
Nat. Hazards Earth Syst. Sci., 15, 2299–2312, 2015

www.nat-hazards-earth-syst-sci.net/15/2299/2015/

doi:10.5194/nhess-15-2299-2015

© Author(s) 2015. CC Attribution 3.0 License.

The effect of uncertainty in earthquake fault parameters on the

maximum wave height from a tsunami propagation model

D. Burbidge1, C. Mueller2, and W. Power2

1Geoscience Australia, Canberra, Australia, now at GNS Science, Lower Hutt, New Zealand
2GNS Science, Lower Hutt, New Zealand

Correspondence to: D. Burbidge (d.burbidge@gns.cri.nz)

Received: 26 March 2015 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 22 May 2015

Revised: 23 September 2015 – Accepted: 24 September 2015 – Published: 12 October 2015

Abstract. Over the last decade precomputed tsunami propa-

gation model databases have been used extensively for both

tsunami forecasting and hazard and risk assessment. How-

ever, the effect of uncertainty in the earthquake source pa-

rameters on the results of the simulated scenarios of tsunami

propagation has not always been examined in great detail.

Here we have undertaken a systematic study of the uncer-

tainty in the maximum wave height of a tsunami (hmax) as a

function of the uncertainty in the rupture parameters of the

earthquake that generates it (specifically the strike, dip, rake,

depth and magnitude). We have shown that even for the sim-

ple case of a tsunami propagating over flat bathymetry, the

coefficient of variation (CoV) and skewness of the distribu-

tion of hmax was a complex function of the choice of rupture

parameter, distance and azimuth. The relationships between

these parameters and CoV became even more complex as the

bathymetry used became more realistic. This has major po-

tential implications for both how warning centres operate in

the future and how the uncertainty in parameters describing

the source should be incorporated into future probabilistic

tsunami hazard assessments.

1 Introduction

Since the 2004 Indian Ocean tsunami, there has been a major

increase globally in tsunami propagation modelling for use in

both tsunami warning and hazard and risk assessment. Prob-

abilistic tsunami hazard assessments (PTHAs) have been cre-

ated for the United States (Geist and Parsons, 2006; González

et al., 2009), Australia (Burbidge et al., 2008, 2009), New

Zealand (Power et al., 2007; Power, 2013), the Mediter-

ranean (Sørensen et al., 2012; Lorito et al., 2015), the north-

west Indian Ocean (Heidarzadeh and Kijko, 2011), Indonesia

(Horspool et al., 2014) and the even the entire globe (Løvholt

et al., 2014). At the same time, hundreds to thousands of

simulated scenarios of tsunami propagation have been cre-

ated to inform real-time tsunami forecasting and alerts (e.g.

Greenslade et al., 2007, 2013).

One aspect that has not been studied in great detail is the

sensitivity, or uncertainty, in the maximum tsunami wave

height due to uncertainty in the earthquake’s geometrical

source parameters such as strike, dip and rake. Here we

present a systematic study of this issue, starting with sim-

ple source models in a flat ocean and then moving on to three

examples which use a more realistic bathymetry.

Previous studies into what affects the tsunami wavefield

have mostly focused on various physical parameters such as

source effects (Geist, 1999), bathymetry (Geist, 2009), tides

(Weisz and Winter, 2005), dispersion of wave propagation

(Glimsdal et al., 2013), Coriolis force (Shuto, 1991), effects

of friction (Myers and Baptista, 2001) and land cover rough-

ness when propagating onshore (Kaiser et al., 2011). The ac-

curacy of tsunami simulation not only depends on the con-

sideration of these factors in the numerical implementation,

but also on the variability and uncertainties associated with

them.

Dao and Tkalich (2007) reviewed the numerical effects

of dispersion, Coriolis force, coordinate systems (Cartesian

or spherical), bottom friction, tides and the wave equation

used (Boussinesq-type versus non-linear shallow water equa-

tions). They found that astronomic tides and bottom fric-

tion have large impacts in shallow water, whereas dispersion

only has a considerable effect on waves travelling over long
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distances. The particular type of numerical implementation,

e.g. the choice of wave equation (linear and non-linear shal-

low water wave equations, Boussinesq-type or full Navier–

Stokes equations) and their corresponding capacity to incor-

porate the factors mentioned above also has an influence on

the accuracy of the simulation. Glimsdal et al. (2013) also

found that dispersion is also a function of the dominant wave-

length of the tsunami and the depth of the water at the source.

