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Abstract. Our study is aimed at estimating the added value

provided by Numerical Weather Prediction (NWP) data for

the modelling and prediction of rainfall-induced shallow

landslides. We implemented a quantitative indirect statisti-

cal modelling of such phenomena by using, as input predic-

tors, both geomorphological, geological, climatological in-

formation and numerical data obtained by running a limited-

area weather model. Two standard statistical techniques are

used to combine the predictor variables: a generalized linear

model and Breiman’s random forests. We tested these mod-

els for two rainfall events that occurred in 2011 and 2013

in Tuscany region (central Italy). Modelling results are com-

pared with field data and the forecasting skill is evaluated by

mean of sensitivity–specificity receiver operating character-

istic (ROC) analysis. In the 2011 rainfall event, the random

forests technique performs slightly better than generalized

linear model with area under the ROC curve (AUC) values

around 0.91 vs. 0.84. In the 2013 rainfall event, both models

provide AUC values around 0.7.

Using the variable importance output provided by the ran-

dom forests algorithm, we assess the added value carried by

numerical weather forecast. The main results are as follows:

(i) for the rainfall event that occurred in 2011 most of the

NWP data, and in particular hourly rainfall intensities, are

classified as “important” and (ii) for the rainfall event that

occurred in 2013 only NWP soil moisture data in the first

centimetres below ground is found to be relevant for land-

slide assessment. In the discussions we argue how these re-

sults are connected to the type of precipitation observed in

the two events.

1 Introduction

In recent years, Tuscany region and nearby areas (central

Italy), have been hit by noticeably heavy rainfall events (Par-

odi et al., 2012; Sacchi, 2012; Avanzi et al., 2013; Rebora

et al., 2013; Fiori et al., 2014; Buzzi et al., 2014; Perna et al.,

2015). In particular the northwestern part of the Tuscany re-

gion is very prone to frequent and severe rainstorms, due to

its geographical position and its steep orography close to the

sea, making this area one of the wettest in northern and cen-

tral Italy (Brunetti et al., 2009). Because of the fragility of

the territory (Avanzi et al., 2013), large rainfall amounts and

intensities triggered a great number of shallow landslides,

causing damage, injuries and human losses. To mention a few

of these disastrous events, on 24–25 December 2009 heavy

rainfalls and snow melting triggered more than 600 land-

slides in the Serchio River valley and Apuan Alps (Avanzi

et al., 2013). During October 2010 a relatively long wet spell

played a significant role in predisposing the slopes to insta-

bility. Subsequently the rainstorm that affected the Massa-

Carrara area on 31 October 2010 triggered hundreds of land-

slides (Avanzi et al., 2013). On 25 October 2011 a mesoscale

convective system (Rebora et al., 2013) caused large pre-

cipitations amounts in the Magra River valley; flash floods,
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Figure 1. Map of Italian domain showing the two areas of in-

terest. The left inset shows the Lunigiana area belonging to the

administrative province of Massa-Carrara. This area was affected

by the 25OCT2011 event. The right inset shows the Garfagnana

area belonging to the administrative province of Lucca. This area

was affected by the 18MAR2013 event. Both insets show the area

(black rectangles) where the statistical models were implemented

and tested. The outer black rectangle represents the domain of the

WRF simulations.

landslides and debris flows occurred in the area causing huge

economic losses and 13 fatalities (Rebora et al., 2013; Galve

et al., 2014).

To arrange efficient alarm systems and in order to reduce

property damage and hazard for human lives, civil protec-

tion plans are based on operational weather forecasting (Re-

gione Toscana, 2006). Nevertheless, prediction of rainfall-

induced landslides is problematic since it is determined by

rainfall infiltration, soil characteristics, antecedent soil mois-

ture content and rainfall history (Guzzetti et al., 2007). Re-

garding the area under examination (see Fig. 1), several stud-

ies deal with the definition of the critical rainfall thresholds

(Guzzetti et al., 2007) for the initiation of shallow landsliding

and debris flows. Among these studies, we recall Giannec-

chini (2005, 2006); Giannecchini et al. (2007, 2012); Rosi

et al. (2012) and Segoni et al. (2014b). Another approach

for the prediction of landslides is a susceptibility assessment

(Chung and Fabbri, 1999; Guzzetti et al., 2005a), since fu-

ture landslides are likely to occur under the same condi-

tions that produced them in the past (Guzzetti et al., 1999).

For northwestern Tuscany and nearby areas, several works

deal with landslide susceptibility mapping (hereafter LSM:

Catani et al., 2005; Ermini et al., 2005; Federici et al., 2007;

Avanzi et al., 2009; Falaschi et al., 2009; Catani et al., 2013).

Among these studies, Catani et al. (2013) implemented a

landslide susceptibility estimation in the Arno River basin,

by using the random forests technique. In particular they

considered some issues related to the resolution of the map-

ping unit and to the optimal number of landslide condition-

ing variables. They found that a mapping unit of 50 m (pixel

size) gives the best results with respect to 10, 20, 100, 250

and 500 m mapping units. They took into account several in-

put predictors such as geomorphology factors (digital eleva-

tion model, slope, curvatures, slopes), lithology factors, land

cover, distance to roads, rivers and faults and climatology

factors. They concluded that the optimal number of predic-

tors for the classification ranges from 9 (mapping unit 10 m)

to 24 (mapping unit 20 and 50 m). None of the cited papers

make use of numerical weather forecasts as input predictors.

Recently (Schmidt et al., 2008; Segoni et al., 2009; Mer-

cogliano et al., 2013a, b; Segoni et al., 2014a) the Numerical

Weather Prediction (NWP) data have been used as a promis-

ing and reliable tool for the prediction of shallow landslides

triggered by precipitation. In New Zealand, Schmidt et al.

(2008) implemented a landslide forecasting system based on

three components: (i) regional NWP data (forecast up to 48 h

ahead), (ii) a hydrological model fed with NWP data aimed

at simulating soil moisture and groundwater levels and (iii) a

slope stability model aimed at estimating failure probabili-

ties within a hillslope. The spatial resolution of NWP data

is 12 km, whereas the resolution of the hydrological model

and of the slope stability model is 30 m. For a specific ex-

treme event that occurred in the lower North Island of New

Zealand in February 2004, the authors achieved hit rates of

about 70–90 % and false alarm ratios of about 30 %. Segoni

et al. (2009) implemented a real-time forecasting chain for

rainfall-induced shallow landslide to be used for civil pro-

tection purposes. The architecture of the forecasting chain is

quite complex and takes advantage of techniques and tools

from different fields including meteorology, hydrology, geo-

morphological and geo-technical modelling, remote sensing

and GIS. Regarding the NWP data, the authors downscaled

the rainfall forecast provided by a limited-area model using a

meta-Gaussian model aimed at reproducing small-scale rain-

fall fields. The final resolution of the precipitation forecast is

1.75 km in space and 10 min in time. Similarly Mercogliano

et al. (2013a, b) implemented a forecasting chain for rainfall-

induced shallow landslides. They coupled the NWP regional

data, originally produced at 2.8 km of resolution and statis-

tically downscaled to 10 m, with a physically based slope

stability simulator (hydrological and geo-technical tool). In

Mercogliano et al. (2013b), the authors tested the procedure

in a pilot site in the northwestern part of Tuscany (Lucca, Pis-

toia and Prato administrative provinces) for a specific rainfall

event. A quantitative validation of the results was not per-

formed, nevertheless the authors concluded that additional

well-documented study cases need to be simulated to better

understand the spatial organization of the input parameters

and improve the quality of the results.
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Our work takes its origin from these latter papers. We con-

sidered two heavy rainfall events that occurred in 2011 and

2013, that affected Lunigiana and Garfagnana in the north-

western part of Tuscany region (central Italy). We carried out

an analysis including a statistical modelling of spatial land-

slide occurrence by using two techniques: the generalized

linear model (hereafter GLM; McCullagh, 1984; McCullagh

and Nelder, 1989) and the random forests classifier (hereafter

RF; Breiman, 2001). For both statistical models, we used,

as predictors, static geographical layers and dynamical NWP

data achieved by running the Weather and Research Forecast-

ing (WRF) model (Skamarock et al., 2005; Skamarock and

Klemp, 2008).

The approach we adopted is an attempt to conjugate and

integrate the added information carried by a regional numeri-

cal weather model which operates at the meso-γ scale (' 2–

20 km of spatial resolution), with the micro-γ scale (≤ 20 m

of spatial resolution, according to Orlanski, 1975) which is

an average value of the mapping unit of landslide size oc-

curring at the basin scale (Guzzetti et al., 1999, 2005b). Dif-

ferently from the cited papers (Schmidt et al., 2008; Mer-

cogliano et al., 2013a, b), this goal is achieved without per-

forming any downscaling of the NWP data (grid point about

3 km) to a finer resolution. In this way we preserve the orig-

inal information content provided by the numerical model

without introducing any artificial knowledge on the precipi-

tation patterns.

