detail of the classification is shown to allow

comparison with the landslide characteristics that can be vi-

sually recognized in the pan-sharpened GeoEye image.

The inspection of Figs. 7 and 8 shows a good performance

of the classifier in the internal mapping of source and run-out

landslide areas, particularly in the sunnier east-facing slopes.

In the less illuminated areas the classifier is able to map the

source areas accurately but performs poorly in what concerns

the landslide run-out mapping (Fig. 7). Accuracy measures

were again computed for each of the validation areas, by

comparison with source and run-out areas in reference data.

Two cases need to be distinguished, depending on whether

reference data source areas are primary sources only (exam-

ple in Fig. 7b) or include secondary sources (seemingly fresh

slides occurring inside the run-out region; Figs. 7a and 8).

Table 3 lists the computed overall accuracies, kappa in-

dexes, and FNRs/FPRs for both validation areas and for both

definitions of source area. FNR and FPR values fall below 38

and 78 %, respectively, for all situations (the results in Fig. 7

correspond to the best cases). The overall accuracy seems

hindered, on the one hand, by the difficulties of the classifier

in mapping the run-outs in poorly illuminated areas and, on

the other hand, by the subjectivity of reference data descrip-

tion as primary or secondary sources of sediment.

5 Conclusions

We present a method for semiautomated landslide recog-

nition and mapping of landslide source and run-out area,

suitable for VHR remote sensing images of rain-induced

landslide events. The approach combines object-based im-

age analysis and an SVM supervised learning algorithm, and

it was tested with a GeoEye-1 multispectral image (0.5 m

panchromatic band), sensed 3 days after widespread land-

slides and flash floods on Madeira Island, using as ancillary

data a pre-event high-resolution (4 m) lidar DTM. Our study

confirms the high suitability of VHR multispectral images

for landslide mapping (Van Westen et al., 2008), in partic-

ular with semiautomated methods, expanding the number of

applications that target single post-event optical images (e.g.,

Cheng et al., 2013; Moosavi et al., 2014). In our study area,

this choice proved much less demanding in terms of pre-
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Figure 8. Detail of classification of landslide sources (red fill, a and b) and run-out (yellow fill, in a compared with base image c). GeoEye-1

pan-sharpened RGB composite as base image, whose area corresponds to the rectangular outline shown in Fig. 7.

processing than the change detection approaches more com-

mon in the literature (e.g., Lu et al., 2011; Mondini et al.,

2011a, b), for which it is especially important to pay atten-

tion to co-registration and radiometric correction (Guzzetti

et al., 2012). Our results also broaden the growing number of

applications of object-based image analysis (OBIA) for auto-

mated landslide mapping, exemplifying the advantage of also

using spatial and textural features in the classification and

not only spectral attributes as in the pixel-based approach.

Very few previous landslide studies have integrated OBIA

and SVMs (Van den Eeckhaut et al., 2012; Moosavi et al.,

2014), and we confirm that this is a robust and efficient ap-

proach, able to detect 95 % of the number of landslides scars

present in the validation areas. Also, to our knowledge, very

few previous studies have used OBIA to tackle the problem

of automated mapping of landslide source and run-out areas

in optical images: Holbling et al. (2015) have recently tested

such an approach in northern Taiwan, but their reference data

set excluded debris flows or other sediment transport areas.

In contrast, Mondini et al. (2011a, 2013) developed semiau-

tomated pixel-based approaches to map landslide source and

run-out areas, and our OBIA results compare well with theirs

in terms of match to reference data.

At present, one of the main limitations of the proposed

methodology is its poor performance in the automated map-

ping of landslide transport and deposition areas in poorly

illuminated slopes, a problem that may perhaps be over-

come using multiple satellite acquisition geometries. An-

other source of uncertainty results from the subjectivity asso-

ciated with the definition of the landslide source areas, made

mostly from visual inspection of post-event satellite images

and orthophotos. These difficulties may have constrained the

quantitative assessment of the classifier results. This task was

particularly challenging in the case of debris flows, in which

the high-energy transport area seemed to contain secondary

sources of sediment supply (see examples in Fig. 8), with the

same spectral and textural image characteristics of the pri-

mary sources. Another limitation is the subjectivity of the

trial-and-error procedure used to select the segmentation pa-

rameters. Such expert-driven approach was used to minimize

over-segmentation, in order to capture the geometrical at-

tributes of the landslides which proved to be relevant in the

classification, but we cannot exclude that automated methods

for objective determination of segmentation parameters (see,

e.g., Dragut et al., 2010, 2014; Martha et al., 2011; Gao et al.,

2011) would yield better results. In a similar way, the use of

objective automated feature selection methods (e.g., Stumpf

and Kerle, 2011) could further improve the effectiveness of

our method or the accuracy of the results.

The method proposed here may have the potential to in-

crease promptness and cost effectiveness in the production

of inventories following a landslide event, when a VHR post-

event optical image and a pre-event digital elevation model

are both available. It also assists an approximate spatial quan-

tification of the amount of sediments produced and trans-

ported during a landslide event, information that can be cru-

cial in emergency response situations, and is clearly im-

portant for landslide susceptibility and hazard assessment

(Guzzetti et al., 2009), contributing in particular to support

www.nat-hazards-earth-syst-sci.net/16/1035/2016/ Nat. Hazards Earth Syst. Sci., 16, 1035–1048, 2016
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post-event mitigation actions, such as sediment control mea-

sures (Lira et al., 2013).
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