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Abstract. Simulation methods for design flood analyses re-

quire estimates of extreme precipitation for simulating maxi-

mum discharges. This article evaluates the multi-exponential

weather pattern (MEWP) model, a compound model based

on weather pattern classification, seasonal splitting and expo-

nential distributions, for its suitability for use in Norway. The

MEWP model is the probabilistic rainfall model used in the

SCHADEX method for extreme flood estimation. Regional

scores of evaluation are used in a split sample framework to

compare the MEWP distribution with more general heavy-

tailed distributions, in this case the Multi Generalized Pareto

Weather Pattern (MGPWP) distribution. The analysis shows

the clear benefit obtained from seasonal and weather pattern-

based subsampling for extreme value estimation. The MEWP

distribution is found to have an overall better performance as

compared with the MGPWP, which tends to overfit the data

and lacks robustness. Finally, we take advantage of the split

sample framework to present evidence for an increase in ex-

treme rainfall in the southwestern part of Norway during the

period 1979–2009, relative to 1948–1978.

1 Introduction

Flood estimation is important for design and safety assess-

ments, flood risk management and spatial planning. It aims

to assess the probability of occurrence of large events, e.g.,

discharges with return periods of 100 to 10 000 years. Es-

timation of events with such low probability is particularly

arduous. It can only be based on a few data points repre-

senting the most extreme events in a time series of a lim-

ited length. Thus extrapolation to long return periods is usu-

ally needed. In dam safety analyses, for example, return pe-

riod estimations of 103 to 104 years are often used (Paquet

et al., 2013). Methods for deriving such estimations can be

classified into two main groups: statistical flood frequency

analysis and precipitation–runoff modeling. Statistical flood

frequency analysis is based on the analysis of an observed

streamflow record for which the return periods of the highest

events are modeled using extreme value theory, and magni-

tudes with longer return periods are estimated using the fit-

ted statistical model. A drawback of this method is that it

relies on local or regional streamflow data and is likely to

be very sensitive to the density of observations (for the re-

gional case) and to the type of distribution chosen (Klemes,

2000a, b). Furthermore, heavy rainfall is a major factor driv-

ing the occurrence of flooding, even in areas where snowmelt

also plays a significant role, such as in Norway. Rainfall se-

ries are generally more abundant, often have longer periods

of record, and they usually show stronger regional consis-

tency. This observation is one of the main motivations of the

GRADEX method (Guillot, 1993) which uses the distribu-

tion of rainfall to extrapolate the distribution of discharge.

This has further led to the development of rainfall–runoff

simulation methods for extreme flood estimation. The idea

is to extend the database of streamflow by converting rainfall

into surface runoff using a model of the catchment response.

Input rainfall may be either observed or synthetic events with

an estimated probability of occurrence (event-based method)

or, either historical or synthetic rainfall records for gener-
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ating a continuous streamflow series (continuous simulation

approach).

In Norway, a simple event-based rainfall–runoff model,

PQRUT, has been used since the 1980s as a simulation

method for dam safety analyses for which the magnitude

of low frequency events (e.g., 500-, 1000-year peak inflow)

and the probable maximum flood are required. Recently, a

semi-continuous model, SCHADEX (Paquet et al., 2013) has

been tested as an alternative approach for obtaining such esti-

mates. SCHADEX has been developed and applied in France

by Electricité de France (EDF) for dam spillway design since

2006. It has also recently been applied in different regions

of the world (in France, Austria, Canada and Norway) (e.g.,

Brigode et al., 2014) and has been more extensively eval-

uated for three catchments in Norway in Lawrence et al.

(2014). Of particular interest in Norway is the need for a

method which takes the combined probability of extreme

rainfall and snowmelt into account, for which SCHADEX

is well suited in comparison with event-based approaches.

It is expected that the SCHADEX method should give re-

sults more similar to those obtained with statistical flood

frequency analysis based on observed discharge series, and

this was found in two of the three catchments considered by

Lawrence et al. (2014). However, a global evaluation of the

SCHADEX method covering the range of conditions found

in Norway has yet to be achieved and is a necessary pre-

cursor to the wider implementation of the method in stan-

dard practise. This article aims to make the first step to-

wards such an evaluation. More specifically, we evaluate

the rainfall probabilistic component of SCHADEX: the so-

called multi-exponential weather pattern (MEWP) distribu-

tion (Garavaglia et al., 2010), a compound distribution based

on season and weather pattern subsampling, for the whole of

Norway. This approach is in contrast with the recent anal-

yses of extreme precipitation in Norway based on annual

maximum series and the application of a generalized extreme

value distribution undertaken by Dyrrdal et al. (2014). In our

work we analyze over threshold values for rainfall, rather

than using a block maxima approach. Our goal is to evalu-

ate the performance of MEWP at the national scale and to

decide whether it should be preferred to simpler, and per-

haps more classical, seasonal and nonseasonal distributions,

or, further, whether its generalization towards heavy-tailed

distributions should be considered. A brief analysis of trends

in extreme precipitation is also performed based on the split

samples used in the evaluation.

2 Data

Daily data from 368 precipitation stations in Norway

were extracted from the European Climate Assessment and

Dataset (ECA&D), a database of daily meteorological sta-

tions across Europe. From these 368 stations, 192 stations

with at least 50 years of record with less than 10 % miss-

ing data per year over the period 1948–2009 were selected

for further analyses. Years with more than 10 % missing data

are entirely replaced by ’NA’, representing missing values.

Figure 1 shows the location and altitude of the 192 sta-

tions. Station altitude ranges from sea level to approximately

1000 m a.s.l., i.e., none of the stations lie at the higher al-

titudes in the mountainous regions. All the stations above

500 m a.s.l., however, are found in the central southern in-

land region adjacent to zones of higher altitude. The net-

work is denser in southern Norway, particularly along the

coast, reflecting the higher population densities in this zone.