The maximum amplitude of a tsunami in the near and

far field has been investigated by several authors. Geist

(2009) found that the maximum tsunami amplitude in the

near field was mostly due to either the direct wave or edge

waves along the continental shelf. By contrast, in the far

field, the maximum amplitude was most often caused by a

combination of source radiation pattern, scattering, reflec-

tions and the nearshore response (edge waves, shelf modes

and resonance). This work was continued in Geist (2012)

who showed that far-field amplitude scaled with scalar seis-

mic moment but with significant uncertainty in the correla-

tion. Other studies, such as Davies et al. (2015), McCloskey

et al. (2007, 2008), Løvholt et al. (2012) or Goda et al.

(2014), have investigated the effect of non-uniform slip on

the nearshore maximum tsunami height or on the maximum

inundation height. However, these studies have generally fo-

cused on one particular location and thus on a limited range

of distances and azimuths. In Geist (2002), the effect of non-

uniform slip on the far field was stated to be “less than 10 %”

but the exact azimuth and distance at that point was not dis-

cussed.

Having a better understanding of the uncertainty in the

maximum tsunami wave height has the potential to be im-

portant, not only for future tsunami hazard assessments but

also tsunami forecasting and source inversions. In PTHAs it

might be possible to treat the uncertainty in source parame-

ters as an aleatory, rather than epistemic and include it in a

probabilistic assessment, as discussed by Geist and Parsons

(2006) or Thio et al. (2010). While in some cases this may be

more computationally efficient, it may not be strictly correct

according to the normal definition of those terms. Epistemic

uncertainty, as defined by for example Marzocchi and Jor-

dan (2014), is due to our lack of knowledge of the system,

while aleatory uncertainty (or variability) is due to the in-

trinsic randomness of the system. In theory, epistemic uncer-

tainty can be reduced by more knowledge about the system,

but aleatory uncertainty cannot. So uncertainty in, say, the

dip is really an epistemic uncertainty, not an aleatory one, but

in some cases it may be convenient to treat it as an aleatory

uncertainty anyway.

Outside of hazard assessment, another potential use would

be to know how close to a warning threshold a modelled

tsunami wave height from an event must be in order for the

difference to be “insignificant” given the current uncertainty

in the source’s rupture parameters. This could then be used

to inform the resulting warning given to the public. The un-

certainty in source parameters could affect the reliability of

assumptions made, inverting for the source using tsunami

mareogram data.

For the purposes of this paper, we have focused on try-

ing to characterise the uncertainty in the maximum offshore

tsunami wave height at a particular point (hmax). The reason

we have selected this particular model output is that this is the

one most commonly used for both PTHAs and for tsunami

alert threshold levels in warning systems.

The level of sensitivity in hmax to variations, or uncer-

tainties, in source properties can be measured in a variety

of ways. Here we have quantitatively estimated this sensitiv-

ity by calculating the coefficient of variation (CoV) of hmax.

CoV was defined here to be equal to σmax/µmax where σmax

was the corrected sample standard deviation and µmax was

the mean value of hmax at a particular location. Other metrics,

such as σ itself, could be used but CoV has the advantage of

being both a dimensionless and reasonably common metric

for estimating the dispersion of a distribution. We have esti-

mated the CoV by running N tsunami propagation models,

each with a different value of a particular source parameter

selected from a normal distribution with a standard deviation

centred at the parameter’s mean. The normal distribution was

chosen mainly for convenience as it is a simple, common ex-

ample of an uncertainty distribution. The actual uncertainty

distribution for some parameters could in fact be quite com-

plex. For example, the uncertainty in the strike may vary with

magnitude. However, in most cases, the correct distribution

is not known and the normal distribution has the advantage of

being simple. Given these assumptions, σmax at a given point

is then

σmax(x,y)=

√√√√ 1

N − 1

N∑
i=1

(
himax(x,y)−µmax(x,y)

)2
, (1)

where himax(x, y) was the maximum tsunami wave height at

a particular location for the ith model run.

To the authors’ knowledge, previous studies into tsunami

sensitivity or uncertainty with respect to variations in the

source parameters have typically been very location- and

event-specific and/or have only considered a few parameters

with a handful of models (i.e. N in the equation above was

small). For example, Titov et al. (1999) and Gica et al. (2007)

studied the effect of various combinations of dip, strike, rup-

ture dimensions, hypocentre, slip displacement and rake an-

gle on offshore tsunami maximum wave heights near Hawaii

from earthquakes from the Aleutian Islands, Chile and Japan.