The evaluation of the modelling results is performed

through the analysis of the receiver operating characteris-

tic (ROC) curve in terms of the underlying area (AUC),

a threshold-independent index widely used (Frattini et al.,

2010).

Beside the reliability of the statistical modelling of

rainfall-induced shallow landslides, the innovative feature of

our study is the assessment, by using RF’s diagnostics, of the

relative importance of NWP data in LSM, since so far there

is a lack of studies focusing on this issue.

The positive impact of mesoscale NWP output supports

the reliability of numerical forecast and further confirms

(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al.,

2013a, b) its use for the setting-up of a real-time forecasting

chain for the prediction of the occurrence of rainfall-induced

shallow landslides over large areas (basin catchment scale).

2 Materials and methods

2.1 Description of the study cases and of the areas of

interest

We implemented the statistical modelling of shallow lands-

liding induced by precipitation, focusing our attention on two

heavy rainfall events that occurred in the northwestern part of

Tuscany region (central Italy, see Fig. 1) on 25 October 2011

(Lunigiana) and on 18 March 2013 (Garfagnana). In Sects.

2.1.1 and 2.1.2, we describe the rainfall events from a meteo-

rological point of view and we give a brief description of the

area of interest considering geographical and geomorpholog-

ical features.

2.1.1 Study case 25 October 2011

The first rainfall event, hereafter 25OCT2011, occurred on

25 October 2011 and involved the Lunigiana area belong-

ing to the administrative province of Massa-Carrara (see left

inset of Fig. 1). The area is located along the Apennines

chain and is mainly mountainous (the highest peaks reach

almost 2000 m). It is very close to the Ligurian Sea gulf –

only a few kilometres away. Due to its orography and geo-

graphical position, the area represents a natural barrier for

the Atlantic humid air masses and frequently the precipita-

tion amount reaches or exceeds 3000 mm yr−1, making this

area one of the wettest in Italy (Brunetti et al., 2009). From

a hydrological point of view, it is characterized by the pres-

ence of one main river basin (Magra basin) having an area

of about 992 km2 (in the administrative province of Massa-

Carrara). A detailed study on the critical thresholds able to

trigger shallow landslides in this area was carried out by Gi-

annecchini (2006). Avanzi et al. (2013) studied the fragility

of the territory by analysing the damage that occurred in two

heavy rainfall events in 2009 and 2010 (in this latter paper

the study area was slightly larger than that one here under

examination).

From a geological point of view, following Di Naccio et al.

(2013), the Northern Apennines are a NW–SE-trending belt

formed by NE-verging tectonic units stacked since the late

Oligocene after the collision of the Corsica–Sardinia and

Adria continental blocks. The main tectonic units are (i) the

Liguride allochthon, (ii) the Subligurian unit and (iii) the

Tuscan unit (for a comprehensive synthesis and review see

Argnani et al., 2003, and references therein).

From a meteorological point of view, the 25OCT2011

rainfall event was deeply investigated by Buzzi et al. (2014)

using a numerical weather model and by Rebora et al. (2013)

using the measurements available from a large number of

sensors, both ground based and space borne. In this lat-

ter paper, the authors concluded that the large-scale fea-

tures of the event and the complex geographical character-

istics of the area determined the conditions for the persis-

tence of heavy precipitations over the same region, i.e. an or-

ganized and self-regenerating mesoscale convective system

(MCS). In the area of interest, rainfall amounts were reg-

istered by the remotely automated weather station network

operated by the National Civil Protection Department. The

maximum cumulative rainfall was recorded at the Pontremoli

rain-gauge (Magra River valley) with maximum rainfall rates

of 374 mm mm (24h)−1, 317 mm (12h)−1, 243 mm (6h)−1,

158 mm (3h)−1 and 67 mm (1h)−1. For this rain-gauge, Re-

gione Toscana (2011) reported estimates of return period
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Figure 2. Probability density as a function of landslides area of the

inventory map for 25OCT2011.

rainfall events for 1, 3, 6, 12 and 24 h duration: 51, 438,

> 500, > 500 and 293 years respectively.

A landslide inventory map for this event was created by

both field surveys of the expert personnel of the Regional

Civil Protection Office and by use of Rapid-Eye images.

A semi-automatic detection algorithm based on Rapid-Eye

pre-/post-event images (13 October pre-event and 29 Octo-

ber post-event) was applied. The Rapid-Eye data were mul-

tispectral 5-band with 5 m of spatial resolution. Shadow ar-

eas in satellite images created problems in the lower parts

of hillslopes, especially in the less populated and hardest to

reach areas, so possible commission/omission errors may oc-

cur. Since technical authority surveys were conducted mostly

close to populated areas, possible omission errors may occur

in particular in forested areas. The final inventory map re-

ported 243 shallow landslides in an area of about 212 km2

(see the minimum bounding rectangle in the left of Fig. 1),

whereas the convex hull of the area has an extent of about

123 km2). Average area of landslides is around 2260 m2 and

average perimeter is around 181 m, whereas the average al-

titude of landslide initiation points is around 588 m. Esti-

mating how complete is a landslide inventory is a difficult

task (Malamud et al., 2004). Nevertheless in Fig. 2 we show

the landslide probability density as a function of landslides

area (Malamud et al., 2004) which follows the same trend of

frequency–area distributions of landslides as found in previ-

ous works (Guzzetti et al., 2002; Malamud et al., 2004).

2.1.2 Study case 18 March 2013

The second rainfall event, hereafter 18MAR2013, occurred

on 18 March 2013 and involved the Garfagnana area belong-

ing to the administrative province of Lucca (see right inset

of Fig. 1). This is mainly a mountainous area (the average

elevation of the main catchment is 717 m) and is very close

to the Ligurian Sea gulf. Long-time series of precipitation

data recorded by local rain-gauges report yearly averages of

about 2000–2300 mm (Avanzi et al., 2013). Hydrologically,

it is characterized by the presence of one main river basin

(Serchio basin) with an area of about 1565 km2 plus several

other minor rivers.

Geological features of the area are very similar to the ones

described in Sect. 2.1.1 for Lunigiana. For an extensive and

deeper analysis see Di Naccio et al. (2013) and references

therein.

The 18MAR2013 rainfall event occurred during the month

of March 2013, which saw the highest monthly precipitation

amounts recorded over the last 30 years (Regione Toscana,

2013) for the northwestern part of Tuscany and the Ser-

chio and Magra basins in particular. During the period 5–

19 March 2013, the rain-gauges belonging to the adminis-

trative province of Lucca and to the Serchio River basin,

registered about 310 mm of precipitation against an aver-

age monthly value of about 80 mm (climatology is based

on the period 1983–2012). This relevant amount of precip-

itation was the result of two major rainstorms that affected

the area of interest: the first one occurring in the period 11–

12 March 2013, the second one occurring on 18 March 2013.

Due to the high degree of saturation of the soils and due to

the surface runoff, on 18 March 2013, several regional hydro-

meters exceeded the warning levels and flooding alerts were

issued by the local Civil Protection Office (Regione Toscana,

2013) for five rivers (Ombrone Pistoiese, Bisenzio, Serchio,

Magra, Cecina). As can be argued from synoptic analysis

(Regione Toscana, 2013), the 18MAR2013 rainfall event was

determined firstly by a warm front over the northern Tyrrhe-

nian Sea and Ligurian Sea, driven by a deep low over Great

Britain (988 hPa at 06:00 UTC). Then in the second part of

the day the cold front hit the Tuscany region, while the pre-

cipitations ended by the late evening/night. The regional rain-

gauge network registered hourly precipitation intensities up

to 31 mm h−1 (rain-gauge located near the Monte Macine

peak at 1480 m a.s.l.), whereas the average hourly precipi-

tation intensity among the available pluviometers was about

9 mm h−1. For this rainfall event, it was not possible to es-

timate return period due to the lack of a long and consis-

tent time series in the area. Nevertheless, Regione Toscana

(2013) evaluated this event as one of the largest of the previ-

ous 20 years.

A landslide inventory map for this event was created by

field surveys of the expert personnel of the local Genio Civile

Office. The map reported 127 shallow landslides in an area

of about 2038 km2 (see the minimum bounding rectangle in
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the right of Fig. 1), while the convex hull where landslides

were observed has an area of about 1416 km2. Due to time

constraints, it was not possible to integrate field survey ob-

servations with pre-/post-event image analyses and thus com-

mission/omission errors are very likely. The field surveys did

not collect any information about the size (area and perime-

ter) of landslides, so we cannot report descriptive statistics

on the inventory.