This implies that southern Norway will have more weight in

the model evaluation but we view this as preferable to delet-

ing a number of stations to create a more spatially uniform

network density. The mean number of observed years is 56

(maximum 62, minimum 50).

As already stated in Sect. 1, the main topic of this study

is the evaluation of MEWP, the rainfall probabilistic model

used in SCHADEX. SCHADEX aims to describe the dis-

tribution of floods by a stochastic simulation process which

combines heavy rainfall events and catchment saturation

states, including simulated snowmelt. In SCHADEX, heavy

rainfall events are considered as 3-day centered precipitation

events, being composed of a central rainfall and two adjacent

rainfalls which are lower than the central one (Paquet et al.,

2013). The value for central rainfall is simulated using a fit-

ted MEWP distribution for the extreme rainfall (Garavaglia

et al., 2011), and the 2 adjacent days are simulated condition-

ally, using contingency tables to account for the dependence

of the magnitude of the rainfall on the day before and after

the peak rainfall. Given that MEWP is a probabilistic model

for heavy “central” rainfall, rather than for all daily rainfall

values, a pre-processing of the data was required to select the

central rainfall values exceeding the precipitation received on

both the preceding and following days by 1 mm or more at

each station. By doing this we obviously reduce the number

of data available for analysis. In Norway about one-quarter

of the days of record represent central rainfall values, and

this is, on average, about one-half of the days with precipi-

tation. However one advantage of this pre-processing is that

central rainfall values at a given location can be expected to

be independent since they are always separated by at least

1 day. For extreme values, this independence can be quanti-

tatively assessed by computing the so-called extremal coef-

ficients (Coles, 2001; Ferro and Segers, 2003) for the daily

and central samples and comparing their respective values for

each station. Extremal coefficients lie between 0 and 1 and

the closer to 1, the less dependent the extremes. The inverse

of the extremal coefficient can be more easily interpreted as

the mean size of clusters at extreme level, i.e., roughly speak-

ing, the mean number of consecutive values that are extreme.

Using the estimation method of Ferro and Segers (2003) with

a threshold equal to the 90 % quantile of daily rainfall, we

find that extremal coefficients for daily rainfall are about 0.6,

whereas those for central rainfall are about 0.8 (representing
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Figure 1. Left: location and altitude (m a.s.l.) of the stations. Right: histogram of altitude (m a.s.l.).

a mean cluster size of about 1.25 days). The central rainfall

values can therefore be considered to be close to the case of

complete independence.

3 Model and method

3.1 Modeling

3.1.1 Exponential and GPD models

Let X be the random variable of central rainfall at some lo-

cation in Norway. We are interested in the distribution of ex-

treme values, i.e., of Pr(X ≤ x) when x is large. Let us con-

sider a (high) level α and write qα the α-quantile of X, i.e.,

such that α = Pr(X ≤ qα). Then, for all x exceeding qα , we

have the decomposition

F(x)≡ Pr(X ≤ x)= α+ (1−α)Pr(X ≤ x|X ≥ qα). (1)

Extreme value theory (EVT) ensures that if the central rain-

fall values are independent and identically distributed and for

large enough α, Pr(X ≤ x|X ≥ qα) can be approximated by

the distribution

G(x;σα,ξ)=

1−
(

1+
ξ(x−qα)
σα

)−1/ξ

, if ξ 6= 0, (2)

1− exp
(
−
(x−qα)
σα

)
, if ξ = 0, (3)

for all x ≥ qα , provided in Eq. (2) that x ≤ qα−σα/ξ if ξ < 0.

Parameter ξ in Eq. (2) is independent of α; this is the shape

parameter which models the heaviness of the tail of the dis-

tribution. Parameter σα > 0 in Eqs. (2) and (3) depends upon

α and is called the scale parameter. Equations (2) and (3)

imply that excesses (X− qα|X ≥ qα) follow the generalized

Pareto distribution (GPD) in Eq. (2) and the exponential dis-

tribution (EXP) with rate 1/σα in Eq. (3). Models (Eqs. 2

and 3) have been widely used worldwide for modeling rain-

fall extremes. A good review is provided in the introduction

of Serinaldi and Kilsby (2014). Equations (2) and (3) com-

bined with Eq. (1) give the approximation of the distribution

of X for all x ≥ qα:

F(x)≈ α+ (1−α)G(x;σα,ξ), (4)

where α = Pr(X ≤ qα).

3.1.2 MEWP and MGPWP models

In the previous section, we implicitly assumed that central

rainfall,X, is identically distributed throughout the year. This

assumption may be questioned. Indeed, different climatolog-

ical processes trigger precipitation, leading to the occurrence

of rainfall of different natures and intensities (e.g., convec-

tive vs. stratiform precipitation). Furthermore, rainfall occur-

rence and intensities often vary with season, reflecting both

variations in temperature and in storm tracks, for example.

For this reason, Garavaglia et al. (2010) proposed the use of

subsampling based on seasons and weather patterns (WP).

Each day of the record period is assigned to a WP. If S sea-

sons and K WP are considered, then days are classified into

S×K subclasses. The law of total probability gives, for all

x,

F(x)=

S∑
s=1

K∑
k=1

Pr(X ≤ x|season= s,WP= k)ps,k, (5)

where ps,k is the probability that a given day is in season

s and in WP k (thus
∑
s

∑
kps,k = 1). The central rainfall
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values occurring in season s and WP k can be assumed to

be identically distributed (Garavaglia et al., 2010). Thus the

extreme value theory described in Sect. 3.1.1 can be applied

to Fs,k(x)= Pr(X ≤ x|season= s,WP= k). Let us consider

a high level α (taken for simplicity constant for all Fs,k) and

qα,s,k , the α quantile of Fs,k . Application of Eq. (4) to Fs,k
gives the approximation for x ≥ qα,s,k ,