While this was a comprehensive list of parameters, the lim-

ited number of sources and target sites make it difficult to

know to what degree the results of that study can be applied

to other areas. For the location and events that they did study,

they found that the tsunami wave height at distance is mostly

affected by changes in fault dimensions, strike angle and slip

displacement but not as much by rake, dip, epicentre location

and focal depth. Thus their conclusion was that the earth-
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quake could not be entirely treated as a point source in the

far field.

Okal and Synolakis (2008) also performed a few tests on

the effect of shifting the epicentre and rake on maximum

tsunami wave heights predicted from their numerical model.

Again, this was only for a few examples and therefore can-

not be used to calculate the CoV. However, they did con-

clude from their study that the far-field pattern was robust

to these variations. Okal and Synolakis (2004) also exam-

ined the effect of varying a range of rupture parameters on

the maximum run-up from nearshore events. However, they

did not examine the CoV on the maximum run-up nor the

effect on the maximum offshore wave height from more dis-

tant events. In addition, Løvholt et al. (2012) examined the

effect of changing the dip and depth on the CoV from a set of

heterogeneous slip events using a plane wave tsunami model

with idealised bathymetry. They found that the CoV of the

maximum run-up from varying the slip decreased when the

depth of the fault was increased but was unchanged when the

dip was varied. However, they did not specifically look at the

CoV from varying the bulk rupture parameters (eg strike, dip

or depth) nor did they examine the effect of changing the dis-

tance to the rupture or the azimuth. Xing et al. (2015) exam-

ined the effect of strike, rake, dip and magnitude on the max-

imum tsunami wave height at locations off the eastern coast

of Australia for two tsunami sources, one on the New He-

brides Trench and one on the Puysegur Trench. They found

that hmax was changed when any of these parameters were

varied. However, these authors only studied five cases per

parameter, and again the study was specific to a particular

set of locations and sources. Finally, Goda et al. (2015) has

recently published a study looking at the variation in inunda-

tion footprints in the Tohoku region of Japan from different

fault geometries (top edge depth, strike and dip) and slip dis-

tributions. They found that the sensitivity to these parameters

was highly dependent on tsunami source characteristics and

site location and therefore complex and highly non-linear.

Here we have looked at how the CoV changes for a range

of azimuths and distances for a given uncertainty in a partic-

ular rupture parameter using one particular tsunami propaga-

tion model, EasyWave (Babeyko, 2012). The rupture param-

eters chosen for this study were strike, dip, rake, magnitude

and depth. The slip on all the models shown was uniform and

the rupture dimensions were based on Abe (1975). We have

done this in order to answer the following simple questions.

– Does the CoV vary with distance, azimuth or magnitude

and how is it affected by bathymetry?

– Is hmax normally distributed? If not, is the shape of the

distribution also a function of distance, azimuth, magni-

tude or bathymetry?

If the CoV does not vary significantly due to these factors

and hmax was normally distributed, this could significantly

simplify both PTHAs and tsunami forecasting. The main pur-

pose of this paper is to see the extent to which we can assume

that this is true for this particular set of examples.

2 Method

The method used here for assessing the uncertainty in hmax

was conceptually simple, if computationally intensive. It

consisted of the following steps.

1. Choose a bathymetry.

2. Select a standard (or reference) set of rupture parame-

ters.

3. Choose a random number from a normal distribution

with a width given by the standard deviation in the pa-

rameter to be studied (σstrike, σdip, σrake or σdepth de-

pending on the parameter).

4. Run the tsunami propagation model with this parameter

and then save the maximum wave height at all points in

the model’s domain.

5. Repeat steps 3 and 4 for N iterations, each with a dif-

ferent, randomly generated, value of the parameter to be

studied. Save the maximum wave heights at all points in

the model for each iteration.

6. Use these models to calculate µmax across the model

domain.

7. Use Eq. (1) to calculate σmax for all points in the model

domain.

8. Calculate the ratio of σmax and µmax to calculate the

CoV at every point in the domain.

9. Map the resulting CoV values.

In addition to calculating the CoV, we have also binned

the N models in order to examine the shape of the resulting

distribution.

