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Abstract. Reager and Famiglietti (2009) proposed an in-

dex, Reager’s Flood Potential Index (RFPI), for early large-

scale flood risk monitoring using the Terrestrial Water Stor-

age Anomaly (TWSA) product derived from the Gravity Re-

covery and Climate Experiment (GRACE). We evaluated the

efficacy of the RFPI for flood risk assessment over the con-

tinental USA using multi-year flood observation data from

2003 to 2012 by the US Geological Survey and Dartmouth

Flood Observatory. In general, we found a good agreement

between the RFPI flood risks and the observed floods on re-

gional and even local scales. RFPI demonstrated skill in pre-

dicting the large-area, long-duration floods, especially during

the summer season.

1 Introduction

Among the natural disasters, floods rank the first in terms

of the total number of people affected and monetary losses

(Center for Research on the Epidemiology of Disasters,

2013). Intensive precipitation events have increased during

the final decades of the 20th century (Groisman et al., 2005;

Alexander et al., 2006; Trenberth, 2011) and are expected

to further intensify in the future (Groisman, 2012). In re-

sponse, many countries have developed flood alert systems,

such as the European Flood Alert System (Bartholmes et

al., 2009) and the US National Weather Service Automated

Flood Warning System (Scawthorn, 1999). While most of

the systems rely on a dense network of gauging stations,

over 95 % of all deaths and a significant portion of the eco-

nomic losses caused by floods occur in developing countries

where ground flood monitoring and management programs

are still inefficient, and the costs of building control infras-

tructure such as dams, weirs, embankments and gauging sta-

tions can be prohibitive (Tariq, 2011). These problems were

demonstrated well during the 2010 flood disaster in Pak-

istan (Larkin, 2010), where the deficiencies in flood monitor-

ing and the ensuing lack of information led to coordination

chaos (Hagen, 2011) and contributed towards an estimated

USD 35 billion loss in economic impact.

To compensate for or complement the ground based ob-

servations, flood monitoring has increasingly relied on the

products obtained with space-borne sensors such as NASA’s

AMSR-E (Hossain and Anagnostou, 2004), Quick Scat-

terometer (QuickSCAT) (Brakenridge et al., 2003), Spinning

Enhanced Visible and InfraRed Imager (SEVIRI) (Proud

et al., 2011) and Moderate Resolution Imaging Spectro-

radiometer (MODIS) (Brakenridge and Anderson, 2006).

Among the remote sensing products that have been used

for flood monitoring, data from the Gravity Recovery and

Climate Experiment (GRACE) (Adam, 2002; Chen et al.,

2004) are unique in that the changes in the amount of ter-

restrial water can be directly measured. Reager and Famigli-

etti (2009) proposed the Flood Potential Index (RFPI) to es-

timate flood risks worldwide based on GRACE Total Water

Storage Anomaly (TWSA) and precipitation record. A qual-

itative comparison of RFPI with a record of observed floods

from the Dartmouth Flood Observatory (DFO) data set sug-

gested that the proposed RFPI product is useful for flood risk

assessment in most regions (Reager and Famiglietti, 2009),

yet no quantitative validation was reported. This leads to the

main objective of our study: evaluate the skill of RFPI for

flood forecasting over the continental USA, where floods are

routinely monitored.
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2 Data and methodology

2.1 Flood Potential Index

Following the methodology proposed by Reager and

Famiglietti (2009), we computed monthly 2003–2012 RFPI

for the continental USA using the GRACE TWSA product.

For each grid, the maximum water storage capacity of the

soil SMAX, i.e., the amount of water the soil can hold (Rea-

ger and Famiglietti, 2009), was estimated as the maximum

of GRACE water storage anomaly from 2003 to 2012. Stor-

age deficit (SDEF) represents the amount of water which stor-

age can accommodate before achieving SMAX. The storage

deficit was calculated for each cell for each month:

SDEF(t)= SMAX− (t − 1), (1)

where S(t − 1) represents the saturation condition of soil

from the previous month. SDEF tells how much additional

water a particular area can hold before reaching the maxi-

mum capacity and is calculated using the data from the pre-

vious month, establishing a potential for forecasting. Exam-

ples of S, SMAX and SDEF estimated for an arbitrary grid cell

(52.5◦ N, 117.5◦W) are shown in Fig. 1. Normally, SDEF is

low/high during the months with high/low precipitation. Fol-

lowing Reager and Famiglietti (2009), flood potential (F ) for

the month t was calculated as

F(t)= PMON(t)− SDEF(t), (2)

where PMON(t) is monthly precipitation. The flood potential

can be interpreted as the amount of water in excess of the

potential water storage. A combination of low SDEF and high

precipitation for the previous month would indicate a high

probability of flooding in the current month. Further, RFPI is

computed by normalizing the flood potential:

RFPI=
F(t)

max[F(t)]
, (3)

where the maximum of flood potential max[F(t)] is com-

puted for each cell of the grid. The values of RFPI vary

from −∞ to 1, with positive values indicating that water in-

put from precipitation is above the mean water storage and

should be interpreted as a potential risk for flooding. For val-

idation of the RFPI skill we converted the index values to di-

chotomous events, where all positive values represent flood

potential and all negative values represent absence of the risk.

The computed hindcast was validated against the USGS and

DFO flood occurrence data, rasterized to a 1◦× 1◦ grid of

geographical latitude and longitude.

Monthly data from January 2003 to August 2012 of

GRACE RL05 TWSA product (Adam, 2002) from the

CSR processing center (http://grace.jpl.nasa.gov) and CPC

Merged Analysis of Precipitation (CMAP) (Xie and Arkin,

1997) were used to compute RFPI. Both data sets are gridded

at 1◦× 1◦. The scaling grid recommended by GRACE Tellus

SMAX 

Figure 1. Variations of total water storage anomaly (TWSA, green

line), monthly precipitation (PMON, blue line) and water storage

deficit (SDEF, yellow line) at the grid cell (52.5◦ N, 117.5◦W) dur-

ing the study period.

data portal (Swenson, 2012) was applied to the GRACE data

to account for the attenuation of small-scale surface mass

variations (Velicogna and Wahr, 2006).

2.2 Flood observation data

For validation, flood events reported in two observational

flood data sets were used: (1) DFO (Brakenridge and Ander-

son, 2006) and (2) the US Geological Survey (USGS) Re-

trieve Summary of Recent Flood and High Flow Conditions

(Hirsch and Costa, 2004). The two data sets differ substan-

tially in that the DFO is derived from news and governmen-

tal sources and hence mainly refers to large floods in denser-

populated regions, whereas the USGS reports are based on in

situ stream gauges. In addition, the DFO data started in 1985

but the USGS data are available only since October 2007.

DFO classifies a large flood event in cases of significant

damage to structures or agriculture, human life loss and/or

long duration. The DFO data were downloaded as a GIS vec-

tor data set providing an outline of the area affected by a flood

with such attributes as flood dates, duration, fatalities and pri-

mary country of flooding. The data were further screened for

quality control. For example, in several instances in 2006 and

2009 a mismatch was found between the assigned flood’s ge-

ographical coordinates and the primary country of flooding;

these events were excluded from our analysis. Finally, vector

maps of DFO flood events were rasterized to 1◦× 1◦ grids.

Note that since DFO data are mainly based on media reports,

it is expected to bias towards the more densely populated re-

gions and/or regions of interest.

The USGS deploys 9044 gauging stations in the conti-

nental USA (Fig. 2) for flood monitoring. Each station re-

ports a flood as a flow overtopping the natural or artificial
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USGS station 

Cells with less than 5 stations, 

excluded from the analysis 

Figure 2. The distribution of the USGS stream gauging stations (green dots). The blue squares indicate those 1◦× 1◦ grids containing less

than five stations and excluded from the study.

DFO reported flood 

USGS reported flood  

(X > 0.5) 

RFPI reported flood 

Figure 3. Reported floods in May 2007 by DFO and USGS are compared with RFPI that have positive values.

banks on a daily basis. A flood is further categorized into mi-

nor, moderate or major, with number of days in a month in

each flood category also reported. Because significant differ-

ence exists in spatial scale between GRACE RFPI data and

USGS gauge-based flood reports, the USGS data from the

individual gauge stations were generalized on a 1◦× 1◦ grid.