Fs,k(x)≈ α+ (1−α)G(x;σα,s,k,ξs,k), (6)

where G(x;σα,s,k,ξs,k) is given by Eqs. (2) and (3), where

qα , σα and ξ are respectively replaced by qα,s,k , σα,s,k
and ξs,k . Thus, Eqs. (5) and (6) give, for all x ≥ q+α =

maxs,kqα,s,k , the approximation of the distribution of X:

F(x)≈ α+ (1−α)

S∑
s=1

K∑
k=1

G(x;σα,s,k,ξs,k)ps,k. (7)

MEWP and MGPWP (Multi Generalized Pareto Weather

Pattern) models are both defined by Eq. (7) with different

choices of ξs,k (Garavaglia et al., 2010, 2011): in MEWP

all ξs,k are set to 0 – in which case G is the EXP distribu-

tion – while in MGPWP, ξs,k is free to vary in the positive

range. We exclude cases ξs,k < 0 because they give bounded

GPD distributions with an upper bound at qα,s,k−σα,s,k/ξs,k ,

which is usually unrealistically low for rainfall. Using the

GPD with ξs,k > 0 in Eq. (7) allows models with heavier tails

than with the EXP distribution, which is light-tailed. Theo-

retically, other heavy-tailed distribution could be used for G

in Eq. (7) but the GPD is justified by EVT and it provides a

natural generalization of MEWP by allowing the ξs,t to vary

freely (within the positive range). Both models, MEWP and

MGPWP, will be evaluated on the Norwegian data. To keep

track of the level α and of the fact that S seasons and K WP

are used in Eq. (7), we will respectively write these two mod-

els as MEWP(α,S,K) and MGPWP(α,S,K). Likewise, we

write EXP(α) and GPD(α) to represent the basic cases of

Eq. (4) when neither season nor WP are considered, corre-

sponding to cases MEWP(α,1,1) and MGPWP(α,1,1).

3.2 Model estimation

Use of the EXP, GPD, MEWP and MGPWP models requires

the choice of high enough thresholds such that EVT can be

applied. Selection of an adequate threshold gives rise to a

bias-variance tradeoff: the higher the threshold, the better the

approximation of the tail of F (smaller bias), but at the same

time, the higher the variance of the estimated parameters be-

cause a smaller number of exceedances are available. Graph-

ical tools for threshold selection, such as mean residual life

plots (Coles, 2001), are usually difficult to interpret in prac-

tice. Therefore, the common practice is to fix a high enough

level α and to set thresholds qα,s,k to the empirical α quantile

of rainfall occurring in season s and WP k.

Given α (and therefore qα), the parameters that must be

estimated for the EXP and GPD models (Eq. 4) are those of

G in Eqs. (2) and (3). Estimation is made by the method of

L-moments (Hosking, 1990):

ξ̂ = (λ1− qα)/λ2− 2, σ̂α = (1− ξ̂ )(λ1− qα), for GPD(α),

σ̂α = λ1− qα, for EXP(α),

where λ1 and λ2 are the sample L-moments of order 1 and 2

for the central rainfall exceeding qα , which are independent;

see Sect. 2. In the GPD case, if ξ̂ < 0, then ξ̂ = 0 is imposed

(i.e., the EXP distribution) to exclude bounded distributions.

It should be noted that the choice of the L-moments method

only affects the GPD case since for the EXP case, the com-

monly used L-moments, moments and maximum likelihood

estimators coincide. For the GPD case, a separate analysis

(not shown) reveals that the choice of the estimation method

does not actually affect the regional evaluation very much be-

cause slight differences in estimation that occur at the local

scale are smoothed out at the regional scale.

Parameters ξs,k and σα,s,k in G of Eq. (7) for MEWP and

MGPWP are estimated likewise by the L-moments method,

using the observed central rainfall of season s and WP k ex-

ceeding qα,s,k . Probability ps,k is estimated as the empirical

proportion of days in season s and WP k. Estimation of F is

then obtained for all x > q+α with Eq. (7).

3.3 Computation of return levels

The T -year return level rT is the level expected to be ex-

ceeded on average once every T years. It satisfies the re-

lationship F(rT )= 1− 1/(T ζ ), where ζ is the mean num-

ber of central rainfall events per year. When F is EXP(α) or

GPD(α), estimation of rT is obtained explicitly as

r̂T =

{
qα + σ̂α log{(1−α)T ζ } for EXP(α)

qα + σ̂α{[(1−α)T ζ ]
ξ̂
− 1}/ξ̂ for GPD(α)

, (8)

where σ̂α and ξ̂ are the parameter estimates of F of Sect. 3.2.

For the MEWP and MGPWP models, there is not an explicit

formulation for r̂T and it is obtained numerically by solv-

ing F(r̂T )= 1−1/(T ζ ) in Eq. (7). Equation 8 shows that in

GPD(α) model, r̂T is mainly influenced by the value of ξ̂ .

For the MGPWP model, practice shows that for reasonable

to large T (typically T > 50 years), r̂T is mainly influenced

by the largest ξ̂s,k .

3.4 Model evaluation

The goal of this evaluation is to assess which model per-

forms better at the regional scale, i.e., for a set of N stations

taken as a whole, rather than individually. We follow the split

sample evaluation proposed in Garavaglia et al. (2011) and

Renard et al. (2013). We divide the data for each station i

into two subsamples, C
(1)
i and C

(2)
i , and fit a given compet-

ing model on each of the subsamples, giving two estimated

distributions F̂
(1)
i , estimated on C

(1)
i , and F̂

(2)
i , estimated on

C
(2)
i . Our goal is to test the consistency between validation
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data and predictions of the estimates, and the accuracy and

stability of the estimates when calibration data change. For

this, three scores are computed, assessing respectively stabil-

ity (SPAN) and reliability (AREA(FF) and AREA(NT )) of

the fits. These scores were proposed and used in Garavaglia

et al. (2011) and Renard et al. (2013).

