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Abstract. This study conducts a detailed analysis of multi-

scale periodic features involved in the annual and seasonal

precipitation signals at the typical coastal reclamation re-

gion in China by selecting the suitable continuous wavelet

transform (CWT) and innovatively combining the improved

Hilbert–Huang transform (HHT), and further deduces the

precipitation trend and its impacts on the future soil hydro-

logical process. The Morlet wavelet transform is proved suit-

able in revealing the precipitation signals broad-scale period-

icities, however, the critical mode mixing problem in CWT

causes the poor significance in the fine-scale periodicities,

which cannot well match the climate background. By com-

bining the HHT approach, the fine-scale mode mixing draw-

back in CWT is effectively eliminated, and the the studied

precipitation signals multi-scale periodicities are accurately

revealed. Consequently, an overall decreasing trend of annual

and seasonal precipitation in future years is demonstrated.

Furthermore, by novelly using the cross wavelet transform

(XWT) and wavelet transform coherence (WTC) approaches,

the prominent correlations between the precipitation dynam-

ics and soil and groundwater salinities dynamics, it is demon-

strated that the precipitation increase can effectively leach

the surface soil salt downwards into the deeper soil lay-

ers and groundwater with 5–7-day lag in the new cultivated

tidal land. The revealed future decreasing trend of precipita-

tion, especially in spring and summer, may aggravate the soil

salinization at the coastal reclamation region, thus some rea-

sonable salt leaching and evaporation suppression measures

need to be taken to prevent the possible soil secondary salin-

ization process.

1 Introduction

The precipitation dynamics always plays a prominent role

in the soil hydrological process, which impacts significantly

on the health of a water–soil–crop system. In particular, at

the studied coastal region in northern Jiangsu, China, a huge

amount of tidal lands are being enclosed for agricultural uti-

lization, which has aroused international attention, e.g., the

planned average annual reclamation amount of about 7000

hectares tidal lands during the year 2010–2020 at Dongtai

County takes up about 40 % of the total amounts in China

(Wang and Ke, 1997; Meng and Tang, 2010). These new ar-

eas commonly need 5–10 years of soil amelioration and de-

salting before they can be cultivated for wheat and corn in a

rain-fed farming system. Thus, the precipitation dynamics at

the coastal region play a key role in both the new-land soil de-

salting process and the cultivated-land soil secondary salin-

ization process (Zhao et al., 2010), that makes the precise

study of the precipitation dynamics very important for the

agriculture development and environment health in these new

areas. However, the uneven precipitation distribution during

seasons and years, and the special and stochastic climatic and

environmental factors, such as typhoon and storm tide, at the

coastal region make the study hard to be precise enough and

usually bring some environmental risks, such as the waterlog
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and salinization. In view of this, more effective approaches

need to be introduced into the precise analysis of precipita-

tion multi-scale characteristics and the accurate forecast of

precipitation trend and its impacts on the soil hydrological

process.

Since the hydrometeorological signals are highly nonsta-

tionary and their physical processes often operate under a

large range of scales varying from 1 day to several decades,

the continuous wavelet transform (CWT) has been intro-

duced and developed to reveal the multiple time scales char-

acteristics of these nonstationary signals (Mandelbrot and

Wallis, 1968; Grossmann and Morlet, 1984; Mallat, 1989;

Daubechies, 1994; Torrence and Compo, 1998; Labat et al.,

2000). Because the CWT can provide information about both

time and frequency simultaneously, and enables a separation

to be made between features associated with different char-

acteristic length scales, it has some advantages over the tra-

ditional Fourier transform and has been widely used in re-

vealing the periodic characteristics of hydrometeorological

signals at multiple time scales (Walker, 1997; Nener et al.,

1999; Coulibaly and Bum, 2004; Labat et al., 2005; Shark

and Yu, 2006; Liu et al., 2009; Yu et al., 2013). For hydrom-

eteorological signals, the Morlet and Mexican hat wavelets

are two types of the most popularly used continuous wavelets

(Foufoula-Georgiou and Kumar, 1995). To well and truly as-

sess the statistical significance of hydrometeorological sig-

nals multi-scale periodicities, the wavelet power spectrum

and its confidence test are usually requested to be combined

with the wavelet transform analysis (Ge, 2007; Zhang et al.,

2010). In view of the above background, it is feasible to uti-

lize the CWT approaches to effectively reveal the precipita-

tion’s multi-scale characteristics at the studied coastal recla-

mation region, although little similar research has been car-

ried out at this area.

One major problem in CWT is the frequent appearance

of mode mixing (Gong et al., 2005; Huang and Wu, 2008),

which is defined as the CWT decomposed information of one

scale (or frequency) either consisting of information of other

widely disparate scales (or frequencies) or the decomposed

information of a similar scale residing in different scales in-

formation. Mode mixing is often a consequence of signal in-

termittency, which may cause serious aliasing in the time–

frequency distribution and make the signal’s multi-scale pe-

riodicities unclear. To overcome the mode mixing problem

in CWT, the presented study innovatively introduces the im-

proved Hilbert–Huang transform (HHT) approach, based on

the Ensemble Empirical Mode Decomposition (EEMD) al-

gorithm (Wu and Huang, 2009), into the revealing capability

improvement of hydrometeorological signals multi-scale pe-

riodic characteristics. As a new noise-assisted data analysis

method, the EEMD algorithm is proposed based on the orig-

inal HHT, which is based on the original Empirical Mode

Decomposition (EMD) method (Huang et al., 1998, 1999),

to overcome the similar mode mixing drawback in EMD as

that in CWT. The improved EEMD method defines the true

intrinsic mode function (IMF) components as the mean of an

ensemble of trials, each consisting of the signal plus a white

noise of finite amplitude. Although adding noise may result

in smaller signal-to-noise ratio, the added white noise will

provide a relatively uniform reference scale distribution to

facilitate EMD. Therefore, the low signal-to-noise ratio does

not affect the decomposition method but actually enhances it

to avoid the mode mixing problems. The HHT is an adaptive

time–frequency data analysis method and has been proved

quite versatile in a broad range of applications for extracting

signals from data generated in noisy nonlinear and nonsta-

tionary processes.

One crucial issue in assessing the impact of precipitation

dynamics on the future soil hydrological process is to pre-

cisely reveal the correlation between the precipitation dy-

namics and soil and groundwater salinities dynamics. How-

ever, the classic regression analysis cannot well reveal the

correlation, because the large numbers of zero value data

in the daily hydrometeorological signals highly increase the

signals noisy and nonlinear dynamics (Yu et al., 2013). Thus,

the cross wavelet transform (XWT) and wavelet transform

coherence (WTC) approaches are novelly introduced into the

study to discuss the resonance feature between the precipita-

tion and salinity signals at multiple time scales. By combin-

ing the continuous wavelet analysis and cross spectrum anal-

ysis (Roth, 1971; Liu, 1994), the XWT and WTC approaches

have been developed and utilized to expose the common

power, relative phase and significant coherence of two sig-

nals in time–frequency space (Torrence and Webster, 1999;

Grinsted et al., 2004). Because of the embedded wavelet the-

ory, the XWT and WTC approaches have advantages over

the single cross spectrum analysis in revealing the cross in-

formation of nonstationary signals about both time and fre-

quency simultaneously and have been popularly used for me-

teorological, geophysical, mechanical and electronic signals

(Gurley et al., 2003; Jevrejeva et al., 2003; Yang et al., 2009;

Yu et al., 2014).

