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Abstract. Subsidence was measured for the first time on

railway tracks in the central sector of Ebro Valley (NE

Spain) using Differential Synthetic Aperture Radar Interfer-

ometry (DInSAR) techniques. This area is affected by evap-

orite karst and the analysed railway corridors traverse ac-

tive sinkholes that produce deformations in these infrastruc-

tures. One of the railway tracks affected by slight settle-

ments is the Madrid–Barcelona high-speed line, a form of

transport infrastructure highly vulnerable to ground defor-

mation processes. Our analysis based on DInSAR measure-

ments and geomorphological surveys indicates that this line

shows dissolution-induced subsidence and compaction of an-

thropogenic deposits (infills and embankments). Significant

sinkhole-related subsidence was also measured by DInSAR

techniques on the Castejón–Zaragoza conventional railway

line. This study demonstrates that DInSAR velocity maps,

coupled with detailed geomorphological surveys, may help

in the identification of the railway track sections that are af-

fected by active subsidence.

1 Introduction

Human infrastructures located in karst environments may be

affected by severe ground instability problems (Waltham et

al., 2005; Gutiérrez et al., 2014). In particular, the occurrence

and activity of sinkholes in carbonate and evaporite karst ter-

rains is one of the main causes of subsidence-related dam-

age and accidents on conventional railways (Guerrero et al.,

2008). Deflections in the railway track caused by dissolution-

induced settlement can compromise safety on transporta-

tion infrastructure (Gourc et al., 1999). The implementation

of monitoring and early-warning systems on potentially

problematic railway stretches may constitute an effective

mitigation measure, mainly aimed at preventing accidents.

Differential Synthetic Aperture Radar Interferometry (DIn-

SAR) may be postulated as a useful subsidence monitoring

technique for railways. Most of the reported Interferomet-

ric Synthetic Aperture Radar (InSAR) applications to the

monitoring of high-speed railways (HSR) have been devel-

oped in China and Taiwan. In these countries, railway and

highway infrastructure are experiencing rapid development

and they traverse numerous areas affected by ground insta-

bility phenomena (Ge et al., 2008, 2009; Hung et al., 2010;

Shi et al., 2010; Tan et al., 2010; Wu et al., 2010; Zhang

et al., 2010; Chen et al., 2012; Ge et al., 2013). The insta-

bility processes that produce most problems on Chinese rail-

ways, and are the main targets of InSAR analyses, are related

to groundwater abstraction (Hung et al., 2010; Zhang et al.,

2010) and permafrost (Chen et al., 2013; Shi et al., 2014). For

a railway built upon permafrost, Shi et al. (2014) documented

temporal variations of deformation in relation to rainfall and

air temperature, and measured higher strain in topographi-

cally lower areas, where water accumulation increases the

impact of thawing and freezing. Further, the activity of sink-

holes has been monitored using DInSAR in different geolog-

ical settings of Germany (Schäffer, 2009), Israel (Baer at el.,

2002; Abelson et al., 2003; Nof et al., 2013), Italy (Ferretti et

al., 2000, 2004), Jordan (Closson et al., 2005, 2010), Spain
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Figure 1. Geographic location of the studied railway sections.

(Castañeda et al., 2009, 2011, Gutiérrez et al., 2011, Galve et

al., 2015) and USA (Al-Fares, 2005, Paine et al., 2012).

Here, we present DInSAR displacement profiles that re-

veal previously undetected active subsidence on sections of

different railways in the surroundings of Zaragoza, Ebro Val-

ley evaporite karst, NE Spain (Fig. 1). The Cenozoic bedrock

in the analysed area of the Ebro Valley consists of subhori-

zontally lying halite- and glauberite-bearing evaporites of the

Zaragoza Formation (Salvany et al., 2007) (Fig. 2). Subsur-

face dissolution results in the development of numerous sink-

holes affecting both the evaporitic bedrock and the alluvial

cover (Galve et al., 2009; Pueyo-Anchuela et al., 2015, and

references therein). Active subsidence associated with these

sinkholes causes costly damage to man-made structures (e.g.

