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Abstract. We refine and test an algorithm for landslide sus-

ceptibility assessment in areas with sensitive clays. The al-

gorithm uses soil data and digital elevation models to iden-

tify areas which may be prone to landslides and has been

applied in Sweden for several years. The algorithm is very

computationally efficient and includes an intelligent filtering

procedure for identifying and removing small-scale artifacts

in the hazard maps produced. Where information on bedrock

depth is available, this can be included in the analysis, as can

information on several soil-type-based cross-sectional an-

gle thresholds for slip. We evaluate how processing choices

such as of filtering parameters, local cross-sectional angle

thresholds, and inclusion of bedrock depth information af-

fect model performance. The specific cross-sectional angle

thresholds used were derived by analyzing the relationship

between landslide scarps and the quick-clay susceptibility in-

dex (QCSI). We tested the algorithm in the Göta River valley.

Several different verification measures were used to compare

results with observed landslides and thereby identify the opti-

mal algorithm parameters. Our results show that even though

a relationship between the cross-sectional angle threshold

and the QCSI could be established, no significant improve-

ment of the overall modeling performance could be achieved

by using these geographically specific, soil-based thresholds.

Our results indicate that lowering the cross-sectional angle

threshold from 1 : 10 (the general value used in Sweden) to

1 : 13 improves results slightly. We also show that an applica-

tion of the automatic filtering procedure that removes areas

initially classified as prone to landslides not only removes

artifacts and makes the maps visually more appealing, but it

also improves the model performance.

1 Introduction

Landslides in sensitive clays are a recognized natural haz-

ard in Canada, Norway, and Sweden. As they may occur

in very gentle slopes which may be incorrectly presumed

to be stable, they are a threat to human lives as well as for

transportation corridors (e.g., Larsson et al., 2008), for ex-

ample. Signs of creep have on some occasions been docu-

mented prior to landslides in sensitive clays (e.g., Demers et

al., 1999), but often no signs of deformation and displace-

ment are observed before the actual failure. Therefore land-

slide hazard or susceptibility maps are essential tools to min-

imize their impact. In Sweden sensitive clays are classified

as quick clays if the sensitivity (defined as the ratio between

the shear strength during undrained conditions and its re-

moulded shear strength) is at least 50 or higher and the fully

remoulded shear strength is below 0.4 kPa (Osterman, 1963;

Karlsson and Hansbo, 1989).

During the last two decades many scientific studies re-

garding landslide susceptibility assessment have been pub-

lished, with great focus on the use of statistical and data-

driven methods (e.g., Guzzetti at al., 2006, and references

therein). However, relatively few of these deal with statisti-

cal assessment of landslide hazard in sensitive clays (Erener

et al., 2007; LESSLOSS, 2007; Quinn, 2009). Erener et

al. (2007) analyzed mainly governing factors from topogra-

phy (e.g., slope angle and curvature) derived from a digital

elevation model (DEM), whereas Quinn (2009) also included

soil type, soil thickness, bedrock type and land use. Increased

interest in mapping landslide susceptibility in Sweden led the

Geological Survey of Sweden (SGU) to initiate a project on

the matter by implementing the first step of a methodology to

derive high-resolution stability maps (Berggren et al., 1991;

Lundström and Andersson, 2008). Similar efforts have also
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been made in Austria, Norway, and Italy (Bell at al., 2013;

Høst et al., 2013; Trigila et al., 2013).

In Sweden, Norway and Canada the methods to map land-

slide hazard in sensitive clays have traditionally used crite-

ria mainly based on geology (e.g., over-consolidation ratio,

sensitivity, thickness of the sensitive clay layer), topography

(e.g., height of the slope), the presence of earlier events, and

erosion (Lundström and Andersson, 2008). In Sweden, the

methodology used to derive such maps includes a first step

which aims at recognizing the soil and slope conditions in-

fluencing landslide occurrence (Berggren et al., 1991; Lund-

ström and Andersson, 2008). A typical area where landslides

in sensitive clays occur is characterized by a relatively steep

slope close to a river or ravine above which there is relatively

flat terrain where significant mass movements may also oc-

cur. The surface slope angle is therefore not representative of

the conditions in which landslides in sensitive clays occur.

Berggren et al. (1991) suggested instead that areas could be

classified as susceptible to landslides in sensitive clays based

on the ratio dH/dL (the cross-sectional angle), where dH is

the difference in height between the surface point examined

and any neighboring point, and dL is the corresponding hor-

izontal distance (i.e., potential retrogression distance). In our

algorithm, if the “cross-sectional angle” defined by dH/dL is

below a given (empirically selected) threshold, the given area

can be regarded as “stable”. Berggren et al. (1991) found that

all landslides in their study occurred at steeper slopes than

1 : 10; thus this was suggested as a threshold value. Whereas

the calculation of the cross-sectional angle is simple in one

dimension, it is not trivial in two dimensions as movements

may not be confined to a single direction due to, for example,

the presence of stable material.