Finally, we have also mapped the sample skewness in or-

der to provide a more quantitative measure of the shape of the

distribution of hmax across the model’s domain. The sample

skewness, S, was given by (Mantalos, 2010)

S =

1
N

N∑
i=1

(
himax−µmax

)3
(

1
N

N∑
i=1

(
himax−µmax

)2)3/2
. (2)

When S > 0, the distribution is usually skewed to the right,

i.e. it has a large (or heavy) tail above the mean. Log-normal

distributions are an example of this type of distribution.

When S < 0, the distribution is skewed to the left and the

heavy tail is below the mean. If S= 0 then the distribution
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is evenly distributed around the mean (as it would be for the

normal or uniform distribution for example). Maps of S al-

lowed us to see whether the shape of distribution of hmax

changed with azimuth or distance.

For the studies shown here, we have set N = 100. To test

that this was adequate, we ran one set of runs with N = 50

and found that this changed the maximum CoV in a test

model by 11 %. However, when we ran one set of models

withN = 200, we found that this changed the maximum CoV

observed in the model by less than 1 %. Therefore N = 100

was chosen as a reasonable balance between accuracy in the

maps and computational speed.

2.1 Bathymetry

For this study we used three increasingly complex

bathymetry data sets. The first was a 80◦× 80◦ bathymetry

model with a constant depth of 3678 m (the average depth

of the ocean, Charette and Smith, 2010). The boundaries

of the model go from −140 to 140◦ in longitude and from

−40 to 40◦ in latitude. The second bathymetric data set was

an 80◦ latitude by 42◦ longitude bathymetry model with a

constant depth of 3678m up until a step up in the elevation to

100 m a.m.s.l. (above mean sea level) near the eastern edge

of the model domain. This model went from 140 to 181.25◦

in longitude but had the same range in latitude. The step at

effectively acts as a reflecting wall. Both models were calcu-

lated on a 4 arcmin grid. The first bathymetry can be viewed

as a simplified version of the bathymetry near an oceanic sub-

duction zone and the second for a (highly) simplified conti-

nental subduction zone. Having uniform bathymetry removes

bathymetry variations from the problem and allows us to un-

derstand the patterns in CoV better. The stepped model could

be made more like an actual continental margin by (for ex-

ample) including a sloped ramp up to 100 m. However, the

main aim of this bathymetry is just to demonstrate the effect

of a basic process, in this case a simple reflection, rather than

be a demonstration of the effect of a continental margin on

CoV or skewness.

Some models were also run with both a 2 arcmin and a

8 arcmin grid and in both cases there was only a small change

in the maximum CoV observed in the model (less than 5 %).

However, there were some minor changes in the pattern.

Therefore some of the details in the maps shown later could

be influenced by the numerical resolution of the grid. This

could be due to the different levels of numerical dispersion in

the models with different grid resolutions or because some of

the details of the initial deformation pattern and subsequent

waves were missed for the coarser resolutions. However, the

overall pattern appeared to be independent of the model res-

olution.

The final bathymetry model used consisted of two sub-

sections of ETOPO2 global elevation model (NOAA, 2006).

Both were calculated on a 2 arcmin grid. ETOPO2 is one of

the standard bathymetry models commonly used for tsunami

propagation calculations. These models illustrated the effect

of realistic bathymetry on the CoV and S maps.

2.2 Reference fault parameters

The uniform and stepped bathymetry tsunami runs used a

uniform slip model with a set of “standard” values. The stan-

dard values were

– dip= 20◦;

– strike= 0◦;

– rake= 90◦;

– depth to the top edge of the rupture= 10 km.

When a parameter was varied randomly the standard value

listed above was the random distribution’s mean.

The standard value of the dip was chosen to be 20◦ as this

is a typical value for the average dip of the seismogenic part

of a subduction zone (e.g. the average dip of the interface in

Slab 1.0 of Hayes et al. (2012) varies from 8 to 30◦ depending

on the zone). Since we are mainly interested in tsunamigenic

earthquakes the rake was set to be pure thrust. Since the rake

was pure thrust, variations around that value add a strike–slip

component to the motion and thus will generally reduce the

amplitude of the tsunami. The depth of the top edge was kept

quite shallow (10 km) as a typical “worst” case scenario. As

a reviewer pointed out, when the depth is this shallow and the

slip is uniform the initial sea surface displacement will have a

distinct (and probably artificial) peak. The strike was chosen

to propagate the tsunami along the equator and minimise any

distortions simply due to the map projection. It also made

the north and south parts of the domain symmetric which is

a check that the sampling is adequate.

