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Abstract. This paper addresses the large differences that are

found between damage estimates of different flood damage

models. It explains how implicit assumptions in flood dam-

age functions and maximum damages can have large effects

on flood damage estimates. This explanation is then used

to quantify the uncertainty in the damage estimates with a

Monte Carlo analysis. The Monte Carlo analysis uses a dam-

age function library with 272 functions from seven different

flood damage models. The paper shows that the resulting un-

certainties in estimated damages are in the order of magni-

tude of a factor of 2 to 5. The uncertainty is typically larger

for flood events with small water depths and for smaller flood

events. The implications of the uncertainty in damage es-

timates for flood risk management are illustrated by a case

study in which the economic optimal investment strategy for

a dike segment in the Netherlands is determined. The case

study shows that the uncertainty in flood damage estimates

can lead to significant over- or under-investments.

1 Introduction

Flood damage assessment is an essential aspect of flood risk

management (Merz et al., 2010). It is used for supporting

policy analysis and flood insurance. In the Netherlands flood

damage estimates are used, for example, to determine eco-

nomic optimal protection standards for flood defenses (van

der Most et al., 2014), prioritize investments (Jongejan and

Maaskant, 2013) or to compare the impact of different flood

risk management strategies (Kind et al., 2014).

The most commonly used method for flood damage as-

sessment is the unit loss method (De Bruijn, 2005). This

method assesses the damage for each unit separately. This

assessment is based on a maximum damage per object and a

damage function. A damage function describes the relation-

ship between a flood characteristic (most often water depth)

and the fraction of the economic loss that occurs to the object

that is damaged.

There are many different flood damage models all based

on the unit loss method (e.g., HIS-SSM for the Nether-

lands (Kok et al., 2005), Multi-Coloured Manual in the

UK (Penning-Rowsell et al., 2005), HAZUS in the USA

(Scawthorn et al., 2006) and FLEMO in Germany, Thieken

et al., 2008; Kreibich et al., 2010). These models differ for

good reasons. Each model is specifically derived for a spe-

cific country, region and/or flood type and tailored to charac-

teristics of the flooding and objects in the considered region

(Cammerer et al., 2013).

When these different models are applied to one and the

same event, they will yield significantly different results (De

Moel and Aerts, 2011; Jongman et al., 2012; Chatterton et al.,

2014). Jongman et al. (2012) compared the damage outcomes

of seven different flood damage models with the recorded

flood damages from events in the UK and Germany. The dif-

ference between the smallest and largest estimate/recording

was a factor of 5 for the German event and a factor of 10 for

the event in the UK. Chatterton et al. (2014) compared two

different damage assessments for a region in the UK. The

damage estimates differed by about a factor of 5 to 6 for both

residential and commercial damages.
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These large differences in outcomes, for events for which

the different models all should be applicable, indicate that

flood damage estimation is prone to large uncertainties and

thus that potentially large errors can occur when flood dam-

age models are applied.

The uncertainties and potential errors in damage estimates

affect decision-making based on those damage estimates. A

quantification of the uncertainty in the damage estimates can

help to get an insight in the potential error that can occur in

a decision based on the flood damage estimate and may im-

prove the decision-making process. USACE (1992) and Pe-

terman and Anderson (1999) both showed that taking ranges

of uncertainty into account can lead to different decisions

than using single value estimates.

Furthermore, uncertainty quantification is useful to expose

key focus points for the improvement of flood damage es-

timation methods. To reduce uncertainties, additional effort

may be needed in researching the flood damages or in col-

lecting data on damaged objects during floods.

Previous uncertainty analysis did not show a common un-

derstanding of the size or cause of uncertainties, which also

indicates that further research is needed. Generally, uncer-

tainty in flood damage assessment is quantified with forward

uncertainty propagation methods which use Monte Carlo

simulations (Merz et al., 2004; Egorova et al., 2008, Apel

et al., 2008; De Moel et al., 2012). The results of Egorova et

al. (2008) indicate moderate uncertainties, which is in con-

trast with the large differences between flood damage mod-

els that were found by De Moel and Aerts (2011), Jongman

et al. (2012) and Chatterton et al. (2014).

This paper provides a method to get a robust estimate of

the uncertainty in damage estimates based on an analysis of

the cause of the large differences between the various ex-

isting damage models. The method is illustrated with clear

hypothetical examples and then applied to a case to show its

use in decision-making for protection standards. The method

makes use of a damage function library with 272 damage

functions from seven different flood damage models.

The paper focuses on direct material damage. Indirect

damages including damages due to business interruption are

not considered here, since their analysis requires different

methods. The paper starts with a qualitative analysis of the

uncertainty found in flood damage models. This qualitative

analysis is the basis for the assumptions made in a Monte

Carlo analysis which is used to quantify uncertainty. Next,

the Monte Carlo analysis is described and discussed in detail.

Finally, the Monte Carlo analysis is applied to a case study

in the Netherlands and the resulting uncertainties in damage

estimates and the effects on flood risk management decisions

are discussed.

2 Qualitative uncertainty analysis

This section first provides a detailed description of unit loss

flood damage models and then places all elements of such

models into a framework for uncertainty classification in or-

der to generate a detailed qualitative understanding of the un-

certainty sources and effects and their correlation. The under-

standing is applied in Sect. 3 to enable a quantitative uncer-

tainty analysis.

2.1 The unit loss method for flood damage assessment

The unit loss method uses relationships between flood char-

acteristics and damages to a unit. The unit loss method con-

sists of four elements: the maximum damage si for each cat-

egory, the flood characteristics (such as water depth d) at all

locations j , the damage functions (f (d)) for all categories

which determine the damage fraction and the number of ob-

jects affected n. Damage of an area is assessed as the sum of

all damage categories i for all grid cells n by the following

formula (Egorova et al., 2008).