Gutiérrez et al., 2009, 2015). The dissolution-induced ground

deformation can be studied quantitatively using InSAR tech-

niques as illustrated by previous works (cf., Castañeda et al.,

2009, 2011; Gutiérrez et al., 2011; Galve et al., 2015).

We have analysed two railway stretches. One of them

includes two parallel railways, a conventional one and

the Madrid–Barcelona high-speed line. Here, 1850 m and

1900 m long sections are built on embankments and in exca-

vated trenches, respectively. The latter are flanked by cuttings

that expose subsidence structures. The other stretch with ac-

tive subsidence includes a 4000 m long section of the con-

ventional Castejón–Zaragoza railway (Fig. 1). Both railway

corridors traverse large sinkholes previously documented in

geomorphological maps (Simón et al., 1998, 2003; Galve et

al., 2009). Some of these sinkholes were defined as being

active on the basis of surficial signs of settlement and on

the occurrence of collapses within them. For example, on

1 March 2003, a collapse sinkhole with 5 m diameter formed

beneath the high-speed railway a few months before its in-
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Figure 2. Geological map of the surroundings of Zaragoza and a

geological cross section of the central sector of the Ebro Valley.

From the geological point of view, the railway tracks crosses the

central sector of the Ebro Cenozoic Basin and is underlain by sub-

horizontally lying evaporites of the Oligo-Miocene Zaragoza Gyp-

sum Formation (Quirantes, 1978). This formation is composed of

gypsum, anhydrite, glauberite and halite units (Salvany et al., 2007).

Sinkholes are caused by subsurface dissolution and the consequent

deformation and/or internal erosion of the overlying sediments. De-

tailed descriptions of the dissolution and subsidence processes in

the study area can be found in Gutiérrez et al. (2008), Galve et al.

(2009) and Acero et al. (2015).

auguration (Guerrero et al., 2008). We also observed obvi-

ous deformation in a poorly maintained subsidiary railroad of

the Castejón–Zaragoza line, coinciding with the location of a

sinkhole mapped on the basis of geomorphic criteria (Fig. 3).

However, so far the precise area affected by active subsidence

has not been identified, nor has its settlement rates been mea-

sured. The data obtained by DInSAR analyses represents a

step forward in the sinkhole risk analysis for avoiding acci-

dents such as the derailment of a freight train caused by a col-

lapse sinkhole in the conventional Madrid–Barcelona railway

on 11 September 1991 (at km 360.7; (Gutiérrez et al., 2007))

(Fig. 2). In this work we integrate DInSAR deformation data

with different subsidence evidence (geomorphic, deformed

sediments, damaged man-made structures). The convergence

of the different lines of evidence is used to support the utility
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Figure 3. Section of the Castejón–Zaragoza railway built on a buried sinkhole and affected by active karst subsidence. (a) Aerial photograph

taken in 1956. Arrow points to a ponded sector within the large subsidence depression. (b) Orthoimage from 2009 with ALOS-derived

displacement rates on PSs. Dotted white line defines the boundaries of known active sinkholes. (c) Photographs of the location indicated with

arrows in (a) and (b), showing obvious deformation in the railways.

of DInSAR for monitoring railways affected by dissolution-

induced subsidence.

2 SAR data and processing methods

Archived data from two orbital SAR (Synthetic Aperture

Radar) missions have been used to produce the InSAR defor-

mation maps analysed in this work. One of the data sets in-

cludes C-band data of 29 ENVISAT ASAR images acquired

at 22:00 on ascending orbits from 2 May 2003 to 17 Septem-

ber 2010 (track 58, frame 829). The other data set comprises

L-band data of 13 ALOS PALSAR images acquired at 22:30

in ascending mode and HH polarization, and it covers a pe-

riod from 12 February 2007 to 7 April 2010 (track 665, frame

820).

The SAR images were processed using the Stable Point

Network (SPN) technique (Crosetto et al., 2008). Prepro-

cessing was carried out using the DIAPASON interferomet-

ric algorithm (Massonet and Feigl, 1998). This algorithm in-

corporates the persistent scatterer and distributed scatterer

approaches based on full-resolution and medium-resolution

data, respectively. The topographic component of the inter-

ferometric phase was removed using the Spanish photogram-

metric elevation model “GISOleícola” with a spatial resolu-

tion of 20 m.