The sea floor deformation created by these sources was

calculated on 10× 10 km patches (i.e. sub-faults) using the

Okada equations as implemented in EasyWave, and then

summed. Given that all the models considered in this paper

had uniform slip, a single large source could also have been

used. Patches were used instead since the original intention

was to compare the CoVs and hmax distributions from uni-

form and non-uniform slip models using the same sized set

of sub-faults. This turned out to not be required to demon-

strate complexity in the uncertainty patterns. One aspect of

using sub-faults is that there may be small edge effects in the

initial sea surface displacement when compared to that which

would have been produced by a single, larger fault.

The fault’s centroid was positioned at 180◦W, 0◦ N and

dipped to the east. The scaling relationship used to estimate

the rupture dimensions and slip for a particular magnitude

were based on the scaling relations of Abe (1975) rounded to

the nearest 10 km. These relations hold for magnitudes up to

that at which the rupture width extends for the full width of

the fault plane (to the brittle ductile boundary where fault-

locking no longer occurs). For the purposes of this study,
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the maximum width was assumed to be 150 km. Above this

magnitude it was assumed that the displacement continues

to scale proportionately with the fault length; this is known

as the L-model (Scholz, 1982; Hanks and Bakun, 2002). Al-

though other, more recent, scaling relations could have been

used, this particular set of scaling relations had the advantage

of already being implemented in the computational frame-

work (see Sect. 2.3) and the effect of different scaling rela-

tions on hmax and CoV was not intended to be the main focus

of this study.

For the models which were run using the ETOPO2

bathymetry, the epicentre and mean strike used were those of

the 2011 Kermadec earthquake, 2007 Solomon Islands earth-

quake or the 2006 Java earthquake. The strike of these mod-

els was set to be equal to that for one of the nodal planes

for these events calculated by the USGS. Note that only the

epicentre and strike were based on these events; the dip and

rake were kept the same as the flat and stepped bathymetry

examples in order to aid comparison. These three locations

were chosen as they are good examples of subduction zones

from different tectonic environments and thus bathymetries.

The Kermadec zone is on a fairly typical oceanic subduction

zone, the Solomon Islands zone is an example of a zone with

complex bathymetry in the source region (i.e. multiple small

islands) and Java is a typical example of a continental sub-

duction zone.

2.3 Numerical models and scripts

The tsunami propagation model used here was EasyWave

(Babeyko, 2012). The main reason this particular model

was chosen was that it has been optimised for computa-

tional speed and is open-source (http://trac.gfz-potsdam.de/

easywave). The time step for all the models shown here was

the one calculated automatically by EasyWave. For the pur-

pose of the uncertainty calculations, the Coriolis effect was

not included.

A robust and efficient framework was required to manage

the large amount of data and the simulated scenarios this

method produced. A Python-based object oriented applica-

tion programming interface (API) was developed that aug-

ments and drives the EasyWave tsunami simulation program.

The API allowed us to automate this parameter study using

EasyWave as the tsunami simulation kernel. All the source

models investigated in this study were created and managed

with this API. The API also managed simulation on GNS

Science’s cluster used for the computations, i.e. it farmed

simulation scenarios out to cluster and collected data after

simulation completion.

All the subsequent post-processing, including the map

generation, was calculated by a set of post-processing GMT

scripts (Wessel et al., 2013). The output grids from Easy-

Wave and for the statistics were a mix of Golden Software©

format files produced by EasyWave and NetCDF format files

created by GMT.

140˚ 160˚ 180˚ −160˚ −140˚
−40˚

−20˚

0˚

20˚

40˚

0 1 2 3 4 5 6

Mean Maximum Wave Height

m

Figure 1. The mean of the maximum tsunami wave height (µmax in

metres) for a Mw= 9.5 event with a σstrike= 10◦. The bathymetry

is uniform and completely flat. The earthquake’s rupture has a 20◦

dip to the right, its mean strike is north–south (i.e. 0◦), the depth

to the top edge is 10 km and it is centred at 180◦W, 0◦ S. The slip

along the rupture plane is uniform and has a 90◦ rake (i.e. it is a pure

thrust earthquake). The black box on the figure shows the surface

projection of the mean rupture plane. The solid line on the left is

the top edge of the plane and the dashed line on the right is the

bottom edge.