2.2 Description of the geographical static predictors

In the following, we list the geographical static predictors.

We divide them in four groups: geomorphology, hydrology,

geology and climate related predictors. The layers are raster

data sets and were produced using GIS technologies. The

pixel resolution of each layer is 30 m, if not otherwise speci-

fied.

An extensive and exhaustive discussion about the choice

of the input parameters (typology and number of predictors)

in susceptibility assessment studies can be found in Catani

et al. (2013) and we used this work as a main reference. The

usefulness of some predictors is still debated and can depend

on the methodology adopted or the area of investigation and

its landslide features. The number of predictors taken into

account is also debated and it has been also found that in-

creasing the number of predisposing factors could lead to a

worsening of the prediction accuracy (Floris et al., 2011). For

this reason, in landslide susceptibility assessment, it is impor-

tant to implement an automated procedure for the selection

of the meaningful variables. As discussed in more detail in

Sect. 2.4, we chose two suitable methods: the logistic regres-

sion with an AIC selection (the GLM) and the RF algorithm,

since it naturally estimates the variable’s importance for pre-

dictive classification. All the predictors here described are

schematically listed in Table 1.

Geomorphology-related predictors:

– Elevation (DEM): this data set is a hydrologically cor-

rected 30 m digital elevation model, resampled from an

original database produced at 10 m of resolution. El-

evation is a very common parameter often taken into

account in landslide susceptibility assessments (Catani

et al., 2013; Felicísimo et al., 2013), since it is related

to several predisposing factors such as average precipi-

tation, vegetation, etc.

– Altitude above channel network (AaCN): the algorithm

for producing the AaCN uses the channel network for

streams. It measures the altitude for each grid cell of

the DEM to the nearest channel network elevation. A

splines interpolation surface is created, called Chan-

nel Network Base Level, then this value is subtracted

from the DEM to obtain the AaCN. This parameter has

been used in recent works of LSM by Marjanovic et al.

(2011) and Mărgărint et al. (2013).

– Aspect (ASP): this represents the orientation of each

cell with respect to the adjacent cells. It influences

the landslide susceptibility because it determines how

the terrain is exposed to rainfall and solar radiation

(Guzzetti et al., 1999) and thus to soil water content.

– Slope (SLP): this is directly derived from the DEM

layer. It controls the driving forces (component of

weight of material in the direction of failure) acting on

hillslopes. For this reason, it has been widely used in ge-

omorphology and landslide mapping studies (Guzzetti

et al., 1999; Goetz et al., 2011; Catani et al., 2013).

– LS factor (LSF): this represents the topographic fac-

tor (length–slope factor) from the revised universal soil

loss equation (RUSLE) according to Moore and Wil-

son (1992). Despite the fact that the RUSLE equation

is commonly used to predict soil erosion on a cell-by-

cell basis, recently a high correlation has been found

between (R)USLE-based soil erosion map and landslide

locations (Pradhan et al., 2012).

– Planar curvature (PLAC): basically this is the second

derivative of DEM and corresponds to the concav-

ity/convexity of the land surface measured perpendic-

ular to aspect, i.e. parallel to the contour. Goetz et al.

(2011) and Catani et al. (2013) used this parameter in

their landslide susceptibility study based on GAM and

RF models respectively.

– Profile curvature (PRFC): this is a common morpholog-

ical layer derived from the DEM. It describes the shape

of the relief in the direction of the steepest slope. It cor-

responds to the concavity/convexity of the land surface

measured parallel to aspect, i.e. perpendicular to the

contour. It is known to affect the flow velocity of water

and influences erosion and deposition. It has been used

in several landslide assessment studies among which we

recall Goetz et al. (2011) and Catani et al. (2013).

Hydrology-related predictors:

– Convergence index (COVI): this index represents the

convergence/divergence with respect to overland flow.

It is similar to plan or horizontal curvature, but gives

much smoother results. The calculation uses the aspects

of surrounding cells and looks to which degree the sur-

rounding cells point to the centre cell. The result is given

as percentages; negative values correspond to conver-

gent flow conditions, positive to divergent ones. This

predictor has been recently used in LSMs by Nefesli-

oglu et al. (2011).

– Time of concentration (ToC): this measures the re-

sponse of a watershed to a rainfall event. It measures

the time (in hours) needed by a rainfall drop to reach

the closure of a watershed from the farthest point of it.

www.nat-hazards-earth-syst-sci.net/15/75/2015/ Nat. Hazards Earth Syst. Sci., 15, 75–95, 2015
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Table 1. List of the predictors taken into account in both GLM and RF classifier for landslide hazard mapping.

Variable/code Short description Unit of measure

Geomorphology-related predictors

dem_30m_topo/DEM Digital elevation model m

h_channel_geo/AaCN Altitude above channel network m

aspect_topo/ASP Aspect −

slope_topo/SLP Slope −

ls_factor_geo/LSF Topography factor from RUSLE −

plan_curv_geo/PLAC Concavity/convexity of the land perpendicular to aspect h m−1

prof_curv_geo/PRFC Concavity/convexity of the land parallel to aspect h m−1

Hydrology-related predictors

conv_index_geo/COVI Convergence/divergence to overland flow −

tc_geo/ToC Time of concentration h

TWI_geo/TWI Topographic wetness index −

d_aste_fluvi_geo/DfCN Euclidean distance from river network m

Geology-related predictors

d_lineamenti_tettonici_geo/DfTF Euclidean distance from main tectonic features m

litho_geo_int/BLT Geological continuum of Tuscany region categorical/16 classes

a_distacco_geo/LMS Landslides main scarps Boolean

pedopaesaggi_int/SKST Soil permeability categorical/7 classes

quaternario_frane_geo/LaSD Landslides and superficial deposits categorical/2 classes

assetto_geo/SSS Slope structural setting categorical/7 classes

Climate-related predictors

p12h_100_clima/R12 Rainfall 12 h duration and 100-year return period mm

p24h_100_clima/R24 Rainfall 24 h duration and 100-year return period mm

p48h_100_clima/R48 Rainfall 48 h duration and 100-year return period mm

p96h_100_clima/R96 Rainfall 96 h duration and 100-year return period mm

Other predictors

corine_c_landscape/COR Corine land use categorical/8 classes for 25OCT2011

categorical/10 classes for 18MAR2013

evi_media_land/EVI Vegetation index −

NWP predictors

arw3km_SOILW0_10cm Soil moisture 0–10 cm below ground layer m3 m−3

arw3km_SOILW10_40cm Soil moisture 10–40 cm below ground layer m3 m−3

arw3km_SOILW40_100cm Soil moisture 40–100 cm below ground layer m3 m−3

arw3km_SOILW100_200cm Soil moisture 100–200 cm below ground layer m3 m−3

arw3km_APCP Total precipitation amounts mm day−1

arw3km_APCP.RI Hourly precipitation intensity mm h−1

It is a function of the topography, geology, and land use

within the watershed. It is considered as one of the most

critical factor for the estimation of the duration of the

triggering rainfall (D’Odorico and Fagherazzi, 2003).

– Topographic wetness index (TWI): this is commonly

used to quantify topographic control on hydrological

processes. It is calculated by using the formula

TWI=
a

tanβ
, (1)

where a is the local upslope contributing area and β

is the local slope angle. This index is related to the

soil moisture (Nefeslioglu et al., 2008; Yilmaz, 2010).

The main limitation of the above formula is that it as-

sumes steady-state conditions and uniform soil proper-

ties. However, researchers assert that the formula is ap-

plicable in a wide range of cases and it has been used in

assessment in LSM (Nefeslioglu et al., 2012).
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– Distance from drainage channel network (DfCN): this

is the Euclidean distance from the river network. The

distances from rivers are evaluated by computing the

minimum distance between cells and the nearest water-

course. This layer has been considered in similar works

as a predisposing factor, because it takes into account a

possible activating mechanism related to erosion along

the slope foot (Mossa et al., 2005; Mancini et al., 2010).

Recently it has been used by several authors as a pre-

dictor in LSM (Floris et al., 2011; Catani et al., 2013;

Demir et al., 2013; Devkota et al., 2013).

Geology-related predictors: this group of predictors in-

cludes data from two regional databases produced by the

Tuscany administration: the Regional Geological Continuum

(scale 1 : 10 000) and the regional pedological database (scale

1 : 50 000). The Regional Geological Continuum is the joint

effort of several local institutions (universities, research in-

stitutes, private entities, coordinated and led by the regional

administration) and was recently updated with extensive

field campaigns covering about 70 % of the territory. This

database is freely available through web facilities. The re-

gional pedological database (level 2) was revised during the

period 2009–2012. It was derived using data collected over

sample areas of the territory. On average, the sample area

extent was about 15–25 km2 and 20 to 40 observations were

performed with the standard of 2–4 vertical profiles. The con-

trols consisted of soil stratigraphic profiles, described, sam-

pled and analysed from wells or exploratory drillings. In a

second stage of the work, an unsupervised classification of

the whole territory was performed and further corrected by

expert personnel.