In the remainder of this paper, the studied sites and data de-

tails and the methodologies of CWT, XWT, WTC and HHT

are presented. In the next section, the results of multi-scale

periodic characteristics of different precipitation signals are

revealed by selecting the suitable CWT type, and the future

precipitation trends at the corresponding dominant scales are

deduced and forecasted with the comparison with the tra-

ditional linear fitting results. In the discussion section, the

mode mixing problems in CWT are discussed by analyzing

the climate background of precipitation’s multi-scale period-

icities and improved by innovatively combining the EEMD

based HHT approach. Furthermore, the impacts of the fore-

casted future precipitation dynamics on the future soil hy-

drological process are assessed by quantitatively analyzing

the correlation between the precipitation and salinization dy-

namics, where the XWT and WTC approaches are novelly

used to reveal the oscillation coherence and time lag property
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Figure 1. Map showing the locations of the studied meteorological stations and monitoring site.

between the precipitation and groundwater salinity signals at

daily scales. Finally, the conclusions are drawn.

2 Data and methodology

2.1 Studied sites and data

Three meteorological stations in the coastal region of north-

ern Jiangsu, China are selected as the study sites in this pa-

per (Fig. 1). The Ganyu station (34.84◦ N, 119.12◦ E) is lo-

cated at the north part of Huaihe River valley and is about

5 km from the Yellow Sea. The Shanghai station (31.16◦ N,

121.43◦ E) is located at the south part of the lower reach of

Yangtze River and is about 27 km from the East China Sea.

The Dongtai station (32.85◦ N, 120.31◦ E) is located at the

crossing part of the two valleys and is about 54 km from the

Yellow Sea. Supported and quality controlled by China Me-

teorological Administration, the data of monthly precipita-

tion covering 1957–2011 at the Ganyu station, monthly pre-

cipitation covering 1953–2011 at the Dongtai station, and

monthly precipitation covering 1951–2011 at the Shanghai

station are utilized in this study.

The monitoring site (32.65◦ N, 120.90◦ E) is located at

a newly cultivated farmland at the typical reclamation area

Dongtai County, which is about 5 km from the Yellow Sea.

This tidal land was enclosed from the sea in 2004 and first

cultivated for wheat and corn in June 2011. The soil elec-

trical conductivity (EC) data in the different soil layers (10,

50 and 100 cm) were monitored 6 times each month from

June 2011 to May 2013. The daily groundwater EC data and

the corresponding daily precipitation data covering 1 whole

year (365 days) from 11 May 2012 to 10 May 2013 were

monitored and collected.

2.2 Continuous wavelet transform (CWT) and wavelet

power spectrum test

The CWT is a mathematical tool which allows the decompo-

sition of the signal f (t) in terms of elementary contributions

called wavelets, which can be thought of as a packet of sine

waves of varying amplitude and wavelength (Sadowskey,

1996; Torrence and Compo, 1998; Labat et al., 2000). For

time series f (t) ∈ L2(R), R is the domain of real numbers,

or finite energy signal, the CWT of signal f (t) with the an-

alyzing wavelet φ is the convolution of f (t) with a set of

dilated and translated wavelets:

Wf (a,b)=
〈
f (t),ϕa,b(t)

〉
=

√
δt

a

∫
R

f (t)ϕ

(
t − b

a

)
dt, (1)

where a is the dilation (scale or frequency) parameter, b is the

translation (position or time) parameter, φ(t) is the complex

conjugate functions of φ(t), and δt is the time interval of data

series. In this study, two popularly used wavelets, the Mex-

ican hat and Morlet wavelets (Eq. 2), were selected as the

φ (Mallat, 1989; Daubechies, 1994; Torrence and Compo,

1998). The Mexican hat wavelet, as a real-value wavelet

function, is the second derivative of the Gaussian function.

The Morlet wavelet, as a complex wavelet, consists of a plane

wave modulated by a Gaussian function:
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(Mexicanhat) φ(t)= (
2
√

3
π−1/4)(1− t2)e(−t

2/2), (2)

(Morlet) φ(t)= π−1/4eiω0te(−t
2/2),

where ω0 is the non-dimensional frequency, usually taken to

be 6 to satisfy the admissibility condition (Farge, 1992; Tor-

rence and Compo, 1998).

The global wavelet power spectrum is defined as Ea =

1
N

N∑
b=1

∣∣Wf (a,b)
∣∣2, where N is the length of data. The sta-

tistical significance of wavelet power can be assessed rela-

tive to the null hypotheses that the signal is generated by a

stationary process with a given background power spectrum

(P ) (Torrence and Compo, 1998). For the global wavelet

power spectrum test, the theoretical spectrum P is defined

as P = σ 2Pkx
2
v/v, where σ 2 is the variance of data series,

x2
v is the chi square when degrees of freedom is v at the re-

quested confidence level, and Pk is the Fourier white noise

or red noise power spectrum. Pk is defined as Eq. (3)

Pk =
1− r(1)2

1+ r(1)2− 2 · r(1) · cos(2πδt/T )
, (3)

where r(1) is the autocorrelation coefficient under a first

order lag of data series, and T is the period of data se-

ries. Theoretically, for Morlet wavelet, T ≈ 1.033a, while

for Mexican hat wavelet, T ≈ 3.974a (Torrence and Compo

1998). When r(1) > 0.1,Pk is red noise spectrum, and when

r(1)≤ 0.1,Pk is white noise spectrum and equals the default

value 1.0 (Allen and Smith, 1996; Ge, 2007). The v values in

Mexican hat and Morlet wavelet power spectrums are calcu-

lated by

(Mexicanhat) v =

√
1+

(
Nδt

1.43a

)2

; (4)

(Morlet) v = 2

√
1+

(
Nδt

2.32a

)2

.

2.3 Cross wavelet transform (XWT) and wavelet

transform coherence (WTC)

The XWT of two signals x(t) and y(t) with finite energy is

defined as Wxy(a,b)=Wx(a,b)W
∗
y (a,b), where * denotes

complex conjugation. The cross wavelet power spectrum is

defined as
∣∣Wxy(a,b)

∣∣2 = ∣∣∣Wxy(a,b)W
∗
xy(a,b)

∣∣∣. The theo-

retical distribution of the cross wavelet power of two signals

with background power spectrum P xk and P
y
k is given by Tor-

rence and Compo (1998) as

D

(∣∣Wxy(a,b)
∣∣2

σxσy
< p

)
=
Zv(p)

v

√
P xk P

y
k , (5)

whereZv(p) is the confidence level associated with the prob-

ability p for a probability density function (PDF) defined

by the square root of the product of two chi-square distribu-

tions. In this study 0.05 significance level was selected and

Z2(95 %)= 3.999 (Grinsted et al., 2004).

Because the wavelet is not completely localized in time,

the XWT has edge artifacts and a cone of influence (COI) in

which edge effects cannot be ignored is introduced. Here the

COI is taken as the area in which the wavelet power caused

by a discontinuity at the edge has dropped to e−2 of the value

at the edge (Grinsted et al., 2004). The phase difference be-

tween the components of two signals, revealed from the com-

plex angles ofWxy(a,b), can be estimated by calculating the

mean and confidence interval of the phase difference. The

circular mean of the phase over regions with higher than 5 %

statistical significance that are outside the COI are used to

quantify the phase relationship. The circular mean of a set of

angles (αi, i = 1...n) is defined as (Zar, 1999)

ᾱi = arg(X,Y ) ; X =

n∑
i=1

cos(αi); Y =

n∑
i=1

sin(αi). (6)

The circular standard deviation, reflecting the scatter of an-

gles around the mean, is defined as s =
√
−2In(R/n), where

R =
√
X2+Y 2. The circular standard deviation is analogous

to the linear standard deviation, in that it varies from zero to

infinity. In some cases there might be reasons for calculating

the mean phase angle for each scale, and then the phase angle

can be quantified as a number of days.