The SPAN criterion evaluates the stability of the return

level estimation, when using data for each of the two subsam-

ples. More precisely, for a given return period T and station

i,

SPANT ,i =
|r̂
(1)
T ,i − r̂

(2)
T ,i |

1/2{r̂
(1)
T ,i + r̂

(2)
T ,i}

,

where r̂
(1)
T ,i , e.g., is the T -year return level for the distribution

F (see Sect. 3.3) estimated on subsample C
(2)
i of station i.

SPANT ,i is the relative absolute difference in T -year return

levels estimated on the two subsamples. It ranges between 0

and 2; the closer to 0, the more stable the estimations for sta-

tion i. For the set ofN stations, we obtain a vector of SPANT
of length N with a distribution which should remain reason-

ably close to zero. A rough summary of this information is

obtained by computing the mean of theN values of SPANT ,i ,

i = 1, . . .,N :

MEAN(SPANT )=
1

N

N∑
i=1

SPANT ,i . (9)

For competing models, the closer the mean is to 0, the more

stable the model is.

The FF criterion is used to estimate the reliability in es-

timating the probability of occurrence of the maximum of

independent variables. Let (X1, . . .,Xn) be a set of n inde-

pendent and identically distributed rainfall values with dis-

tribution F and Z =maxnj=1Xj . Then Pr(Z ≤ x)= {Pr(X ≤

x)}n = {F(x)}n and, thus, the distribution of Z is F n.

Therefore FF= {F(Z)}n follows the uniform distribution on

(0,1). Now write F̂1,i and F̂2,i , where the estimation of F

for station i is obtained respectively for subsamples C
(1)
i

and C
(2)
i . If F̂1,i and F̂2,i are good estimations of F , then

FF
(1)
i = {F̂

(1)
i (Z)}n and FF

(2)
i = {F̂

(2)
i (Z)}n should approx-

imately follow the uniform distribution, Unif(0,1). Now let

n
(1)
i (resp. n

(2)
i ) be the number of central (thus independent)

rainfall values in subsamples C
(1)
i (resp. C

(2)
i ) and z

(1)
i (resp.

z
(2)
i ) the corresponding observed maximum, then

ff
(12)
i = [F̂

(2)
i (z

(1)
i )]

n
(1)
i

ff
(21)
i = [F̂

(1)
i (z

(2)
i )]

n
(2)
i

should both be realizations of the uniform distribution. For

the set of N stations, this gives two uniform samples ff (12)

and ff (21) of size N each. Hypothesis testing for assessing if

the uniform assumption is valid is challenging because the

ffi are not independent from site to site, due to the spatial de-

pendence between data. Thus Renard et al. (2013) proposed

to base comparison on the graphical analysis of cumulative

distribution functions (CDFs), by inspecting how much the

CDF of the ff diverge from the 1 : 1 line, corresponding to

the CDF of uniform variates on (0,1). A quantitative assess-

ment of this divergence is provided by computing the area

between both CDFs. However, we find such evaluation con-

fusing because the value of the area depends on where, be-

tween 0 and 1, the divergence is located. An illustration of

this is given in Fig. 2 for three simulated series of length 200

(which is about the number of stations). In case 0, the ff are

all drawn from Unif(0,1) (reference case). In cases 1 and 2,

80 % of the ff are drawn from Unif(0,1) and 20 % are drawn

from Unif(0,0.1) in case 1 and from Unif(0.5,0.6) in case

2. Departure of ff from the uniform case is sometimes not

easy to interpret. However case 1 corresponds usually to a

tendency towards an overestimation of the largest observa-

tion, while case 2 corresponds to a tendency towards over-

fitting the largest observation. In the CDF plot (upper left),

the area value is as expected the lowest for case 0. However

case 2 gives surprisingly also a very good score, whereas that

of case 1 is 3 times as large. Therefore these criteria would

falsely indicate a better performance (i.e., smaller area value)

of case 2 (overfitting) as compared to case 1 (overestimation),

although they both contain 20 % data diverging from the uni-

form on (0,1). As an alternative, we prefer to base evaluation

on divergence between densities rather than CDFs. A reason-

able estimate of this latter is obtained by computing the em-

pirical histogram of the ff with 10 equal bins between 0 and

1, and comparing it with the uniform density between 0 and

1 (which equals 1). For a more quantitative assessment, we

compute the area between both densities as follows:

AREA(FF)=
1

18

10∑
`=1∣∣∣∣10

Card{ffi ∈ bin(`), i = 1, . . .,N}

N
− 1

∣∣∣∣ , (10)

where Card{. . .} denotes the cardinality of the set. The term

inside the absolute value in Eq. (10) is the difference between

densities in the `th bin. The division by 18 forces the score

to lie in the range (0,1) with lower values indicating better

fits (the worst case being all values lying in the same bin).

Illustration of this computation is shown in Fig. 2 on the

aforementioned simulated data (upper right and lower pan-

els). The score for case 0 is again the lowest, however the

value is larger than when comparing CDFs due to the dis-

cretization into bins. As expected, the criteria now give sim-

ilar scores for cases 1 and 2, unlike the method based on

CDFs. This leads us to base comparison on the new AREA

score (Eq. 10), giving preference to lower scores but keeping

in mind that a score of 0.1 is already a good score since this is

the mean AREA value we obtain when simulating uniforms

on (0,1). Returning to ff values of cross-validation, ff (12) and
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Figure 2. Graphical tools for model evaluation based on FF scores, for three simulated series of length 200. The CDF case (upper left) is the

method of Renard et al. (2013). The density case (upper right and lower panels) is the alternative method comparing densities (Eq. 10). The

dotted horizontal lines show the 95 % confidence interval for uniform variates on (0,1) of length 200, based on 1000 simulations.

ff (21), this gives us two scores of model evaluation, namely

AREA(FF (12)) and AREA(FF (21)).