– Distance from main tectonic features (DfTF): this is the

Euclidean distance from main tectonic features. This

layer has been used by Costanzo et al. (2012) for LSM

on a large scale, resulting as an effective factor for trans-

lational slides.

– Bedrock litho-technical map (BLT): this includes 15 dif-

ferent classes of bedrock based on litho-technical prop-

erties derived from the literature. This layer is time in-

variant and has been considered as a relevant causal

factor in predictive hazard models assuming that future

landslides are likely to occur at past and present insta-

bility sites (Guzzetti et al., 1999). Catani et al. (2005)

acknowledged the bedrock lithology as a strong control-

ling factor on landslide occurrence in their study for the

Arno River basin (Tuscany region).

– Landslides main scarps (LMS): this layer represents

the exposed portions of the surface of rupture. These

features are obtained with automated procedures from

landslide crowns and DEM.

– Soil permeability (SKST): this predictor is derived from

the regional pedological database and has been deter-

mined using the HYRES pedo-transfer function (PDTf).

The term “permeability”, as used in soil surveys, indi-

cates saturated hydraulic conductivity (Ksat). In other

words, it indicates the rate of water movement, in cen-

timetres per hour, when the soil is saturated.

– Landslides and superficial deposits (LaSD): this layer

takes into account the presence of landslide bodies, or

areas where superficial formations (debris cones, talus,

colluvial and eluvial deposits, etc) outcrop. The use of

this layer in susceptibility assessment studies is justified

by the hypothesis that future landslides will be likely to

occur under the same conditions that led to past land-

slide events (Varnes et al., 1984; Carrara et al., 1991).

– Slope structural setting (SSS): this represents the rela-

tionship between the structural setting and the slope as-

pect (Cruden and Hu, 1998). This factor is rarely con-

sidered in large-scale susceptibility analysis due to the

difficulty of data acquisition and its expression in a con-

tinuous surface (Atkinson and Massari, 1998; Guzzetti

et al., 1999; Donati and Turrini, 2002). In this study the

SSS factor was obtained by the spatialization of the atti-

tude data available in the regional database, taking into

account all the elements that led to the rupture of the

geological substrate continuity. The continuous surface

realized was then combined with the slope aspect and

slope gradient to obtain information about the relation

between landslides and different combinations of SSS.

Since it is a directional variable we considered the sine

of the SSS.

Climate-related predictors: recently rainfall climatology

has been considered in LSMs as a predisposing factor in-

stead of as a triggering factor (Schicker and Moon, 2012;

Catani et al., 2013). In fact the average precipitation values

describe the attitude of the territory to be hit by a storm of a

given type. In the following, we include a set of variables ac-

counting for the precipitation amount (expressed in mm) of a

rainfall event occurring in a defined time interval (expressed

in hours) and having a defined return period (expressed in

years). In this, our predictor is slightly different from that

one considered by Catani et al. (2013) who evaluated the re-

turn period of a defined precipitation amount occurring in a

defined time interval.

– Rainfall 12, 24, 48, 96 h duration and 100-year return

period (R12, R24, R48, R96): this data set is the result

of rainfall frequency analysis (Baldi et al., 2014). It es-

timates the amount of rainfall falling at a given point

for a specific duration and return period. In the present

study, the duration considered is 12, 24, 48 and 96 hours

and the return period is 100 years. It was derived from

statistical analysis of rainfall time series of the regional

rain-gauge network (30 years minimum), interpolated

over the area of interest.
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Beside the above-mentioned layers, we included in the

static predictors two additional thematic maps:

– Corine land cover (COR): land cover provides informa-

tion on vegetation and takes into account human activ-

ity on hillslopes. It is considered a predisposing fac-

tor and has been used for landslide probability of oc-

currence mapping (Varnes et al., 1984; Costanzo et al.,

2012; Catani et al., 2013). The original Corine data set

(Bossard et al., 2000) produced at scale 1 : 10 000 has 45

classes. Only eight classes belong to the 25OCT2011

area; 95 % of the territory is covered by six classes

– namely broad-leaved forest, agriculture with sig-

nificant areas of natural vegetation, complex cultiva-

tion patterns, mixed forest, non-irrigated arable land

and transitional woodland-shrub. Ten classes belong to

the 18MAR2013 area – namely broad-leaved forest,

mixed forest, complex cultivation patterns, agriculture

with significant areas of natural vegetation, transitional

woodland-shrub, non-irrigated arable land, discontinu-

ous urban fabric, olive groves, natural grassland and

coniferous forest.

– Vegetation index (EVI): the EVI vegetation index is de-

rived from the Moderate Resolution Imaging Spectro-

radiometer (MODIS) on board of the Terra and Aqua

satellite (Huete et al., 2002). This index is designed for

providing accurate measurements of regional/global-

scale vegetation dynamics (phenology). Conceptually it

is complementary to the well known Normalized Differ-

ence Vegetation Index (NDVI) from which differs be-

cause it is more responsive to canopy structural vari-

ations, including leaf area index (LAI), canopy type,

plant physiognomy and canopy architecture (Gao et al.,

2000). Formally it is a difference of near-infrared, red

and blue atmosphere-corrected surface reluctance. In

the present paper we use a layer derived from the tempo-

ral climatology of the index, using the available satellite

imagery for the time series starting from February 2000

and ending in December 2013. Time series data are ag-

gregated to 16 days to minimize cloud contamination.

The spatial resolution of the layer is 250 m. Vegetation

status (density and health) is considered a predisposing

factor for shallow landslide and debris flows because it

is basically a proxy for wetness. It reflects the variation

in subsurface water and the fact that deep-rooted veg-

etation binds colluvium to bedrock. Vegetation index

(namely NDVI and in particular its radiometric signa-

ture), has been used as an aid to the visual detection of

landslides and for the semi-automatic classification of

satellite images into stable or unstable slopes (Borghuis

et al., 2007; Mondini et al., 2011; Guzzetti et al., 2012).

Table 2. Basic options of the numerical WRF simulations.

Variable Value

Projection Lambert

Rows×columns 440× 400

Vertical levels 35

Horizontal resolution 3 km

Time step 18 s

Cumulus convection explicit (no parameterization)

Micro-physics option Thompson et al. (2008)

Boundary-layer option Yonsei University (Hong et al., 2006)

Land-surface option Unified Noah model (Chen et al., 1996)

2.3 Description of the NWP model and of the

numerical weather predictors

The limited-area numerical model used in this study is the

WRF model (Skamarock et al., 2005; Skamarock and Klemp,

2008). It is the result of the joint efforts of US governmen-

tal agencies and the University of Oklahoma. It is a fully

compressible, Eulerian, non-hydrostatic mesoscale model,

specifically designed to provide accurate numerical weather

forecasts both for research activities, with the dynamical

core Advanced Research WRF (ARW), and for operations,

with the dynamical core Non-hydrostatic Mesoscale Model

(NMM). In the present work we used the WRF-ARW core

updated at version 3.5 (April 2013). The model dynamics,

equations and numerical schemes implemented in the WRF-

ARW core are fully described in Skamarock et al. (2005),

Klemp et al. (2007) and Skamarock and Klemp (2008). The

model physics, including the different options available, is

described in Chen and Dudhia (2000).

A summary of the model’s settings chosen for the present

study is shown in Table 2, while the geographical extent of

the simulation area is depicted in Fig. 1 (outer rectangle).

Here we briefly recall that the horizontal spatial resolution

adopted (3 km) is known to be adequate to resolve explicitly

the convective processes (Kain et al., 2008; Bryan and Mor-

rison, 2012).

Initial and lateral boundary conditions were obtained

from the ECMWF-IFS (European Centre for Medium-Range

Weather Forecasts – Integrated Forecasting System) global

model. The spectral resolution of the global model is T1279,

which roughly corresponds to 16 km of horizontal resolu-

tion; vertical levels are 91. Since one of the main purposes

of this work is to investigate the potential ability of the re-

gional numerical model to predict in advance possible land-

slides triggered by heavy rainfall, as boundary conditions, we

used the forecast (not analysis) provided by the ECMWF-IFS

model. The analysis time is 00:00 UTC 24 October 2011 for

the 25OCT2011 event and 00:00 UTC 17 March 2013 for the

18MAR2013 event. The length of the simulations is 48 h for

both events.
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Figure 3. Locations of the rain-gauges for the two study cases:

25OCT2011 (closed circles) and 18MAR2013 (crosses).