In this contribution, we test our algorithm, which is able

to quickly and efficiently assess landslide hazard based on

topography and information on soil type and slope structure.

The algorithm uses a local visibility operator to calculate the

cross-sectional angle: it checks the elevation of the surround-

ing cells and assigns to them a value given by the cross-

sectional threshold (Tryggvason et al., 2015). This procedure

is repeated until no further change in elevation is observed.

This computational solution allows fast processing times and

the use of additional localized information on soil depth and

cross-sectional angle thresholds. Moreover, the algorithm in-

cludes a filtering procedure designed to remove areas not

prone to landslides: working with real data, especially high-

resolution data, there will be numerous areas that violate the

cross-sectional threshold due to errors in topographic (alti-

tude) data or “irrelevant” small-scale topographic features

such as trenches and ditches. Such features most likely do

not constitute any real landslide hazard and should rather be

removed by a quick and efficient (preferably automated) pro-

cedure (Lindberg et al., 2011). Our algorithm thus combines

a number of types of data and logical assessment to provide

a powerful first-step tool to use in a national program aimed

at mapping susceptibility of landslides in sensitive clays. We

have chosen the Göta River valley as a test site to evaluate the

performance of the algorithm on real data. We compared re-

sults obtained with and without including a depth to bedrock

map as input data. We also compared results produced using

different cross-sectional thresholds to areas where landslides

are known to occur, in order to evaluate the suitability of the

threshold value of 1 : 10 suggested by Berggren et al. (1991)

and widely used in Sweden today.

Specifically, we aim at (1) analyzing the impact of the fil-

tering procedure on the performance of the maps, (2) inves-

tigating whether using available information on the depth to

bedrock improves results, (3) examining whether different

morphological parameters are related to the presence of sen-

sitive clays and may support a particular cross-sectional an-

gle threshold, and finally (4) giving advice on how to use the

algorithm and what data to use in the national program for

landslide susceptibility assessment.

2 Study area and data description

The Göta River valley is located in the southwestern part of

Sweden, connecting Lake Vänern in the north with the Kat-

tegat Sea at the city of Gothenburg in the south. Compared to

many other areas in Sweden, the Göta River valley has a high

frequency of landslides (Hågeryd et al., 2007) caused by the

presence of quick clays.

In southwestern Sweden the last deglaciation started

approximately 14 500 years BP and lasted for at least

5000 years producing a series of ice-marginal positions

(Lundqvist and Wohlfarth, 2001). During this period depo-

sition of glaciomarine sediments occurred in areas below

sea level. Holocene transgression has been documented at

about 10 000 BP (Svedhage, 1985) and between 9000 and

7000 BP (Påsse, 1983). The clay sequences deposited during

the last deglaciation are typically found above either bedrock

or relatively thin diamicton and sand. The clays can be lam-

inated and interbedded with fine-sand layers in their lower-

most portions, and the clay–bedrock or clay–sediment con-

tact is abrupt (Stevens, 1990).

In the Göta River valley the deposition of clay sediments

began 12 000 BP in salt water when the relative sea level was

125 m above present level. Glaciomarine sediments contain

different silt content and laminae in the sediment sequences

which represent several depositional environments (Stevens,

1990). Coarse material lenses are also common in the sedi-

ment sequences due to periods of ice re-advancement, marine

transgression and fluvial transportation.

During and after land uplift, the clay sediments deposited

in salt water but now above sea level underwent leaching

by fresh water. Leaching is one factor influencing quick

clay formation (Torrance, 1983, 2014; Andersson-Sköld et

al., 2005), and it has been recognized as the key factor in

quick clay formation in the Göta River valley (Rankka et

al., 2004). Quick clays are common in the whole valley and
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Figure 1. Landslide scarp map and Quaternary deposit map at 1 : 50 000 for a subregion of the Göta Älv valley.

they reach a higher spatial frequency north of Lilla Edet

(AA.VV., 2012), where the majority of landslides are local-

ized. The narrow northern part of the valley is predominantly

covered by glacial fine clay while the central part by post-

glacial silt and glacial/post-glacial clay (Fig. 1). In the south-

ern part of the valley glacial clay sediments are confined to

the valley sides in the proximity of the bedrock outcrops,

whereas post-glacial clay sediments cover the main part of

the valley floor.