Damage=

m∑
i=1

si

n∑
j=1

fij

(
dj

)
nij (1)

Potentially relevant flood characteristics are the maximum

water depth, flood duration, flow velocity, pollution, warning

time and other possible aspects of the flood. Often, only the

water depth is used in flood damage modeling, occasionally

supplemented by one or two other parameters. The uncer-

tainties in the flood characteristics which are used as input

for the damage estimation are not part of this paper.

Damage is usually calculated for categories such as

houses, industries, commercial companies, roads and agri-

culture. These object categories differ in maximum damage

and flood damage functions. The object and flood character-

istics are linked by damage functions which give the fraction

of the maximum damage which occurs as a function of the

flood intensity. The damage fraction is then multiplied by the

maximum damage to get the damage. (Some methods such

as the one in the Multi-coloured Manual (Penning-Rowsell

et al., 2005) use absolute damage functions which relate the

flood intensity directly to the damage and not to a fraction of

the maximum damage.)

The maximum damage can be defined in different ways.

In this analysis we define the maximum damage as the ex-

pected damage corresponding with an extreme water depth.

This means that the damage function will reach the value of

one/unity for the most extreme water depths and it means that

the maximum damage already holds information about what

part of the total value of the object or unit is susceptible to

flood damage. The maximum damage does not include value

which is not, or unlikely to be, susceptible to floods, such as

the value of the land surface, the costs of building founda-

tions or the value present on high floors in buildings that are

unlikely to collapse. Not all damage methods use this defini-

tion. Some include more items in the maximum damage and

apply damage functions which never reach the value of one

if part of that value is on average not susceptible to flooding.
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When comparing different models, the definitions of maxi-

mum damage and damage functions first need to be aligned

to make a fair comparison.

In this paper we discuss flood damage models, which we

define as a set of maximum damages, damage functions, ob-

ject data and their relationships with which a damage esti-

mate for a flooding in a certain area can be made.

2.2 Types of uncertainty

In the uncertainty analysis in flood damage assessment two

types of uncertainty are distinguished: aleatory and epistemic

uncertainty (Merz and Thieken, 2009).

Aleatory uncertainty is related to the variability or hetero-

geneity within a population which can be expressed by statis-

tic parameters such as the mean, variance and skewness. This

uncertainty is introduced by using average data: we use the

maximum damage value of an average residence, although

we know that some houses will suffer more, and other will

suffer less damage. In small flood events which only affect

a few houses, these few houses may differ significantly from

the “average house” and therefore the damage estimate for

these houses is uncertain. In large flood events which affect

many houses, it is likely that deviations from the mean dam-

age cancel out. This means that for large floods this type of

uncertainty is of lesser importance.

Aleatory uncertainty by using averages can sometimes be

reduced by applying more differentiation, e.g., the uncer-

tainty within the maximum damage of a residence is re-

duced by using more differentiation in house types. The vari-

ation in maximum damage per house type would then be less

than if all houses together were considered as one category

“houses”.

Epistemic uncertainty is the lack of understanding of a sys-

tem and can in theory be reduced by further study or by col-

lecting more or better data. In other words, also the average

damage itself is not certain. For flood damage assessments,

data are only available for a small number of events and those

events often differ significantly from each other. This varia-

tion between events is still poorly understood and is therefore

related to epistemic uncertainty. The epistemic uncertainty as

stated above is not reduced when many objects are flooded.

Therefore, it is the dominant uncertainty type for large flood

events.

This type of uncertainty is especially relevant when a dam-

age module developed for one area is applied to another area.

In such a case, for example, the maximum damage values

within the model related to houses may not be valid for the

types of houses in the area under consideration. It would

therefore be good not to mix up maximum damages and

damage functions from different areas. However, given the

scarcity of data and flood damage models, this leaves many

modelers with the difficult choice between damage functions

and maximum damages based on recorded data from another

area or a local estimate.

2.3 Uncertainty in the unit loss method

Uncertainty in the unit loss method consists of uncertainty

in object data, in maximum damage figures and in the dam-

age functions. Table 1 shows an overview of the uncertainties

present in these aspects of the unit loss method.

2.3.1 Uncertainty in object/land use data

Uncertainties are found in the quantity of objects and their

precise location. The precise location of objects is impor-

tant, since the flood hazard characteristics (e.g., depth, or

flow speed) may differ substantially from location to loca-

tion. Each object should be linked to the hazard value present

at the location of the object. The effect of the uncertainty in

the precise location of objects on damage estimates is smaller

for more homogenous hazards. For example, in a deep, flat

polder, the exact location of an object is not important be-

cause the water depth is approximately the same everywhere.

When a hazard becomes more heterogeneous the uncertainty

in the exact location becomes more relevant.

Geographical location data uncertainties are especially

significant in areas which flood frequently but have small

water depths because, in this type of area, a small error in

the location or height of an object can make the difference

between an object getting wet frequently or very rarely. Fur-

thermore, valuable objects susceptible to flood damage are

unlikely to be placed in a location that floods frequently, so

it is much more likely to count too many wet objects than

to count too few. Therefore, damage estimates may be very

wrong if the approach used was too coarse to discover lo-

cal elevations or the exact locations of objects. For exam-

ple, the Dutch standard damage model HIS-SSM estimated

EUR 100 million damage for an event in an unprotected area

that in reality had only caused about EUR 30 000 in damages

(price level 2012) (Slager et al., 2013).

Such errors are, however, unlikely when objects are not

elevated on purpose, placed on safe locations or protected in

other ways. Without this local protection of some objects, the

damage will be overestimated, and for others, it will be un-

derestimated. If many objects are affected, these errors com-

pensate each other which reduces the uncertainty in the to-

tal damage. Use of high-resolution elevation information is

also very useful to reduce this uncertainty (Koivumäki et al.,

2010).

