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Abstract. Inventories of individually delineated landslides

are a key to understanding landslide physics and mitigat-

ing their impact. They permit assessment of area–frequency

distributions and landslide volumes, and testing of statistical

correlations between landslides and physical parameters such

as topographic gradient or seismic strong motion. Amalga-

mation, i.e. the mapping of several adjacent landslides as a

single polygon, can lead to potentially severe distortion of

the statistics of these inventories. This problem can be espe-

cially severe in data sets produced by automated mapping.

We present five inventories of earthquake-induced landslides

mapped with different materials and techniques and affected

by varying degrees of amalgamation. Errors on the total land-

slide volume and power-law exponent of the area–frequency

distribution, resulting from amalgamation, may be up to 200

and 50 %, respectively. We present an algorithm based on

image and digital elevation model (DEM) analysis, for au-

tomatic identification of amalgamated polygons. On a set of

about 2000 polygons larger than 1000 m2, tracing landslides

triggered by the 1994 Northridge earthquake, the algorithm

performs well, with only 2.7–3.6 % incorrectly amalgamated

landslides missed and 3.9–4.8 % correct polygons incorrectly

identified as amalgams. This algorithm can be used broadly

to check landslide inventories and allow faster correction by

automating the identification of amalgamation.

1 Introduction

Regional landslide maps are a crucial component of many

landslide related studies (Guzzetti et al., 2012): they are nec-

essary to improve our understanding of landslide rupture me-

chanics and test conceptual models, to produce landslide risk

and vulnerability maps, to understand how different climatic

and tectonic mechanisms can trigger landslides, and to esti-

mate how mass wasting contributes to sediment production

and landscape evolution (Montgomery and Dietrich, 1994;

Meunier et al., 2007, 2008; Hovius et al., 1997). Such maps

used to be created by manual mapping from remote sensed

imagery, often accompanied by partial field checks (e.g. Harp

et al., 1981; Harp and Jibson, 1996). Due to the high cost

and time associated with manual mapping of thousands or

tens of thousands of landslides over large areas, automated

mapping techniques are increasingly used (e.g. Martha et al.,

2010; Mondini et al., 2011; Parker et al., 2011). These tech-

niques have specific associated errors, amongst which amal-

gamation, that is the bundling of several adjacent landslides

into a single map polygon, is prominent. Amalgamation typi-

cally occurs when the spatial density of landslides is high and

the resolution of images from which they are mapped rela-

tively low, making it difficult to differentiate multiple land-

slides in a perturbed area. Automatic mapping algorithms de-

signed to detect change of surface properties, irrespective of

the shape of the changed area are especially prone to this

effect. If uncorrected, amalgamation can lead to severely er-

roneous results and interpretations in many domains. For ex-

ample, studies using landslide maps to estimate the volume

of debris produced, whether to understand sediment trans-

fer dynamics (Hovius et al., 2000; Yanites et al., 2010), or-

ganic matter mobilization (Hilton et al., 2011), average ero-

sion rates (Hovius et al., 1997) or mountain building (Parker

et al., 2011), rely on empirical laws giving landslide volume

as a function of landslide area (Guzzetti et al., 2009; Larsen

et al., 2010). In this approach, landslide depth is assumed

to scale with area, giving rise to strongly non-linear area–

volume relations, which assign disproportionate importance

to landslides with the largest surface areas. Accurate land-

slide area mapping, differentiating precisely between indi-
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vidual events is therefore of the essence (Li et al., 2014). This

also applies to studies considering the area–frequency distri-

bution of landslides, whether to assess landslide hazard and

risk associated with extreme events (Malamud et al., 2004b),

or to understand the underlying physics of the distribution

(Pelletier et al., 1997; Stark and Guzzetti, 2009; Frattini and

Crosta, 2013). Finally, any attempt to understand the physics

of landslide triggering from mapped landslide patterns could

suffer from the effects of incorrectly mapped landslide out-

lines and the artificial prominence of large disturbed areas

(Montgomery and Dietrich, 1994; Meunier et al., 2008).

Here, we survey why and where amalgamation can occur,

and determine the minimum error it has introduced to esti-

mates of total landslide volume and the area–frequency dis-

tribution of several landslide inventories. Subsequently, we

propose an algorithm able to automatically detect amalga-

mation when provided with a raster file of polygon shapes

and a digital elevation model (DEM). Performance of this al-

gorithm is tested on a representative subset of the inventory

of landslides triggered by the Northridge earthquake. We fin-

ish with a short discussion of the benefits and limitations of

this approach and possible alternatives.