3 Methodology

3.1 Description of the algorithm and of the

post-processing filtering

The first computer implementation adopted in Sweden to

produce landslide susceptibility maps by identifying areas

above a specified cross-sectional angle used the visibility op-

erator of ArcGIS (ESRI, Redlands, CA). The visibility op-

erator is able to detect areas above a given altitude angle

(our cross-sectional angle threshold). Our algorithm is in-

stead based on a locally limited operator that is applied it-

eratively. Rather than searching for surrounding cells above

a given altitude angle, the operator checks whether the cen-

tral cell rises above the given cross-sectional angle to any

of the surrounding cells (the eight closest cells are exam-

ined). If the cell is above neighboring cells and contains po-

tentially unstable soil it is, for the calculations, reassigned

a topographic height corresponding to the critical elevation.

The procedure is iterated until a global solution (i.e., stable

solution) is reached. This iterative scheme allows the use

of several cross-sectional angle thresholds (hypothetically,

one for each soil type) and (sparse) information on depth

to bedrock, something that is not as straightforward to im-

plement in the classical visibility approach. The bedrock to-

pography may act as a barrier, blocking line of sight, and

thus reducing the area affected by a possible landslide (Tryg-

gvason et al., 2015). Specifically, the steps executed in the

algorithm are the following: the algorithm checks whether

a cell is within soils that can be affected by landslides; if

it is, the algorithm checks whether the cross-sectional an-

gle calculated between the cell and its surrounding cells is

steeper than the cross-sectional angle threshold; if it is, the

elevation of the cell is lowered until the cross-sectional angle

calculated between the cell and its surrounding cells equals

the cross-sectional angle threshold. If the bedrock surface is

reached, the elevation is lowered no further. The final solu-

tion is reached when no further change in elevation occurs

(Tryggvason et al., 2015).

The raw output of the algorithm, especially when a high-

resolution DEM is used, shows areas marked as prone to

landslides which clearly should not be marked as such – ei-

ther because they are too small or because they are anthro-

pogenic features (e.g., ditches). A filtering procedure was

therefore introduced in order to automatically remove these

areas. Areas are removed as potential landslide sites if they

are smaller than a defined areal threshold or if the difference

between the highest and the lowest point within the area is

below a defined elevation threshold. In some cases, a patch-

work of smaller areas that would normally be filtered out may

be wrongly perceived as a single large area of potential slip

due to a network of connecting corridors (e.g., ditches or ar-

tifacts in the data). To avoid this a pre-filter is applied that re-

moves all “thin” areas. The width of the corridors is defined

by the pre-filter parameter and is referred to as “neck size”.

Typically a neck size of a few samples (1–7) is sufficient

to successfully separate the individual potential landslides.
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Once the algorithm results are pre-filtered the two other fil-

tering criteria can be successfully applied.

3.2 Data description

We used the following map data in our analysis: DEM, soil

deposits, depth to bedrock, quick-clay susceptibility index

(QCSI), landslide scarps and probability of landslides. The

DEM, soil deposit and depth to bedrock maps were used as

the input raster data for the algorithm; the QCSI and land-

slide scarp maps were used to derive QCSI-dependent cross-

sectional angle thresholds; the landslide scarp and the proba-

bility of landslide maps were used to assess the performance

of the model.

The QCSI represents the probability of finding quick clay

in a specific area (Persson et al., 2014). In the work of Pers-

son et al. (2014), the QCSI was assessed by a multi-criteria

evaluation. Several factors influencing quick clay formation

were taken into account: stratigraphy, potential for ground-

water flux, relative infiltration capacity, and geomorpholog-

ical conditions for high groundwater flux. The resolution of

the QCSI map is 50 m.

We used the NNH (Swedish acronym for “New National

Elevation model”) data (Lysell, 2013) as DEM. The NNH

data are produced from elevation measurements acquired by

airborne laser scanners and are supplied at 2m×2m grid res-

olution.

The soil information was extracted from the soil layer

database of the Swedish Geological Survey (SGU), which

contains data on soil genesis and grain size. The map is at

1 : 50 000 scale and it is provided in vector format.

The depth to bedrock map is a product of SGU (Daniels

and Thunholm, 2014) which is generated by analyzing

and interpolating soil depth data from three different SGU

databases: (1) soil depth (depth to bedrock) data from bore-

holes and wells that reached the bedrock surface, (2) soil

depth data from boreholes and wells that did not reach the

bedrock surface, thus showing minimum assessed soil thin-

ness, and (3) soil depth data for areas with little or no soil

cover, extracted from several other databases that contain

points indicating no soil or very thin soil (e.g., bedrock out-

crop, ice striation). Our final depth to bedrock map was

generated by interpolating to a 50 m uniform grid using

the inverse weight distance method (Daniels and Thunholm,

2014). Where there is no information, the depth is assumed

large; thus it will not influence the results in our modeling.