Uncertainty in the quantity of objects can be caused by er-

rors in data, or by using data sources that are inappropriate

for the intended application. This uncertainty depends on the

quality of the data set that is used. De Moel and Aerts (2011)

illustrated that this type of uncertainty may be small as they

showed that different types of land use maps for the same

area only have a small impact on the resulting damage es-

timate. In the uncertainty quantification for this paper, the

uncertainty in the geographical location data is neglected.
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Table 1. Overview of the uncertainties in flood damage modeling.

Element Uncertainty Type Expected significance Included in

analysis

Object data Quantity Both Depends on input data,

expected to be often in-

significant

No

Location Both Depends on area, often

insignificant

No

Maximum

damage

Value of the

object

Mostly aleatory Varies Yes

Susceptible to

flood damage

Mostly

epistemic

Significant Yes

Damage

function

Parameter

representation

Both Significant Yes

Knowledge/data

about damage

Epistemic Significant Yes

In addition, objects can be represented in different ways

and each way can cause different uncertainties. A company

office, for example, can be represented by either the floor

space in the office, the footprint area of the office building,

an area larger than the office building on a rough land use

map or the number of jobs within the office. All these object

representations correlate in some way with value present in

the building but the indicator will not precisely correspond

with the value of the building. The uncertainty this causes is

aleatory, because if the indicator overestimates the value at

one point it will underestimate it somewhere else, assuming

that the maximum damage is a good average.

2.3.2 Uncertainty in the maximum damage figure

The uncertainty in the maximum damage figure can be di-

vided into two parts: the uncertainty in the value of the ob-

ject and in the part of that value that is susceptible to flood

damage.

There are generally two ways to obtain the maximum dam-

age for a flood damage model: deriving this from economic

data or by looking at synthetic (hypothetical) buildings.

Economic data typically provide a total value per sector

of all physical assets in the economy. To obtain a maximum

damage figure per unit, this total value can be divided by the

number of units within that sector. Next, the part of this total

value which is susceptible to flooding must be identified. The

strength of this method is that the mean object value will

be accurate. However, uncertainty is still present in the part

of the object that is susceptible to flood damage. A similar

method is to use average construction costs and to correct

this for the fraction that is actually susceptible to flooding.

Alternatively, the maximum damage of a category can be

obtained by defining a hypothetical average company or ob-

ject, and assessing the damage of all parts/aspects within that

hypothetical company. The strength of this method is that

the damage function and the maximum damage are well con-

nected. Furthermore, the part of the value that is susceptible

to flood damage is determined in a systematic way. The dis-

advantage of this approach is that epistemic uncertainty is in-

troduced in the value of the object as the assumptions about

this may be wrong.

Because generally a lot of good data are available on the

value of objects, the uncertainty in the value of objects is

considered to be aleatory. The uncertainty in the part of the

value which is susceptible to flooding is epistemic, because

a small amount of data or knowledge about that is available.

2.3.3 Uncertainty in damage functions

Damage functions can be obtained in two ways: by analyzing

data on observed damage to objects and flood characteristics

in past flood events, or by defining hypothetical average ob-

jects and assessing their damage corresponding to different

flood intensities. A combination of both approaches may also

be used.

Flood damage data are rarely collected in a systematic way

(Thieken et al., 2005) and are not always available for re-

search. When available, data are often limited to a single or a

few events. These events are often not representative of other

types of floods or other countries or areas. Cultural or geo-

graphical differences can cause the use of different building

or interior materials between regions and events, making one

data set not applicable to other areas. Another problem is that

data are often limited to certain ranges of a flood parameter.

For example, data may be only available for low water depths

or the flood that was the source of the data may have coin-
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cided with a storm. In such cases the data cannot be used for

events with larger water depths or no storm.

In general, transferring data from one event to another is

error-prone. This makes it very difficult to apply knowledge

derived from one event to another. Even if the data are ap-

plied to the same area as the data were taken from, problems

may arise. Different flood events in the same area may lead

to very different damage due to different human responses.

For example, the same area in the Netherlands flooded in

1993 and 1995 with approximately the same water levels.

The second time, the damage to housing content was about

80 % less (Wind et al., 1999). Also, the damage due to the

Rhine floods of 1995 was less than half of the damage that

occurred in 1993, as a result of precaution measures taken

by households (Bubeck et al., 2012). This shows the sen-

sitivity of flood damage to factors other than water depth.

These other factors (in this case, flood experience) are often

neglected in the recordings. This example shows that a data

set based on a small number of events does not capture all

possible variable values.

Synthetic damage functions solve many of the problems

of having too few empirical data on actual damages. In this

method, a hypothetical building is defined and flood damage

is assessed for each building part. The hypothetical building

should be representative of an average building in the area. If

it is not, or if the damage estimates for the different building

parts are not right, the damage function is inaccurate.

Damage data can also be combined with expert knowl-

edge. Probably the most common method to create a damage

model is by picking and choosing damage functions from

other models based on an analysis of which existing damage

function best represents the area considered. Or, the average

between different functions could be used as a damage func-

tion. The challenge with this combined method is to under-

stand the background assumptions between the models that

are brought together or compared. For example, a common

challenge may be that the maximum damage definitions do

not match.

The ideal case is to combine the best of the two meth-

ods. The damage data available should be used to calibrate

a synthetic model. This limits the possibility that large er-

rors are made in the interpretation of the damage data (e.g.,

wrong definition of the maximum damage), by forcing the

modeler to think about the processes. Furthermore, it gives

the modeler the freedom to diverge from the observed data in

situations that do not match any of the recorded events.