2 Landslide mapping and amalgamation

Most landslide inventories are derived from analysis of op-

tical or multispectral imagery, exploiting the typical tex-

ture, colour and spectral properties of freshly disturbed ar-

eas (Guzzetti et al., 2012). Often, landslides are conspicu-

ous because they clear vegetation that has a very different

appearance or radiation intensity spectrum. When landslides

are mapped as polygons, whether by men or machine, the

general assumption is that the polygon represents a single

landslide, most often combining a scar area, a deposit area

and sometimes a runout area. A mapped polygon is therefore

assumed to contain direct or indirect information on the lo-

cation and size and, implicitly, the volume of one landslide

but also potentially about the slope where the landslide initi-

ated and terminated, the runout distance, the drop of potential

energy, or the triggering mechanism, such as the local peak

ground acceleration or pore pressure at the time of failure.

Amalgamation, the combination of several individual

landslides in a single polygon, can be due to the actual coa-

lescence of landslides, or the apparent contiguity of disturbed

areas in images with low resolution or poor contrast between

affected and unaffected areas (Fig. 1). Indeed, where land-

sliding is very dense, several adjacent landslides may have

joint runout areas or overlapping deposits, or scars separated

by a distance too short to be resolved by the available im-

agery. At a given resolution, multispectral images contain

more information than optical images, which may help in de-

lineating individual landslides but this does not always pre-

clude amalgamation in landslide mapping. Even where im-

age resolution would permit accurate mapping of individual

landslides, amalgamation can occur when the primary goal

of the mapper is not to map landslide extent precisely, but

rather to rapidly evaluate the area affected by slope failure.

This seems common for maps predating widespread use of

landslide area–volume relationships as well as for more re-

cent inventories, underlining the current lack of care in avoid-

ing or at least flagging amalgamation. In automatic mapping,

algorithms that are not object oriented will usually classify

single pixels based on their various bulk properties (Guzzetti

et al., 2012). If adjacent pixels are classified as disturbed,

then the algorithm will combine them in a single polygon,

regardless of how many separate landslides are contained

within. When image resolution is not very high, then auto-

matic algorithms can bundle hundreds of small landslides,

located within a limited area with high propensity to failure,

into a single, apparently very large landslide polygon.

A striking example of amalgamation can be found in the

Jou-Jou Mountain area of Taiwan, where pervasive shal-

low landsliding occurred during the Mw 7.6 ChiChi earth-

quake in 1999 (Fig. 2) (Liao and Lee, 2000). In available

maps, these landslides have been merged into a few complex

shaped polygons, blanketing the steep, gullied hills and cov-

ering 9.8 km2. However, a separate, local survey has found

more than one thousand individual, shallow failures, many of

which adjoined without making larger landslides (Lee et al.,

2010). Together, these landslides had a total area of 7.22 km2,

implying a significant area exaggeration by the automated

mapping procedure. The implications of this extreme amal-

gamation are far reaching. For example, using common land-

slide area–volume relations (Guzzetti et al., 2009; Larsen

et al., 2010), the total volume of the six largest, automat-

ically mapped polygons in the area would be estimated at

about 0.19 km3, with the largest polygon (4.13 km2) alone

contributing about 0.11 km3. If the total area occupied by

these six polygons is arbitrarily repartitioned into 1000 land-

slides of roughly equal size, set by the characteristic local

ridge spacing and slope lengths of 100–150 m, then a 17-

fold reduction of the estimated landslide volume would re-

sult. This estimate could be refined with access to the local

landslide data (Lee et al., 2010), which can be seen to have

a non-uniform area–frequency distribution with hundreds of

landslides with areas of 100 m2 and one landslide of 0.1 km2.

In this example, amalgamation of landslides is easily rec-

ognizable due to the complex shape of polygons straddling

multiple topographic features, with surface areas much larger

than permitted by the characteristic length scale of the to-

pography. Formally, the merging of several landslides can re-

sult in a range of geometric or topographic inconsistencies,

such as multi-branched polygons, or polygons with orienta-

tions inconsistent with local topographic slope or transgress-

ing ridgelines or channels (Fig. 2). We consider that these

features are unlikely characteristics of individual landslides,

even though failure on multiple scarps, divergence in runout,

runout crossing rivers and spreading on the opposing valley
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Figure 1. Some polygons from the Parker et al. (2011) data set, representing landsliding caused by the 2008 Wenchuan earthquake. Polygons

are colour coded by size (red being the smaller polygons) and overlaid on a DEM and a river network. The density of landsliding is correctly

estimated but dozens of small landslides have been connected along slope or even across rivers or ridges. Light orange and green polygons

have total area larger than 1 km2.

side or occasional overtopping of dividing ridges are known

to happen.

Some polygons may also appear topographically and ge-

ometrically consistent, although they are, in fact, a combi-

nation of several adjacent landslides close to or below the

resolution of available images, the combined effect of which

is to alter the visual or spectral properties of a larger area.

This blurring can conjugate amalgamation and an exaggera-

tion of the area affected by landslides, but it cannot be identi-

fied without use of very high-resolution images (Fig. 2). It is,

therefore, out of the scope of our study and remains a chal-

lenge and a caveat for landslide mapping.