The landslide scarp map is a product of SGU and it is

derived by image interpretation of the NNH data on screen

(SGU, 2014). It was converted from a vector map to a raster

matching the resolution of the DEM used.

The landslide probability map is a product of SGI – the

Swedish Geotechnical Institute (AA.VV., 2012). The map

was produced by calculating the factor of safety along sev-

eral sections and through a stochastic analysis of the stability

calculation’s governing variables (Berggren et al., 2011). The

landslide probability map shows the probability of landslide

divided into five classes: negligible probability, low probabil-

ity, some probability, pronounced probability, and obvious

probability (AA.VV., 2012). As the time-dependent factors

(e.g., changes in groundwater level and pore pressure) only

slightly influenced the computation of the landslide proba-

bility in the Göta Älv area, we argue that it is meaningful

to compare the results of our algorithm to the SGI landslide

probability map.

3.3 Cross-sectional angle thresholds

Retrogression distance of landslides in sensitive clays de-

pends upon topography and soil properties: the cross-

sectional angle is related to the geotechnical properties of

the clays, specifically clay sensitivity (Mitchell and Markell,

1974; AA.VV., 2012). Since collecting large quantities of de-

tailed geotechnical data is prohibitively expensive, we derive

relationships between observed cross-sectional angles and

geotechnical parameters of the observed slope. It has been

shown that the QCSI values calculated in southwestern Swe-

den are correlated with the sensitivity of the clay (Persson at

al., 2014); we therefore used the QCSI as a proxy for the clay

sensitivity. The cross-sectional angles were computed from

the landslide scarp map for a subset of identified landslide

scarps. Each cross-sectional angle was compared to the max-

imum QCSI value for soil within the specific scarp area by

plotting angle against maximum QCSI and taking the maxi-

mum angle value within 13 discrete QCSI bins.

3.4 Model evaluation methodology

One way to evaluate the performance of a landslide suscep-

tibility map is to compare it to, for example, a landslide in-

ventory map (i.e., observed data) – if it exists. Two statis-

tical measurements may be used, namely “sensitivity” (not

to be confused with clay sensitivity or the sensitivity maps

described above) and “specificity” (e.g., Oh and Pradhan,

2014). The sensitivity is the ratio between the number of cor-

rectly classified positive samples (i.e., true positive) and the

total number of positive samples (i.e., cells where landslides

have occurred), whereas the specificity is the ratio between

the number of correctly classified negative samples (i.e., true

negative, areas where no landslide has occurred) and the total

number of negative cells on our hazard map. See Table 1 for

details on the computations. These statistics may be mislead-

ing for some areas partly because slopes which are inherently

unstable may not yet have developed slip. In the case of fre-

quent and small landslide events, this is less of a problem,

whereas in the case of infrequent and relatively big events

this approach is not feasible. This is because of the high like-

lihood that the landslide has yet to occur, and unstable areas

will be wrongly assumed to be stable. In order to overcome

this problem and to obtain reasonable estimations of model
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performance, we used two maps to validate the models: the

landslide scarp map and the probability of landslides map.

The degree of agreement between the model results

and the observed landslide scarps was evaluated using

threshold-based sensitivity curves and prediction rate curves.

Threshold-based sensitivity curves show the model’s ability

to correctly classify landslides if each individual landslide is

considered as one sample. We consider contiguous (poten-

tial landslide) areas (scarps) on our hazard map. If a slide

has been documented in this area and if over a given pro-

portion (e.g., 50 %) of the cells on our map within this area

are positive, the analysis is classed as correct. The threshold-

based sensitivity curves show the sensitivity (i.e., percentage

of correctly classified landslide scarps) versus the sensitiv-

ity threshold (i.e., percentage of cells correctly classified in

each single scarp). The higher the sensitivity at each sensi-

tivity threshold, the higher the model performance. Predic-

tion rate curves show the sensitivity versus the percentage of

area classified as prone to landslides. Because the analysis

is performed on raster data, the sensitivity of the prediction

rate curve is computed as the ratio between the number of

cells correctly classified and the total number of cells with

observed landslides. Each single cell is therefore considered

as one sample regardless of which landslide it belongs to. The

aim of the prediction rate curves, as introduced by Chung and

Fabbri (2003), is to assess the performance of the entire sus-

ceptibility map. The assumption behind the prediction rate

curves is that the higher the number of correctly classified

landslides and the lower the area classified as susceptible to

landslides, the better the performance. The susceptibility is

often represented by a continuous range (e.g., [0,1]). The

prediction rate curves are computed by first sorting the sus-

ceptibility level in descending order and then dividing by the

total number of pixels of the study area. The obtained val-

ues range from 0 to 1 and represent the portion of the study

area classified as susceptible. Those values are finally put in

bins with intervals of equal size and the percentage of land-

slides is computed in each bin. Since our algorithm has a

dichotomous output (i.e., not prone, prone to landslides), it

is not possible to calculate the prediction rate curve for each

single map; therefore we used the concept of the prediction

rate curve to evaluate the performance of a set of maps (e.g.,

filtered maps). We computed the prediction rate curves by

plotting the sensitivity data and total area classified as un-

stable data from several maps in one graph. This means that

one single point of the prediction rate curve represents the

performance of one map.