Analysis of the wavelet transform coherence (WTC) of

two signals x(t) and y(t) is another useful measure to reveal

the high common wavelet power and the localized correla-

tion coefficient of the two signals in time frequency space.

The wavelet coherence is defined by Torrence and Webster

(1999) as

R2(a,b)=

∣∣S(a−1Wxy(a,b))
∣∣2

S
(
a−1|Wx(a,b)|

2
)
· S
(
a−1

∣∣Wy(a,b)
∣∣2) , (7)

where S is a smoothing operator. For the Morlet wavelet a

suitable smoothing operator is given by Torrence and Web-

ster (1999):

Stime

(
Wf (a,b)

)∣∣
a
=

(
Wf (a,b) · c

−t2/(2a2)

1

)∣∣∣
a

Sscale

(
Wf (a,b)

)∣∣
t
=
(
Wf (a,b) · c2

∏
(0.6a)

)∣∣
t
,

(8)

where Sscale denotes smoothing along the wavelet scale axis,

Stime denotes smoothing in time, c1 and c2 are normaliza-

tion constants and
∏

is the rectangle function. The statistical

significance level of WTC is estimated using Monte Carlo

methods (Grinsted et al., 2004).

2.4 Hilbert–Huang transform (HHT)

In the original HHT, based on the Empirical Mode Decom-

position (EMD) approach, the data series x(t) is decomposed
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Figure 2. 10-year running means of the annual and seasonal precipitation signals at Ganyu during 1957–2011 (a), Dongtai during 1953–

2011 (b) and Shanghai during 1951–2011 (c).

in terms of truth, intrinsic mode functions (IMFs), and trend

(R) components (Huang et al., 1998, 1999):

x(t)=

n∑
j=1

cj +Rn, (9)

where cj is the IMF component, and Rn is the residue of data

x(t) after n number of IMFs are extracted.

As proposed by Wu and Huang (2009), the first step of

Ensemble Empirical Mode Decomposition (EEMD) process

is to add a white noise series w(t) to the targeted data. The

added white noise is treated as the possible random noise that

would be encountered in the measurement process. Under

such conditions, the ith “artificial” observation will be

xi(t)= x(t)+wi(t). (10)

In the case of only one observation, each multiple-

observation ensemble is mimicked by adding not arbitrary

but different realizations of white noise (wi(t)) to that single

observation as given in Eq. (11). The second step is to de-

compose the data with added white noise into IMFs. Repeat

step 1 and step 2 again and again, but with different white

noise series each time, and at last obtain the ensemble means

of corresponding IMFs of the decompositions as the final re-

sult. As the ensemble number approaches infinity, the truth,

cj (t), as defined by EEMD, is

cj (t)= lim
N→∞

1

N

N∑
k=1

[
cjk(t)

]
, (11)

cjk(t)= cj (t)+Rjk(t),

where Rjk(t) is the contribution to the j th IMF from the

added white noise of the kth trial of the j th IMF in the noise-

added signal. The amplitude of noise wi(t) is not necessarily

small, usually setting an amplitude of 0.2 of that of the stan-

dard deviation of the corresponding data. But the ensemble

number of the trials N has to be large, usually not lower than

100.

The HHT marginal spectrum represents the accumulated

amplitude (energy) over the entire data span in a probabilistic

sense and offers a measure of the total amplitude (energy)

contribution from each frequency (period) value, serving as

an alternative spectrum expression of the traditional Fourier

spectrum. The marginal spectrum is defined as (Huang and

Wu, 2008)

h(ω)=

T∫
0

H(ω,t)dt, (12)

where [0, T ] is the temporal domain within which the data is

defined, H expresses the amplitude in terms of a function of

time and frequency, and ω is the instantaneous frequency. All

the CWT, XWT, WTC and HHT in this paper were carried

out in MATLAB.

3 Results

3.1 Precipitation trend forecast based on the

conventional linear fitting method

The average coefficients of variation for the monthly pre-

cipitation during each year reached 122.1, 95.4 and 75.6 %

at the coastal Ganyu, Dongtai and Shanghai meteorologi-

cal stations, respectively, and for the annual precipitation

among years reached 24.5, 24.0 and 18.4 %, respectively.

The prominent uneven precipitation distribution during sea-

sons and years in the studied area and a slightly decreasing

trend of this kind of unevenness with the latitude dropping

were revealed. The summer precipitation made up 61.0, 51.0

and 41.4 % of the annual precipitation at Ganyu, Dongtai and

Shanghai, respectively, with the significant correlation coeffi-

cients of 0.88, 0.84 and 0.77, respectively, between the sum-

mer and annual precipitation at the 0.05 confidence levels.

Further more, the 10-year running means of summer precip-

itation signals showed the most similar dynamic curves with

the annual precipitation signals (Fig. 2). The above analy-

sis indicated that the summer precipitation dynamics played

a dominant role in the annual precipitation changes in the

studied area.

www.nat-hazards-earth-syst-sci.net/15/393/2015/ Nat. Hazards Earth Syst. Sci., 15, 393–407, 2015
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Table 1. Fitting equations of the annual and seasonal precipitation series at the Ganyu, Dongtai and Shanghai stations based on the original

data and 10-year running means data (y denotes the annual or seasonal precipitation (mm), x denotes the time series (1, 2, 3,...), r and P

denote the correlation coefficient and P value in the regression model.

Fitting equations at Ganyu Fitting equations at Dongtai Fitting equations at Shanghai

Precipitation Based on Based on 10-year Based on Based on 10-year Based on Based on 10-year

signals original data running means data original data running means data original data running means data

Annual

precipitation

y =-0.883x+954.7

r =0.06, P =0.65

y =-0.860x+948.8

r =0.19, P =0.21

y =-

1.321x+1107.4

r =0.09, P =0.50

y =-1.096x+1089.9

r =0.21, P =0.15

y =1.288x+1119.9

r=0.11, P =0.41

y =2.497x+1064.5

r =0.55,

P =2.08×10−5

Spring

precipitation

y =0.397x+133.4

r =0.09, P =0.49

y =0.317x+135.8

r =0.31, P =0.03

y =-0.126x+219.6

r =0.03,P =0.84

y =0.099x+216.3

r =0.07, P =0.63

y =-1.406x+332.6

r =0.31, P =0.02

y =-1.164x+334.9

r =0.74,

P =4.43×10−10

Summer

precipitation

y =-0.229x+573.4

r =0.02, P =0.88

y =-0.234x+565.1

r =0.07, P =0.66

y =0.025x+543.3

r =0.002,P =0.99

y =-0.277x+538.2

r =0.09, P =0.55

y =3.167x+382.4

r =0.31, P =0.01

y =4.213x+319.2

r =0.77,

P =2.51×10−11

Autumn

precipitation

y =-1.233x+200.4

r =0.20, P =0.14

y =-1.308x+207.6

r =0.71,

P =2.82×10−8

y =-1.523x+253.3

r =0.24, P =0.06

y =-1.641x+254.8

r =0.64,

P =6.70×10−7

y =-1.056x+270.4

r =0.19, P =0.15

y =-1.564x+296.7

r =0.63,

P =7.26×10−7

Winter

precipitation

y =0.183x+47.4

r =0.11, P =0.45

y =0.365x+40.3

r =0.70,P =5.20×10−8
y =0.303x+91.2

r =0.12, P =0.38

y =0.723x+80.5

r =0.68,

P =4.36×10−8

y =0.583x+134.5

r =0.17, P =0.20

y =1.012x+113.7

r =0.55,

P =2.57×10−5

As one conventional method for assessing the precipita-

tion dynamics, the original precipitation data series are usu-

ally treated by linear fitting, in which the 10 times of the

slope of fitting line, i.e., the climate tendency rate, denotes

the precipitation changes of every 10 years (Xu et al., 2004;