First, to ensure statistical significance, all grid cells contain-

ing less than five USGS gauging stations were excluded from

the analysis (Fig. 2). For those grid cells with more than five

stream gauging stations, gauge reports from all the stations

within the cell were combined into a monthly flood coeffi-

cient X:

X =
Dmi+ 5Dmo+ 10Dma

N
, (4)

whereN represents the total number of stations within a cell;

Dmi, Dmo and Dma are total numbers of days when the sta-

tions within a cell that reported minor, moderate or major

floods, respectively. Note that Eq. (4) accounts for flood dura-

tion, geographical extent and flood stage. Analyzing several

events from the DFO database and the correspondingX coef-

ficient estimated from Eq. (4), we found that areas with cells

flagged as flooded with X greater than 0.5 agreed well with

the DFO flood report (Fig. 3). To ensure compatibility be-

tween the DFO and USGS generalized flood data, we tested

multiple critical values forX and found that usingX = 0.5 as

an indicator for large flooding minimizes disagreement be-

tween the DFO and USGS flooded area observations. Note

that the critical value X = 0.5 could mean that 50 % of the

gauges reported minor flood for 1 day in a given month, or

10 % of the gauges reported moderate flood for 1 day or 1 %

of stations reported major flood for 1 day.

2.3 Forecasting skill assessment

Forecasting skill is an overall measure of how well the pre-

vious forecasts were associated with previous observations

(Murphy and Winkler; 1997). A receiver operating character-

istic (ROC) (Fawcett, 2006) is commonly used as a method

www.nat-hazards-earth-syst-sci.net/16/1011/2016/ Nat. Hazards Earth Syst. Sci., 16, 1011–1018, 2016
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Table 1. Schematic contingency table for categorical forecasts of a

binary event. The TPR, also called the hit rate or the probability of

detection, is a relative number of times an event was predicted when

it actually occurred; the FPR, sometimes referred to as the false

alarm rate, gives a relative number of times the event was predicted

when it did not occur.

Observed (DFO or USGS)

Yes No

Forecasted yes a (hit) b (false alert, type I error)

(RFPI) no c (miss, type II error) d (positive rejection)

TRP= a/(a+ c) FPR= b/(b+ d)

for testing the performance of a continuous index (such as

RFPI) against binary observational data (e.g., flood or no

flood). It uses a binary classifier that maps the index values

below and above a certain threshold τ to the occurrence of

an event. Since the exact RFPI threshold value is unknown a

priori, the ROC analysis is performed for a range of possible

RFPI threshold values. For each threshold, a pair of true pos-

itive rate (TPR) and false positive rate (FPR) was generated

by constructing a contingency table (Table 1). A ROC curve

plots TPR vs. FPR for different thresholds (Fig. 4) while a

1 : 1 line represents random guess.

AUC (area under curve) is the area that resides beneath

the ROC curve. Since the 1 : 1 line corresponds to a ran-

dom guess, AUC= 0.5 relates to no skill and AUC > 0.5 re-

lates to better than random skill. Morrison (2005) suggested

AUC > 0.7 indicating a strong predictive skill; in practice, the

0.6, 0.7, 0.8 and 0.9 AUC values are frequently used as the

thresholds for fair, satisfactory, good and excellent predictive

skill. On the ROC plot, the optimal RFPI threshold value τ

corresponds to a location on the ROC curve that is the closest

to the (0; 1) point (Fig. 4).

3 Results

A satisfactory to good agreement was found between the

RFPI and the observed floods from both DFO and fil-

tered USGS data (i.e., X > 0.5) for the continental USA;

AUC= 0.75 for the RFPI vs. DFO 2007–2012 flood ob-

servations and AUC= 0.72 for the RFPI vs. USGS 2003–

2012 flood observations (Fig. 5). The slightly better skill in

the RFPI vs. DFO comparison is probably due to the bias

in DFO flood observations towards high-damage and large-

scale floods. The optimal RFPI threshold values are τ =−0.4

for the USGS and τ =−0.3 for the USGS comparison.