The ENVISAT-ASAR-derived displacement rate map was

produced at full resolution from a total of 61 interferograms.

The persistent scatterers (PSs) were selected, establishing a

coherence threshold of 0.46 on the basis of the SAR am-

plitude selection criterion. The average line of sight (LOS)

displacement rate and the LOS displacement time series of

each PS were derived from the Single Look Complex (SLC)

ASAR images. Displacement rate values > 2 mmyr−1 were

considered as non-stable points as it is usually defined for

ENVISAT C-band data (Meisina et al., 2008; Bianchini et al.,

2013). The ALOS-PALSAR-derived displacement rate map

was produced at a ground resolution of about 25m×25m and

a coherence threshold of 0.40 was established. In this case,

displacement rates > 4 mmyr−1 were considered as indica-

tive of surface deformation. This threshold is consistent with

values used by other authors (Sandwell et al., 2007; Bian-

chini et al., 2013). Additional technical information on SAR

data sets and DInSAR deformation profiles is listed in Ta-

ble 1.

3 Railway deformation detected by DInSAR and

interpretation

Railways served as good reflection features for ALOS and

ENVISAT sensors, providing a relatively high density of

measurement points, especially in the ALOS-derived map.

Two profiles of LOS displacement rates have been con-

structed along the railway corridors using the InSAR maps

(Fig. 4). We analysed ALOS and ENVISAT data in each

profile and selected the best results to be presented in this

work: ALOS measurements in the Castejón–Zaragoza rail-

way line, and ENVISAT PS points in the Madrid–Zaragoza

profile (Fig. 4).

The displacement rates measured in the SW and NE por-

tions of the analysed Madrid–Zaragoza railway section, as

high as −6.6 mmyr−1 (negative values indicate subsidence),

may be related to compaction of the embankments, as the di-

rect correlation between subsidence rates and embankment

height suggests (Fig. 4, Profile 1). LOS displacement rates
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Figure 4. Profiles with DInSAR-derived LOS deformation data obtained along the analysed railway sections. Data from the Madrid–

Barcelona railway corridor are represented alongside a topographic profile showing the stretches built on embankment and excavated

trenches. Dark grey and light grey zones indicate sections built on sinkholes classified as being active and inactive, respectively. See lo-

cation of profiles in Fig. 1.

indicate rapid settlement (> 4 mmyr−1) in the NE sector of

the analysed stretch, coinciding with the location of a buried

depression of unknown origin, filled a few decades ago and

identified with aerial photographs. Here, subsidence is most

probably related to compaction of anthropogenic deposits,

which may exceed 10 m including the embankment. How-

ever, further investigations would be required to rule out

the potential contribution of dissolution-induced subsidence

(e.g. trenching, geophysics, vertical extensometers).

The negative LOS displacement values measured in the

sector where the path of the railway has been excavated

in Quaternary alluvium can be attributed to dissolution-

induced subsidence. There is a significant number of points

with LOS displacement rates below −2 mmyr−1 between

1500 and 2700 m in Profile 1. In this sector, the railways

run across subdued sinkholes recognized in old aerial pho-

tographs and expressed in cuttings as deformed Quaternary

alluvium (Simón et al., 1998, 2003; Galve et al., 2009). The

sinkhole cluster comprises a large diffuse-edged depression

and several smaller subcircular sinkholes (Galve et al., 2009)

(Fig. 5). In addition to the DInSAR deformation data, sev-

eral lines of evidence consistently indicate active subsidence

in some sectors of the sinkhole cluster: enclosed depressions,

severe cracking on buildings, conspicuous sags and wide fis-

sures on roads and small collapse sinkholes, including the

2003 event. An excavation carried out at the SW edge of the

large depression for the foundation of a bridge exposed tilted

Quaternary deposits dipping toward the depression centre

(Fig. 5). Two sedimentary packages were distinguished. The

lower one corresponds to pre-sinkhole terrace gravel deposits

with an apparent NE dip of 14–17◦. The upper one corre-

sponds to natural sinkhole fill deposits that pinch out towards

the SW (sinkhole edge). The dip of these sediments progres-

sively attenuates upwards (cumulative wedge-out), suggest-

ing synsedimentary subsidence.