Wang et al., 2006). A negative climate tendency rate denotes

a decreasing precipitation trend, while a positive one denotes

an increasing trend. The fitting equations for the original an-

nual and seasonal precipitation data series, together with the

fitting equations for the 10-year running means data, at the

three studied stations were computed and shown in Table 1.

Results showed that the climate tendency rates of annual

precipitation at Ganyu, Dongtai and Shanghai were −8.83,

−13.21 and 12.88 mm/10 years, respectively, which indi-

cated the decreasing trends of annual precipitation at Ganyu

and Dongtai and the increasing trend at Shanghai. The cli-

mate tendency rates of seasonal precipitation at different me-

teorological stations were calculated in the same way. How-

ever, it should be noted that most of the fitting equations

based on the original precipitation data did not pass the statis-

tical test at 0.05 confidence level. Although the statistic sig-

nificance of fitting equations based on the 10-year running

means data increased slightly, the overall performance of

precipitation trend forecast based on the conventional anal-

ysis was too poor to be used for the accurate precipitation

dynamics assessment. In view of this, the popular wavelet

analysis method continuous wavelet transform (CWT) was

introduced into the precipitation trend forecast by revealing

the periodic characteristics of precipitation signals at multi-

ple temporal-frequency scales.

Figure 3. Real parts of the Morlet (a) and Mexican hat (b) wavelet

transform coefficients of the annual precipitation at Dongtai during

1953–2011.

3.2 Multi-scale periodic characteristics of annual and

seasonal precipitation signals based on CWT

The Morlet and Mexican hat wavelet transform coefficients

of annual and seasonal precipitation signals at different me-

teorological stations were calculated by MATLAB. Taking

the annual precipitation at Dongtai as an example (Fig. 3),

the Morlet and Mexican hat wavelet transform coefficients

clearly indicated the distribution of the annual precipitation

signal at multiple time scales. The solid isograms indicated
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Figure 4. Global wavelet power spectra and their confidence tests using the white noise model for the Morlet (a) and Mexican hat (b) wavelet

transforms of the annual precipitation at Dongtai during 1953–2011.

the positive wavelet coefficients and an increasing trend of

the annual precipitation, and the dashed isograms indicated

the negative wavelet coefficients and a decreasing trend. In

order to more directly reveal the precipitation signal’s multi-

scale periodic characteristics, the global wavelet power spec-

tra based on the Morlet and Mexican hat wavelet transform

coefficients were calculated and shown in Fig. 4. Since the

r(1) of Dongtai annual precipitation data series was −0.23,

the corresponding theoretical power spectra for testing the

Morlet and Mexican hat wavelet power density significances

at different time scales were calculated by using the white

noise model.

Results showed that the Morlet wavelet transform coeffi-

cients of Dongtai annual precipitation signal generated five

kinds of quasi periodic oscillations (QPOs), namely at 20-

, 14-, 7-, 5- and 2-year time scales (Figs. 3a and 4a). The

corresponding average changing periodicities (T ) of Dong-

tai annual precipitation signal (i.e., the average cycle years

between each two time domains with positive wavelet coef-

ficients) at the five time scales were 24, 16, 9, 5 and 2 years,

respectively, which were obtained by calculating and averag-

ing the year numbers of each two neighboring high and low

precipitation periods. Among the five QPOs, the 24- and 16-

year periods passed the 0.005 confidence test, and the 9-year

period passed the 0.2 confidence test, but the 5- and 2-year

periods showed very poor significances. With respect to the

Mexican hat wavelet transform, only one QPO at an 8-year

time scale was revealed and its corresponding period T was

31 years, which passed the 0.2 confidence test. The multi-

scale periodic characteristics for the Dongtai seasonal pre-

cipitation signals and for the annual and seasonal precipita-

tion signals at the Ganyu and Shanghai stations based on the

Morlet and Mexican hat wavelet transforms were obtained

in the same way, and were shown in Tables 2–4. It should

be noted that the global wavelet power spectra of the Shang-

hai autumn and winter precipitation series were tested using

the red noise model because their r(1) were 0.13 and 0.16,

respectively.

Comparing the two types of CWTs performances, the

Morlet wavelet transform showed more significant advantage

than the Mexican hat in capturing the oscillatory behaviors

and revealing the local features of the studied precipitation

signals periodicities, especially prominent in increasing the

confidence level of the wavelet power spectrum test. In view

of this, the dominant precipitation periods with the highest

confidence level revealed from the Morlet wavelet transform

were selected to further deduce and forecast the annual and

seasonal precipitation trends in the studied area.

3.3 Precipitation trend forecast based on CWT

According to the dominant periods of annual and seasonal

precipitation signals revealed by the Morlet wavelet trans-

forms, the precipitation trends in future years were forecasted

by deducing the future fluctuating of the wavelet transform

coefficient curves at the corresponding dominant time scales.

Taking the Dongtai precipitation forecast as an example, two

dominant periods of 24 and 16 years, both of which passed

0.005 significance tests, were revealed in both the annual and

summer precipitation signals, and the dominant periods of

16, 23 and 17 years were revealed in the spring, autumn and

winter precipitation signals, respectively. The corresponding

wavelet coefficient curves for the annual and seasonal pre-

cipitation at different dominant time scales were shown in

Fig. 5. Each single cycle in the wavelet coefficient curve was

constituted by a high-precipitation half-period, in which the

wavelet coefficients were positive, and a low-precipitation

half-period, in which the coefficients were negative. Results

in Fig. 5 showed that all the wavelet coefficients of annual

and seasonal precipitation in 2011 located at the end of each

high-precipitation half-period, which indicated that the an-

nual and summer precipitation in the next 8–12 years, the

spring precipitation in the next 8 years, the autumn precipi-

tation in the next 12 years, and the winter precipitation in the

next 8 years would probably be in the relatively low periods.
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Table 2. Annual and seasonal precipitation periods and their significances at different time scales based on the Morlet and Mexican hat

wavelet transforms at the Ganyu station.

Morlet wavelet Mexican hat wavelet

Precipitation Periodicity a T Confidence a T Confidence

signals levels (years) (years) level (years) (years) level

Annual First 11 17 0.001 3 15 0.10

precipitation Second 18 21 0.01 – - –

Third 4 5 0.25 – – –

Spring First 5 6 0.05 2 8 0.15

precipitation Second 13 16 0.30 – – –

First 13 15 0.005 3 11 0.15

Summer Second 18 21 0.10 – – –

precipitation Third 4 5 0.30 – – –

Fourth 2 3 0.95 – – –

Autumn First 10 12 0.05 3 12 0.05

precipitation Second 18 21 0.15 – – –

Winter First 13 16 0.20 3 15 0.40

precipitation Second 8 11 0.40 – – –

Third 3 4 0.75 – – –

Table 3. Annual and seasonal precipitation periods and their significances at different time scales based on the Morlet and Mexican hat

wavelet transforms at the Dongtai station.