3 Results

3.1 Uniform, flat bathymetry

3.1.1 Strike

Figure 1 shows the mean maximum wave height (hmax) over

100 uniform slip models with σstrike of 10◦ and a magnitude

of Mw= 9.5. This level of uncertainty would be typical for a

well-constrained earthquake focal mechanism. The total ro-

tational uncertainty (strike and dip) for a focal mechanism

is typically between 5 and 20◦ (Kagan, 2003). The other

parameters are at their standard values (see Sect. 2.2). The

bathymetry was flat with a uniform depth. As one might ex-

pect, the tsunami propagated as two “beams”; one going to

the east and one to the west of the earthquake rupture’s ini-

tial location. The effect of averaging over 100 models with

varying strike was that these beams become more “smeared”

at their edges than they would be if only one model was sim-

ulated.

Figure 2a–c shows maps of the CoV of hmax from three

sets of earthquakes with magnitudes Mw= 7.5, 8.5 and 9.5,

respectively. The sets of earthquakes varied in the strike by

10◦ but were otherwise the same. As can be seen, the largest

values of CoV were on each side of the two tsunami beams

(Fig. 1). The CoV was higher and more focused on the foot-

www.nat-hazards-earth-syst-sci.net/15/2299/2015/ Nat. Hazards Earth Syst. Sci., 15, 2299–2312, 2015

http://trac.gfz-potsdam.de/easywave
http://trac.gfz-potsdam.de/easywave


2304 D. Burbidge et al.: Tsunami uncertainty

140˚ 160˚ 180˚ −160˚ −140˚

−40˚

−20˚

0˚

20˚

40˚(a)

0.0 0.1 0.2 0.3 0.4

CoV

140˚ 160˚ 180˚ −160˚ −140˚

−40˚

−20˚

0˚

20˚

40˚(b)

0.0 0.1 0.2 0.3 0.4

CoV

140˚ 160˚ 180˚ −160˚ −140˚

−40˚

−20˚

0˚

20˚

40˚(c)

0.0 0.1 0.2 0.3 0.4

CoV

140˚ 160˚ 180˚ −160˚ −140˚

−40˚

−20˚

0˚

20˚

40˚(d)

0.0 0.1 0.2 0.3 0.4

CoV

Figure 2. The effect of σstrike on the coefficient of variation (CoV)

of hmax. (a) shows the CoV map from a set of 100 tsunami gen-

erated by Mw= 7.5 earthquakes which vary only in strike. (b) and

(c) show the effect on CoV when the magnitude of these events are

increased toMw= 8.5 andMw= 9.5. For (a)–(c) σstrike= 10◦. The

bathymetry and other parameters are the same as in Fig. 1. Note that

values above 0.4 are all shaded the same colour. 0.4 was chosen to

be the maximum for these figures in order to be consistent with later

figures. (d) shows the CoV map from a set ofMw= 9.5 events with

a σstrike= 5◦.

wall (left) beam than for the hanging wall (right) beam for

Mw= 7.5 (Fig. 2a) but not for the higher magnitudes. The

variance was always at a minimum along strike (i.e. due north

and south along the 180◦W line of longitude). The range

of CoV values went from 0.7 to 0.001 for Mw= 9.5. For

Mw= 7.5 it ranged from 0.3 to 0.001 but the bulk of the re-

gion was well below 0.2. For Mw= 9.5 the most common

CoVs across the model domain were between 0.05 and 0.1

but many of the points were between 0.5 and 0.7 (histogram

not shown, but this can be seen from the range of colour val-

ues in Fig. 2c). Overall, the pattern was symmetric between

the northern and southern halves of the model domain. How-

ever, on close inspection some minor asymmetries were seen

between the northern half of the model and the southern half,

particularly due north and south of the earthquake’s epicen-

tre. These are likely to be due to a combination of the finite

number of samples and small numerical errors (e.g. round-

off).

Just from this figure we can see that uncertainty in the

strike makes the biggest difference (in terms of CoV) just off

the main direction of the tsunami propagation. This means
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Figure 3. Example histograms for three locations surrounding a

Mw= 9.5 event with a σstrike= 10◦. (a) is at 160◦ E, 0◦ and is di-

rectly in the mean path of the beam. This is an example of a location

where the distribution has a strong negative skew. (b) is an example

at the edge of the beam (160◦ E, 5◦ S). It is not skewed, but nor is

it normally or log-normally distributed. (c) is at 160◦ E, 10◦ S and

is thus just off the beam. This is an example of a location where the

distribution of maximum wave heights has a strong positive skew.