The high density of measurement points derived from

the ALOS data along the Castejón–Zaragoza railway pro-

vides valuable information on the activity of three previ-

ously inventoried sinkholes traversed by the infrastructure.

A clear subsidence zone, with negative LOS displacement

rates as high as −9.7 mmyr−1, coincides with a sinkhole of

about 300 m in diameter previously classified as being active

(Figs. 3 and 4, Profile 2). Here, ground motion values show

a consistent pattern with increasing subsidence rates towards

the centre of the sinkhole (Fig. 3). The LOS displacement

values measured in the other two sinkholes, previously de-

scribed as inactive (Galve et al., 2009), suggest ground sta-

bility or very slow subsidence (< 2 mmyr−1).
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Table 1. Main characteristics of the SAR data sets and DInSAR deformation profiles.

ENVISAT ALOS

S
A

R
ac

q
u

is
it

io
n

Band/polarization C/VV L/HH

Wavelength (cm) 5.6 23.6

Incidence angle 23 38.7

Revisiting period (days) 35 46

Orbital track/frame 58/829 665/820

Acquisition geometry Ascending Ascending

Pixel size (m) radar geometry 4 × 10 8 × 4

Data set period May 2003–Sept 2010 (7.38 years) Feb 2007–Apr 2010 (3.15 years)

Temporal span between two acquisitions (days)

Mean 96 96

Maximum 700 414

Minimum 5 46

S
A

R
p

ro
ce

ss
in

g Number of SAR images 29 13

Number of interferograms 61 78

Maximum spatial baseline (m) 138 393

Maximum temporal baseline (days) 1050 1150

DEM (pixel size) GIS Oleícola (20 m) GIS Oleícola (20 m)

Coherence threshold 0.46 0.4

D
In

S
A

R
d

ef
o

rm
at

io
n

p
ro

fi
le

s

Railway line Madrid–Barcelona Castejón–Zaragoza

Length (km) 3.75 4

Width (m) 50 70

No. of measurement points 436 198

Type of point Persistent scatterer Pixel (∼ 25 m)

Density of measurement points (pointskm−1) 116.3 49.5

LOS displacement rate (mmyr−1)

Mean −1.4 −2.4

Maximum value (uplift) 2.1 1

Minimum value (subsidence) −8.6 −9.7

Standard deviation 1.3 1.8

Cumulative LOS displacement (mm)

Mean −11.1 −7

Maximum value (uplift) 12 3.9

Minimum value (subsidence) −57.6 −28.9

Standard deviation 9.5 5.2

4 Discussion

The presented data illustrate that DInSAR offers promising

potential for monitoring railways that are affected by sink-

hole activity and dissolution-induced subsidence. This postu-

late is supported by two relevant aspects of our investigation.

(1) There is a good spatial correlation between the deforma-

tion values measured by DInSAR and unambiguous field evi-

dence of active subsidence associated with sinkholes. (2) We

obtained good results using InSAR data derived from a re-

gional investigation (see Galve et al., 2015). Detailed analy-

ses focused on railway tracks or on specific sections of the

infrastructure should provide higher density and more accu-

rate deformation data than in the profiles presented in this

paper.

Railways are linear features that are commonly positioned

on relatively flat surfaces that act as adequate reflectors for

the spaceborne SAR systems, providing spatially dense and

temporarily stable coherent scatterers (Hanssen and van Lei-

jen, 2009; Shi et al., 2014). Chen et al. (2012) illustrate the

strong backscattering of railways in ALOS PALSAR and

ENVISAT ASAR amplitude images, compared with the sur-

rounding features. The density of natural reflection points de-

pends on the land cover, the number of images used in the In-

SAR analysis, the adopted processing parameters and algo-

rithm type, the selected coherence threshold and the spatial

resolution of radar imagery (Wasowsky and Bovenga, 2014).