Morlet wavelet Mexican hat wavelet

Precipitation Periodicity a T Confidence a T Confidence

signals levels (years) (years) level (years) (years) level

First 20 24 0.005 8 31 0.20

Second 14 16 0.005 – – –

Annual Third 7 9 0.20 – – –

precipitation Fourth 5 5 0.45 – – –

Fifth 2 2 0.91 – – –

Spring First 14 16 0.15 8 33 0.45

precipitation Second 3 4 0.45 1 4 0.60

Third 8 11 0.40 – – –

First 20 24 0.05 6 25 0.55

Second 15 16 0.05 1 4 0.96

Summer Third 7 9 0.25 – – –

precipitation Fourth 4 5 0.55 – – –

Fifth 2 3 0.90 – – –

Autumn First 19 23 0.10 6 25 0.15

precipitation Second 6 7 0.40 – – –

Third 4 5 0.65 – – –

Winter First 14 17 0.05 5 23 0.15

precipitation Second 4 5 0.35 1 5 0.80

Third 7 9 0.50 – – –
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Table 4. Annual and seasonal precipitation periods and their significances at different time scales based on the Morlet and Mexican hat

wavelet transforms at the Shanghai station.

Morlet wavelet Mexican hat wavelet

Precipitation Periodicity a T Confidence a T Confidence

signals levels (years) (years) level (years) (years) level

First 20 24 0.001 2 7 0.80

Annual Second 9 11 0.05 – – –

precipitation Third 4 5 0.70 – – –

Fourth 2 3 0.75 – – –

Spring First 21 24 0.01 9 30 0.20

precipitation Second 3 4 0.40 3 11 0.80

Third 7 8 0.40 – – –

Summer First 20 24 0.05 3 14 0.55

precipitation Second 9 11 0.10 – – –

Third 3 3 0.95 – – –

Autumn First 20 25 0.05 3 11 0.20

precipitation Second 9 11 0.20 – – –

Third 4 5 0.75 – – –

Winter First 14 17 0.05 – – –

precipitation Second 3 4 0.35 – – –

Third 6 8 0.60 – – –

Figure 5. Morlet wavelet transform coefficients for the Dongtai annual and summer precipitation signals at the 24-year (a, c) and 16-

year (b, d) dominant periods, for the spring precipitation at the 16-year dominant period (e), for the autumn precipitation at the 23-year

dominant period (f), and for the winter precipitation at the 17-year dominant period (g).
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Table 5. Statistical results of the multi-scale time–frequency characteristics from the EEMD of summer precipitation signals.

Average Average Average Variance Correlation

Precipitation EEMD frequency period amplitude contribution coefficient with

signals components (1/year) (year) (mm) (%) original signal

IMF1 0.3287 3.0 177.8 49.6 0.73

Ganyu summer IMF2 0.1689 5.9 94.3 13.9 0.45

precipitation IMF3 0.0865 11.6 122.1 27.6 0.39

IMF4 0.0566 17.7 71.1 7.3 0.08

R5 0.2735 3.7 560.1 1.6 0.10

IMF1 0.3513 2.8 234.0 72.1 0.82

Dongtai IMF2 0.1783 5.6 105.0 13.9 0.41

summer IMF3 0.0998 10.0 58.4 4.9 0.28

precipitation IMF4 0.0426 23.5 85.1 8.5 0.26

R5 0.3332 3.0 562.2 0.6 0.15

IMF1 0.3332 3.0 176.1 52.5 0.72

Shanghai IMF2 0.1644 6.1 114.0 32.8 0.43

summer IMF3 0.0736 13.6 44.5 4.2 0.17

precipitation IMF4 0.0175 57.1 96.0 9.5 0.41

R5 0.2373 4.2 490.6 0.9 0.35

Similarly, the future precipitation trends at the Ganyu

and Shanghai stations were deduced and forecasted. Results

showed that the annual and summer precipitation in the next

8–10 years, the autumn precipitation in the next 6 years and

the winter precipitation in the next 7 years at the Ganyu sta-

tion would probably be in the relatively low periods, because

all their wavelet coefficients at the corresponding dominant

periods in 2011 located at the end of each high-precipitation

half-period. With respect to the Ganyu spring precipitation,

it would still be in a relatively low period in the next 2 years

and then revert to a relatively high period in the next 3 years,

because the wavelet coefficient in 2011 located at the first

year of one low-precipitation half-period. At the Shanghai

station, all the annual and summer precipitation in the next

5–12 years, the spring precipitation in the next 12 years and

the winter precipitation in the next 8 years would probably be

in the relatively low periods. With respect to the Shanghai au-

tumn precipitation, it would still be in a relatively high period

in the next 2 years and then revert to a relatively low period

in the next 12 years. The above forecast showed an overall

decreasing trend of precipitation in the next future years in

the studied coastal region.

4 Discussions

4.1 Improvement of multi-scale periodic

characteristics revealing capabilities by combining

continuous wavelet transform (CWT) and

Hilbert–Huang transform (HHT) methods

The previous studies (Zhu and Wang, 2001; Wei and Zhang,

2009; Zhu et al., 2011) have reported the significant decadal

quasi periodic oscillation (QPO) of summer precipitation at

about 30 years and interannual QPOs of summer precipita-

tion at about 2 and 8 years in both the Huaihe River val-

ley and the Yangtze River lower reach in China. The climate

background is the corresponding decadal and interannual

QPOs characteristics in the East Asian summer monsoon cir-

culation (Chang et al., 2000). Among the three studied sta-

tions in the coastal region, the Ganyu station is located at the

north part of Huaihe River Valley, the Shanghai station is lo-

cated at the south part of the Yangtze River Lower Reach,

and the Dongtai station is located at the crossing part of the

two valleys. Based on the popular CWT method, the sum-

mer precipitation signals in the studied stations show sig-

nificant broad-scale periodicities at approximate 9 years and

25 years, which match the approximate 8- and 30-year scale

QPO characteristics in the two valleys precipitation. How-

ever, the summer precipitation periodicity at fine scale in

the studied stations, revealed by the CWT, shows very poor

significances; this does not match the significant interannual

QPO characteristic at about a 2-year scale in the two valleys

precipitation. The main reason causing the poor performance

of CWT method on revealing the fine-scale periodicity in the
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Figure 6. HHT marginal spectra of the annual (1) and seasonal (2–5) precipitation signals at the studied three stations.

coastal precipitation is the mode mixing problem in the CWT

process, e.g., the precipitation QPO at a fine time scale is of-

ten nested in a broad time scale QPO in Fig. 3. In addition,

the precipitation dynamic in the coastal region is often in-

fluenced by some unique climatic and environmental factors,

such as the typhoon and the storm tide. These factors may

lead some stochastic impacts on the periodic characteristics

in the coastal precipitation and decrease the significance of

fine-scale periodicities, which may aggravate the mode mix-

ing in the CWT.

Since the improved HHT method, which is based on

the ensemble empirical mode decomposition (EEMD) algo-

rithm, has been popularly used in recent years in decompos-

ing data into multi-scale IMF components with prominent

advantage in eliminating the mode mixing drawback in the

traditional Empirical Mode Decomposition (EMD), the fol-

lowing study tries to introduce the improved HHT method

into eliminating the mode mixing problem in the CWT anal-

ysis of the studied precipitation signals multi-scale periodic

characteristics.