A common problem in constructing damage functions is

that it is difficult to include the large number of parameters

that may influence the flood damage. The parameters that are

not used are implicitly considered. Each flood damage model

based on a limited number of parameters is therefore mak-

ing assumptions about the effect of the nonexplicitly consid-

ered parameters. Those unconsidered parameters have been

very significant in a subset of flood events. For example, in

the 2002 Elbe floods, contamination was critical (Thieken et

al., 2005), in the Meuse floods, flood experience was critical

(Wind et al., 1999) and in the 1945 floods in the Wieringer-

meer polder in the Netherlands, the waves in the flood water

were critical (Duiser, 1982). This last example is complicated

by a study of Roos (2003) who showed that the findings of

the 1945 Wieringermeer polder flood are not valid for mod-

ern buildings; so the construction year/type of building can

in some cases also be a critical parameter. Other possibly

significant parameters are, for example, building style, flow

velocity, flood duration, warning time and preparation.

Parameters that are not used can have a correlation with

parameters that are used. For example, the water depth is

correlated with the flood duration for floods in the Nether-

lands (Duiser, 1982; Wagenaar, 2012). Because of this corre-

lation, the uncertainty caused by not knowing the flood dura-

tion is limited in the Netherlands. This relationship between

two parameters may, however, be completely different for

other types of floods (e.g., flash floods). A generally applica-

ble flood damage model therefore still needs all parameters.

Table 1 splits the uncertainties involved in flood damage

functions into two groups: those related to parameter rep-

resentation (using fewer parameters than theoretically nec-

essary to describe the damage processes) and those related

to a lack of knowledge about the damage processes. The

uncertainties related to a lack of knowledge are epistemic,

while the group of uncertainties related to the use of fewer

parameters than necessary is aleatory, because this group

of uncertainties would remain even with perfect knowledge.

In Sect. 3 the analysis of the epistemic and aleatory uncer-

tainty components is used to assess the uncertainty in the

outcome of a single damage calculation. The epistemic un-

certainty will be estimated by using the difference between

damage functions from entirely different flood damage mod-

els (Sect. 3.1.2). The aleatory uncertainty will be considered

by looking at the variation within one flood damage model

(e.g., the difference between the low and the high estimate of

the same flood damage model).

3 Methodology

3.1 Overview of the method

This section proposes a method for quantitative uncertainty

analyses using a Monte Carlo analysis. The qualitative un-

certainty analysis discussed in the previous section is used

to estimate the uncertainty in the inputs and the correlations

between the different input parameters. The general assump-

tion behind this uncertainty analysis is that no good local

damage functions are available and that the modeler there-

fore does not know which damage functions to choose. For

areas for which good local damage functions are available,

the approach discussed in this section may overestimate the

uncertainty.

The damage analysis in this paper is limited to two damage

categories: houses and companies, as they are represented in

www.nat-hazards-earth-syst-sci.net/16/1/2016/ Nat. Hazards Earth Syst. Sci., 16, 1–14, 2016
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Figure 1. Overview of the different sample steps undertaken in the Monte Carlo analysis.

the different flood damage models on which this research is

based. These were selected since all damage models contain

functions to assess them. This is not the case for other dam-

age types. In flood damage models that do consider other

damage categories, houses and companies usually make up

the majority of the direct damage. Both damage categories

are divided into damage to buildings and damage to con-

tent. Many individual flood damage models provide several

more detailed subcategories for these basic categories. Our

approach may therefore lead to slightly larger uncertainties

than are present in such models that are more detailed.

A crucial aspect of the Monte Carlo analysis of uncertain-

ties is the correlation amongst the uncertainty of the different

input parameters, such as the maximum damage of houses.

If for example, the maximum damage of house X is over-

estimated, the maximum damage of house Y may also be

overestimated. The parameters that are homogenous within

one event, but vary between events will have a strongly cor-

related uncertainty value e.g., if damage depends on warning

time and on one particular event, the warning time is unusu-

ally short; this would more or less be the case for all houses

which are affected in such an event. Such aspects are there-

fore sampled for the entire area at once. Other parameters

vary between neighborhoods, or from place to place, such as

for example, the building type. These need to be sampled on

a smaller level then the entire area at once. Sampling will

therefore be done at two different levels: for the entire event

and on a more detailed sub-event level.

Figure 1 gives an overview of the calculations process

which is repeated 10 000 times. This results in 10 000 dif-

ferent damage estimates which together make up the distri-

bution of possible damages.

3.1.1 Input information

Flood damage library

A damage function library was constructed containing 262

different damage functions from seven different flood dam-

age models. Damage functions from flood damage models

were included if they were made for developed countries and

available to the author at the time of the study (2013–2014).

These functions were the basis for the damage fraction and

the measure of susceptibility to flooding. The damage frac-

tion was sampled by picking damage functions from a flood

damage model. These functions were individually all scaled

to 1 to ensure that the same maximum damage definition is

applied everywhere.

Table 2 gives an overview of the models included in the

damage function library. The Tebodin model only has dam-

age functions for companies and the Billah (2007) model

only has damage functions for houses. Since both models

were made for the Netherlands and the damage functions

were constructed using similar techniques, these two models

have therefore been merged into one flood damage model.

Figure 2 shows the average damage functions for the dif-

ferent flood damage models. In this picture the damage func-

tions are not scaled up to 1.

In this library the definition of the zero height point is the

ground level (elevation in the digital elevation model) rather

Nat. Hazards Earth Syst. Sci., 16, 1–14, 2016 www.nat-hazards-earth-syst-sci.net/16/1/2016/
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Table 2. Overview of the damage models from which damage functions are included in the damage function library.

Model Description

HIS-SSM The HIS-SSM is a standard Dutch flood damage model (Kok et al., 2005). It is based on several

earlier Dutch flood damage studies (Duiser, 1982; Briene et al., 2002). The functions are based

on expert estimates combined with data from the 1953 flood in Zeeland and the 1945 flood of the

Wieringermeer polder.