In our case, ENVISAT displacement points cover a larger

area in the Madrid–Zaragoza profiles (NW–SE orientation)

than the ALOS displacement data. On the contrary, ALOS

data provided the best distribution of measured points along

the Castejón–Zaragoza stretch (NE–SW orientation). Appar-

ently, this difference could be attributed to the relative orien-

Nat. Hazards Earth Syst. Sci., 15, 2439–2448, 2015 www.nat-hazards-earth-syst-sci.net/15/2439/2015/
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tation of the railway tracks with respect to the flight path of

sensors. However, both the ENVISAT and ALOS data corre-

spond to ascending paths and, consequently, the differences

observed between the two DInSAR displacement rate maps

cannot be related to the course of the satellites. Ge et al.

(2008) and Shi et al. (2010) have obtained deformation se-

quences covering long time spans analysing PSs along rail-

ways. Shi et al. (2010) measured numerous minor and lo-

cally distributed displacements that were not detected by lev-

elling. Chen et al. (2012) obtained a higher density of PSs

with ALOS PALSAR data than with ENVISAT ASAR data.

This was probably due to the longer wavelength of the former

and the higher critical baseline applied to generate the ALOS

interferograms of the small baseline subset (SBAS) method

(Lanari et al., 2004). This resulted in higher coherence, espe-

cially in zones with high deformation gradients and in man-

made features such as the railway embankment. Lanari et

al. (2004) inferred that the difference in the distribution of

PSs derived from L- and C-band data are controlled by their

different scattering mechanisms. In the PALSAR results, the

railway embankment was more easily detected because of its

resolution (10 m). Man-made linear features were dominated

by the dihedral scattering and resulted in a high density of PS

points in the PALSAR results. For ENVISAT data, despite

the strong backscattering of the railway, motion was not de-

tected using the PS method, probably due to the noise caused

by the scattering mechanism of instable land surfaces.

5 Conclusions and final considerations

DInSAR techniques allowed the detection of previously un-

known settlement in several stretches of two major railway

lines of NE Spain. The area in the outskirts of Zaragoza is

severely affected by evaporite karst subsidence. This defor-

mation was detected thanks to medium-resolution surface ve-

locity maps generated through the analysis of archived data

of the ENVISAT and ALOS SAR missions. The results show

that DInSAR methods allow deformation of railways to be

identified and monitored, that may otherwise compromise

both serviceability and safety.

DInSAR velocity maps coupled with detailed geomorpho-

logical maps may help in the identification and characteriza-

tion of the railway stretches affected by active deformation

that may require site-specific monitoring. These stretches

may be controlled by using real-time advanced ground-based

monitoring techniques such as motorized total station sys-

tems that measure prisms attached directly to the structure,

time-domain reflectometry (TDR) coaxial cable sensors (cf.,

O’Connor et al., 2004) or GB-InSAR (cf., Intrieri et al.,

2015). DInSAR also could be an alternative to these expen-

sive techniques where catastrophic collapse can be ruled out

and the ground deformation does not show dangerous subsi-

dence rates (according to the admissible deformation of the

railway track). Site-specific investigations combining more

adequate and higher-resolution SAR data with ground ref-

erences (e.g. corner reflectors, GPS benchmarks) may pro-

vide a very precise monitoring system. PS detection in lin-

ear infrastructures is improving substantially by using high-

resolution data (e.g. CosmoSkyMed, TerraSAR-X) (Ge et al.,

2013; Nutricato et al., 2013; Yu et al., 2013; Luo et al., 2014).

High-resolution imagery can provide a point density 10 times

higher than medium-resolution data (Bovenga et al., 2012).

Yu et al. (2013) found dense PSs in highways and railways

using high-resolution TerraSAR-X data due to the presence

of numerous stable objects distributed along the infrastruc-

ture, such as lamps, stones or fences. Future studies in our

study area should focus on the monitoring of deformation

using TerraSAR-X and COSMO-SkyMed data coupled with

other ground-based measurements.
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