The second type of validation was executed by comparing

the model results with the probability of landslide map. The

original five classes of the probability of landslide map were

condensed into two classes: stable (negligible probability and

low probability classes) and unstable (some probability, pro-

nounced probability, and obvious probability). The Gilbert

skill score (Gilbert, 1884; Schaefer, 1990) and the Heidke

skill score (Heidke, 1926) were computed for each map. The

Table 1. Performance statistics. tp: true positives, tn: true negatives,

fp: false positives, fn: false negatives. T equals total number of fore-

casts, and E equals the expected number of correctly classified sam-

ples due to random chance.

Sensitivity
tp

tp+fn

Specificity tn
fp+tn

Heidke skill
tp+tn−E

T−E
,

score where

E = 1
T

[
(tp+ fn)(tp+ fp)+ (tn+ fn)(tn+ fp)

]
and T = tp+ tn+ fp+ fn

Gilbert skill
tp−tprandom

tp+fn+fp−tprandom
,

score where

tprandom =
(tp+fn)(tp+fp)

T

Gilbert skill score measures correctly classified positive sam-

ples after removing true positives due to random chance (im-

plying that a compensation is made for the number of used

samples and the number of not correctly classified samples,

see Table 1). The Heidke skill score measures correctly pre-

dicted samples (both positive and negative) after removing

samples which are correctly classified due to random chance

(see Table 1 for the details).

4 Analysis and results

4.1 Relationship between cross-sectional angle and

QCSI

In order to perform the analysis the QCSI map was interpo-

lated from a 50m×50m pixel resolution to a 2m×2m pixel

resolution and the landslide scarp map was converted from

vector to raster form. Cross-sectional angle values (dH/dL)

for each individual, separate scarp on SGU’s scarp map were

compared to the QCSI values for that scarp. The dH value

represents the estimated height of the slope before the land-

slide event, and dL represents the maximum retrogression

distance for the scarp. As exact information on topography

prior to the slide is not available in our input data, for our

comparison we manually selected a subset of 71 scarps and

estimated dH from areas to the side of the slide which were

judged to be representative. For each scarp the maximum

value of QCSI was extracted from the area of the defined

scarp. The reason the maximum was chosen, and not some

sort of mean, is simply the assumption that the point (or

area) with highest QCSI (the weakest material) is likely to

represent the starting point of the landslide – or at least an

area strongly influencing the development of the landslide.

The relationship between the maximum QCSI value and the

cross-sectional angle in Fig. 2 was then analyzed. Even if a

simple linear relationship between the cross-sectional angle

and the QCSI cannot be extracted from Fig. 2, we could still
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Figure 2. Relationship between the QCSI and the cross-sectional

angle computed from a subsample of the landslide scarp data.

identify an upper limit of the cross-sectional angle for a given

QCSI. A similar relationship was found by comparing the

cross-sectional angle values with the sensitivity of the clays

(AA.VV., 2012), supporting that our approach is reasonable.

4.2 Input data and filter parameters

The DEM was used without further processing, whereas the

depth to bedrock map was resampled to 2 m pixel size. We

converted the soil map to binary form according to an SGU’s

assessed likelihood that the soil type at each position contains

sensitive clay (see Table 2). Soils considered potentially un-

stable include clay and silt deposits of glacial or post-glacial

origin. We refer to this as re-classed to produce a “best-case

soil class” map, as other areas are presumed not to include

any quick clay. The results were interpolated onto a 2 m×2m

grid. SGU’s soil map was also used to produce a map con-

taining combined QCSI and cross-sectional angle informa-

tion for each positive cell on the best-case soil class map.

This (QCSI-dependent) map was produced by using 13 sub-

classes (Table 3) according to the relationship between the

cross-sectional angle and the QCSI shown in Fig. 2. For ex-

ample, Class 1 was assigned to pixels with QCSI lower than

0.195, Class 2 to cells with QCSI between 0.195 and 0.2, and

so on.