For each summer precipitation signal, the statistical results

of five decomposition components obtained from the EEMD

are displayed in Table 5. The corresponding HHT marginal

spectra based on EEMD are shown in Fig. 6a3, b3 and c3).

In the EEMD process, an ensemble size of 100 is used, and

the added white noise in each ensemble member has a stan-

dard deviation of 0.2. Among the five decomposition compo-

nents of each summer precipitation signal, IMF1-IMF4 are

intrinsic mode function components at multiple frequencies

and R5 is a trend component. For each summer precipitation

signal, the fist decomposed IMF1, which denotes an aver-

age period at approximately 2 years, has the highest variance

contribution ratios and the most significant correlation coef-

ficients with the original data. For the corresponding HHT

marginal spectrum of each summer precipitation signal, the

most significant amplitude (or energy) accumulation occurs

at the period of approximately 2 years. Further more, the

EEMD-based HHT marginal spectra of the annual and the

other seasonal precipitation signals (Fig. 6) show similar and

significant fine-scale periodicities as the summer precipita-

tion signal. Comparing the CWT method, the EEMD-based
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Figure 7. Monthly dynamics of the precipitation and soil EC of different layers in the new reclaimed farmland(a), and their correlation (b).

HHT method well improves the capabilities in eliminating

the fine-scale mode mixing problem and in revealing the pre-

cipitation signals fine-scale periodic characteristics. As for

the broad-scale periodicities analysis, the HHT results, that

the annual and seasonal precipitation signals have approxi-

mate 9- and 25-year periodicities, match the CWT results.

However, the significances in the broad-scale periodicities

revealed by the HHT are slightly lower than that revealed

by the CWT.

The above discussion proves that it is reasonable to accu-

rately analyze the precipitation signals multi-scale periodici-

ties by combining the CWT and HHT methods, i.e., using the

EEMD-based HHT method to eliminate the fine-scale mode

mixing drawbacks in the CWT and to improve the signal’s

multi-scale periodic characteristics. In view of this, the pre-

cipitation trend forecast based on the CWT should not ig-

nore the precipitation signals fine-scale periodicities. In the

case study, the three stations annual and seasonal precipita-

tion trends at fine scales can be forecasted by deducing the

future fluctuating of the wavelet transform coefficient curves

at the corresponding periods of 2–3 years. Results show an

overall decreasing trend of the precipitation in the next fu-

ture 1–2 years in the studied stations, because all the fine-

scale wavelet coefficients in 2011 locate at the end of each

high-precipitation half period.

4.2 Applying research results of precipitation

multi-scale time–frequency characteristics to soil

hydrological process study

Before evaluating the impacts of coastal-region multi-scale

precipitation trends on the soil hydrological process, the re-

lationship between the precipitation dynamics and soil and

groundwater salinization dynamics needs to be quantitatively

analyzed first, which is shown in the following study by tak-

ing the relatively short monitoring data analysis in a newly

cultivated farmland at the typical reclamation area Dongtai

as an example.

The comparison results between the dynamics of monthly

precipitation and monthly average soil electric conductiv-

ity (EC), standing for soil salinity, at different soil layers

are shown in Fig. 7a. Results show that the surface soil EC

(10 cm layer) decreases significantly with the precipitation

increase and increases with the precipitation decrease, with a

significant correlation coefficient of 0.76 under the 0.01 con-

fidence level (P = 0.004) by the logarithmic function fitting

(Fig. 7b). On the contrary, see Fig. 7a, the 50 and 100 cm lay-

ers soil EC dynamics are in keeping with the precipitation dy-

namics. The positive correlation coefficient of 0.63 between

the 50 cm layer soil EC and precipitation is significant un-

der the 0.05 confidence level (P = 0.029) by the logarithmic

function fitting, while the positive correlation coefficient of

0.44 between the 100 cm layer soil EC and precipitation is

not significant under the 0.05 confidence level (P = 0.173)

by the logarithmic function fitting. It seems that the soil salt

is leached from the surface part to lower part when the pre-

cipitation increases. Further analysis shows that in average

every 10 mm monthly precipitation increase in the monitor-

ing site causes correspondingly 0.1–0.2 dS m−1 decrease of

the surface soil EC (Fig. 7b).

Because of the shallow groundwater table, usually chang-

ing from 80 to 150 cm layer over the whole year at the studied

coastal reclamation region, the groundwater salinity dynam-

ics has very close relationship with the precipitation change.

The daily precipitation and groundwater EC dynamics based

on the original monitoring data covering 1 whole year are

shown in Fig. 8a. Results show that the groundwater EC usu-

ally increases significantly when the precipitation increases

and leaches soil salt downwards. While, when the precipita-

tion is low and evaporation is high, the salt in groundwater

moves upwards into soil and the groundwater EC decreases.

Based on the daily precipitation and groundwater EC data

series, the cross wavelet power spectrum from cross wavelet

transform (XWT) and the corresponding wavelet transform

coherence (WTC) results are shown in Fig. 8b and c, respec-

tively. Since the r(1) of daily groundwater EC and precipita-

tion series are 0.98 and 0.30, respectively, the red noise test

in XWT is chosen. Prominent resonant periods of the two

signals around the 5-, 15-, 25- and 70-day bands stand out
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Figure 8. Original precipitation and groundwater EC data series (a), and their cross wavelet transform (b) and the corresponding average

squared wavelet coherence coefficients (c). The thick black contour in (b) denotes the 0.05 significance level against the red noise test, the

cone of influence where the edge effects might distort the picture is shown as a lighter shade, and the relative phase relationship is shown as

the arrows (with in-phase pointing right, anti-phase pointing left).

as being significant at the 0.05 significance level. The aver-

age squared wavelet coherence coefficient between the two

signals around the 70-day band is the highest and equals to

0.88, which proves the most significant oscillation coherence

between the two series at the periods around 70-day band.

In view of this, the XWT phase angles within the 0.05 sig-

nificant regions around the 70-day band are reasonable to be

calculated. The mean phase −34.1± 5.3◦ (where ± desig-

nates the circular standard deviation) at the periods around

70-day band is in-phase, which indicates about 5–7-day lag

of the impact of precipitation dynamics on the groundwater

EC dynamics.

The above discussion indicates that the precipitation in-

crease at the coastal reclamation area can be very helpful for

the surface soil salt leaching, while may increase the salt ac-

cumulation in the deeper soil profile and groundwater, which

asks for reasonable drainage measures especially in rainy

seasons to prevent the coastal groundwater salinization. The

revealed future decreasing trend of precipitation, especially

in spring and summer, in the studied coastal region has neg-

ative impact on the surface soil salt leaching, thus may ag-

gravate the salinization in the salt-affected coastal land and

probably lead a new secondary salinization process in the

newly desalted and cultivated land in future years. This sug-

gests reasonable salt leaching and evaporation suppression

measures to prevent soil salinization, especially the root-zone

salinization, in future years.

It should be noted that the precipitation trend forecast

based on CWT and HHT in this study is qualitative. Thus,

the further quantitative evaluation of precipitation trend and

its impacts on soil and groundwater salinization in future re-

search may need more advanced mathematical models and

algorithms, such as discrete wavelet transform and neuro–

fuzzy models (Yang et al. 2013), and have to pay more at-

tention to the impacts of stochastic factors. In addition, be-

cause the soil and groundwater salinities monitoring site in

this study is located at a newly cultivated farmland, the longer

time series of soil and groundwater salinities monitoring data

need to be collected in the future research for the improve-

ment of quantitative analysis between the precipitation and

salinization dynamics.