The NT criterion assesses reliability of the fit, as FF,

but focuses on prescribed quantiles rather than on the over-

all maximum. Let (X1, . . .,Xn) be a set of n independent

and identically distributed rainfall values with distribution

F , and let NT be the random variable equal to the num-

ber of exceedances of the T -year return level, i.e., NT =

Card{Xj ;F(Xj ) > 1− 1/(ζT )}, where ζ is the mean num-

ber of observations per year. Since every event {F(Xj ) >

1− 1/(ζT )} occurs with probability 1/(ζT ), NT follows a

binomial distribution with parameters (n,1/(ζT )). Let HT
be the corresponding cumulative distribution function, i.e.,

such thatHT (k)= Pr(NT ≤ k), k = 0, . . .,n andH(−1)= 0.

Because HT is not continuous, the probability-transformed

indices HT (NT ) are not uniform. Thus, Renard et al. (2013)

propose to consider the random variable ÑT such that

ÑT |NT = k ∼ Unif{HT (k− 1),HT (k)},

and show that ÑT is uniform on (0,1). Now, consider the

estimates F̂
(1)
i and F̂

(2)
i for a given station i and

n
(12)
T ,i = Card{xi,j ∈ C

(1)
i ; F̂

(2)
i (xi,j ) > 1− 1/(ζiT )},

n
(21)
T ,i = Card{xi,j ∈ C

(2)
i ; F̂

(1)
i (xi,j ) > 1− 1/(ζiT )},

where ζi is the mean number of central rainfall events per

year at station i. If F
(1)
i and F

(2)
i are exact estimates for F ,

then n
(12)
T ,i (resp. n

(21)
T ,i ) should be realizations of a binomial

with parameters n
(1)
i (resp. n

(2)
i ) and 1/(ζiT ). Let H

(1)
T ,i and

H
(2)
T ,i be the corresponding binomial cumulative distribution

functions and let ñ
(jk)
T ,i , j,k = 1,2, be uniform simulations
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between H
(k)
T ,i (n

(jk)
T ,i − 1) and H

(k)
T ,i (n

(jk)
T ,i ). Then ñ

(jk)
T ,i are re-

alizations of the uniform distribution (Renard et al., 2013).

For i ranging over the set of N stations, we thus obtain two

vectors of size N of uniform samples, so that we can write

ñ
(12)
T , ñ

(21)
T . Scores are calculated as for FF by comparing

the empirical densities of ñ
(jk)
T , j,k = 1,2 to the theoretical

uniform density, giving the two scores AREA(N
(jk)
T ).

4 Application of MEWP and MGPWP in Norway

4.1 Models considered

We wish to evaluate and compare the performance of EXP,

GPD, MEWP and MGPWP for estimating central rainfall

values across Norway. To apply the split sample procedure

described in Sect. 3.4 for each station i, we randomly di-

vide years into two subsamples such that 50 % of the ob-

served years are in sample C
(1)
i and the remaining 50 % are

in sample C
(2)
i . This split sample procedure is applied to each

station independently (meaning that years of C
(1)
i and C

(1)

i′

are very unlikely to all be equal for i 6= i′). This creates two

new data sets, each comprising 192 stations with a maximum

of 31 years of observations.

As is always the case for extreme value analysis, thresh-

old choice is uncertain. We therefore considered a large set

of thresholds with α between 0.50 and 0.97. The evaluation

scores are then used to select both the best model and the best

threshold(s). Choice of α as low as 0.50 may at first glance

appear to be very low for studying extremes, but one has to

remember that the data series are already preprocessed to in-

clude only central rainfall values. Days with central rainfall

will tend to have higher intensities than a randomly selected

day with rainfall, as by construction, the central rainfall series

excludes the previous and following days with lower rain-

fall intensities (see Sect. 2). A threshold level of 0.50 corre-

sponds actually to a level of about 0.75 for the daily (non-

zero) rainfall values.

The estimation scheme can be summarized as follows. For

each of the considered α values, we fit six models with the

exponential distribution:

– EXP(α), which is a particular case of MEWP, where S

is one season and K is one weather pattern;

– MEWP(α,1,K), i.e., a combination of K WP distribu-

tions, where K = 4 or 8 (see below);

– MEWP(α,2,1), i.e., a combination of two seasonal dis-

tributions. Choice of the seasons is explained below;

– MEWP(α,2,K), i.e., a combination of seasonal and

WP distributions, with K = 4 or 8;

and the six corresponding models with the GPD distribution.

This gives in total 12 fits F̂
(1)
i and 12 fits F̂

(2)
i , for each sta-

tion i and each level α.

For the cases involving the use of WP, we employ the

weather-type (WT) classification described in Fleig (2011),

following the “bottom-up” method presented in Garavaglia

et al. (2010). Details of this scheme are also reported in

Lawrence et al. (2014) and can be briefly summarized as fol-

lows: ascending hierarchical classification is first performed

on the rain fields for days with rain, as described by 175 sta-

tions in Norway and the surrounding region. The average

synoptic pattern (WT) associated with each rain-field class

is then identified from an atmospheric pressure data set con-

structed from geopotential height data centered over Norway.

Finally, every day of the period considered (1948–2009) is

assigned to a WT using the proximity of its geopotential

height data to one described by a WT. In the first instance

(Fleig, 2011), eight distinct WTs were defined, seven corre-

sponding to days with rain and one representing dry days.

For the first application of SCHADEX in Norway (Lawrence

et al., 2014), a grouping of the eight weather types into four

weather patterns (WP) was made to improve the robustness

of the MEWP models (Fig. 3) by increasing the number of

values in the subsamples. In this paper we, however, use the

term “weather patterns” (WP) to refer to both sets of classifi-

cations, i.e., having four or eight classes; and both the use of

the full set of eight classes or the grouped set of four classes

are evaluated.