HAZUS-MH The HAZUS-MH is an American disaster impact model with a flood module. This model was

created by the federal government agency FEMA. It is described in FEMA (2009) and Scrawthorn

et al. (2006). HAZUS provides a large set of American flood damage functions. A subset from the

HAZUS library was used in the library presented here. The functions taken for houses were based

on American insurance data and the functions for companies are based on expert judgment from

the USACE.

MCM The Multi-Coloured Manual (MCM) is a British flood damage model. For the library presented

in this document, the version by Penning-Roswell (2005) was used. The MCM is based on a

systematic expert judgment approach, in which a hypothetical building is split up into smaller

parts, with each part being evaluated separately. The model has a large number of functions for

different types of company buildings.

FLEMO FLEMO is a German flood damage model based on data from the Elbe floods of 2002. The func-

tions were derived from FLEMOps for houses (Thieken et al., 2008) and FLEMOcs for companies

(Kreibich et al., 2010). The functions include a low and a high estimate.

Rhine Atlas This second German model is based on expert judgement, taking data from an earlier German

damage database (HOWAS) into account. More information about these functions is available in

Jongman et al. (2012).

Tebodin This is a Dutch study, based on a detailed, systematic and well-documented expert judgement

approach. This study only provides damage functions for industry. It is detailed; it provides func-

tions for many different industrial types and it has separate functions for areas protected by flood

defences and for unprotected areas (Snuverink et al., 1998; Sluijs et al., 2000).

Billah, 2007 This is a research project in which the systematic expert judgment approach as used in MCM was

applied to Dutch houses.

than the ground floor level. Some flood damage models use

the floor level as the zero point and combine this with vertical

elevation data of the ground floor. For this paper no damage

functions with significant damage below the zero point were

used. In the few functions used with damage below the zero

point, the zero point was shifted to the point where the first

damage occurred to make them comparable with other func-

tions.

Land use maps

A flood damage model needs input about the number of

houses and jobs affected. For the case study, the number of

houses was taken from the geographical database BAG. This

database was made by the Dutch Cadaster, Land Registry and

Mapping Agency. For the number of jobs, the background

data of HIS-SSM were used (Kok et al., 2005).

3.1.2 Step 1: event-level sampling (epistemic

uncertainty)

The sampling on the event level is done by sampling a

flood damage model (e.g., HAZUS or MCM) and using that

throughout the damage calculation. This sampled model will

be applied to all categories and will be used as a source for

the damage functions and for the measure of susceptibility to

flooding of the maximum damages. The advantage of this is

that a realistic combination of inputs will be sampled. This

procedure prevents, on average, a higher damage from being

sampled for small water depths than for large water depths

or functions with different implicit assumptions from being

merged.

3.1.3 Step 2: sub-event-level sampling (aleatory

uncertainty)

Group size and dependency

For the sub-event-level sampling, uncertainty values are sam-

pled for small groups of houses or for a company. Houses and

jobs are grouped because also in reality, similar houses are

often built near each other and a company is also expected

to be relatively homogenous in damage per job. It is there-

fore not realistic to sample all houses and all individual jobs

in an area completely independent from each other. By sam-

pling in small groups of houses/jobs, total dependency within

the group and total independency between the groups is as-

sumed.

The way in which the area is grouped determines the

dependency for this aleatory uncertainty. This buildup of
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Figure 2. Average damage functions for the different flood dam-

age models in the damage function library. Blue: HIS-SSM, green:

Rhine Atlas, red: MCM, light blue: FLEMO, pink: HAZUS, yellow:

Billah (2007) for houses and Tebodin for companies.

groups is therefore also sampled again for each Monte Carlo

simulation. This sampling should therefore be seen as a sam-

pling of the dependencies between the damage of different

objects. For houses the area is split into groups of 1, 10 or

100 houses for every simulation. Houses are only grouped

together when they have a similar water depth. This is done

to keep the calculation simple but also because similar wa-

ter depths typically occur in locations that are geographi-

cal close. Furthermore, the group sizes are so small that for

medium- or larger-sized events, this assumption has no influ-

ence on the results. For companies, the jobs are grouped per

company.

Damage functions

Within each group, every house/job receives the same dam-

age fraction and maximum object value. Sampling for the

damage fraction is done based on the set of damage func-

tions within the flood damage model sampled in step 1. For

example, if the flood damage model sampled has three dam-

age functions for houses, for each group, one of the three

damage functions is randomly used.

Maximum damage

The values are based on De Bruijn et al. (2014) and Gaud-

eris (2012). De Bruijn et al. (2014) estimated the structural

value of a house at EUR 125 000. The minimum and maxi-

mum from the triangular distribution are roughly estimated

at ±EUR 75 000 for structural damage. For content dam-

age De Bruijn et al. (2014) estimated a maximum damage

Figure 3. Probability of different maximum damages as it was used

in the calculation. This is based on a study of Gauderis (2012) who

calculated the damage for 62 different company types in the Nether-

lands. Data about how frequently these company types occur in the

Netherlands are used to make this estimate of the probability den-

sity of the maximum damage per job in the Netherlands.

of EUR 70 000, for which here also a triangular distribution

is assumed, at ±EUR 50 000. These maximum damages all

use the price level 2011. These assumptions lead to a sym-

metric probability distribution, while it is probably in reality

positively skewed. This is neglected in this study because it

is difficult to estimate and the impact on the uncertainty is

expected to be very small.