3 Data

The recognition of geometric and topographic inconsisten-

cies in landslide inventories is a key to identification of amal-

gamation of individual landslides and mitigation of its ef-

fects. To develop a method for detection of amalgams in large

landslide data sets, and to evaluate the effects of amalgama-

tion on scientifically interesting derivatives of these data sets,

we have focused on earthquake cases. Large earthquakes can

trigger many thousands of landslides in a limited area, re-

ducing the possible effects of geological heterogeneity on

landslide populations and their statistics. Moreover, by fo-

cusing on landslides with a shared trigger mechanism, we

have removed potential complications due to the convolu-

tion of trigger-specific effects from our analysis. Finally,

earthquake-induced landslide populations tend to span a very

large range of landslide sizes, allowing robust computation of

area–frequency statistics, one of the key attributes affected by

amalgamation.

We have used five published inventories of earthquake-

induced landslides, mapped over areas of 103–104 km2. To-

gether, these inventories cover a range of mapping ap-

proaches from manual mapping with extensive field check-

ing, to fast automated mapping with limited supervision and

verification. The 1994Mw 6.6 Northridge earthquake in Cal-

ifornia triggered more than 10 000 landslides, which were

mapped manually from air photos, with field checks at se-

lected sites (Harp and Jibson, 1996). The same approach was

used to map more than 6000 landslides triggered by aMw 7.6

earthquake in 1976 in Guatemala (Harp et al., 1981). The

1999,Mw 7.6 ChiChi earthquake in west Taiwan also caused

severe landsliding, with more than 9000 landslides larger

than 625 m2 (25 m× 25 m) mapped manually from SPOT
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Figure 2. (a), (b), (c): landslide polygons on a DEM topography showing examples of amalgamation in the ChiChi and Northridge inven-

tories. Geometric and topographic inconsistencies that signal amalgamation are specified as follows: RC for ridge crossing, CC for channel

crossing, MH for multi-headed, MA for multi-armed and SI for slope inconsistencies. (d), (e): some polygons mapped by Gorum et al. (2011)

after the Wenchuan earthquake overlaid on a 15 m resolution ASTER image (d) and on a 2.5 m resolution SPOT 5 image (e) of the same

area. Note the presence of amalgamation but also the significant mapping extent exaggeration when mapping on low resolution relative to

the landslide density.

satellite imagery (Liao and Lee, 2000). Finally, for the 2008,

Mw 7.9 Wenchuan earthquake in China, many different maps

of coseismic landslides exist (Ouimet, 2010; Qi et al., 2010;

Dai et al., 2011; Gorum et al., 2011; Parker et al., 2011;

Xu et al., 2014), allowing comparison of independent and

broadly equivalent data sets. We have used two catalogues

containing 50 000 polygons apiece. One was mapped with a

semi-automatic algorithm using 2.5 to 10 m resolution SPOT

5 and EO-1 satellite imagery (Parker et al., 2011). The other

was mapped by hand, mainly from 15 m resolution ASTER

imagery and locally higher resolution imagery (Gorum et al.,

2011). In all these inventories, the entire area perturbed by a

landslide, including scar, runout and deposit, is delineated by

a single polygon.

In addition to these five inventories, we have used Aster

GDEM-30m data to evaluate the topographic context of

mapped landslide polygons and as an input of our algorithm

for detection of amalgams. In the case of the Wenchuan

earthquake, we have also used 15 m resolution ASTER im-

ages and 2.5 m resolution SPOT 5 images from the epicentral

area, taken shortly after the earthquakes, to verify the differ-

ent landslide maps.

4 Quantifying the effects of amalgamation

The earthquake-induced landslide inventories summarized

above are too large for comprehensive manual verification.

To assess the possible effects of amalgamation in these data

sets, we have focused on the largest polygons in each inven-

tory. These polygons dominate landslide volume estimates

and can strongly influence the best fits to area–frequency dis-

tributions. Thus, by checking and correcting a limited num-

ber of large polygons, the quality of derivatives of landslide

inventories can be substantially improved. In checking indi-

vidual polygons, we considered as anomalous any polygon

displaying a geometrical or topographical inconsistency such

as branching, traversing of ridges or rivers or orientation in-

consistent with the local topographic slope. These polygons
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were compared with local topographic data and, when appro-

priate split to make residual polygons more consistent with

the general topography. Nevertheless it is clear that without

high-resolution imagery, many landslide polygons were re-

defined in a relatively crude way.

We have used published area–volume relationships to es-

timate the volume of landslides from the mapped disturbed

areas (Larsen et al., 2010). It was assumed that landslides

with area > 100 000 m2 involved bedrock, and that smaller

landslides were mixed bedrock and soil failures. Landslide

maps typically do not distinguish between scar and deposit,

lumping the two into one area measure. According to Larsen

et al. (2010), scars and deposits have area–volume relations

with the same power-law exponent, implying constant size

ratios between scar and deposit areas of 1.1 and 1.9 for mixed

and bedrock landslides, respectively. Hence, we have esti-

mated the scar area by dividing the mapped landslide area

by 2.1 and 2.9 for mixed and bedrock landslides, respec-

tively, assuming that runout was equal to the scar length.