In cases where subsampling is also undertaken by sea-

son, we impose a restriction of S being two seasons, rep-

resenting the season-at-risk and the season-not-at-risk. Fur-

thermore, we impose the season-at-risk to be composed of 2

to 4 consecutive months (the remaining months falling in the

season-not-at-risk). The optimum choice of the months com-

posing the season-at-risk is made following the procedure of

Penot (2014), which is applied to each station and model sep-

arately, using the whole series (i.e., without splitting into C(1)

or C(2)). The principle is to find the season-at-risk for which

the estimated model fits at best the months with the highest

risk (of extreme rainfall intensities). In detail, the procedure

is as follows:

– Step 1: compute the 12 mean monthly maxima of cen-

tral rainfall.

– Step 2: set M = 2.

– Step 3: compute the mean of these values over moving

windows of size M months.

– Step 4: select the M consecutive months correspond-

ing to the highest of these values. These M months de-

fine the season-at-risk. The remaining months define the

season-not-at-risk.

– Step 5: fit the considered model (e.g., MEWP(0.5,2,8))

with this seasonal definition.

– Step 6: compare the monthly fits to the monthly em-

pirical distributions. This comparison is made with the
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Figure 3. Weather pattern classification with four classes (denoted WT1 to WT4 above) and eight classes (WP1 to WP8 above). This is Fig. 5

of Lawrence et al. (2014). Case with four classes is obtained by combining the eight classes into four. The last class of each classification

(respectively WT4 and WP8) represent dry days.

KGE score (Kling–Gupta efficiency, Gupta et al., 2009),

which is computed for a given month, m, as

KGEm =
{

corr(F̃m, F̂m)− 1
}2

+

{
std

(
F̃m

F̂m

)
− 1

}2

+

{
mean

(
F̃m

F̂m

)
− 1

}2

,

where F̃m and F̂m are respectively the empirical and fit-

ted distributions for monthm. It should be noted that the

KGE criterion is not the only score which could be used

here, and was not necessarily developed for scoring dis-

tributions. However, the final result (i.e., the seasonal

split selected) is not particularly sensitive to the score

used.

– Step 7: compute a global KGE score as a weighted mean

of these 12 KGE scores, with weights proportional to

the mean monthly maxima, in order to force the model

to have the best fits for the months with the highest risk.

– Step 8: set M = 3 and apply steps 3 to 7.

– Step 9: set M = 4 and apply steps 3 to 7.

– Step 10: compare the three global KGE scores obtained

respectively for M = 2,3,4. Select the seasonal defini-

tion corresponding to the lowest of these scores.

This procedure is applied for each station and each model

separately. This implies that, for a given station, the choice

of season may vary among models. However, it was found

that changes in the definition of the season-at-risk for a given

station are very minimal (i.e., a few percent difference, and

always pertain to the intermediate months that could well

be classified into either of the two periods). We believe that

these differences have very little influence on the evaluation

of the model fits. For illustration, Fig. 4 shows the length

of the season-at-risk and the first month of this season for

the 192 Norwegian stations when using MEWP(0.5,2,8)

(which is found to be the best model; see Sect. 4.2.1). In-

terestingly, the local definition of the seasons define four

regions with an intense season in fall in the western part

of Norway and an intense season in late summer–early fall
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Figure 4. Length of the season-at-risk (shapes) and first month

of the season (color code in the inset) for each station, with

model MEWP(0.5,2,8). The local definition of seasons is used in

Sect. 4.2.1, while the regional definition, with four regions, is used

in Sect. 4.2.2.

in the eastern part. Furthermore, the intense season starts 1

month earlier in the eastern part than in the western part.

The distinction between a heavy rainfall season beginning

in the fall in western Norway vs. late summer in eastern Nor-

way is associated with the two different mechanisms leading

to heavy precipitation in each of these regions. In western

Norway, heavy precipitation is most commonly derived from

frontal activity leading to storms arriving from the southwest.

The eastern part of Norway is in the lee of the mountainous

area in the central zone of southern Norway, and is, there-

fore, somewhat sheltered from this storm activity. The heav-

iest precipitation in the eastern region generally occurs due

to convective activity producing intense rain showers, often

during the late summer months. It can also be noted that the

spatial pattern of the precipitation seasons shows a good cor-

respondence with previously published maps of precipitation

regions in Norway (see e.g., Hanssen-Bauer and Førland,

2000, Fig. 1) and with the occurrence of days with precip-

itation over 10 mm (see Tveito et al., 2001, Fig. 2.5). The

regional seasons will be used in Sect. 4.2.2 to check the sen-

sitivity of MEWP with respect to slight changes in the defi-

nition of the season-at-risk.

4.2 Results

4.2.1 Model evaluation and selection

The SPAN, FF and NT scores presented in Sect. 3.4 are used

to assess the quality of the estimations. We use the three

scores because they give complementary answers. Taken to-

gether, they allow a global evaluation of both the reliability

and the stability of the fits. Different return periods T are

also considered for SPAN and NT in order to evaluate differ-

ent parts of the tail of the distribution. With large T we assess

the very tail of the distribution while with small T we assess

the bulk of the distribution.

Scores are reported in Figs. 5 and 6 for the 12 mod-

els, using threshold values equal to the 0.5-, 0.7- and 0.9-

quantile of the central rainfalls. Keep in mind that all

scores lie in the range (0,1) and the closer to 0, the bet-

ter the score. For each model and threshold, we depict three

MEAN(SPANT ) scores for T = 20,100 and 1000 years, the

value of AREA(FF (12)) and the three AREA(N
(12)
T ) values

for T = 5,10 and 20 years. Values of AREA(FF (21)) and

AREA(N
(21)
T ) are not shown as they are very similar. For the

SPAN scores, it may seem highly questionable to extrapolate

return levels up to 1000 years given that estimation is based

on about 30 years of data. This is actually the level required

by engineering practices and regulatory rules (if not higher)

in many countries for risk assessment associated with dam

safety. For example, in France 1000- or even 10 000-year re-

turn periods are used to design dam spillways (Paquet et al.,

2013), and the 1000-year return period is also used as the

design flood level for the higher risk classes of dams in Nor-

way, whilst the probable maximum flood is used to assess

the safety of these dams with respect to the potential for dam

failure (Midttømme et al., 2011).