Regarding the NWP predictors, in this preliminary stage of

the investigation, we subjectively decided to include a min-

imal set of explanatory variables: precipitation amounts ac-

cumulated over the rainfall event, and mean and maximum

hourly precipitation intensity, mean and maximum soil mois-

ture in four layers below ground. Soil moisture is evaluated

in the following four layers: 0–10, 10–40, 40–100 and 100–

200 cm below ground. This is the partition of soil imple-

mented in the Noah land surface model (Chen et al., 1996)

which is incorporated in the WRF model in relation to the

physical processes occurring in the interface between land

and the near-surface atmosphere. A summary of the meteo-

rological predictors is reported in Table 1 (bottom part of the

table).

To validate the rainfall forecast provided by the WRF

model in terms of quantitative precipitation forecast (QPF),

we used the data gathered by the remotely automated

weather station network operated by the National Civil

Protection Department. Data from 20 automated rain-

gauges recording precipitation every hour were collected

for 25OCT2011, while data from 60 rain-gauges were col-

lected for 18MAR2013. Locations of rain-gauges are shown

in Fig. 3. For each rain-gauge location, we extracted the

predicted values of the numerical simulation and compared

them with the observed rainfall amounts registered in a

24 h period, namely from 00:00 UTC 25 October 2011 to

00:00 UTC 26 October 2011 for 25OCT2011 and from

00:00 UTC 18 March 2013 to 00:00 UTC 19 March 2013 for

18MAR2013. The ability of the model to simulate the pre-

cipitation amounts was analysed using the contingency ta-

bles (Wilks, 2011) for selected rainfall’s thresholds and using

quantitative indices, namely RMSE and multiplicative bias.

2.4 Description of the statistical modelling of landslide

hazard

For the two rainfall events under examination, we imple-

mented a landslide hazard modelling based on a quantitative

indirect statistical model (Carrara et al., 1991; Guzzetti et al.,

1999). In other words, using separately the GLM and the

RF classifier, we construct a statistical functional relation-

ship between instability factors (geological, geomorpholog-

ical, climatological thematic layers and NWP outputs) with

the distribution of landslides obtained from the event inven-

tory maps. A consequence of this approach is the mapping

unit which is forced to be grid-cells. It is important to re-

peat that no statistical downscaling was performed to resam-

ple, geo-statistically, the NWP outputs (produced at 3 km of

horizontal resolution) to the resolution of the static instabil-

ity factors (produced at 30 m of horizontal resolution). As

stated in Sect. 1, this has been done because we want to pre-

serve and evaluate the information provided by NWP data

produced at their native scale (meso-γ scale) in a landslide

susceptibility framework. The final result of the modelling is

a map showing the classification of the area of interest into

domains of different hazard degree ranging between 0 (sta-

ble slopes) and 1 (unstable slopes). In the literature (Carrara

et al., 1999; Guzzetti et al., 1999; Catani et al., 2005) this

type of map is also referred to as a landslide hazard map.

The GLM was chosen because it is widely known and

acknowledged in LSM (Brenning, 2005). The RF classifier

was chosen because it is very flexible, recently used in LSM

(Stumpf and Kerle, 2011b; Catani et al., 2013) and has inter-

esting and useful diagnostics (Brenning, 2005; Stumpf and

Kerle, 2011a, b; Vorpahl et al., 2012; Catani et al., 2013).

The GLM (McCullagh, 1984; McCullagh and Nelder,

1989) is a statistical technique used to model the relation be-

tween a response variable L and a set of explanatory vari-

ables {Xi}, i = 1, . . .,n. In the present case, L is the pres-

ence/absence of landslide, while the {Xi} variables are the

static parameters detailed in Sect. 2.2 and the NWP outputs

detailed in Sect. 2.3. The GLM with a logit link function is

one of the most frequently used techniques in landslide sus-

ceptibility modelling and it has been largely and successfully

applied. See the review article by Brenning (2005) and refer-

ences therein for a list of works using logistic regression. For

our purposes GLM is appropriate because (a) it handles both

categorical and continuous predictor variables and (b) it does

not assume a specific distribution of predictors. In the present

study the GLM is taken into account because it is consid-

ered a sort of benchmark for LSM. A drawback of GLM is

the incapacity to model potential non-linearities in the rela-

tionship between response and explanatory variables. In the

present work, logistic regression is performed after applying

an automatic stepwise forward variable selection based on

the Akaike information criterion (AIC). The GLM is avail-

able in R’s “stats” package.
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Figure 4. (a), (b) Modelled and observed precipitation in mm accumulated in the 24 h period starting at 00:00 UTC of 25 October 2011.

(c), (d) Modelled and observed precipitation in mm accumulated in the 24 h period starting at 00:00 UTC of 18 March 2013.

The RF classifier (Breiman, 2001) belongs to the family

of machine learning algorithms. It is based on classification

trees (Breiman et al., 1984) and on the idea of bagging (i.e.

bootstrap-aggregation) predictors (Breiman, 1996). A RF is

an ensemble of classification trees, where each tree is con-

structed from a random subset of the observations (i.e. the

dependent variable) and at each node of the tree only a ran-

dom subset of the predictors (i.e. the independent variables)

is used. The data not chosen to construct the tree (“out-of-

bag”) are used to assess the predictive skill of the tree. The

most common classification among all the trees is the predic-

tion of the RF.

Díaz-Uriarte and De Andres (2006) stress some of the fea-

tures and advantages of RF in bioinformatics classification

problems. Schematically RF: (a) handles both continuous

and categorical predictors naturally, (b) no formal distribu-

tions of the variable’s predictors is assumed, (c) has an auto-

matic variable selection, (d) does not need a cross-validation

of the results but has a built-in estimate of the model’s ac-

curacy, (e) there is little need to fine-tune parameters and

(f) incorporates highly non-linear interactions among predic-

tors. This method has been extensively used in the literature

in a variety of application fields ranging from bioinformat-

ics (Díaz-Uriarte and De Andres, 2006) to remote sensing

(Pal, 2005; Brenning, 2009) and ecology (Cutler et al., 2007)

among others.

In the landslide mapping or geomorphological context it

was used by Brenning (2009); Stumpf and Kerle (2011a, b);

Vorpahl et al. (2012); Catani et al. (2013). In particular Catani

et al. (2013) applied the RF algorithm to produce LSMs of

the Arno River basin (about 9100 km2) at different mapping

units ranging from 10 to 500 m. They found that the RF is

feasible and robust provided that a preliminary procedure is

performed aimed at assessing the optimal number of trees of

a single realization of RF. Brenning (2009), in his study on

an automatic rock glacier detection procedure using multi-

spectral remote sensed data, found that RF tends to overfit

to the training data, achieving unsatisfactory results in cross-

validation. Marmion et al. (2008) found that RF provides low

classification accuracy in a geomorphological application if

compared to other statistical methods. In the paper by Bren-

ning (2005), the author discusses how RF prediction is prob-

lematic outside the training set and in general RF was found

to be prone to overfitting.

Beyond these disadvantages, for our purposes, one of the

main features of the RF algorithm is the variable importance

output. This measures the importance of each variable to per-

form a correct classification in the tree when the model is

validated on the OOB (out-of-bag) data. Alternatively, the

measure is based on the decrease of classification accuracy

when the variables in a node of a tree are permuted randomly

(Breiman, 2001). A variable’s importance can be assessed by

means of two different measures: mean decrease in accuracy

and mean decrease in node impurity. We chose the mean de-

crease in accuracy which is meaningful in the present context

since AUC is chosen as the performance measure of the pre-

dictive skill of the model. As done by Brenning (2009) and
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Table 3. Descriptive statistics of the observed and modelled 24 h

rainfall amounts for both study cases (unit is mm).

Min 1st Qu Median Mean 3rd Qu Max

25OCT2011

Observed data 21 68 105 153 176 374

Modelled data 40 50 61 63 69 112

Modelled data 18 43 59 70 90 218

(whole area)

18MAR2013

Observed data 0 49 64 73 85 284

Modelled data 13 21 38 43 59 127

Catani et al. (2013) the number of trees used in this study is

200.

In the present work, we used the R implementation (Liaw

and Wiener, 2002) of the original RF code developed by

L. Breiman and A. Cutler.

In order to remove methodological limitations due to the

lack of a performance estimation of the results on an inde-

pendent test set, we ran both statistical models (GLM and

RF) for both study cases (25OCT2011 and 18MAR2013) di-

viding randomly each event inventory data set in two groups:

a training set and a validation set. The first group is 70 % of

each event inventory data set, whereas the validation set is

the remaining 30 %. The relative size of the two groups (70

and 30 %) is based on Carrara et al. (2008). For model fitting,

the number of non-landslide locations equals the number of

landslide locations according to Brenning (2005) and Goetz

et al. (2011). The non-landslide locations were selected ran-

domly in the two areas of interest.

