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Abstract. Flash floods have occurred frequently in the ur-

ban areas of southern China. An effective process-oriented

urban flood inundation model is urgently needed for urban

storm-water and emergency management. This study devel-

ops an efficient and flexible cellular automaton (CA) model

to simulate storm-water runoff and the flood inundation pro-

cess during extreme storm events. The process of infiltration,

inlets discharge and flow dynamics can be simulated with

little preprocessing on commonly available basic urban ge-

ographic data. In this model, a set of gravitational diverging

rules are implemented to govern the water flow in a rectangu-

lar template of three cells by three cells of a raster layer. The

model is calibrated by one storm event and validated by an-

other in a small urban catchment in Guangzhou of southern

China. The depth of accumulated water at the catchment out-

let is interpreted from street-monitoring closed-circuit televi-

sion (CCTV) videos and verified by on-site survey. A good

level of agreement between the simulated process and the re-

ality is reached for both storm events. The model reproduces

the changing extent and depth of flooded areas at the catch-

ment outlet with an accuracy of 4 cm in water depth. Compar-

isons with a physically based 2-D model (FloodMap) show

that the model is capable of effectively simulating flow dy-

namics. The high computational efficiency of the CA model

can meet the needs of city emergency management.

1 Introduction

Storm-water runoff simulation models are of fundamental

importance for assessing urban flooding dynamics (Chen and

Adams, 2007), risk assessment (Dunn et al., 2014; Mah-

moudi et al., 2013; Kubal et al., 2009; Taubenböck et al.,

2011; Tsakiris, 2014) and the evaluation of runoff quan-

tity and quality-control performance (Gilbert and Clausen,

2006; He et al., 2011). In the past decades, flash floods have

occurred frequently due to land cover and climate change

(Chang et al., 2010), especially in the urban areas of southern

China, and have caused serious damage to urban properties.

These problems present many challenges to urban manage-

ment, such as storm-water pipeline maintenance, non-point

source contamination, massive traffic jams. Therefore, a sim-

ple, efficient and process-considered urban flood inundation

model is urgently needed for urban storm-water and emer-

gency management. However, due to the complexity of the

urban infrastructure and built environment, urban flood mod-

eling that is sufficiently efficient for emergency management

has always been a challenging task (Bidur Ghimire, 2013).

Compared to lumped hydrological models, two-

dimensional (2-D) hydraulic models with high spatial

details based on hydraulic equations gain better accuracy

and credence in simulating the spread of water onto a wide

surface area that contains complex urban feature and can

provide detailed information about the flooding dynamics.

However, these models require a large amount of data,
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which are often difficult to obtain (Chen et al., 2012; Hunter

et al., 2005a; Neal et al., 2009; Schumann et al., 2011;

Zhang and Pan, 2014). Indeed, some cities do not have

detailed information on their sewer system, including exact

pipe junction locations and depths, pipe diameters and the

intricate morphology and boundary conditions of channel

and sewer networks (Zhang and Pan, 2014), especially

in the context of ancient and emergent urban areas as a

result of rapid urbanization of China. Thus, establishing

a physics-based model is a difficult task for most urban

management. In addition, urban flooding is a fast process

at a time scale as small as tens of minutes. The calculation

of the differential equations in these physics-based models

is complex and requires an immense computation time. In

contrast, floodplain inundation is most often characterized

by a much slower phenomenon (Leandro et al., 2014); thus,

the physics-based hydrologic model via calculation of the

differential equations is tolerable in a floodplain inundation

simulation but impractical in the urban flooding inundation

modeling and emergency management at present (Versini et

al., 2010).