Figure 5 shows that for the exponential models, there is a

clear benefit obtained from the use of seasonal splitting (case

EXP vs. (S,K)= (2,1)) and WP splitting (case EXP vs.

(S,K)= (1,4) and (1,8)), and the combination of both sea-

sonal and WP splitting performs even better (see cases (2,4)

and (2,8)). Indeed, subsampling by season and WP creates

groups of rainfall values that are more likely to be identi-

cally distributed and therefore more easily fitted than groups

of rainfall values derived from different parent populations.

Using eight rather that four WPs also slightly improves the

NT scores, but the improvement is somewhat marginal when

compared with the gain derived from sampling by season and

WP.

Figure 5 surprisingly shows that for MEWP distributions,

scores of NT improve when T increases, meaning that the

bulk of the distribution is actually less well fitted than the tail.

This may be due to the lack of flexibility of the exponential

distribution. Using the more flexible GPD distribution (in the

GPD and MGPWP models of Fig. 6) indeed tends to improve

N5 and N10. However, it clearly also degrades the FF scores.

Keep in mind that FF is based on the maximum observed

value (see Sect. 3.4) and, thus, permits an assessment of the

quality of the fit of the very tail of the distribution. Therefore,

although the bulk of the distribution tends to be better fitted

with MGPWP distributions (N5 and N10), the very tail (FF)

is overfitted, usually giving poorer FF scores.
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Figure 5. Scores of evaluation for MEWP models, for α = 0.5, 0.7 and 0.9. Better scores have values closer to 0. Scores of SPANT , for

T = 20−,100− and 1000-year return periods, are the mean scores of Eq. (9), while scores of FF and NT , T = 5,10 and 20 years, are based

on the density areas (Eq. 10).

Figure 6 also shows a clear loss in stability (indicated by

the SPAN scores) when using the MGPWP distribution. Fig-

ure 7 illustrates this issue by comparing the 100-year and

1000-year return levels estimated on C(1) and C(2) with the

four MEWP models and the four MGPWP models, with a

level α = 0.5. This shows a difference of up to 100 mm day−1

with MGPWP models for the 100-year return level and up

to 300 mm day−1 for the 1000 year-return level, whereas the

MEWP models are much more stable. This lack of robust-

ness is due to the difficulty in estimating the shape param-

eter ξ of the GPD distribution, which has a large influence

on the extrapolation to long return periods (see also page

528 of Garavaglia et al. (2011) or the upper right of page

350 of Serinaldi and Kilsby (2014)). Figure 8, on the left

hand side, compares the values of ξ estimated on C(1) and

C(2) by all MGPWP models. Values between −0.5 and 0.5

are mainly found, but differences between the two estimates

vary in a similar range. Positive values, even when not very

large (typically ξ > 0.1) lead to unrealistic return levels at

extrapolation, with e.g., up to 600 mm day−1 for the 1000-

year return level in the MGPWP case versus 270 mm day−1

in the MEWP case (see Fig. 7). Figure 8, right, shows that

estimates of ξ based on fewer than 1000 observations are

highly variable. Similar variability in the shape of the GPD

is found in Serinaldi and Kilsby (2014) for a worldwide data

set. Cases with fewer than 1000 observations occur more of-
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Figure 6. Same as Fig. 5 for MGPWP models.
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ten when WP are considered, due to the additional subsam-

pling which produces smaller data sets. However, the SPAN

values of Fig. 6 show that even for the GPD and MGPWP

with K = 1, robustness is very poor. This lack of robustness

is an important limitation of their value and suitability for

practical applications.

Regarding the choice of threshold, MEWP distributions

give relatively stable scores for α between 0.5 and 0.7

(see Fig. 5) but there is a loss in stability as α increases

over 0.9 (see green curves of SPAN scores in Fig. 5). For

MEWP(α,2,8), which gives the best scores overall, the case

α = 0.5 usually seems to be slightly better. Therefore we se-

lect the model MEWP(0.5,2,8) for further consideration.

It is interesting at this point to compare large return lev-

els obtained with the selected MEWP(0.5,2,8) with those

obtained for the other MEWP models with the same α. Fig-

ure 9 makes this comparison for the 100-year return lev-

els. It appears that the other MEWP models tend to give

lower return levels (i.e., positive values of the difference).

This underestimation is more marked for the EXP model

(mean underestimation of about 5 mm of the 100-year return

level), and decreases when seasons (MEWP(0.5,2,1)) and

WP (MEWP(0.5,2,4)) are used. Therefore, the use of more

WPs helps to better model the heaviness of the tail.

4.2.2 Use of regional seasons

We have already mentioned in Sect. 4.1 that the local defini-

tion of the seasons displays a regional pattern, with a season-

at-risk in late summer in the two eastern regions and in fall in

the two western ones, as illustrated in Fig. 4. We test here the

use of this regional definition of the seasons by fitting new

MEWP(0.5,2,8) models and comparing the overall scores

to those of the local definition of Sect. 4.2.1. As shown in

Table 1, scores of the two definitions are fairly similar, partic-
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Figure 9. Box plot of the difference (in mm) between the 100-year

return levels of MEWP(α,2,8) and the three other EXP-based mod-

els, for α = 0.5 (one point per station and period).

ularly in light of the differences obtained between the models

of Fig. 5. Robustness (SPAN) is slightly improved with the

regional definition. However the fact that scores of both FF

and N20 are slightly better (i.e., smaller) when seasons are

defined locally gives evidence of a better fit of the very tail

with the local definition, and therefore probably a better ex-

trapolation of return levels. Therefore, if one would want to

select one and only one definition, we would be tempted to

recommend the local one. However, if using MEWP at un-

gauged sites is of interest, the regional definition of the sea-

sons of Fig. 4 provides a reasonable alternative.
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Table 1. Scores of evaluation for the local and regional definition of the seasons. Better scores have values closer to 0. Scores of SPANT , for

T = 20,100 and 1000 years, are the mean scores of (Eq. 9), while scores of FF and NT , T = 5,10 and 20 years, are based on the density

areas (Eq. 10).