Due to the small number of elements in the resulting train-

ing sets (in particular for 18MAR2013), overfitting may oc-

cur in the predictive relationship of the models. So we de-

cided to perform multiple runs of the model (100 runs for

each study case), with different random choice of the train-

ing and test sets, since Stumpf and Kerle (2011b) found that

RF variable importance is almost stable when running multi-

ple classification runs.

3 Results

Since one of the crucial points to properly forecast the

rainfall-triggered landslides is an accurate prediction of spa-

tial patterns and temporal intensity of rainfall (Crozier,

1999), in Sect. 3.1 we show the verification of the WRF pre-

dictions using rain-gauge observations as ground truth. In

Sect. 3.2 we present the accuracy of the landslide suscepti-

bility maps in terms of ROC curves and of the corresponding

underlying area. In Sect. 3.3 we show the variable importance

outputs provided by the RF algorithm.
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Figure 5. Study case 25OCT2011: false alarm rate (top) and prob-

ability of detection (bottom) skills obtained when validating the ac-

cumulated 24 h rainfall predicted by the WRF model with the rain-

fall data observed at the rain-gauge locations displayed in Fig. 3.

3.1 Evaluation of the forecasting skills of NWP outputs

To have an indication of the precipitation patterns simulated

by the WRF model for 25OCT2011, in Fig. 4 we show a

visual comparison of the rainfall amounts predicted by the

model (panel a) and the observed data (panel b). In Table 3

(top), we show the descriptive statistics (average values and

percentiles) of the observed and modelled rainfall data. To

evaluate the under-estimation of the numerical data, we cal-

culated the False Alarm Rate (FAR) and Probability of De-

tection (POD) for selected rainfall thresholds (see Fig. 5).

To estimate errors and bias, we computed the RMSE, the

multiplicative bias and the correlation coefficient: the RMSE

is about 150 mm and the multiplicative bias is about 0.49,

whereas the correlation coefficient is about 0.19. To under-

stand whether displacement errors occur in the WRF simula-

tion, we calculated descriptive statistics not only for the nu-

merical data extracted for rain-gauge locations, but also for

all the numerical data extracted in a larger area affected by

the 25OCT2011 event (inset rectangle in the left of Fig. 1).

Descriptive statistics of these data are reported in Table 3

(top).

Since in the rain-gauge data set we observed high rain-

fall intensities (up to 67 mm h−1 in the Pontremoli rain-gauge

station), a special attention was devoted to the verification of

the maximum rainfall intensities (mm h−1) predicted by the

model. On average, over the 20 rain-gauges considered, the

RMSE of rainfall intensity data is around 19 mm h−1 and the

multiplicative bias is about 0.68. Summary descriptive statis-

www.nat-hazards-earth-syst-sci.net/15/75/2015/ Nat. Hazards Earth Syst. Sci., 15, 75–95, 2015



86 V. Capecchi et al.: Statistical modelling of shallow landslides using static predictors and NWP data

Table 4. Descriptive statistics of the observed and modelled 1 h

rainfall values for 25OCT2011 (unit is mm).

25OCT2011 Min 1st Qu Median Mean 3rd Qu Max

Observed data 6 26 28 31 33 67

Modelled data 10 16 18 21 26 41

tics of both observed and modelled 1 h rainfall intensities are

shown in Table 4.

For the 18MAR2013 event, to have an idea of simulated

rainfall patterns, we show in Fig. 4 a visual comparison be-

tween the rainfall data simulated by the model (panel c) and

the observed rainfall data (panel d). The quantitative evalu-

ation of forecasting skill reported a RMSE of about 45 mm,

whereas the multiplicative bias is about 0.59 and the corre-

lation coefficient is about 0.63. To evaluate the distributions

of both numerical data and observations we show in Table 3

(bottom) the descriptive statistics. To evaluate over-/under-

estimation we computed the FAR and POD skill scores (see

Fig. 6), where FAR and POD values are computed and plot-

ted against selected thresholds ranging from the rounded

minimum (10 mm) to the rounded maximum (130 mm) of the

modelled data.

To evaluate the feasibility of an early warning system for

rainfall-induced shallow landslide based on NWP data, we

reported the computational time required by the WRF simu-

lation. Considering the extent outlined in Fig. 1 and the grid

spacing of 3 km, the CPU time is approximately 2 h on an

eight-processor quad-core HPC Linux server.

3.2 Evaluation of landslide hazard maps

To visualize the modelling effects and to enable a few consid-

erations, outputs of the model prediction have been provided.

In Figs. 7 and 8 we show a single output, for each study case,

among the 100 runs performed. The results for the study case

25OCT2011 are shown in Fig. 7a for the GLM and Fig. 7b

for the RF model. The results for the study case 18MAR2013

are shown in Fig. 8a for the GLM and Fig. 8b for the RF

model. In the maps, we have subjectively masked out the

pixels where slope is below 6 %. In the maps, values range

from 0 (green colour) indicating pixels classified as stable

slopes to 1 (light grey colour) indicating pixels classified as

unstable slopes. To evaluate the accuracy of landslide hazard

maps, we calculated ROC and AUC values of the 100 runs

performed on the test sets. Summary statistics of the AUC

values achieved by the GLM and RF model runs are reported

in Table 5.

To evaluate the feasibility of an early warning system,

based on the forecasting chain proposed, we reported the

CPU time required by GLM and RF. Considering the extent

of the two areas of interest (see Fig. 1), the resolution of both

static predictors and NWP outputs and considering the statis-

tical models adopted, landslide hazard maps were produced
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Figure 6. Study case 18MAR2013: false alarm rate (top) and prob-

ability of detection (bottom) skills obtained when validating the ac-

cumulated 24 h rainfall predicted by the WRF model with the rain-

fall data observed at rain-gauge locations displayed in Fig. 3.

requiring less than 10 min of CPU time on an eight-processor

quad-core HPC Linux server.

3.3 Evaluation of importance of predictor variables

The optimability of the parameter set is evaluated on the ba-

sis of the out-of-bag error as explained in Catani et al. (2013).

Out of the 34 parameters considered in the analysis, a com-

bination of 22 parameters represents the best configuration

for 25OCT2011 on average over the 100 RF runs performed,

whereas a combination 12 parameters is the best set, on aver-

age, for the 18MAR2013. Since in both cases the cardinality

of the optimal set is quite high with respect to the total num-

ber of predictors, as indicators for the stability of the variable

importance we decided, subjectively, to report (i) which is the

average position of each predictor variable and (ii) how many

times (in %) a predictor variable was classified as “impor-

tant” in the first 10 (5) places of the ranking for 25OCT2011

(18MAR2013). In other words, we decided to restrict the op-

timal set of predictor variables classified as important to the

first 10 (5) positions and count the average position of each

predictor among the 100 RF runs.

For 25OCT2011 elevation, distance from main tectonic

features, vegetation index, maximum soil moisture in the

layer 40–100 cm, total NWP rainfall amount and mean NWP

rainfall hourly intensity are the six most frequent variables

with average rank 4.5, 3.7, 3.4, 6.2, 2.6 and 2.6 respectively.

AaCN, maximum soil moisture in the layer 10–40 cm and

maximum NWP rainfall hourly intensity are the next most
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Figure 7. 25OCT2011 landslide hazard maps. Results from the GLM (a) and from the RF classifier (b). Crosses points are the event inventory

maps produced by field surveys a few days after the rainfall event.

Figure 8. 18MAR2013 landslide hazard maps. Results from the GLM (a) and from the RF classifier (b). Crosses points are the event

inventory maps produced by field surveys a few days after the rainfall event.

frequent variables in the first 10 positions for 25OCT2011.

The other variables approximately occur in the first 10 posi-

tions of the optimal set, in no more than one-third of the 100

RF runs performed.

Regarding 18MAR2013 the most frequent variable is el-

evation, which is always classified in the first position, fol-

lowed by AaCN, maximum soil moisture in the layer 0–

10 cm, SSS and land cover, each one occurring in the optimal

set in at least half of the 100 RF runs.

Complete results for 25OCT2011 and 18MAR2013 are re-

ported in Table 6.

4 Discussions

In an effort to elucidate the impact of NWP data in LSM, we

implemented a simple statistical method by using variable

Table 5. AUC values achieved by the GLM and RF models for both

study cases. Summary statistics are computed considering the 100

runs performed (δ stands for standard deviation).