A variety of measures have been developed for improving

the model performance, including grid coarsening (Yu and

Lane, 2006a), parallelization (Lamb et al., 2009; Sanders et

al., 2010; Yu, 2010), adaptive grid-based methods (Hunter

et al., 2005a; Wang and Liang, 2011), complexity-reduced

models (Liu and Pender, 2010) and simplified governing

equations (Bates et al., 2010). However, the loss of infor-

mation with low resolution in grid coarsening method often

leads to less accurate results, thus a subgrid treatment (Yu,

2010; Yu and Lane, 2006b) is developed to regain necessary

information. Although an unstructured mesh method can ef-

fectively reduce the computing burden among these methods

and has the potential to describe surface features, the pre-

processing of model setup data is complex, especially in an

urban area (Chen et al., 2012). Therefore, the requirements of

these methods do not fully meet the need of city emergency

management (Zhang and Pan, 2014). Accordingly, rapid and

simplified flood inundation models (RFIM) have appeared to

be common and straightforward for simulating flood inun-

dation recently, such as RFIM (Krupka et al., 2007), rapid

flood spreading model (Lhomme et al., 2008), urban inunda-

tion models based on geographic information system (GIS)

(Chen et al., 2009) and flood-connected domain calculation

(Zhang et al., 2014). Although these models have the advan-

tages of computing efficiency and robustness, they only sim-

ulate the maximum inundation extent and fail to provide the

flow and inundation processes.

Cellular automaton (CA) provides an alternative solution

by simplifying the physics-based 2-D models, with grid-

based simulation frame and allowing both time varying and

geo-algebraic solution of spatial dynamics (Parsons and Fon-

stad, 2007). Instead of solving the differential equations it-

eratively within the simulation domain, the CA model de-

scribes a system on the basis of the local interactions of their

constituent parts through incorporating gravitational rules to

represent surface-flow runoff (Burks, 1970; Di Gregorio and

Serra, 1999; Wolfram, 1984). Furthermore, CA is naturally

implementable through parallel computing, allowing for effi-

cient simulations. All these characters of CA models have the

tacit accordance with the requirements of city storm-water

and emergency management. While it is a sensible choice

to only use the gravitational term of the 2-D shallow wa-

ter equations for urban emergency management, it should be

noted that the algorithms in CA models do not solve all terms

in the equation necessary to replicate the full dynamics.

Since the storage cell approach was proposed by Zanobetti

et al. (1970) to predict floodplain inundation, many CA

models have become available in recent years for simu-

lating braided rivers (Parsons and Fonstad, 2007; Thomas

and Nicholas, 2002), river channels (Coulthard et al., 2002),

floodplain rivers (LISFLOOD-FP) (Bates and DeRoo, 2000)

and urban environments (Fewtrell et al., 2008, 2011). These

methods discretized flood plains into fine regular grids,

among which the fluxes of water are calculated according

to many uniform flow formulae, mostly simplified from the

Saint-Venant or Manning equations (Bates et al., 2010). For

instance, the LISFLOOD-FP is one of the most popular mod-

els and has been tested and improved by various schol-

ars, including comparing with other approaches (Horritt and

Bates, 2001, 2002), calibrating using different data (Hunter

et al., 2005a), proposing the adaptive time step (Hunter et al.,

2005b) and evaluating in an urban area (Fewtrell et al., 2008,

2011; Sampson et al., 2012). Bates (2010) presented a rea-

sonable approach which considered only the inertial term for

low computational cost. Thus, in some circumstances such

as urban emergency management, it is pragmatic to simplify

the flow-governing terms.

Therefore, this study aims to (i) develop an effective CA

model for efficient simulation of storm-water runoff for city

storm-water and emergency management by considering de-

tailed urban features with little preprocessing on commonly

available urban geographic data; and (ii) assess the feasibil-

ity and effectiveness of the model by using in situ observed

street water depth. The study area is a small independent

catchment in the downtown of Panyu district, Guangzhou,

China. Development of the model is described in Sect. 2.

Model calibration and validation are presented in Sect. 3. Re-

sults and discussion are elaborated in Sect. 4, followed by

conclusions in Sect. 5.

2 Model development

2.1 Model description

According to the underlying theory (Wolfram, 1985a, b,

1986a, b) of CA models, this study develops an urban surface

runoff simulation model. The model considers four parame-

ters:
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CA=< L,N,P,T > . (1)

L is the set of regular cells used to discretize the study area.