5 Conclusions

This study conducts a detailed analysis of multi-scale peri-

odic characteristics involved in the annual and seasonal pre-

cipitation signals at different meteorological stations along

the coastal reclamation region by using and comparing two

types of popular continuous wavelet transforms (CWTs) and

their wavelet power spectrums. Furthermore the future an-

nual and seasonal precipitation trends in the studied coastal

stations are deduced and forecasted by selecting a suitable

wavelet to reveal the dominant precipitation periods. The

critical fine-scale mode mixing problem in the CWT pro-

cess is discussed and innovatively improved by combining

the EEMD-based Hilbert–Huang transform (HHT) method.

In addition, by analyzing the quantitative relationship be-

tween the precipitation dynamics and soil and groundwater

salinities dynamics, some novel attempts are made to evalu-

ate the impact of the revealed precipitation trend on the future

soil hydrological process in a newly cultivated coastal farm-

land. Some interesting conclusions can be drawn as follows.

1. By combining the CWT and the corresponding wavelet

power spectrum test, the multi-scale periodic charac-

teristics, mainly the broad-scale periodicities, of annual

and seasonal precipitation signals in the studied coastal

reclamation region are revealed. Comparing the perfor-

mances of two popular CWTs, the Morlet wavelet trans-

form is proved more suitable than the Mexican hat in

the studied area, because the Morlet shows more advan-

tage in capturing the oscillatory behaviors and revealing

the local feature of coastal precipitation periodicity, es-
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pecially in increasing the confidence level of wavelet

power spectrum test.

2. Comparing the traditional method of judging the precip-

itation trend by the climate tendency rate, which shows

relatively poor significances, the CWT-based forecast

approach by deducing the future wavelet coefficients

dynamics at the dominant precipitation period with the

highest significance level is proved more reasonable. By

means of this approach, a general decreasing trend in the

coastal annual and seasonal precipitation in future years

is demonstrated.

3. Although the superiorities of CWT method in revealing

the precipitation signals broad-scale periodicities and

forecasting the precipitation trend are proved, the crit-

ical fine-scale mode mixing problem in CWT causes

the poor significances of fine-scale periodicities, which

cannot well match the previous studies on the whole val-

leys precipitation periodicities and on the climate back-

grounds. Thus, the EEMD-based HHT method is in-

novatively introduced into the effective elimination of

fine-scale mode mixing drawback in CWT. It is demon-

strated reasonable to accurately analyze the precipita-

tion signals multi-scale periodicities by combining the

CWT and HHT methods.

4. The demonstrated prominent correlations between the

precipitation dynamics and soil and groundwater salin-

ities dynamics indicate that the precipitation increase

can effectively leach the surface soil salt downwards,

but may aggravate the salt accumulation in the deeper

soil layers and groundwater, which asks for reasonable

drainage measures in rainy seasons to prevent the possi-

ble groundwater salinization. By innovatively using the

cross wavelet transform (XWT) and wavelet transform

coherence (WTC) approaches, the significant coherence

around the 70-day resonant period between the pre-

cipitation dynamics and groundwater salinity dynam-

ics is revealed, which indicates the approximate 5–7-

day lag of the impact of precipitation dynamics on the

groundwater salinity. Thus, the revealed future decreas-

ing trend of precipitation, especially in spring and sum-

mer, may aggravate the soil salinization at the studied

coastal reclamation region, which asks for reasonable

salt leaching and evaporation suppression measures to

prevent the future soil secondary salinization process.

In addition, some ideas about the further improvements

of quantitative evaluation of precipitation trend and its

impacts on the soil hydrological process and of longer

monitoring data collection in the new cultivated land are

proposed.

Acknowledgements. This study is financially supported by the

Natural Science Foundation of China (grant nos. 41101518 and

41171181), and the University-Industry Cooperative Innova-

tion Project of Jiangsu Province, China (no. BY2013062). Cordial

thanks should be extended to the editors and the anonymous review-

ers. The Cross Wavelet Transform software package was provided

by A. Grinsted, J. C. Moore and S. Jevrejeva, and is available at

http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence.

Edited by: L. Ferraris

Reviewed by: two anonymous referees

References

Allen, M. R. and Smith, L. A.: Monte Carlo SSA: Detecting irreg-

ular oscillations in the presence of coloured noise, J. Clim., 9,

3373–3404, 1996.

Chang, C. P., Zhang, Y. S., and Li, T.: Interannual and interdecadal

variations of the East Asian summer monsoon and tropical pa-

cific SSTs, I–II, J. Clim., 13, 4310–4340, 2000.

Coulibaly, P. and Burn, H. D.: Wavelet analysis of variability in

annual Canadian streamflows, Water Resour. Res., 40, W03105,

doi:10.1029/2003WR002667, 2004.

Daubechies, I.: Ten Lectures on wavelets, CBMS-NSF Regional

Conference Series in Applied Mathematics, SIAM, 61, 194–202,

1994.

Farge, M.: Wavelet transforms and their applications to turbulence,

Ann. Rev. Fluid Mech., 24, 395–457, 1992.

Foufoula-Georgiou, E. and Kumar, P.: Wavelets in Geophysics,

Academic Press, New York, USA, 373 pp., 1995.

Ge, Z.: Significance tests for the wavelet power and the wavelet

power spectrum, Ann. Geophys., 25, 2259–2269, 2007,

http://www.ann-geophys.net/25/2259/2007/.

Gong, Z. Q., Zou, M. W., Gao, X. Q., and Dong, W. J.: On the

difference between empirical mode decomposistion and wavelet

decomposition in the nonlinear time series, Acta Physica Sinica,

54, 3947–3957, 2005 (in Chinese).

Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the

cross wavelet transform and wavelet coherence to geophys-

ical time series, Nonlin. Processes Geophys., 11, 561–566,

doi:10.5194/npg-11-561-2004, 2004.

Grossmann, A. and Morlet, J.: Decomposition of hardy functions

into square integrable wavelets of constant shape, SIAM J. Math.

Anal., 15, 723–736, 1984.

Gurley, K., Kijewski, T., and Kareem, A.: First and higher order

correlation detection using wavelet transforms, J. Eng. Mech.,

129, 188–201, 2003.

Huang, N. E. and Wu, Z. H.: A review on Hilbert-Huang transform:

Method and its applications to geophysical studies, Rev. Geo-

phys., 46, RG2006, doi:10.1029/2007RG000228, 2008.

Huang, N. E., Shen, Z., Long, R. S., Wu, M. C., Shih, E. H., Zheng,

Q., Tung, C. C., and Liu, H. H.: The empirical mode decompo-

sition method and the Hilbert spectrum for non-stationary time

series analysis, Proc. Roy. Soc. London A, 454, 903–995, 1998.

Huang, N. E., Shen, Z., and Long, R. S.: A new view of nonlinear

water waves – the Hilbert spectrum, Ann. Rev. Fluid Mech., 31,

417–457, 1999.