The maximum damage for companies is assessed in this

study as the maximum damage per job times the number

of jobs per company. Gauderis (2012) estimated material

value per job for 62 different categories of companies. These

estimates are taken together to produce a distribution of

the physical value of a company per job. Because not all

company categories are equally common, the values were

weighted in the distribution based on their quantity in the

Netherlands. This more complex method was used in order to

correctly incorporate the skewness and because the data from

Gauderis (2012) make it possible to do this, which was not

the case for houses. The results are shown in Fig. 3. These

values include both the structure and the content. Assump-

tions from Gauderis (2012) on the part of the maximum dam-

age that belongs to the structure and the part that belongs to

the content were adopted.

4 Monte Carlo analysis behavior: trial of the method

on hypothetical flood maps

To gain understanding of the Monte Carlo analysis behavior,

the analysis was tested on hypothetical flood depth maps, one

with small water depths (< 0.5 m), one with medium water

depths (0.5–2 m) and one with large water depths (2–3 m).

These had average water depths of 0.35, 1.25 and 2.5 m.

These maps were used for calculations with 150 and 15 000
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Figure 4. Results of the Monte Carlo simulations applied on syn-

thetic flood maps shown as frequency distributions, coefficient of

variations (CV) and interquartile range (IQR)/median for different

types of hypothetical areas based on 4000 samples. The CV and

IQR/median are both simplified (imperfect) representations of the

dispersion in a single number; they show a similar view of the dis-

persion for the different test runs. The x axis in this figure is equal

to 4 times the mean damage.

houses and jobs; thus in total, six different trials were carried

out and the resulting uncertainty values were compared.

The uncertainties in the damage estimates are expressed

with the coefficient of variation. This is the standard devia-

tion of the damage divided by the mean of the damage. It has

no unit and is therefore independent of the size of the flood

event. This makes it a good measure to compare the uncer-

tainties in different areas.

Figure 4 shows the results of this hypothetical analysis.

It stands out that both a smaller water depth and a smaller

area increase the uncertainty significantly. This is because at

small water depths, the different flood damage models dif-

fer significantly more from each other than at large water

depths. This indicates that the uncertainty in damage esti-

mates for events like, for example, small regional levee fail-

ures, is much larger than the uncertainty in damage estimates

for large-scale floods with large water depths.

Another observation is that the distribution of the damage

for small events looks very different from the distributions of

the damage of large events. The main reason for this is that

for large events, the aleatory uncertainty in the flood damages

can be reduced significantly by the law of large numbers, but

not the epistemic uncertainty.

Epistemic uncertainty is therefore the significant uncer-

tainty for larger events. The frequency distributions therefore

then show clearly separate peaks related to the damage func-

tions of the separate flood damage models.

It is difficult to determine for what event size the variation

between the flood damage models (epistemic uncertainty)

becomes more important than the variation within the flood

damage models (aleatory uncertainty). For the uncertainty

model created in this paper this point is somewhere between

100 and 3000 houses, plus jobs. This critical size depends

on the dependencies between individual objects. These de-

pendencies determine how fast the law of large numbers will

reduce the aleatory uncertainty. For this paper, this was esti-

mated by sampling in groups instead of sampling individual

objects. The size of these groups therefore determines when

the epistemic uncertainty becomes dominant. These group

sizes were based on a rough estimate in this paper and more

research should be done for better results.

5 Case study

A case study is done in the Betuwe area, Tieler-en Culem-

borgerwaarden (dike ring 43) in the Netherlands, to show the

effect of uncertainty in the flood damage estimation on in-

vestment decisions for flood risk management. Dike ring 43

is located between Rhine branches in the Netherlands. In the

west, the area is closed with a high dike (border to next dike

ring area). The area slopes down to the west. The difference

in height between the eastern and western part is about 10 m.

The Monte Carlo analysis is applied to a water depth map

resulting from a simulated dike breach (VNK, 2014) along

the Rhine River, near Bemmel in the Netherlands (see Fig. 5

for its location). This dike section is about 26 km long. Be-

mmel is situated in the eastern upstream part of the Betuwe

area. When the dike breaches, water flows through the Be-

tuwe area to the west where after about 70 km, it is stopped

by the western embankment. The maximum water depths due

to this dike breach vary from less than 50 cm in the east

to over 5 m in the west. In this dike breach scenario a to-

tal area of 626 km2 is inundated. This area contains several

small towns and villages, with a total population of around

300 000 people. The large flood extent, the large number of

affected residences and companies and the large variation in

water depths are expected to have a reducing effect on the

aleatory uncertainty in the total damage of the dike ring area.

The damage assessed for this flood scenario was

EUR 16 billion (price level 2011) with a standard deviation

of EUR 5.6 billion based on 10 000 simulations. The result-

ing damage outcomes are shown in Fig. 6. The peaks in Fig. 6

are related to the damage models and illustrates the large dif-

ferences between the different damage models (two damage

models overlap).
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Figure 5. Map of the case study area. The green line is the dike segment under investigation; the cross indicates the location of the breach

scenario which was used.

Table 3. Optimal investment strategy given different damage estimates. The flood protection standard is a return period based on the direct

method described in Kind (2011), note that the actual return period of the investment strategy differs per year. Price level 2011 is used.

Damage

(EUR in

million)

Extra height

for the

investment

(cm)

Flood

protection

standard

(year)

Present

value

investment

cost (EUR

in million)

Present value

EAD (EUR in

million)

Present value

total cost

(investment

cost+EAD)

(EUR

in million)

8000 70 25 000 109 11 121

12 000 77 40 000 114 11 126

15 000 80 50 000 117 11 128

18 000 82 58 000 118 12 130

25 000 88 83 000 122 12 134

The results in Fig. 6 are used to find the economic opti-

mum flood protection standard and investment strategy for

the dike segment from an economic viewpoint. The opti-

mum flood protection standard and investment strategy is

calculated using a simplified version of the approach of

Kind (2013). Kind (2013) assesses which investment strat-

egy (set of dike improvements at different moments) has

the smallest total cost for the future and hence is the eco-

nomic optimum. This total cost consists of all the discounted

expected annual damage (EAD) considering future changes

and the discounted future investments in the dike. The ex-

pected annual damage depends on the flood probability and

the flood damage given to a dike breach (as calculated in this

case study). Long-term economic growth forecasts are used

to increase the damage for every year in the future. Further-

more, a correction factor was used to take indirect damage

into account. The flood probability depends on the quality of

the dike which again depends on the investments carried out.