The model employs a 2-D lattice of regular cells to maintain

consistency with digital elevation models (DEM) in space

and to integrate with GIS software. The Von Neumann neigh-

borhood (Von Neumann, 1966) N is employed, allowing wa-

ter to be distributed to any of the four cells orthogonally sur-

rounding a central cell at each iteration. At a specific time,

each cell can exchange flow with all the four surrounding

cells, depending on the water surface elevation. Exchanges

between the central cell and the diagonal cells require two

consecutive iterations of the Von Neumann neighborhood ex-

changes.

P is the finite set of CA model parameters (Table 1) for de-

scribing the transition functions and the cell states. While cell

size, elevation and infiltration threshold do not change, other

state variables of the cell may be updated throughout the sim-

ulation. For instance, water is transmitted from the central

cell to its neighbors at each iteration, resulting in a corre-

sponding change of its water depth. T represents the tran-

sition rules that determine the flow routing from one cell to

another. During each iteration, precipitation, infiltration and

discharge to storm sewer inlets are considered within each

cell. The amount and timing of flow routing from one cell to

its neighbors are elaborated in Sect. 2.4.

During an urban storm event, surface water flow dynamics

consist of three major processes: infiltration to pervious sur-

face, discharge to storm sewer system and surface runoff of

excess water. Evapotranspiration can be neglected due to the

short duration and atmospheric conditions of a storm event.

Sections below present the individual transition functions as-

sociated with each process.

2.2 Infiltration

The process of infiltration is represented by a spatially vary-

ing infiltration rate for each pixel, limited by an infiltra-

tion threshold beyond which soil saturation is assumed to be

reached and infiltration is no longer allowed. The infiltration

threshold describes the maximum amount of surface water

loss to infiltration. Different land-cover types have different

infiltration rates and thresholds. Because the percentage of

pervious land is very small (only 16.6 % of the study area)

and the duration of the storm is relatively short, the follow-

ing simple function is used to present the infiltration in the

model for more efficient calibration. Once the cumulative in-

filtration amount is equal to or greater than the infiltration

threshold, no further infiltration will occur:

infiltrationa(t)= Ra × t, (2)

where Ra is the infiltration rate of cells of land cover a and

t is the CA time step for iteration.

Table 1. Parameters of the CA model.

Parameters Description

Side Size of the CA cell

t CA time step

El Elevation

Pre Precipitation

Wd Water depth

Ra Infiltration rate

It Infiltration threshold

Rc Roughness coefficient

D Drainage rate of inlets

2.3 Mass loss to storm sewer system

In addition to infiltration, discharge to a storm sewer sys-

tem needs to be considered during an urban rainstorm event.

Inlets are typically presented along the road edges in an ur-

ban environment, through which water can discharge to ur-

ban storm sewerage systems. In this CA model, storm sewer

inlets are explicitly represented by individual pixels. Instead

of infiltration, the pixel that contains an inlet has a sink term

associated with the mass loss to the underlying storm sewer

system. Storm sewer surcharge is not considered in the model

and it is assumed that the storm sewer system fully functions

during a storm event. The rate of mass loss at inlets depends

on a number of factors, including the local topography, storm

sewer capacity and inlet configuration. In this model, the rate

of discharge at the inlets to storm sewer system is determined

by a method by Sun (1999) (Eqs. 3 and 4):

Q= w ·C
√

2gh · k, (3)

D =Q/Ar, (4)

where Q is the inlet discharge flow (m3 s−1), w is the area

of inlet (m2), C is orifice coefficient, g is gravitational accel-

eration, h is allowed storage of water head of an inlet, k is

orifice obstruction coefficient and Ar is the area of a cell; and

discharge(t)=D× t, (5)

where D is the discharge rate of an inlet and t is the CA time

step.

2.4 Surface-flow routing

After considering infiltration and inlet discharge, the rest of

the storm water can form surface flow, often termed as sur-

face runoff. An empirically derived hydrological rule known

as the minimization algorithm is used in the model to rep-

resent surface runoff. This empirical method is proposed by

Di Gregorio and Serra (1999) in the SCIARA model to sim-

ulate lava flow. D’Ambrosio et al. (2001) employed a simi-

lar method in the SCAVATU model and specified three inter-

nal transformations and two external interactions to simulate
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Figure 1. Example of minimization algorithm (Di Gregorio and

Serra, 1999).

the behavior of soil erosion by water. Avolio et al. (2003)

extended this method and proposed a new solution to over-

come the problem of constant velocity and lack of precision.