Then we converted scar area A, into volume V , for bedrock

and soil landslides with V = aAb with a = 0.146 and 0.234

and b = 1.33 and 1.41 for mixed and bedrock landslides, re-

spectively. Computed landslide individual and total volumes

appear to be consistent with field estimates for cases where

the whole perturbed area is mapped.

Comprehensive landslide inventories have a typical area–

frequency distribution with a roll-over and a power-law de-

cay with an exponent, ρ, commonly within a narrow range of

values (Malamud et al., 2004a). The roll-over can be caused

by censoring of the small landslides due to the mapping res-

olution (Stark and Hovius, 2001), but can also be related to

the physics of landsliding and the transition from cohesion-

controlled to friction-controlled hillslope stability with in-

creasing landslide area and depth (Katz and Aharonov, 2006;

Stark and Guzzetti, 2009). The roll-over and power-law de-

cay have also been attributed to a combination of the size

distribution of continuous local topographic slopes and the

distribution of moisture or increasing cohesion with depth

(Pelletier et al., 1997; Frattini and Crosta, 2013). We have as-

sessed the impact of amalgamation by comparing the area–

frequency distribution of the original data sets with that of

our partially corrected data sets. Because the frequency de-

cay with increasing landslide size is usually modelled as a

power-law, a specific functional form does not have to be

prescribed if we only consider the distribution at areas ten

times larger than the roll-over. For these large areas we have

obtained ρ with a linear least-square regression of the log-

transformed data (Fig. 3).

In many cases a larger number of smaller polygons were

also visibly amalgamated, but we did not correct them, due to

the effort and uncertainties involved. Thus, the estimates of

errors on total landslide volume and the power law exponent

of the landslide area–frequency distribution due to amalga-

mation, presented below, are likely minimum values. Next,

we review the individual landslide inventories and highlight

Figure 3. Amalgamation effect on landslide area–frequency distri-

butions. (a) Comparison between the raw data from the coseismic

landslide maps for the 1976 Guatemala and 1994 Northridge earth-

quakes and the corrected catalogue where every amalgam larger

than 100 000 and 10 000 m2 was split, respectively. (b) For the

2008 Sichuan earthquake, several landslide maps were published.

Of these, the Parker et al. (2011) data set is severely affected by

amalgamation whereas the Gorum et al. (2011) data set is relatively

exempt from amalgams.

the varying degrees to which they are affected by amalgama-

tion and its effects.

Landslides induced by the 1976 Guatemala and 1994

Northridge earthquakes were mapped in detail, apparently to

record where landslides had occurred, but not necessarily to

distinguish the boundaries of individual landslides. We have

inspected all 356 polygons with an area larger 10 000 m2

in the Northridge inventory and all 90 polygons exceeding

100 000 m2 in the Guatemala data set. Together, these poly-

gons represent 56 and 73 % of the uncorrected volume of the

landslide populations of the Northridge and Guatemala earth-

quakes, respectively. 162 out of 356 and 51 out of 90 of these

polygons were found to be amalgams of several landslides.

They were split according to their shapes and relation to the

local topography. This resulted in a reduction of the total vol-

ume of landslides by 16 % in the Northridge case and 35 %
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728 O. Marc and N. Hovius: Amalgamation in landslide maps: effects and automatic detection

in the Guatemala case, and an increase of the area–frequency

scaling exponent, by 16 and 22 %, from 1.57 and 1.33 to 1.82

and 1.62, respectively (Fig. 3). Because polygons smaller

than the threshold represent only 44 and 27% of the total

volume, respectively, and because they must be less amalga-

mated and have much smaller individual volumes, their cor-

rection would likely add only a minor contribution to the total

volume change.

The ChiChi earthquake caused widespread landsliding in

the mountains of central west Taiwan. An inventory of these

landslides (Liao and Lee, 2000) contains 9272 polygons in an

area 150 times larger than the Jou-Jou Mountain, mentioned

above, with a total estimated volume of about 0.73 km3. We

have inspected all 173 polygons larger 100 000 m2, repre-

senting 85 % of the total uncorrected volume of the ChiChi

inventory. We have found that 100 of them needed correc-

tions ranging from the splitting of minor branches to the ar-

tificial fragmentation of the largest polygons in the Jou-Jou

Mountain area, where precise correction was impossible. To-

gether, these corrections resulted in a volume reduction of

38 % to 0.45 km3, but an insignificant increase of the area–

frequency scaling exponent by 5 %.

The two inventories for the Wenchuan earthquake have

similar total landslide areas and similar total numbers of

landslides, even though the mapping of Gorum et al. (2011)

extended further to the north along the seismogenic fault. We

have compared the maps where they overlap, along 150 km

of the fault trace, where the majority of landslides occurred

(e.g. Fig. 2). There is good overall agreement between the

data sets, but the manual mapping of Gorum et al. (2011)

has clearly delineated many more individual slides (Fig. 2).