The validation against the USGS data has also demon-

strated ability of the RFPI to estimate flood risks at a water-

shed level in large flat areas (Fig. 6), e.g., the Great Plains

region, with AUC consistently exceeding the 0.7 satisfac-

tory predictive skill level. However, we found that over the

mountainous and coastal regions the RFPI has a limited abil-

ity for flood monitoring (Fig. 6). The resulting ROC curves
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Figure 4. An example showing the ROC curve estimated for the

Tennessee watershed using different RFPI thresholds. The optimal

value of the classifier threshold τ for this watershed is 0.1, corre-

sponding to the point on the ROC curve that is the closest to the

(0; 1) point. The dashed line represents random guess, which has an

area under the curve (AUC) of 0.5, whereas a predictive index such

as RFPI has an AUC > 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

T
P

R
 

FPR 

FPI versus USGS

FPI versus DFO

Random guess

RFPI versus USGS 

RFPI versus DFO 

Random guess 

 

Figure 5. The ROC curves for RFPI when compared with the

USGS- and DFO-reported floods.

have different shapes and the optimal RFPI threshold varies

between −0.4 and 0.1 for different watersheds. The RFPI

skill also varies with the seasons (Fig. 7). For example, in the

larger Mississippi watershed (consisting of Upper and Lower

Nat. Hazards Earth Syst. Sci., 16, 1011–1018, 2016 www.nat-hazards-earth-syst-sci.net/16/1011/2016/
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Color Region AUC 

Ohio region 0.71 

Arkansas – White–  Red region 0.72 

Lower Mississippi region 0.72 

New England region 0.73 

Missouri region 0.73 

Upper Mississippi region 0.74 

South Atlantic Gulf region 0.74 

Souris–  Red–  Rainy region 0.78 

Upper Colorado region 0.79 

Tennessee region  0.82 

Random guess 0.5 
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Figure 6. The RFPI predictive skills are evaluated by comparing with USGS-reported floods using ROC curves and AUC values for each of

the major watersheds. The colors of the ROC curve match the colors of the delineated watersheds. The Rio Grande and California watersheds

(in white) were excluded due to low number of floods. The watersheds that have RFPI AUC values less than 0.7 are in grey color (Lower

Colorado, Texas Gulf, Great Basin, Great Lakes, mid-Atlantic and Pacific Northwest) and not shown in the comparison.
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Figure 7. A seasonal evaluation of RFPI predictive skills (vs. the

USGS-reported floods) for the Mississippi river basin.

Mississippi, Missouri, Ohio, Tennessee and Arkansas-White-

Red watersheds; see Fig. 6), AUC is 0.67 in the winter period

and 0.78 in the summer.

As a case study, we now examine a wide spread flood that

occurred in the northeastern USA due to a series of heavy

rain events during March and April 2007 (Fig. 8). Precipita-

tion in the region had dropped steadily during the winter of

2006–2007. Surprisingly, the soil moisture deficit (SDEF) had

also decreased during the same period, probably due to melt-

ing of the accumulated snow (Fig. 8c). The sudden increase

in precipitation in March triggered RFPI (blue squares in

Fig. 8a) showing positive values, indicating that the amount

of precipitation had exceeded the storage capacity and the

region is at risk of potential flooding. The continual increase

in precipitation during April caused regional flooding (green

polygon in Fig. 8a). The area showing positive RFPI values

predicted in March agrees well with the actual flood extent

as reported by DFO for the month of April. Also, notice that

RFPI estimated in April indicates a much more extended area

subject to potential flooding (Fig. 8b). Had the heavy precip-

itation continued in May, the flooding would have been much

more damaging and would have affected a much wider area

than what has been reported by DFO.