However, the specific time step is not given in the original

algorithms of the three aforementioned publications. In this

paper, the Manning equation is combined with the minimiza-

tion algorithm to calculate the amount of water routed from

a central cell to its orthogonal neighboring cells in the CA

model, which is an improvement of the original methods.

In the CA model, the distribution of water from a central

cell to its neighboring cells is based on an algorithm that aims

to minimize the water surface elevation difference between

cells. The minimization algorithm is given below.

a. weli denotes the water surface elevation of the central

cell i= 0 and its neighboring cells (i= 1, 2, 3, 4). The

average water surface elevation of the cells is computed

by Eq. (6):

av1 =

(
wel0+

∑
i∈A

weli

)
m

, (6)

where m is the total cell count of the central cell plus the

neighboring cells involved in water redistribution – 5 in

step (a) – and term A refers to the set of neighboring

cells that receive water from the central cell.

b. Eliminate cells with weli > av1.

c. Calculate the average water elevation of the remaining

cells using Eq. (6) and further eliminate cells where

weli > av1.

d. Repeat step (c) until no further cells can be eliminated.

e. Partition the outflow from the central cell such that the

remaining neighboring cells have the same elevation as

the central cell.

This is illustrated in Fig. 1 using a set of cells with hypothet-

ical elevation values.

To determine the time step of the model iteration, Man-

ning’s equation is used to calculate the velocity for each

pixel, defined as a function of water depth (d), surface

slope (S) and roughness coefficient (n) (Eq. 7).

Figure 2. (a) Location of the catchment in Panyu, Guangzhou;

(b) the surface elevation DEM; (c) the components of this catch-

ment.

velocity=
d2/3S1/2

n
(7)

The time step is calculated for each pixel as the ratio between

cell size and velocity. The minimum time step among the

calculated values is used as a global time step so that stability

can be maintained in the simulation.

To summarize, the combination of the minimization algo-

rithm and Manning’s equation allows for the calculation of

the water elevation, the amount and direction of water ex-

change and time taken for the exchange. At each time step,

the model applies the CA rules to each cell in the follow-

ing order: (i) precipitation is added to cells according to the

length of the time step and precipitation rate; (ii) infiltration

or inlets discharge is subtracted to obtain the current water

depth in the cell; (iii) the velocity of each cell is calculated

according to Manning’s equation, the traverse time of each

cell is obtained and the minimum transverse time is chosen as

the CA iterative time step to prevent the water from crossing

a pixel in less than one time step; and (iv) the movable water

is distributed to its neighboring cells following the minimiza-

tion algorithm.

3 Case study and data availability

The model is tested in a 0.2 km2 urban catchment (Fig. 2), the

downtown of Panyu district, Guangzhou, China. While com-

mon flooding events in a natural watershed inundate large ar-
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Figure 3. Time series of precipitation (mm h−1) and observed water depth (cm) measured from the lowest point of the catchment during the

(a) 19 April and (b) 4 September 2012 events.

eas and last for hours and days, urban flooding events usually

occur in a small or even tiny subcatchment and on discrete

sites with lower elevation due to natural topology or civil

engineering projects. Most urban flooding events normally

last for tens of minutes. The test site is one of the frequently

flooded spots. It is located at a low section of a main avenue

in the downtown area, and the flooding often causes serious

traffic jam. There is a closed-circuit television (CCTV) cam-

era monitoring the site and a rain gauge nearby, thus pro-

viding good rainfall data and water inundation (depth and

volume) data on the street. Such data are critical for model

calibration.

The land-cover map of the catchment is obtained from

the local government, and the primary land-cover types are

grassland, building, road and concrete surfaces. Around 83 %

of the catchment surface is impervious. There are 96 indi-

vidual storm sewer inlets in the catchment. According to

Eqs. (3) and (4), the drainage rate of an inlet is calculated

as 4.6 mm s−1. All inlets have the same dimension (rectangle

of 0.21 m2), giving an orifice coefficient of 0.6 and obstruc-

tion coefficient of 0.67. Mark et al. (2004) suggested values

between 1 and 5 m as optimal grid size to capture the main

urban topographic features. The CA model is established us-

ing 5 m DEM grids. The elevation of buildings is universally

raised by 10 m above the ground for the simulation purpose.