Many examples of amalgamation are evident in the Parker

et al. (2011) data set (Fig. 1), and although there are some

mapping discrepancies between the two inventories, this ap-

pears to be the main difference between them. It has resulted

in a total landslide volume reduction of 69 %, from 6.30 km3

for the automated-mapping inventory (Parker et al., 2011)

to 1.96 km3 for the original manually mapped inventory of

Gorum et al. (2011). However, this inventory also contains

amalgamation artefacts (Fig. 2). We have visually checked

all 152 landslides larger than 300 000 m2, representing 51 %

of the total volume of the manual inventory (including land-

slides mapped in areas not surveyed by Parker et al. (2011)).

Of these 87 required editing, leading to a final landslide vol-

ume estimate of 2.3 km3 instead of 2.45 km, equivalent to a

modest reduction of 6 %.

The landslide polygon area–frequency distributions of the

Wenchuan inventories also differ significantly (Fig. 3). First,

the amalgamated catalogue of Parker et al. (2011) yields a

discontinuous distribution, which does not exhibit the roll-

over commonly observed in well-mapped data sets (Mala-

mud et al., 2004a; Brardinoni and Church, 2004). Instead

the smaller polygons also have a decreasing frequency with

increasing size, and they appear to be relatively infrequent

compared to medium to large slides. In contrast, the manu-

ally mapped inventory has a area–frequency distribution with

a roll-over at 1000 m2. The exponent on the best-fit power-

law for this data set, after our correction for amalgamation

is also much higher than for the Parker et al. (2011) inven-

tory, ρ = 1.5 and ρ = 1.0, respectively, confirming the rel-

ative abundance of large, mostly amalgamated polygons in

the latter (Figs. 1, 2). Correction for amalgamation effects

results in a slight rise of the scaling exponent of the manu-

ally mapped inventory to ρ = 1.6.

From these analyses it is clear that amalgamation can sig-

nificantly distort both landslide population volume estimates

and the frequency distribution of mapped landslide areas.

However, the frequency distribution itself does not necessar-

ily betray amalgamation, and exhaustive visual screening can

be prohibitively time consuming. In the following section, we

propose an automatic algorithm, which can be used to differ-

entiate correctly mapped and amalgamated polygons and al-

low faster and more comprehensive cleaning of affected data

sets.

5 Automatic detection of amalgamation

Because amalgamation leads to geometric anomalies and un-

usual positions of putative landslides in the landscape it is

possible to detect amalgams simply by looking at their shape

and at the underlying topography. Following the criteria de-

fined in Sect. 2 (Landslide mapping and amalgamation) we

have developed an algorithm able to guide a mapper or an

end-user towards suspicious polygons, and facilitate a cor-

rection or an assessment of the catalogue quality (see Sup-

plement). The algorithm requires a DEM, a raster made from

the polygon shapefile and a text file with polygon ID and in-

formation. Below, we present the operation of the algorithm

and assess its accuracy.

First, the algorithm considers the geometry of a landslide

polygon. The branching of polygons is the most common and

visible effect of amalgamation. This affects the relation be-

tween perimeter, P , and area A, of the polygons, biasing

amalgams towards high P . These attributes are easily ex-

tracted from a landslide inventory with any GIS. A polygon

with given P and A can be compared to an ellipse of equal

P and A, and aspect ratio K . Using Fagnano (1750) approx-

imation, ellipse perimeter can be written as:

P = π

(
3

2b
(K + 1)−

√
Kb2

)
, (1)

where b is the smallest radius. Since A= πKb2, it can be

shown that the perimeter of any ellipse varies as

P =

(
3(K + 1)

2
√
K
− 1

)
√
πA. (2)

Rearranging Eq. (2), K can be found from P and A as the

solution of a second order equation:
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Figure 4. Flowchart of the algorithm for automatic detection of

amalgamation. The algorithm is provided in the Supplement. Inputs

are used to individually analyse polygons based on geometric and

topographic characteristics, following a series of conditional tests

that lead to a polygon score. A score of zero means that the polygon

is considered clean and any other scores refer to some sort of amal-

gamation. K is the equivalent ellipse aspect ratio (see Eq. 3), Lmax

is the length of the longest branch of a polygon, RBc is an arbitrary

critical length ratio and Sc is a critical slope angle.

K =
1

2

4

9

(
P
√
πA
+ 1

)2

− 2+

√√√√(4

9

(
P
√
πA
+ 1

)2

− 2

)2

− 4

 . (3)

Thus, any polygon can be described easily and objectively by

the aspect ratio, K , of its equivalent ellipse. For reference, a

circle would yield K = 1, a square K = 2.3 and rectangle

twice as long as wide K = 2.7. A polygon with high K is

more likely to be incorrect whereas a polygon with K < 2

has a compact shape from which any mapping error cannot

easily be recognized. Therefore, to accelerate the algorithm

any polygon below a critical aspect ratio, Kc, is assumed to

be correct (Fig. 4).