Nat. Hazards Earth Syst. Sci., 15, 393–407, 2015 www.nat-hazards-earth-syst-sci.net/15/393/2015/

http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence
http://dx.doi.org/10.1029/2003WR002667
http://www.ann-geophys.net/25/2259/2007/
http://dx.doi.org/10.5194/npg-11-561-2004
http://dx.doi.org/10.1029/2007RG000228


S. Yu et al.: Improvement for the multi-scale periodic characteristics 407

Jevrejeva, S., Moore, J. C., and Grinsted, A.: Influence of the Arc-

tic Oscillation and El Nino-Southern Oscillation (ENSO) on ice

conditions in the Baltic Sea: The wavelet approach, J. Geophys.

Res., 108, 4677, doi:10.1029/2003JD003417, 2003.

Labat, D., Ababou, R., and Mangin, A.: Rainfall-runoff relations for

karstic springs – Part II: Continuous wavelet and discrete orthog-

onal multiresolution analyses, J. Hydrol., 238, 149–178, 2000.

Labat, D., Ronchail, J., and Guyot, J. L.: Recent advances in wavelet

analyses – Part 2: Amazon, Parana, Orinoco and Congo dis-

charges time scale variability, J. Hydrol., 314, 289–311, 2005.

Liu, P. C.: Wavelet spectrum analysis and ocean wind waves, in:

Wavelets in Geophysics, edited by: Foufoula-Georgiou, E. and

Kumar, P., Academic Press, New York, USA, 151–166, 1994.

Liu, D. L., Liu, X. Z., Li, B. C., Zhao, S. W., and Li, X. G.: Multiple

time scale analysis of river runoff using wavelet transform for

Dagujia River Basin, Yantai, China, Chin. Geogra. Sci., 19, 158–

167, 2009.

Mallat, S.: A theory for multiresolution signal decomposition: the

wavelet representation, IEEE T. Pattern. Anal., 11, 674–693,

1989.

Mandelbrot, B. B. and Wallis, J. R.: Noah, Joseph and Operational

Hydrology, Water Resour. Res., 4, 909–918, 1968.

Meng, E. J. and Tang, B. P.: Jiangsu seabeach resources and the

development strategy, Southeast University Process, Nanjing,

China, 180–210, 2010 (in Chinese).

Nener, B. D., Ridsdill-Smith, T. A., and Zeisse, C.: Wavelet analysis

of low altitude infrared transmission in the coastal environment,

Infrared Phys. Tech., 40, 399–409, 1999.

Roth, P. R.: Effective measurements using digital signal analysis

(correlation, transfer and coherence functions in measurements,

using digital signal analysis), IEEE Spectrum, 8, 62–70, 1971.

Sadowskey, J.: Investigation of signal characteristics using the con-

tinuous wavelet transform., J. Hopkins APL Tech. D., 17, 258–

269, 1996.

Shark, L. K. and Yu, C.: Design of matched wavelet based on gen-

eralized Mexican-Hat function, Signal Process., 86, 1451–1469,

2006.

Torrence, C. and Compo, G. P.: A practical guide to wavelet analy-

sis, B. Am. Meteorol. Soc., 79, 61–78, 1998.

Torrence, C. and Webster, P. J.: Interdecadal changes in the Enso-

Monsoon System, J. Clim., 12, 2679–2690, 1999.

Walker, J. S.: Fourier analysis and wavelet analysis, Notices Am.

Math. Soc., 44, 658–670, 1997.

Wang, X. Y. and Ke, X. K.: Grain size characteristics of the ex-

tant tidal flat sediments along the Jiangsu coast, China, Sediment

Geol., 112, 105–122, 1997.

Wang, Y., Cao, M. K., Tao, B., and Li, K. R.: The characteristics of

spatio-temporal patterns in precipitation in China under the back-

ground of global climate change, Geogr. Res., 25, 1031–1041,

2006 (in Chinese).

Wei, F. Y. and Zhang, T.: Oscillation characteristics of summer pre-

cipitation in the Huaihe River valley and relevant climate back-

ground, Sci. China Ser. D, 39, 1360–1374, 2009 (in Chinese).

Wu, Z. H. and Huang, N. E.: Ensemble empirical mode decompo-

sition: A noise-assisted data analysis method, Adv. Adapt. Data

Anal., 1, 1–41, 2009.

Xu, Y. Q., Li, S. C., and Cai, Y. L.: Wavelet-based characteristics of

rainfall behaviors in the Hebei Plain, China, Sci. China Ser. D,

34, 1176–1183, 2004 (in Chinese).

Yang, R. W., Cao, J., Huang, W., and Nian, A. B.: Cross wavelet

analysis of the relationship between total solar irradiance and

sunspot number, Chinese Sci. Bull., 54, 871–875, 2009.

Yang, J.-S., Yu, S.-P., and Liu, G.-M.: Multi-step-ahead predic-

tor design for effective long-term forecast of hydrological sig-

nals using a novel wavelet neural network hybrid model, Hy-

drol. Earth Syst. Sci., 17, 4981–4993, doi:10.5194/hess-17-4981-

2013, 2013.

Yu, S. P., Yang, J. S., and Liu, G. M.: A novel discussion on two

long-term forecast mechanisms for hydro-meteorological signals

using hybrid wavelet-NN model, J. Hydrol., 497, 189–197, 2013.

Yu, S. P., Yang, J. S., and Liu, G. M.: Impact assessment of Three

Gorges Dam’s impoundment on river dynamics in the north

branch of Yangtze River estuary, China, Environ. Earth Sci., 72,

499–509, 2014.

Zar, J. H.: Biostatistical analysis, Prentice Hall, New Jersey, USA,

800–920, 1999.

Zhang, Q., Xu, C. Y., and Chen, Y. D.: Wavelet-based characteri-

zation of water level behaviors in the Pearl River estuary, China.

Stoch. Env. Res. Risk A, 24, 81–92, 2010.

Zhao, X. F., Yang, J. S., and Yao, R. J.: Relationship between soil

salt dynamics and factors of water balance in the typical coastal

area of Northern Jiangsu Province, T. Chinese Soc. Agr. Eng.,

26, 52–57, 2010 (in Chinese).

Zhu, J. H. and Wang, S. W.: 80a-Oscillation of summer rainfall over

the East Part of China and East-Asian Summer Monsoon, Adv.

Atmos. Sci., 18, 1043–1051, 2001.

Zhu, Y. L., Wang, H. J., Zhou, W., and Ma, J. H.: Recent changes

in the summer precipitation pattern in East China and the back-

ground circulation, Clim. Dyn., 36, 1463–1473, 2011.

www.nat-hazards-earth-syst-sci.net/15/393/2015/ Nat. Hazards Earth Syst. Sci., 15, 393–407, 2015

http://dx.doi.org/10.1029/2003JD003417
http://dx.doi.org/10.5194/hess-17-4981-2013
http://dx.doi.org/10.5194/hess-17-4981-2013

	Abstract
	Introduction
	Data and methodology
	Studied sites and data
	Continuous wavelet transform (CWT) and wavelet power spectrum test
	Cross wavelet transform (XWT) and wavelet transform coherence (WTC)
	Hilbert--Huang transform (HHT)

	Results
	Precipitation trend forecast based on the conventional linear fitting method
	Multi-scale periodic characteristics of annual and seasonal precipitation signals based on CWT
	Precipitation trend forecast based on CWT

	Discussions
	Improvement of multi-scale periodic characteristics revealing capabilities by combining continuous wavelet transform (CWT) and Hilbert--Huang transform (HHT) methods
	Applying research results of precipitation multi-scale time--frequency characteristics to soil hydrological process study

	Conclusions
	Acknowledgements
	References