Since the resolution and accuracy of the DEM are suffi-

ciently high, water runoff over the roads is explicitly con-

sidered in the simulation, including eventual lateral water in-

flows coming into the study area through the streets. As the

study area is an independent catchment area, the only way for

water to flow out of the system is through the 96 individual

storm sewer inlets.

The model is calibrated by a storm event occurred on

19 April 2012 and validated by another storm on 4 Septem-

ber 2012. The first storm event lasted for 1.2 h and the peak

rainfall intensity reached 91 mm h−1. Precipitation hyeto-

graph of a 1 min interval is presented in Fig. 3. Street mon-

itoring CCTV videos are available at the outlet of the catch-

ment for both events. Time series of water depth is estimated

with uncertainties of ±4 cm based on the traffic separation

metal fences and other street marks visible in the videos

reasonably well. Peak depths are validated on-site after the

events by measuring the watermarks left on the metal fences.

Time series of the observed water depth are presented in

Fig. 3a and b, depicting the inundating process and provid-

ing critical data for model calibration and validation. No sur-

charge was observed during the flood.

4 Results and discussion

4.1 Model calibration and sensitivity analysis

Model calibration and sensitivity analysis are undertaken for

the 19 April 2012 event to obtain the optimal set of parameter

values for the study site. Roughness value and infiltration rate

are identified as the key parameters in the CA model. Given

that this is an urban site, four relatively low values of Man-

ning’s n are tested (0.01, 0.02, 0.03 and 0.04) for each of the

four land-cover types (grassland, building, road and concrete

surfaces), and two infiltration rates (5.8 and 11.7 mm h−1)

are tested for grassland (Rossman, L., 2004). A total of 512

(4× 4× 4× 4× 4× 2= 512) simulation runs are generated

in the calibration process.

Nine representative simulations are presented below to

elaborate the sensitivity analysis (Table 2). They are clas-

sified into four groups. The impermeable land and paved

roads account for 51.61 % of the total area. Simulations 1–

4 are used to analyze the impact of the roughness of con-

crete surface on model predictions. Around 31.82 % of the

study site is occupied by buildings. Roughness is varied in

simulations 1, 5, 6 and 7 to test its impact on flow routing.

Simulations 1 and 8 are used to test the impact of rough-
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Figure 4. Results of the sensitivity analysis: (a) various roughness values for the concrete surface; (b) various roughness values for the

buildings; (c) various roughness values for the grassland; and (d) various infiltration rates for the grassland.

Table 2. Representative parameter combinations used in the sensi-

tivity analysis.

Infiltration

Manning’s n (mm h−1)

Grassland Impermeable Road Building Grassland

(16.57 %) land (14.08 %) (31.82 %)

(37.53 %)

1 0.04 0.01 0.01 0.01 11.7

2 0.04 0.02 0.02 0.01 11.7

3 0.04 0.03 0.03 0.01 11.7

4 0.04 0.04 0.04 0.01 11.7

5 0.04 0.01 0.01 0.02 11.7

6 0.04 0.01 0.01 0.03 11.7

7 0.04 0.01 0.01 0.04 11.7

8 0.01 0.01 0.01 0.01 11.7

9 0.04 0.01 0.01 0.01 5.8

ness specification for grassland on flow prediction. More-

over, two infiltration values are used for the grassland sur-

face (11.7 and 5.8 mm h−1) to test the model response to the

infiltration parameter. Results of the sensitivity analysis are

shown in Fig. 4.

The model’s responses to various roughness values and in-

filtration rates are illustrated in Fig. 4. With the increase of

Manning’s n for concrete surface (Fig. 4a), the simulation

curve becomes smoother, and the peak water depth decreases

proportionately (39.55, 38.50, 37.32 and 36.17 cm). As ex-

pected, the time of peak depth occurs later into the event

(11:22, 11:24, 11:27 and 11:28 LT), due to the slower wa-

ter movement associated with higher surface roughness. The

model demonstrates a similar trend in the sensitivity analysis

when the roughness for the building roof is varied (Fig. 4b).