A high K value may signal amalgamation or simply an

elongated landslide, for example due to long runout. There-

fore, K is a useful input parameter but ultimately it is neces-

sary to explicitly consider the geometry of the polygon. This

is achieved by reducing the mapped polygons to their skele-

ton with a standard image analysis method, which iteratively

thins a solid polygon to a branched centre-line (Fig. 5). From

this skeleton, branch points and individual branches are eas-

ily found. However, even polygons with a relatively simple

shape may have skeletons with some branching points and

small branches pointing towards a polygon corner or irreg-

ular side. To eliminate these spurious branches, we impose

an arbitrary threshold size ratio of branches relative to the

longest branch, RBc. A polygon with a main branch and sev-

eral smaller branches, all of which are shorter than the main

branch by a factor 1 /RBc or more is considered to be a cor-

rectly mapped, single landslide (Fig. 4). All other polygons

receive a score equal to the number of branches, longer than

the longest branch divided by RBc, reflecting qualitatively

the degree of amalgamation.

In a second step, the algorithm tests the consistency of

a polygon with apparently correct geometry, with the local

topography. This is done by extracting the DEM elevation

along the longest branch of the polygon, which is assumed

to be an adequate representation of the pathway of the land-

slide. First, the algorithm checks that the highest and lowest

elevations along the branch coincide with the top and toe of

the mapped landslide. A violation of this condition typically

signals that the branch traverses a ridge or valley floor, or that

two landslides were merged into a crescent shaped polygon,

smooth enough not to be identified as a likely amalgam by the

first part of the algorithm. If the polygon passes this second

test, then a last check is made to see if the maximum variation

of elevation along the main branch is above the minimum

slope for landsliding, Sc (Fig. 4). Polygons failing this test

are typically oriented perpendicular to the main topographic

slope over long distances, as a result of the lateral merging of

several small, parallel failures along a ridge or cliff.

Thus, our algorithm is formally based on three adjustable

parametersKc, RBc, and Sc. Of these, only RBc may be sub-

stantially tuned, depending on the smoothness of the input

raster, which in turn depends on the landslide mapping tech-

nique and the raster resolution.

Sc is a physical parameter which should normally be close

to a 10◦ threshold for landsliding (e.g. Meunier et al., 2007;

Lin et al., 2008), thus requiring minimal tuning, unless the

local substrate has exceptional properties. To minimize the

number of false negatives (i.e. undetected amalgams), Kc

should be set at a low value of about 2, so that only poly-

gons without any geometrical complexity are screened out.

Setting Kc at a higher value can be useful to assess the de-

gree of amalgamation and isolate only those polygons that

are likely to be composites of many landslides.

To assess the accuracy of the algorithm we have ap-

plied it to an inventory of landslides triggered by the 1994

Northridge earthquake in southern California (Harp and Jib-

son, 1996). Within the bounds of the Santa Susana Moun-

tains, we manually screened all 2083 mapped polygons

larger than 1000 m2 for amalgamation. This is close to the

roll-over in the landslide area–frequency distribution of the

inventory, so that the test set encompasses most of the land-

slide volume. The Santa Susana subset is representative of

the diversity of size and shape that can be found in the

Northridge inventory in its entirety. Of all polygons in the

subset, the amalgamation state of 136 (6.52 %) could not

be ascertained visually. These polygons were removed from

the test data set before further analysis. Of the remaining
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Figure 5. Part of the Northridge landslide polygon inventory overlaid on a hillshaded DEM. The skeleton raster output is shown for all

polygons larger than 1000 m2 and with K>=2 (35 polygons). Polygons with K < 2 are filled in white and considered clean. White labels

show erroneous polygons detected by the algorithm, with positive numbers giving the number of secondary branches detected, −2 meaning

ridge or river crossing and −1 indicating a slope smaller than 12◦. Red labels show incorrectly diagnosed or dubious results within this

sample. Polygons with skeleton but no labels have been correctly classified as unamalgamated.

1950 polygons, 617 amalgams and 1187 single landslides

were correctly classified by our algorithm. The algorithm

missed 70 amalgams (3.6 % of false negatives, that is unde-

tected amalgams) and incorrectly classified 76 single land-

slides as amalgams (3.9 % of false positives, that is correct

polygons classified as amalgams) (Table 1). About two thirds

of all polygons classified as amalgams were detected using

the branching criterium, in part because it is the most eas-

ily detectable feature but also because it is the first step of

the algorithm. One third of amalgamation cases were only

diagnosed by the second step of the algorithm, which con-

siders the topographic context of a polygon. Taking results

from these two steps together, the overall accuracy of the al-

gorithm was very good, with 1804 of 1950 (92.5 %) poly-

gons in the test set classified correctly (Table 1). Thus, our

algorithm provides a relatively rapid and accurate way to as-

sess the quality of a data set and a partial guide to manual

correction. It can reduce the workload associated with man-

ual splitting of amalgamated polygons, by foreshortening the

amalgam identification phase, and enhancing the detection

of smaller amalgamated polygons that may have only sub-

tle distortions. However, the algorithm only yields a minimal

number of branches and the automatic and accurate splitting

of complex polygons based on detected branching geometry

remains a challenge.