Min Mean Max δ

25OCT2011

GLM 0.76 0.85 0.91 0.031

RF 0.84 0.91 0.96 0.022

18MAR2013

GLM 0.53 0.69 0.82 0.054

RF 0.59 0.71 0.83 0.047

importance provided by the RF algorithm. In the following
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Table 6. List of predictors classified as “important” by the RF algorithm for 25OCT2011 and 18MAR2013. The average position and the

percentage of occurrences in the first 10 (5) positions in 25OCT2011 (18MAR2013) ranking are computed over the 100 runs of RF.

Variable/code 25OCT2011 25OCT2011 18MAR2013 18MAR2013

Average rank Percentage of occurrences Average rank Percentage of occurrences

in the first ten positions in the first five positions

Geomorphology-related predictors

dem_30m_topo/DEM 4.5 97 % 1.0 100 %

h_channel_geo/AaCN 7.1 62 % 2.9 75 %

aspect_topo/ASP 7.6 36 % 4 2 %

slope_topo/SLP 8.6 6 % 5 2 %

ls_factor_geo/LSF 7.7 26 % 4.1 18 %

plan_curv_geo/PLAC 8.0 2 %

prof_curv_geo/PRFC 4 1 %

Hydrology-related predictors

conv_index_geo/COVI

tc_geo/ToC

TWI_geo/TWI 9.6 3 %

d_aste_fluvi_geo/DfCN

Geology-related predictors

d_lineamenti_tettonici_geo/DfTF 3.7 96 % 4 5 %

litho_geo_int/BLT 8 6 % 4.2 24 %

a_distacco_geo/LMS

pedopaesaggi_int/SKST

quaternario_frane_geo/LaSD

assetto_geo/SSS 3.8 62 %

Climate-related predictors

p12h_100_clima/R12 7.8 12 %

p24h_100_clima/R24 7.3 36 %

p48h_100_clima/R48 4.5 4 %

p96h_100_clima/R96 4.1 9 %

Other predictors

corine_c_landscape/COR 3.3 63 %

evi_media_land/EVI 3.4 95 % 3.4 5 %

NWP predictors

arw3km_SOILW0_10cm (max) 8.3 36 % 3 74 %

arw3km_SOILW0_10cm (mean) 9.5 2 % 3.5 4 %

arw3km_SOILW10_40cm (max) 7.8 67 %

arw3km_SOILW10_40cm (mean) 9.2 18 % 5 1 %

arw3km_SOILW40_100cm (max) 6.2 90 %

arw3km_SOILW40_100cm (mean) 9.4 5 %

arw3km_SOILW100_200cm (max) 4 2 %

arw3km_SOILW100_200cm (mean) 3.3 27 %

arw3km_APCP (total) 2.6 100 %

arw3km_APCP.RI (max) 7.2 72 % 3.7 9 %

arw3km_APCP.RI (mean) 2.6 100 %

Nat. Hazards Earth Syst. Sci., 15, 75–95, 2015 www.nat-hazards-earth-syst-sci.net/15/75/2015/



V. Capecchi et al.: Statistical modelling of shallow landslides using static predictors and NWP data 89

we discuss how the major findings of the work demonstrate

the usefulness of NWP in LSM.

In spite the main aim of the work, a few issues need also to

be addressed regarding (i) the reliability of NWP data used

and (ii) the accuracy of the LSMs produced by the RF and

the GLM, this last being a sort of benchmark for LSM.

4.1 Reliability of NWP data

Regarding 25OCT2011, from the analysis of Fig. 5 and Ta-

ble 3 (top), it is clear that the model largely under-estimates

the rainfall amounts for high thresholds (broadly greater than

60 mm). This fact is also confirmed by multiplicative bias,

RMSE and correlation coefficient achieved (0.49, 150 mm

and 0.19 respectively). The failure of the model to predict the

exact locations of the deep convection processes can also be

visually appreciated from Fig. 4a and b. The general under-

estimation of NWP model forecast in predicting precipitation

maxima during intense precipitation events is a well known

issue and was recently addressed for this specific rainfall

event by Buzzi et al. (2014). On the other hand, from Table 3

(top), we can state that the model is able to capture the char-

acteristics of a heavy rainfall event in the area of interest. In

particular the maximum value achieved by the model in the

whole area of interest (218 mm (24 h)−1) is similar to that ob-

tained by Buzzi et al. (2014), who analysed the same rainfall

event with the ISAC convection-permitting MOLOCH model

(Buzzi et al., 2004). In their paper, the authors found a maxi-

mum rainfall amount of 286 mm (24 h)−1. It should be noted,

however, that they used the ECMWF-IFS analysis at 12 UTC

24 October 2011 (instead of 00:00 UTC 24 October 2011

as done here) and that their model horizontal resolution is

1.5 km (instead of 3 km as setup here). Similarly, from Ta-

ble 4, we can assess that the model is also able to reproduce

adequately the hourly rainfall intensities yielding moderate

RMSE (19 mm h−1) and a multiplicative bias around 0.68.

Overall we can conclude that despite the under-estimation

of precipitation maxima on a point-to-point verification, for

25OCT2011 the numerical weather model provides results

as reliable as possible considering the time of integration and

the resolution adopted.

Similar considerations can be applied for the verifica-

tion of 18MAR2013 rainfall forecast. Table 3 (bottom) and

Fig. 6 show the over-estimation of WRF rainfall data for low

thresholds and under-estimation for high thresholds. This is a

feature of the model which was also found in similar studies

in Italy (Oberto et al., 2012). However, for this event, quan-

titative forecasting skills (multiplicative bias and RMSE) are

better than those found in Oberto et al. (2012). This mainly

because this event was not characterized by deep convection

processes (Regione Toscana, 2013) and thus fine-scale vari-

ability is represented more adequately.

Considering that high-intensity rainfall events are often

spatially very variable, fine-scale variability cannot be prop-

erly modelled by the WRF simulations produced with grid

point about 3 km. Previous similar studies, in particular Mer-

cogliano et al. (2013b), used statistical techniques to resam-

ple, from the meso-γ to the micro-γ scale, rainfall data pro-

duced by the NWP model. In general, downscaling statistical

methods, by construction, introduce a source of uncertainty

because they depend upon the choice of predictors (mainly

topographical variables) and they suppose stationarity in the

predictor–predictand relationship (Fowler et al., 2007). On

the other hand, regarding downscaling dynamical methods, it

is well known that increasing horizontal resolution produces

more skillful forecasts (Buzzi et al., 2014). Hopefully, in the

near future operational NWP data will be produced with grid

point spacing about 1 km (Schwartz, 2014) or below. More-

over, it is commonly accepted that predictions of intensive

precipitation episodes of convective origin should be im-

proved through data assimilation techniques (Schwitalla and

Wulfmeyer, 2014). For these considerations, at the present

stage of the work, we prefer to preserve the information con-

tent of NWP output produced at the meso-γ scale and to

evaluate its value and possible positive impact on landslide

modelling.

4.2 Accuracy of landslide susceptibility maps

Although AUC values, in general, are not comparable be-

tween studies in different study areas, the area under the

ROC curve was found to be a good representative index of

the accuracy of landslide probabilistic forecast (Frattini et al.,

2010). Results here achieved and summarized in Table 5 are

similar to those found in recent literature, considering in par-

ticular that the areas under examination here do not contain

large “easy-to-predict” portions (i.e. flat valley floors or less

steep forelands). Catani et al. (2013) in their study investigat-

ing the landslide susceptibility in Tuscany, using the RF tech-

nique, found AUC values ranging from 0.74 to 0.97 when in-

creasing the number of samples required to calibrate a model.

The resolution of their study was 50 m, which is compara-

ble to the one adopted here (30 m) and the performance es-

timation technique is the same. In the present study, for the

25OCT2011 study case, the AUC values obtained are quite

high both for the GLM and, even better, for the RF classifier,

and are comparable to those found in Catani et al. (2013). On

the other hand, for the 18MAR2013 case, average AUC val-

ues are lower for both models. This fact might be related to

the potential incompleteness of the inventory map produced

which is a limitation of the study case.