This flood probability is calculated for each year into the fu-

ture based on the current status of the dike, investments up

to that point, consolidation of the dike and climate change

predictions. Investments in the dike are simplified as height

increases and the cost of these investments is based on fixed

and variable cost for the dike segment considered. A height

increase is converted into a flood probability reduction based

on a parameter that describes the height increase necessary to

Figure 6. Frequency distribution of the damage in the case study

area (based on 10 000 Monte Carlo simulations). The five peaks

represent the six models used in this study, with two models over-

lapping. The damage has the price level of 2011.

decrease the flood probability by a factor of 10. This parame-

ter and all other parameters used for determining the optimal

investment strategy (except for the flood damage) were taken

from the WV21 project (Kind, 2011).

In this paper we assess the effects of uncertainty in damage

estimates on the economic optimal flood protection standard

and the total investment costs. We do that by determining
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the investment strategy for five different damage estimates.

The first four estimates relate to the first four peaks. For the

highest damage estimate, the 98 % percentile of the damage

outcomes was used.

The analysis in this paper focuses on the first investment

made. In all five alternatives this investment is done in 2015.

The second investment is in all alternatives planned about

75 years later and a third investment is suggested about

50 years after the second one (around the end of the time

span considered). The total investment costs are mainly de-

termined by the first investment, because the weight of later

investments is very small due to the use of the net present

value, which gives future costs and benefits a much lower

weight than current costs and benefits. The calculations as-

sumed a discount rate of 5.5 % (based on WV21; Kind,

2011).

The results in Table 3 show that the optimal investment

strategy is at first glance not very sensitive to the precise dam-

age estimate. The difference between the five alternatives in

required dike heightening is only 18 cm (88− 70 cm). This

small difference is partly explained by the strong sensitivity

of the flood probability to the precise height of the dike. The

dike segment in this case study becomes 10 times safer by

raising it only 34 cm. If the flood probability were less sensi-

tive to height changes, the differences in dike height between

a low and a high damage estimate could be much larger. If

the dike were increased by 1 m to reduce the flood probabil-

ity by a factor of 10, the difference between the top and lower

damage estimate would be 47 cm.

If the flood damage applied in the cost benefit analysis

differed from the flood damage that would actually occur,

a suboptimal investment strategy would be applied. Table 4

shows the costs of using a wrong damage estimate. It gives

the unnecessary cost made by assuming a certain damage

for different real damage values. This cost varies in this

case study between EUR 0 and 12 million and is on aver-

age about EUR 2 million, which is 1.4 % of the total cost

and for this case study about EUR 75 000 km−1. The max-

imum error is 9 % of the total cost and for this case study

EUR 500 000 km−1 (price level 2011).

This case study illustrates how the Monte Carlo analy-

sis may be used to assess the uncertainty in damage assess-

ments, and how the effect of this uncertainty on investment

costs may be determined. In the case study here, the effect

is small. However, if we take into account the fact that in

the Netherlands we have about 3000 km of embankments and

that EUR 12 million might be unnecessarily spent per 26 km,

the total amount of money spent unnecessarily may then be

large. It is also likely that in cases with lower flood probabil-

ity standards, or with smaller flood events, the effects of this

uncertainty are much larger.

A striking observation in the results of Table 4 is that the

costs of overestimating the damage are significantly lower

than the costs of underestimating the damage. The differ-

ence in costs is on average a factor of 2 (see Table 4). This

can be explained by the nonlinear relationship between the

flood probability reduction and the investment costs. The

flood probability can be reduced a lot with a small extra in-

vestment; thus when too little is invested, the EAD increases

faster than the investment cost decreases. This implies that

under uncertainty, it would be economically efficient to add

a safety factor to avoid investing too little.

6 Discussion

This paper discusses a new method for the quantification of

uncertainties and applied this method in a case study. The

case study is a good illustration of the method and its use,

but the calculated uncertainty, the damage frequency distri-

bution and the effect of uncertainty on investment decisions

may not be representative of all situations, first of all, be-

cause several damage-determining aspects were neglected in

the case study. The damage is assumed to consist only of

damage to buildings and companies. The quantification of

other damage categories, such as affected persons and fatal-

ities may also be relevant and can be taken into account in a

CBA (cost benefit analysis). Another simplification is that the

entire cost benefit analysis in the case study is based on only

one flood scenario, at one breach location and at one water

level (at the design water level of the dike). A more precise

way would have been to include multiple breach locations

and water levels. These effects are however assumed to be

negligible for the conclusions of this paper, because in most

cases, the uncertainty for the different damage estimates will

be similar and highly correlated (because it is for the same

area).

Secondly, the results may not be representative of all situ-

ations because the exact location and number of peaks in the

damage frequency distribution depend on the input damage

models in the uncertainty analysis. The set of seven dam-

age models used does not cover all possible damage models.

If an extra flood damage model were added to the damage

function library, an entire new peak could appear. The fre-

quency distributions of the outcomes must therefore be con-

sidered as an example of what a frequency distribution could

look like and how far the peaks are approximately apart from

each other. It is impossible to make a real frequency distri-

bution because the major uncertainties are epistemic uncer-

tainties. Epistemic uncertainties are by definition not under-

stood and can therefore not be represented by a frequency

distribution (Helton and Oberkampf, 2004). However, there

are alternative concepts to describe uncertainty, such as im-

precise probabilities or Bayesian statistics, that deal with this

problem (Reichert and Omlin, 1997; Zadeh, 2005).