The algorithm can assess the quality of every polygon of

an inventory as long as the raster resolution is high enough

for a polygon to be made up by at least a few tens of cells,

so that a skeleton can be defined. Therefore, at a raster pixel

size of 2 m, 100 m2 polygons would have about 25 pixels and

could be analysed by our algorithm. This is lower than the

usual roll-over of landslide area–frequency distribution (e.g.

Malamud et al., 2004a; Brardinoni and Church, 2004). DEMs

with a high spatial resolution will also yield better results and

the accuracy of the detection is helped by the fact that the al-

gorithm uses raw elevation data rather than a local derivative

such as slope, which is calculated over several adjacent cells.

6 Discussion

We have proposed an algorithm based on polygon geome-

try and topographic analysis, which allows automatic detec-

tion of polygons outlining amalgamated landslides with good

but incomplete detection rates and minimal diagnostic error.

Nat. Hazards Earth Syst. Sci., 15, 723–733, 2015 www.nat-hazards-earth-syst-sci.net/15/723/2015/



O. Marc and N. Hovius: Amalgamation in landslide maps: effects and automatic detection 731

Table 1. Confusion matrix of the algorithm tested on the 1950 independently verified polygons larger than 1000 m2, from an inventory of

landslides triggered by the 1994 Northridge earthquake. Positive and negative conditions refers to polygons considered amalgamated and

correct, respectively. Therefore, false positives are correctly mapped polygons erroneously identified as amalgams whereas false negatives

are amalgams that remain undetected by the algorithm. Values are given as number of landslides and percent of the total population. The

algorithm was run with the following parameters: resolution 2 m, Kc = 2, Sc = 12◦ and RBc = 5 for the upper part of the table and RBc = 6

for the lower part.

True positive: 617 (31.6 %) False positive: 76 (3.9 %) Positive predictive rate = 89.0 %

False negative: 70 (3.6 %) True negative: 1187 (60.9 %) Negative predictive rate = 94.4 %

Sensitivity = 89.8 % Specificity = 94.0 % Accuracy = 92.5%

True positive: 653 (33.5 %) False positive: 94 (4.8 %) Positive predictive rate = 87.4 %

False negative: 52 (2.7 %) True negative: 1151 (59.0 %) Negative predictive rate = 95.7 %

Sensitivity = 92.6 % Specificity = 92.5 % Accuracy = 92.5%

However, depending on the objective of a study, even a few

incorrectly diagnosed polygons may be of concern. There-

fore, the algorithm must be tuned towards a reduction of false

negative results, by increasing RBc or Sc, even if the rate of

false positive results increases as a consequence. For exam-

ple, raising RBc from 5 to 6 in the analysis of landslides in

the Santa Susana Mountains results in a useful 24 % reduc-

tion of false negative results, from 70 to 52 polygons out of

1950, and a concomitant increase of false positive results by

16 % from 76 to 90 polygons (Table 1). However, increasing

Sc to 15◦ or more may increase significantly the number of

false positives but not necessarily the number of true posi-

tives as the most common type of amalgamation is related

to multiple branches. An increase of false positives is not

an issue, if amalgams detected by the algorithm are subse-

quently split manually. In that case, the operator can decide

to leave an incorrectly diagnosed polygon intact. However,

false negatives will go unnoticed and could have a large im-

pact. Therefore, it is advisable to perform an additional man-

ual check of the largest polygons in a data set, irrespective

of how the classification algorithm has diagnosed them, es-

pecially for applications where the importance of polygons

is proportional to their size. For example, one false negative

within the 10 or 20 largest landslides in an inventory could

significantly affect estimated total landslide volume.