In the susceptibility maps produced (see a sample output

in Fig. 7), the pixelated shape of some areas is due to the

fact that no downscaling is performed to the NWP outputs

(produced at 3 km of horizontal resolution) towards the reso-

lution of the static thematic layers (30 m of horizontal res-

olution). Nevertheless, this coarse approximation does not

dramatically affect the results as demonstrated by the AUC

values achieved.
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As a limiting factor of the study, it has to be stated that, in

the context of landslide prediction, the relevance of the maps

produced is limited by the fact that the models were fitted to

an event landslide inventory and to NWP data simulated for

the same date. In the near future and operationally, the idea

is to calibrate the models for some study cases (i.e. at least

10–15 rainfall events) and then apply the models to other in-

dependent cases, or, on a daily basis, feed the models with

NWP data and get the forecast for the following day. In this

preliminary stage, it was not possible to consider additional

study cases, because it was not possible to collect enough

observed landslides. Moreover, in the present work, we did

not train the models for 25OCT2011 and then apply them

for 18MAR2013, because the two study cases show differ-

ent characteristics from a meteorological point of view (con-

vective precipitation vs. stratiform precipitation) and because

the two events occurred in two different areas even if geo-

graphically contiguous. However, the work here presented is

not strictly a hindcast exercise since the NWP data are not

a numerical description of the rainfall that occurred (that is,

we did not use reanalysis data as initial and boundary con-

ditions). In contrast, NWP data were obtained by numerical

integration using global analysis and forecast.

In spite of the simplicity of the statistical approach, an-

other drawback of the methods proposed is that, being data-

driven, a model built up for one region and for one particu-

lar event cannot be applied, without any re-calibration, to a

neighbouring area.

It has to be kept in mind that these results were achieved

without any algorithm or model calibrations. A possible tun-

ing of the whole forecasting system may rely on the improve-

ment of NWP performances. For example, since antecedent

soil condition is one of the crucial factors for determining

landslide-triggering rainfall thresholds (Glade et al., 2000),

the NWP’s initial soil moisture could be better estimated

by means of the assimilation of remote sensed data at re-

gional scale (Capecchi and Brocca, 2014). On the other hand,

nowadays, global models have sophisticated assimilation al-

gorithms to ingest observed soil water content estimates and

to produce “warm” analysis of soil conditions (Dharssi et al.,

2011; de Rosnay et al., 2013). As pointed out by Segoni

et al. (2009), in order to gain a more accurate temporal and

spatial knowledge of the triggering rainfall, EPS (ensemble

prediction systems) or RUC (rapid updated cycle) numerical

forecasting chains could be adopted. This latter methodol-

ogy could be further improved by means of the assimilation

of radar data (Segoni et al., 2009) to keep antecedent soil

moisture conditions as close to reality as possible.

The total time required to produce a single landslide sus-

ceptibility map is around 2 h and 10 min. From an opera-

tive point of view, since global NWP forecasts are avail-

able each day at about 07:00 UTC (when the analysis time

is 00:00 UTC), there is room for short-term regional weather

forecast and GLM or RF runs, since regional daily assess-

ment of landslide risk for the following day needs to be is-

sued approximately before 12:00 UTC. Obviously, this CPU

time can be further reduced by using additional or more re-

cent processors to meet specific needs (for example larger

areas of interest) of the end users.

4.3 Importance of NWP predictor variables

Our study is mainly aimed at testing and evaluating the in-

formation content provided by numerical weather predic-

tions in landslide assessment. This aim is justified by the

fact that recently NWP data have become a promising and

reliable source of information for a real-time forecasting

chain of rainfall-induced shallow landslides (Schmidt et al.,

2008; Segoni et al., 2009; Mercogliano et al., 2013b). To

our knowledge, there is no literature regarding the evalua-

tion of the importance of NWP data on LSM. The present

study differs from the cited papers because of the following:

(i) we consider not only NWP rainfall amounts but also NWP

hourly rainfall intensities and soil moisture in four layers

below ground, (ii) we do not perform any statistical down-

scaling of the NWP data towards the LSM unit and (iii) we

combine both static predictors and NWP data into a “black-

box” statistical model instead of using a physically based

model. In particular this latter feature allows us to assess ob-

jectively (within the limitations associated with RF) the im-

pact of NWP data on LSM by using the variable importance

parameter. From Table 6 we can assess that NWP informa-

tion is crucial for the 25OCT2011 event, whereas it has a

more limited impact for the 18MAR2013 event. In particular

for 25OCT2011, it is worth noting that not only is the to-

tal NWP rainfall amount found to be important, but also the

mean, and to some extent the maximum, hourly NWP rain-

fall intensities are often ranked in the first positions among

the 100 RF runs. In particular, the positive impact of hourly

rainfall intensities is a relatively innovative finding and here

it is found that, as a predisposing factor, it is as important as

the total rainfall amount. In the recent literature, only Segoni

et al. (2009) used the radar data to extrapolate hourly or

sub-hourly rainfall intensities for LSM purposes. In contrast,

regarding 18MAR2013, NWP rainfall data are occasionally

classified as important in RF runs. In fact, 18MAR2013 was

characterized mainly by stratiform precipitation and the role

of the prolonged antecedent precipitations played a relevant

role in landsliding activity. Not surprisingly, for this event

the maximum soil moisture in the first 10 cm below ground

is classified as important in almost 75 % of the runs with an

average rank of 3. This result confirms the findings of recent

studies investigating the strong linkage between soil mois-

ture and landslide occurrence (Ray et al., 2010). In particular,

Ponziani et al. (2012) in analysing the role of antecedent soil

moisture conditions at the regional scale, assessed the soil

moisture content as being as important as rainfall amounts

for the triggering of landslides. In addition, this finding sug-

gests the possible use of NWP soil moisture contents for the

initialization of hydrological states in modelling, instead of
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using NWP rainfall data as the main driver of soil moisture

patterns (Schmidt et al., 2008). It is also worth noting how,

for this rainfall event, NWP root-zone soil moisture con-

tents (namely water content in the layer 100–200 cm below

ground) is classified as important in more than 25 % of the

100 RF runs. On can argue that this is the effect of the pro-

longed antecedent precipitation. Similarly, for 25OCT2011,

NWP soil moisture in the layers 10–40 and 40–100 cm be-

low ground are found to be important in 67 and 90 % of the

RF cases. This effect needs to be further investigated to un-

derstand whether there is a causal relationship between sub-

surface soil moisture content and land movement or whether

RF overfitting occurs.

In general, in spite of RF ease of use, the fact that RF over-

fitting may occur in geomorphological applications (Bren-

ning, 2005, 2009; Marmion et al., 2008) is a possible draw-

back of the present study and any result regarding predic-

tor variables importance should be analysed with care. For

this reason we tried to mitigate possible accidental effects in

the predictor/predictands relationships by performing multi-

ple runs of the models varying the choice of the training and

test sets.

A few issues need to be addressed concerning the impor-

tance of the static predictors. This work does not add any-

thing innovative in relation to the relative importance of the

static layers in LSM with respect to other similar and recent

works (Catani et al., 2013). The common findings with this

paper are as follows: (i) elevation is always (or very often)

ranked in the first positions, (ii) the slope curvature variables

do not seem to have any influence on landslide susceptibility,

(iii) the lack of importance that the prediction model assigns

to the hydrology-related variable is confirmed. On the other

hand, some discrepancies found are as follows: (i) the land

cover has a relevant influence on landslide assessment for

18MAR2013, while Catani et al. (2013) found a relatively

marginal impact, (ii) the climate-related predictor variables

in Catani et al. (2013) are often classified as important in

the first positions at several mapping units, whereas in the

present paper these variables are classified as important only

occasionally. Nevertheless, for these predictors it is inter-

esting to stress how (i) for 25OCT2011 (large precipitation

amount in a relatively short time period) the 12 and 24 h du-

ration and 100-year return period occur in the RF rank, while

(ii) for 18MR2013 the 48 and 96 h duration and 100-year

return period occur, taking into account the tendency of the

territory to be affected by long-lasting and prolonged precip-

itation.

5 Conclusions

Our study presents the opportunity to integrate NWP infor-

mation content into a statistical method to take account in ad-

vance of the relationship between rainfall, soil moisture and

landslide movements. The relative importance of the NWP

data is assessed by using RF diagnostics and it is found

that rainfall amounts and hourly intensities are relevant for

the convective precipitation case, whereas for the prolonged

antecedent precipitation case, the NWP surface soil mois-

ture is as important as geomorphology-related predictors. We

therefore tried to bridge the gap between the micro-γ scale

(≤ 20 m), which is the characteristic scale of geomorphology,

hydrology and climate related information, with the meso-γ

scale, which is the current typical scale of the NWP fore-

cast. The final output of the statistical modelling has been

evaluated by dividing the event inventory map into training

sets and test sets and the results are estimated by using the

AUC values. To account for possible overfitting in model es-

timates, or, in other words, to evaluate the stability of variable

importance, an “ensemble” of model runs was performed.

A deeper interpretation of the preliminary results obtained

is an ongoing task. Further well-documented severe rainfall

events need to be addressed and the results need to be vali-

dated with independent ground observations to take account

of possible overfitting in the procedures and to properly cali-

brate the model.
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