4 Discussion

We found that the RFPI has a satisfactory or good predic-

tive skill for flood monitoring (AUC∼ 0.6–0.7), at both con-

tinental and watershed scales in the USA. It works partic-

ularly well for large river basins, such as the Mississippi

River basin, that are located over flat areas. Its predictive

skill is significantly higher in summer period, when floods

are mainly caused by heavy rainfall. During the winter sea-

son in colder region, RFPI skill is relatively low as this index

is sensitive to precipitation, while winter floods are primar-

ily caused by ice jams and snowmelt. This, in turn, affects

RFPI skill during spring months. Modification of the method

to include snowmelt is likely to improve its predictive skill.

www.nat-hazards-earth-syst-sci.net/16/1011/2016/ Nat. Hazards Earth Syst. Sci., 16, 1011–1018, 2016
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Figure 8. The 2007 flood in the northeastern USA. (a) grid cells with positive RFPI values in March, 1 month before the flooding; (b) grid

cells with positive RFPI values in April, the flooding month; (c) the average storage deficit (blue line) and precipitation (yellow line) over

the northeastern USA from October 2006 to September 2007. In (a) and (b), the DFO-reported flood area is shown as green polygon.

While we have tested the RFPI in the USA where a dense

network of flood gauges has been established, potentially

greater use of this method is in developing countries, where

due to inadequate monitoring capability, floods tend to cause

significant damage and the most loss of life. Also, floods in

developing countries, as found through the DFO database,

are mainly caused by heavy rainfall events, for which the

RFPI seems to perform well in predicting flood potential.

Therefore, to further evaluate its applicability, we exam-

ined the Juba–Shabelle river basin, a 783 000 km2 watershed

shared between Somalia and Ethiopia. Similar to Fig. 8 we

examined a flood caused by a heavy precipitation event over

the basin in October 2006, which ranked as the most damag-

ing flood in Eastern Africa in 50 years. In Ethiopia, over 150

people died and over 122 500 were displaced; in Somalia,

over 80 people died and over 299 000 were displaced (DFO

database). We found increasing RFPI in the Juba–Shabelle

watershed 1 month prior to the flood (Fig. 9a) and during

the month of flood (Fig. 9b), both predictions agreeing well

with the actual flood extent area reported by DFO. The time

series of the water storage deficit generated over the water-

shed (Fig. 9c) shows a significant decrease of nearly 3 cm in

the available water storage capacity in September, 1 month

before the damaging flood. Based on this preliminary anal-

ysis, we speculate that the developing countries with sparse

or inadequate flood monitoring networks are potential bene-

ficiaries of this approach.

The GRACE-based RFPI has limitations. Coarse tempo-

ral (month) and spatial (ca. 100 km) resolutions of GRACE

data make the index unsuitable for forecasting local high-

intensity events such as flash floods. Nevertheless, it has a

unique ability to monitor water storage within a region and,

if combined with precipitation forecasting, could further in-

crease warning lead time from 1 month to probably 1.5–

2 months. For comparison, a more advanced flood warn-

ing system, such as EFAS, can generate probabilistic flood

alerts with a lead time of up to 10 days (https://www.efas.

eu/user-information.html). Another improvement could be to

combine the RFPI with higher spatial and temporal resolu-

tion remotely sensed data, such as MODIS products used in

Nat. Hazards Earth Syst. Sci., 16, 1011–1018, 2016 www.nat-hazards-earth-syst-sci.net/16/1011/2016/
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Figure 9. The 2006 flood in the Juba–Shabelle river basin. (a) Grid cells with positive RFPI values in September, 1 month before the flooding;

(b) grid cells with positive RFPI values in October, the flooding month; (c) the average storage deficit (blue line) and precipitation (yellow

line) over the Juba–Shabelle river basin from January 2006 to December 2006. In (a) and (b), the DFO-reported flood area is shown as green

polygon.

the Center for Research on the Epidemiology of Disasters

(http://www.cred.be/) flood monitoring system.

Data availability

The GRACE Release-5 10/2012 TWSA product was ob-

tained from http://grace.jpl.nasa.gov/; the CPC Merged

Analysis of Precipitation was obtained from http://disc.sci.

gsfc.nasa.gov/giovanni; DFO Global Archive of Large Flood

Events data were obtained from http://floodobservatory.

colorado.edu/Archives/index.html; the USGS Retrieve Sum-

mary of Recent Flood and High Flow Conditions was ob-

tained from http://waterwatch.usgs.gov/.
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