In order to identify the optimal filter parameters we se-

lected a test area and executed multiple trial runs of the pre-

filter varying the neck size threshold and the parameters de-

scribing the minimal area necessary for a landslide to oc-

cur and the elevation difference criteria. The tests were car-

ried out using the best-case scenario soil class map, with

the cross-sectional angle thresholds set to 1 : 10 (Berggren

et al., 1991). Because the neck size is a parameter of the

pre-filter aimed at separating different landslide areas, adjust-

ments in the neck size were never tested alone but in combi-

nation with one of the other two filters.

Table 2. Soil deposits considered unstable (1) in the best-case sce-

nario.

Best case

Peat (bog) 0

Peat (bog or not specified) 0

Fluvial sediments 0

Fluvial sediments (sand) 0

Clay (postglacial) 1

Clay–silt (postglacial or glacial) 1

Silt (post-glacial) 1

Fine sand (postglacial) 0

Sand (postglacial or not specified) 0

Gravel (postglacial or not specified) 0

Clay (glacial) 1

Silt (glacial) 1

Glaciofluvial sediment, sand block 0

Glaciofluvial sediment, sand 0

Moraine, sandy or not specified 0

Table 3. Upper limits of the QCSI used to divide the best-case soil

class in 13 subclasses and the assigned cross-sectional angle thresh-

olds.

QCSI upper limit Angle

Class 1 0.195 None

Class 2 0.2 1 : 1

Class 3 0.21 1 : 3

Class 4 0.23 1 : 5

Class 5 0.25 1 : 8

Class 6 0.3 1 : 10

Class 7 0.32 1 : 13

Class 8 0.35 1 : 15

Class 9 0.4 1 : 17

Class 10 0.45 1 : 19

Class 11 0.5 1 : 20

Class 12 0.55 1 : 21

Class 13 1 1 : 22

The model performance with different filter parameters

was assessed by similarity with SGU’s landslide scarp map

using the Gilbert skill score, the Heidke skill score, and the

prediction rate curves, i.e., sensitivity versus the total area

assessed to be prone to landslides (see Fig. 3). The Hei-

dke skill score shows model performance estimate continu-

ously increases if the neck size increases, and reaches a max-

imum when the elevation difference threshold is equal to 5 m

(Fig. 3). The minimal area threshold does not have any in-

fluence on the performance (Fig. 3b). The Gilbert skill score

(not shown) gave almost identical results as the Heidke skill

score. Figure 4 shows that the higher the elevation thresh-

old the higher the performance in the sense that the sensi-

tivity remains stable while the percentage of area assessed

to be prone to landslides decreases. After taking the results

in Figs. 3 and 4 into consideration we decided to continue
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Figure 3. Heidke skill scores obtained by varying the elevation dif-

ference criterion (a), and the minimum area criterion (b). Results

are shown for four pre-filtering options (i.e., neck size). The eleva-

tion difference criterion is given in meters (m), whereas the mini-

mum area criterion in number of pixels (p).

the analysis applying the pre-filter with the neck size equal

to 5 pixels and setting the elevation difference filter parame-

ter equal to 5 m. Small areas were filtered out by setting the

minimal area threshold equal to 6 pixels (i.e., 24 m2). Fig-

ure 5 shows the effect of the filtering procedure using the

optimized parameters in a subarea of the study area.

4.3 Effects of depth to bedrock and filter

In order to study the effect of the inclusion of depth to

bedrock information with and without the filtering described

in the previous section, test runs each with a fixed cross-

sectional angle threshold were used to analyze the best-case

scenario class map. We calculated threshold-based sensitiv-

ity curves for each cross-sectional angle threshold in Table 3,

but we show only the results for the ratio dH/dL equal to

1 : 8 and 1 : 22 (Fig. 6). The curve calculated for the ratio

1 : 8 shows that the performance of the model deteriorated

when the filter was applied (Fig. 6a), since the curve of the

filtered maps lies below the curve of the unfiltered maps.

This was especially evident for thresholds between 40 and

80 %. This result is expected as the curves only show the

correctly classified landslides and provide no information re-

garding whether the classification of the stable areas has been

improved or not. However, there is no difference between fil-

tered and unfiltered maps if the cross-sectional angle is 1 : 22

as shown in Fig. 6b. When taking the total area assessed to be

prone to landslides into consideration, as shown in the pre-

diction rate curves of Fig. 7, the performance is apparently

better when the filtering is used. For cross-sectional angle

thresholds between 1 : 8 and 1 : 13, the filtered maps outper-

form the maps that have not been filtered. The values of sen-

sitivity are approximately the same, whereas the total area

classified as prone to landslides is significantly lower for the
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Figure 4. The sensitivity (a) and area prone to landslides (b) ob-

tained by varying the elevation difference criterion. Results are

shown for four pre-filtering options (i.e., neck size). The elevation

difference criterion is given in meters (m).

filtered maps. The use of the bedrock information does not

significantly increase the performance of the filtered maps.