However, the magnitude is slightly smaller due to the cov-

erage of buildings. Due to the small size of the grassland

(17 %), the model is relatively insensitive to the variation of
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the roughness parameter (Fig. 4c). When the infiltration rate

of grassland is halved from 11.7 to 5.8 mm h−1, the peak wa-

ter depth only increases by 1.6 cm and the peak depth timing

is delayed by 1 min, indicating the model is relatively insen-

sitive to the change of infiltration rate as well for the small

grassland area.

Root mean square error (RMSE) is calculated by compar-

ing the model-predicted depth with the observed depth at a

1 min interval using Eq. (7):

RMSE=

√√√√√ q∑
i=1

(
d

pred

i − dref
i

)2

q
, (8)

where, for each simulation, q is number of the paired val-

ues and d
pred

i and dref
i are the predicted and reference wa-

ter depths, respectively. The optimal set of parameters with

a Manning n value of 0.04 (grassland), 0.01 (impermeable

land and road) and 0.02 (building) and an infiltration rate

of 11.7 mm h−1 is found to produce the lowest RMSE value

(3.30 cm).

A series of maps (Fig. 5) is created to demonstrate the

change of flooded area during the inundation process. At the

beginning of the event (Fig. 5a, 10:50 LT), shallow water ap-

peared but was constrained to the road surface. As the storm

continued, water started to inundate the lower parts of the

catchment (Fig. 5b and c, 10:58–11:06 LT). Thereafter, water

started to accumulate around the outlet and expanded to the

largest areas with maximum depth in the catchment (Fig. 5d

and e, 11:14–11:22 LT). At the end of the storm event, the in-

undated water began to decline (Fig. 5f, 11:30 LT). The over-

all simulated pattern confirms the pattern observed from the

CCTV video.

4.2 Model validation

To avoid the potential problem of model overfitting, the op-

timal set of parameters identified in the model calibration

and sensitivity analysis for the storm event on 19 April 2012

(Fig. 6a) is used to simulate the inundation processes of an-

other storm event on 4 September 2012 (Fig. 6b).

The hydrograph of the inundation processes simulated by

the established CA model for both storm events are illus-

trated in Fig. 6. The CCTV videos obtained from the local

government only cover 35 and 13 min for the two events. The

overall patterns of water depth predicted in the two simula-

tions agree well with the observations. For the 19 April event,

the model prediction for the rising limb of the event agrees

well with the observation. The model-predicted peak water

depth is about 5 cm higher than the observed value from the

first storm on 19 April and is in agreement with the observed

values from the second storm on 4 September. It is likely that

part of the difference could be attributed to the intrinsic error

of the DEM model.

Figure 5. Process of flood inundation during the 19 April 2012

event.

In terms of timing, the predicted maximum water depth

is reached 4 min later than the observation for the first storm,

and the falling limb is much slower than the observed pattern.

For the second storm, the timing of the peak value is almost

identical between the observed and simulated results.

Overall, the Pearson correlation coefficient between model

prediction and observation of the first storm is 0.98, with

the two-tailed p value less than 0.01. Moreover, the Nash–

Sutcliffe model efficiency (E) coefficient (Nash and Sut-

cliffe, 1970) is calculated to assess the predictability of the

CA model and evaluate how consistent the predicted values

match the observed. The Nash–Sutcliffe efficiency is calcu-

lated to be 0.88, indicting a good level of temporal agree-

ment. For the second storm event (Fig. 6b), the Pearson cor-

relation coefficient is 0.95 (p= 0.01) and the E is 0.82, also

underscoring a good agreement between the predicted and

observed depth values in the time series.

The results above show that the model works well for both

storm events. Therefore, the model is validated and can be

applied to other storm events.
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Figure 6. Time series of observed and simulated water depth (cm), measured from the lowest point of the catchment, during the (a) 19 April

and (b) 4 September 2012 events.