Thirdly, the cost of a wrong estimate, which was estimated

for the case at about 1 % and at a maximum of 10 % of the

total cost, may also be different for other cases. It depends,

amongst others, on the cost required to reduce the failure

probability by a factor of 10, on the damage itself and on the
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Table 4. Cost of a damage estimate error for this dike segment in EUR million (price level 2011).

Damage estimate for calculation investment strategy

8000 12 000 15 000 18 000 25 000

D
am

ag
e

es
ti

-

m
at

e
re

al
it

y 8000 0 1.1 2.1 2.7 5.5

12 000 1.3 0 0.2 0.5 2.3

15 000 3.2 0.3 0 0 1.2

18 000 5.2 0.9 0.2 0 0.7

25 000 12.2 3.8 1.8 0.9 0

uncertainty in the damage interaction (which will be larger

for small areas and areas with little flood water depths).

Finally, the uncertainty in the damage estimate was, in this

case study, directly linked to an error in the investment strat-

egy. However, in the determination of the optimal investment

strategy, not only uncertainties in the damage estimate, but

also in other components play an important role. Uncertainty

in the costs of dike strengthening, in the discount rate, in

the future economic growth, in the flood pattern and so on,

all add to the uncertainty in the optimal investment strategy.

These uncertainties may partly compensate each other, but

can also aggregate each other. Their relative importance dif-

fers per case, depending on local characteristics (De Moel et

al., 2014).

We tried to combine information from different damage

models to get a better quantification of uncertainties in dam-

age outcomes. This can only be done when the damage mod-

els may all be applicable to the flood scenario which is be-

ing modeled. Whether flood models are equally applicable

is sometimes difficult to establish. Metadata of the source

of the damage models are not always available and some-

times information on the event on which the model is based

is also lacking. This makes it difficult to compare damage

models and to understand why they have different estimates

for the same flood patterns. Relevant metadata on parameters

which may be obvious for a certain event, but vary from event

to event are needed. Examples of such parameters are, for

example, flood experience of the population, building style,

flood duration and contamination of the flood water.

Metadata for flood damage functions should give clear in-

structions about the type of events for which damage func-

tions are applicable and for what events they are not. This

could lead to a classification of different flood types with

their own damage functions. This would first lead to a bet-

ter transferability of damage functions and maximum dam-

ages and could eventually lead to generally applicable flood

damage models.

Vogel et al. (2012) and Schröter et al. (2014) also carried

out detailed uncertainty analyses for flood damage assess-

ment. The most obvious difference with these studies is that

this paper uses a Monte Carlo approach, while they use fun-

damentally different methods. However, the more interest-

ing difference is that this paper assumes a situation where no

good local data are available and that little is known about the

expected conditions during the potential flood (apart from the

maximum water depth). Therefore, this paper used relatively

simple data from many different countries and flood types

as input for the uncertainty analysis, while these other pa-

pers used relatively complex data, only from Germany. The

strength of this approach therefore is that it has a wider cov-

erage of the spectrum of possible flood damage. The disad-

vantage of this approach is that it is not applicable when a

good local flood damage model is available, based on many

data.

7 Conclusion

Uncertainties in flood damage estimates can be large. This

study showed uncertainties of an order of magnitude of 2–

5. This uncertainty is mainly caused by a lack of knowledge.

Most flood damage models are based on data resulting from a

small number of events. Because flooding can occur in many

different ways (water depths, contamination, flow velocities,

flood durations, etc.) and in many different types of areas

(building types, flood experience of the local population) any

model will miss considerable parts of the spectrum of possi-

ble options. Data from one event therefore are often not trans-

ferrable to other areas or events. Since only data representa-

tive of the event under consideration can be used, few data

are available and hence large uncertainties are introduced in

flood damage modeling.

This study introduced a method to quantify these uncer-

tainties using a set of damage models which have all been

applied in the past to river floods (not flash floods) or storm

surges in developed countries. To quantify the uncertainty, a

distinction was made between epistemic and aleatory uncer-

tainties. Epistemic uncertainties are introduced by a lack of

knowledge about the spectrum of possible flood events and

areas in which they could occur. The size of this spectrum

was estimated for this study by using the difference between

flood damage models. Aleatory uncertainties are introduced

by local variations between objects and circumstances. These

uncertainties were estimated for this study with the variations

within different flood damage models.

These aleatory uncertainties are large for small flood

events and much smaller for large flood events, affecting

many objects. Epistemic uncertainties are not smaller for
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large areas, since they are not related to deviations of sin-

gle objects from the average object for which the damage

functions were derived. Epistemic uncertainties can only be

reduced with new knowledge. The resulting Monte Carlo

analysis therefore shows larger uncertainties for small areas.

However, at a certain event size, the epistemic uncertainties

become dominant.

These uncertainties in flood damage modeling can poten-

tially have a significant effect on investment decisions. In this

study a case study was carried out to calculate the economic

optimal investment strategy for a dike segment. This case

study showed that uncertainties in damage estimates can lead

to suboptimal investment decisions. In the worst case sce-

nario (maximum error in damage estimate), the difference

between the total cost (remaining risks and investment cost)

may be as high as EUR 500 000 km−1 dike (price level 2011).

The expected difference between the optimal and subopti-

mal investment strategy was, however, significantly lower

(EUR 75 000 km−1 dike). These findings need to be verified

with further research in other areas.

The paper provides a good first approach for uncertainty

quantification in damage estimates and shows how this ap-

proach can be used to improve investment decisions. Further

research including other areas and more flood events is rec-

ommended to develop the approach further.
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