The Gilbert skill score and the Heidke skill score (Fig. 8)

show higher values (i.e., better model performance) for fil-

tered than for unfiltered maps. The difference in performance

between the unfiltered and the filtered maps is clear for

low cross-sectional angle thresholds, whereas at high cross-

sectional angle thresholds the performances are very similar.

Similar conclusions can be drawn when comparing the maps

obtained by with or without the depth to bedrock informa-

tion. While the use of depth to bedrock information increases

the value of the statistical measurements, its inclusion pro-

vides a relatively small improvement to model performance

when compared to the effects of using the filtering. Worth

noticing is that the improvement in model performance is

only evident at low values of the cross-sectional angle thresh-

olds for all cases considered. In general, all four sets of maps

(i.e., no bedrock/no filter, no bedrock/filter, bedrock/no filter,

bedrock/filter) show similar trends in the Gilbert skill score

and the Heidke skill score when the cross-sectional angle

threshold is decreased: the scores reach their maximum at

ratio 1 : 10 and 1 : 13 respectively and remain stable even if

the thresholds are further decreased. From this we conclude

that the inclusion of the filtering procedure has a more sig-

nificant effect on improving model performance compared to

the addition of the depth to bedrock information.

4.4 Effects of cross-sectional angle thresholds

To assess whether the QCSI-dependent cross-sectional angle

thresholds would influence model performance, simulations

were carried out for each cross-sectional angle threshold in

www.nat-hazards-earth-syst-sci.net/15/2703/2015/ Nat. Hazards Earth Syst. Sci., 15, 2703–2713, 2015
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Figure 5. Map of area prone to landslides obtained using 1 : 10 as cross-sectional angle thresholds for the best-case scenario soil class. The

filtered areas were removed by using the following filtering parameters: double pre-filtering with 5-pixel neck size, elevation difference equal

to 5 m, and minimal area threshold equal to 6 pixels.
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Figure 6. Threshold-based sensitivity curves showing the effect of

the depth to bedrock data and the filtering procedure on the areas

prone to landslides with cross-sectional angle threshold equal to 1 :

8 (a) and equal to 1 : 22 (b).

Table 3. Every simulation was done using two cross-sectional

angle thresholds to assess whether the added information

would improve results compared to when only one threshold

was used. For example, for Class 7 all cells from Class 2 to 6

were assigned the cross-sectional angle threshold 1 : 10, and

for all cells from Class 7 to 13 the threshold 1 : 13 was used.

This simulation was compared to the simulation with all cells

from Class 2 to 13 given the cross-sectional angle threshold

1 : 13. Consequently, the former simulation will identify less

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Area p.t.l. (%)

Se
ns

iti
vi

ty
 (

%
)

 

 

Without depth to bedrock, not filtered
Without depth to bedrock, filtered
With depth to bedrock, not filtered
With depth to bedrock, filtered

1:5
1:5

1:8

1:10

1:8
1:10

1:13
1:13

Figure 7. Prediction rate curves showing the effect of the depth

to bedrock data and the filtering procedure on the areas prone to

landslides. The cross-sectional angle threshold varies from 1 : 1 to

1 : 22. The values of the cross-sectional angle thresholds are shown

for some points along the prediction rate curves.

area as prone to landslides as a higher cross-sectional angle is

tolerated for part of the area than in the latter. This is seen in

Fig. 9, where the curve denoted QCSI 1 : 13 is consequently

below the best-case 1 : 13 curve as fewer slides are identified.

However, if also fewer “false positives” are generated, indi-

cating that the QCSI information has provided significant in-

formation on which areas to “clear”, the Heidke and Gilbert

skill scores could be expected to be higher for this simula-

tion. As seen in Fig. 10, this is not the case – the curve for

the QCSI-dependent cross-sectional angle threshold is con-
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Figure 8. Heidke skill score and Gilbert skill score of the areas

prone to landslides obtained with or without the depth to bedrock

data and with or without filtering. The effect of the depth to bedrock

data and the filtering is shown for several values of the cross-

sectional angle threshold (i.e., from 1 : 1 to 1 : 22).