Figure 7. (a) Locations of selected grids and (b, c, d) temporal variation of water depth simulated by FloodMap and CA model at three

selected grids.

4.3 Model comparison

To test the effectiveness of this CA model, a 2-D distributed

model, the FloodMap (Yu, 2010; Yu and Lane, 2006a, b),

is used to simulate the same storm event on 19 April 2012

in the study catchment. Three CA grids (Fig. 7a) were care-

fully selected to compare the inundating process simulated

by both models. The three grids are located at the discharge

point of this catchment (P1), on the flow routing paths along

the street (P2) and on the concrete surface between build-
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ings (P3). The overall results simulated by both models show

very good agreement (RMSEs= 0.43, 0.1, 0.02 cm, respec-

tively). Since the two models have different discharge mech-

anisms, the simulated results in Fig. 7 do not consider the

discharge of sewer network in order to eliminate its influence

on the inundation process.

For point 1, the inundated water depths by CA are

marginally higher than those of FloodMap before the peak

depth of CA is reached but lower toward the end of the simu-

lation. The inundated water depths at point 2 and 3 are much

lower than point 1 due to the difference of their location in the

catchment, while both models give consistent simulations.

According to the above comparison, the CA model is capa-

ble of simulating the urban inundation process with similar

performance to a common physically based 2-D distributed

model.

4.4 Discussion

Although the simulated water depth on 19 April 2012 was

in agreement with the observations in the rising limb, it fell

slower than the real situation in the falling limb. This is likely

related to the constant inlet discharge rate used in the CA

model. Thus, a dynamic discharge rate varied with water

depth could be a good choice to improve the agreement in

the falling limb. The relationship between discharge rate and

water depth is nonlinear, and we are collecting more observa-

tions to derive a reliable curve that can be used in the future.

In addition, DEM accuracy and grid size may have im-

pacts on inundation simulation, especially on the catchment

boundary, routing path and inundated water volume/depth.

The optimal resolution of DEM for explicitly expressed to-

pography in the CA model can be tested with various res-

olutions to improve the accuracy of the model. Currently,

the finest available DEM grid size is 5 m, and we are imple-

menting an airborne LiDAR (Light Detection And Ranging)

data collection that can obtain finer DEM grid size of 0.5 m

with higher accuracy of elevation in a much larger area of

20 km2. Thus, we can test the effects of different DEM grid

size on the performance of the CA model and its computing

efficiency.

5 Conclusions

This study develops an effective and efficient CA model to

simulate storm-water runoff and the flood inundation process

in an urban setting for city emergency management. This

CA model is established primarily by using a DEM data set

that considers buildings being elevated, plus the detailed ur-

ban land cover and inlet distribution along the sewerage pipe

lines, while assuming that the pipeline can drain all the inflow

from the inlets and ignore their possible surcharge. These two

assumptions are confirmed as reasonable in the field observa-

tions. The model is calibrated and validated by the two storm

events on 19 April and 4 September 2012, and simulated wa-

ter depths are comparable to those observed by CCTV videos

and a physically based 2-D model (FloodMap). These results

suggest that the CA model is capable of generating reliable

predictions to the urban storm runoff and the inundation pro-

cesses, which can provide useful information for city emer-

gency management.

This CA model is tested at a grid size of 5 m in a small

urban catchment for the purpose of quick model setup and

validation. At such a small catchment, the computing time

on Java platform for simulating the 1.2 h storm event on

19 April 2012 is 35 s (Intel i5 CPU 3.1 GHz, 4 GB of RAM,

NO parallelization). This CA model is so speed efficient pre-

cisely because it ignores important flow governing terms;

nonetheless, it is pragmatic to only use the gravitational term

of the 2-D shallow water equations for urban emergency

management.

Future studies will examine the use of higher-resolution

DEM, such as LiDAR-derived elevation data, for more accu-

rate simulation of urban flooding. Other forms of CA models

will be explored for possible improvement in efficiency. Fur-

thermore, the model will be tested in a parallel computing

environment for large metropolitan areas for the purpose of

citywide storm water and emergency management.
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