A second, more fundamental issue is that the algorithm

considers polygon geometry, in a way which does not al-

low detection of ellipsoid-shaped amalgams. Examples of

this can be found, amongst others, in an inventory of land-

slides triggered by the 2008 Wenchuan earthquake (Gorum

et al., 2011), where several landslides on the same slope were

sometimes merged into larger, relatively smooth, polygons

with a low K value and without any clear geometric or topo-

graphic indication of amalgamation (Fig. 2). In this case, im-

age resolution may have been too low to distinguish the sep-

arate landslides, or the mapper may have simplified the ge-

ometry for convenience. For such amalgams, even if another

criteria, such as alignment of the polygon long axis with the

strike of the topographic slope, hints at possible amalgama-

tion, high-resolution imagery would be required to test the

diagnosis, as single landslides with similar shape and orien-

tation may exist. Merger of parallel landslide outlines due

to image resolution limitations may cause errors of similar

magnitude as other types of amalgamation, which are more

easily detected, and could critically affect the common ar-

gument that at a given pixel resolution small landslides are

missed but everything above a cutoff length scale of a few

cells is properly mapped. Because the high-resolution im-

agery required to check visually for the occurrence of low-K

amalgamation, or any other type of amalgamation, is rarely

available to end-users of landslide inventories, it is impor-

tant that it is mitigated for by those who develop the map-

ping techniques and acquire the landslide inventories. This

may not always concur with the principal objectives of a par-

ticular mapping effort, for example in natural disasters when

rapid assessment of the location and total extent of landslides

is of the essence. However, if a landslide inventory is to be of

general use to the research community, then the risk of amal-

gamation must be suppressed, both in manual and automatic

mapping.

Suppression of landslide polygon amalgamation is ham-

pered by deeper issues, such as image resolution and the un-

controlled subjectivity introduced in binary landslide map-

ping, where every pixel either is or is not a landslide. We

draw into question the general assumption that in a given

inventory, every landslide larger than a few image pixels is

correctly mapped (e.g. Liao and Lee, 2000). Instead, it is rea-

sonable to expect that many disturbed areas mapped as single

medium to large landslides could in fact consist of groups of

smaller landslides, giving potentially significantly different

erosion volumes and size statistics (Fig. 2). Moreover, satel-

lite imagery does not always yield unambiguous information

about the number and shape of landslides, which occurred

on a given slope. Where this applies, subjective choices of

the mapper are crystallized within the landslide inventory.

A Bayesian approach to mapping, aimed at delivering prob-

abilistic instead of binary maps (e.g. Mondini et al., 2013)

could be helpful in testing the different possibilities of split-
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ting complex disturbed areas (see Fig. 2) and ultimately de-

liver more accurate, objective and reproducible data sets.

Short of a practicable, comprehensive solution, our

method, which has a good reliability, can be used in sev-

eral ways to mitigate for amalgamation in landslide maps, by

helping the mapper to identify mistakes in automatic map-

ping, and the user to do the same in existing landslide maps.

Notably, sorting mapped polygons by K value and size al-

lows rapid, first order vetting of the largest landslides, which,

when followed by manual splitting of amalgams, will be

enough to yield a reasonable estimate of the total volume of

landslides in an inventory. Then, for large populations, one

could exclude all polygons with K values above a thresh-

old and consider the correlation between the size or loca-

tion of remaining landslides and physical parameters such

as local topographic slope or triggering effects. Finally, a K

value criteria might also be introduced in a semi automatic

algorithm detecting landslides, to guide iteratively towards a

sound splitting of adjoining landslides.

In the end, we must recall that amalgamation even if it

may be a major source of errors, such as in the Wenchuan

example, it is not the only one. Firstly, anthropogenic clear-

ance or other disturbance of the landscape may be erroneous

for a landslide, especially by automatic algorithms. Secondly,

when scar, transport and deposit areas cannot be differenti-

ated the volume of landslides with long runout may be sub-

stantially over-estimated. Thirdly, when landslides are reac-

tivated and previously stable parts of the landscape are not

implied, then it may be hard for the mapper to delineate the

area of the actual failure with accuracy and this new failure

may also not yield a volume as large as expected from area–

volume relationships. These issues may be difficult to deal

with but their effects will be suppressed when high resolu-

tion imagery is used by an experienced mapper. Addition-

ally, systematic ways of dealing with these issues, such as

the flagging of reactivated landslides, and the differentiation

of the transport areas of debris flow or long runout landslides

should be practised by mappers and also considered by users

analysing old data.

7 Conclusions

We have shown that amalgamation, the bundling of several

adjacent landslides into a single map polygon is a common

problem in landslide inventories that has inflated estimates of

landslide volumes by up to a factor of three, and the power-

law exponent of landslide area–frequency distributions by up

to 50 %. Even though the design of a comprehensive and

fully reliable automatic corrective method remains a chal-

lenge, we have presented and tested a practical algorithm for

automatic detection of amalgamated polygons based on ge-

ometric and topographic considerations. The algorithm per-

forms well with an accuracy of 92.5 % and only 2.7–3.6 %

amalgams missed and 3.9–4.8 % correct mapped polygons

incorrectly classified. It can, therefore, be used to automate

the identification of landslide amalgams, accelerate the eval-

uation of data sets, and guide the manual correction of amal-

gams. Thus, our algorithm is a first step towards setting a

quality standard for landslide maps in order to derive scientif-

ically and societally useful variables, such as risk estimates,

erosion rates, organic matter fluxes, or correlations between

landsliding and physical triggers, as accurately as possible.

Further challenges lie in attempting to automatically correct

amalgamation and in assessing how mapping errors due to

resolution blurring propagate into final products derived from

landslide maps.

The Supplement related to this article is available online

at doi:10.5194/nhess-15-723-2015-supplement.
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