Figure 9. Threshold-based sensitivity curves of the areas prone to

landslide obtained with cross-sectional angle thresholds either held

constant for the best-case scenario soil class or dependent on the

QCSI value. All the maps were obtained using the depth to bedrock

data and were filtered.

sequently (except for the cross-sectional angle threshold of

1 : 21) never above the corresponding fixed threshold for nei-

ther of the skill scores. The QCSI information thus does not

appear to improve results.
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Figure 10. Heidke skill score and Gilbert skill score of the areas

prone to landslides obtained with cross-sectional angle thresholds

either held constant for the best-case soil class or dependent on the

QCSI value. All the maps were obtained using the depth to bedrock

data and were filtered. The effect of using QCSI-dependent cross-

sectional angle thresholds is shown for several values of the cross-

sectional angle threshold (i.e., from 1 : 1 to 1 : 22). Both skill scores

show that the QCSI information is not improving the results, partic-

ularly in the 1 : 8 to 1 : 13 cross-sectional angle interval.

5 Discussion and conclusions

By using several methods to validate and compare the mod-

eling results from running the algorithm with several settings

and different filters, we have gained some insight into the

performance of the algorithm and how to filter the resulting

maps. In general, our results of the validation show that the

algorithm has very good performance in spite of the rela-

tively simple method (i.e., the method only needs two main

data sources: a digital elevation model and a map of classi-

fied soil deposits). The filtering procedure, wherein some ar-

eas initially classified as prone to landslides are removed, is

a very important step for increasing the overall performance

and reducing map artifacts. However, no clear improvement

is seen for high cross-sectional angles (1 : 1 through 1 : 5).

At steep cross-sectional angles the areas classified as prone

to landslides are often discontinuous, and this increases the

risk that they are erroneously discarded by the filtering. Also,

it should be noted that as the filter parameters were optimized

with a cross-sectional angle threshold of 1 : 10, they may not

be optimal for high cross-sectional angle thresholds. With all

of this in mind, the only drawback of the filtering procedure

is that it will slightly decrease the detection of areas correctly

classified as prone to landslides.

Our results show that the inclusion of the depth to bedrock

data does not significantly decrease the areas incorrectly

identified as unstable and that the increased performance is

not as significant as the increase of model performance ob-

tained with filtering. We believe that there are two reasons
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for this: (1) the output of the models is very sensitive to

changes in the cross-sectional angle thresholds, meaning the

performance improvements gained from including the depth

to bedrock data are hidden until very low angles are consid-

ered; (2) the resolution (cell size) of the depth to bedrock map

is 50 m meaning that it gives only a rough idea of the bedrock

surface. We believe that if the analysis were performed with a

depth to bedrock map at the same resolution as the DEM, the

effect of the bedrock data would be more evident, which may

be the case if drilling or detailed geophysical investigations

were done in an area of particular interest.

Surprisingly, the use of the QCSI-dependent cross-

sectional angle thresholds did not improve model perfor-

mance. Since we found a relationship between the QCSI and

the cross-sectional angle, we expected to obtain better per-

formance by using the QCSI-dependent cross-sectional an-

gle thresholds, especially when the validation was done by

comparing the results of the algorithm with the landslide

scarp maps. We propose two possible explanations for this:

(1) the resolution of the QCSI map allows the establishment

of a relationship between the QCSI values and the cross-

sectional angles extracted from the landslide scarps, but it

is not high enough to provide optimal results on the resolu-

tion used in the performed analysis, and (2) the advantage

of removing false positive detection via the QCSI-dependent

cross-sectional angle thresholds may be more evident in ar-

eas with low frequency of landslides.

Our results show that the optimal cross-sectional angle

thresholds are between 1 : 8/1 : 10 and 1 : 13/1 : 15, with the

maximum performance reached at 1 : 13 in most of the cases.

This suggests that 1 : 13, rather than the 1 : 10 used generally

in Sweden, should be used as cross-sectional angle threshold

in the overview mapping of areas prone to landslides.

In our test area around the Göta River there are signifi-

cant quick clay deposits and many well-documented land-

slides. Despite the different geological and climate areas in

Sweden, we believe that conclusions based on data from this

area will be generally applicable to quick clay areas through-

out the country, and even in other countries where quick clay

may be present. In order to proceed with the assessment of

landslide susceptibility at national level, our recommenda-

tions are (1) to use our algorithm as it is relatively fast and

memory efficient, and allows the inclusion other information

(e.g., depth to bedrock), (2) to post-filter the obtained maps

to automatically remove areas falsely identified as prone to

landslides and to use statistical measurements to optimize

the filtering parameters, and (3) to perform the analysis us-

ing the currently available depth to bedrock map as it can

slightly improve the reliability of results. However, a map of

the depth to bedrock with a higher resolution (< 50 m pixel

size) is desirable, and (4) to further examine the use of the

QCSI-dependent cross-sectional angle thresholds and evalu-

ate the effect of these thresholds in areas with a lower fre-

quency of landslides.
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