SPAN20 SPAN100 SPAN1000 FF (12) N
(12)
5

N
(12)
10

N
(12)
20

Local seasons 0.058 0.070 0.085 0.076 0.209 0.163 0.130

Regional seasons 0.053 0.062 0.074 0.080 0.202 0.185 0.158

Random sampling
AREA(FF)=0.08

Bins

−
0.

5
0.

0
0.

5
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Temporal sampling
AREA(FF)=0.15

Bins

−
0.

5
0.

0
0.

5
1.

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 10. Divergence in density between ff (12) and the uniform

case, under random sampling (left) and temporal sampling (right),

with corresponding scores AREA(FF). The closer the bars are to

0, the better the fit is. The dotted horizontal lines show 95 % confi-

dence interval for uniform variates.

4.2.3 Evidence of trend

The split sample procedure can be used to give insight about

potential change in extreme rainfall in Norway over the pe-

riod represented by the rainfall time series. For this we split

the observed years of each station into two subsamples: C(1)

contains all years between 1948 and 1978 and C(2) contains

all the remaining years, between 1979 and 2009. So, in con-

trast with the previous analysis, all stations are assigned the

same C(1) and C(2) and these are temporal instead of being

random. Remember that ff (12) assesses how well the maxi-

mum of C(1) is fitted by the distribution estimated on C(2),

namely F̂ (2) (see Eq. ). Therefore a parallel comparison of

the density of the values of ff
(12)
i , for i = 1, . . .,192, for this

temporal sampling compared to the random one of Sect. 4.2.1

can give insight into increases or decreases in extreme rain-

fall in Norway between the two periods. The density of these

values is shown in Fig. 10.

We see that ff (12) tends to have too many small values

with respect to the uniform density under the temporal sam-

pling, whereas it was fairly uniform under the random sam-

pling of Sect. 4.2.1 (a complementary analysis, not shown,

revealed that very similar densities are obtained with other

random splitting approaches). We conclude that F̂ (2) tends

to overestimate the probability of occurrence of the maxi-
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Difference in 100−year return level, C2−C1

Figure 11. Box plot of the difference in 100-year return level esti-

mated for C(1) and C(2) with MEWP(0.5,2,8) under random sam-

pling (left) and temporal sampling (right) (one point per station).

mum of C(1) under the temporal sampling. Broadly speaking

this means that the maximum of C(1) tends to be too small

with respect to that of C(2). This indicates that extremes dur-

ing the second-half of the observed period (1979–2009) tend

to be higher than those of the first half (1948–1978). This is

confirmed by a comparison of return levels obtained on both

periods, as shown in Fig. 11. For the random sampling case,

return levels are almost equal for C(1) and C(2) whereas in the

temporal sampling case, 100-year return level is about 5 mm

higher in C(2), with 10 % of the stations showing an increase

higher than 10 mm (vs. 3 % in the random case). As shown

in Fig. 12, these 10 % stations lie mainly in the southwest-

ern region, between Bergen and Stavanger, which is one of

the most rainy areas in Norway, with 100-year return levels

higher than 100 mm (Fig. 12, left). This brief analysis gives

evidence for an increase in extreme rainfall intensities which

may already be evident in observations for the southwestern

region in Norway. This evaluation does not take the place of a

full, detailed trend analysis per se, but rather should be taken

as a motivation for such an analysis of trends. Our evalua-

tion relies in particular on a somewhat arbitrary splitting of

the years in the middle of the observation period. Assess-

ment of possible trends, including when such trends started
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Figure 12. Left: map of 100-year return level estimated on C(2) (1979–2009) with MEWP(0.5,2,8). Right: difference in 100-year estimated

on C(1) and C(2).

and their consistency over time is beyond the scope of this

paper, but may be of interest in future studies.

5 Conclusions

This article evaluates a compound model based on weather

pattern classification, seasonal splitting and exponential dis-

tributions, the so-called MEWP model, for its suitability for

use in Norway. The MEWP model is the rainfall probabilis-

tic model used within the SCHADEX method, which is cur-

rently being tested in Norway as an alternative simulation

method for flood estimation. We show in particular the ben-

efit gained by subsampling the heavy rainfall data according

to season and weather pattern. Our results also indicate that

models based on the exponential distribution perform better

than those based on the more flexible generalized Pareto dis-

tribution, which tends to overfit the data and lacks robustness.

We have also demonstrated that a regional definition of sea-

sons in MEWP is possible. Finally, we give evidence for an

increase in extreme rainfall intensities in Norway in recent

years, particularly in the southwestern region.

Our analysis has also shown that the GPD distribution bet-

ter models the bulk of the distribution of extremes, but fails

to robustly estimate the tail, and therefore fails in extrap-

olation to large return levels. The reason for this failure is

twofold: firstly, the lack of data for estimating such a flexible

distribution when using a local approach; secondly, the inher-

ent nature of the GPD, which is a heavy-tailed distribution

when the shape parameter is positive, and can therefore tend

to give unrealistic return levels for very long return periods.

To address this issue, a regional approach allowing the use

of neighboring stations to infer MEWP distributions at local

sites is of interest. Finally, there are also other, more flexible,

distributions which may be more robust than the GPD distri-

bution and could be used within the MEWP approach. This

also represents an important topic for future work.

This study is the first extensive evaluation of MEWP in

Norway. It has also been applied successfully in France (Gar-

avaglia et al., 2011; Neppel et al., 2014), Austria and West

Canada (Brigode et al., 2014). MEWP is a general model im-

posing no specific hypotheses on the data, so its application

in other regions of the world is absolutely worth considering.

The only limitation is that a classification into weather pat-

terns suitable for evaluating extreme precipitation is needed

as a precursor to such an analysis, but this is already avail-

able in several regions around the world (see Brigode et al.,

2014)
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