(d) shows the location of the histograms in (a)–(c) relative to the

rupture. The background image shows the skewness (see Eq. 2) of

the maximum tsunami wave height distribution across the domain.

an error in the strike in (for example) a tsunami forecast will

make the largest difference to the amplitude in that location.

Also, if one were to invert for the tsunami source, an obser-

vation in these areas is likely to be much more helpful in

constraining the strike rather than a point due north or south

of the source.

Figure 2d shows the CoV map when σstrike is reduced to 5◦

for a magnitude ofMw= 9.5. In this case, reducing σstrike did

not change the pattern very much but reduced the amplitude

and concentrated the larger CoV values into a smaller area.

The maximum value of CoV reduced to 0.5 (down from 0.7).

Also, the maximum effects of strike uncertainty occurred fur-

ther from the source.

Figure 3a–c show the histogram of the maximum wave

heights at locations A–C on Fig. 3d for aMw= 9.5 event. As

can be seen, the distribution of maximum wave heights was

far from being normally distributed at the locations shown.

For location A the distribution had a strong negative skew,

while for C it had a strong positive skew. At B the distribution

was not significantly skewed, but was close to uniform. This

was despite σstrike having a Gaussian distribution. Figure 3d
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Figure 4. The effect of σdip on the CoV and skewness of hmax.

The magnitude of the earthquakes for each set were (a) Mw= 7.5,

(b)Mw= 8.5 or (c)Mw= 9.5. σdip= 5◦ for all the sets shown here.

The mean dip is 20◦. The strike is fixed to be due north–south. The

bathymetry and other parameters are otherwise the same as in Fig. 2

and are held constant for all 100 iterations. (d) The skewness of the

distribution of the maximum tsunami wave heights for a Mw= 9.5

and σdip= 5◦.

also shows the skewness values across the whole region more

generally. The hmax distributions were generally positively

skewed, except for points in the beam close to the source

where they were negatively skewed.

3.1.2 Dip

Figure 4a–c show the CoV maps when σdip is 5◦ for a

Mw= 7.5, 8.5 and 9.5 events, respectively. Different plate

models typically differ by between 1 to 10◦ in their estimates

of the average dip of an interface (e.g. see Table 1 in Hayes

et al., 2012), so 5◦ was chosen as a reasonable estimate of the

typical uncertainty in dip. The other parameters were held at

their reference values.

Unlike the previous example, the maximum CoV was

along strike (i.e. to the north and south of the epicentre)

rather than to each side of the tsunami beam. So unlike the

strike, an error in the dip has a bigger effect along strike than

just off the main direction of propagation. For the Mw= 7.5

example it was also higher in the hanging wall direction (to

the right of the figure) rather than the footwall direction.

This difference became less strong (more concentrated into a

smaller region) as the magnitude increased. The CoV ranged
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Figure 5. The effect of σrake on the CoV and skewness of hmax.

The magnitude of the earthquakes for each set were (a) Mw= 7.5,

(b) Mw= 8.5 or (c) Mw= 9.5. σrake= 20◦ for all the sets shown

here. The mean rake is 90◦. The bathymetry and other parameters

are otherwise the same as in the previous examples. (d) The skew-

ness of the distribution of the maximum tsunami wave heights for a

Mw= 9.5 and σrake= 20◦.

from 0.4 to 0.01 for Mw= 9.5 and from 0.2 to 0.002 for

Mw= 7.5.

Figure 4d shows the skew pattern for the Mw= 9.5 case.

In this case the distributions were not as skewed as they were

in the previous example. The skew was generally small and

negative except immediately above the rupture where it was

either strongly positive or negative.

3.1.3 Rake

Figure 5a–c show the CoV maps when σrake is set equal to

20◦ for a Mw= 7.5, 8.5 and 9.5 event, respectively. Again,

this is typical uncertainty in a well-constrained focal mech-

anism (e.g. see Shaw and Jackson, 2010). For the Mw= 7.5

case the regions of maximum CoV were on the hanging wall

of the fault and on the footwall side for Mw= 8.5 and 9.5.

Unlike the previous two examples, the range of the CoV for

the Mw= 9.5 and Mw= 7.5 events was essentially identical.

It ranged from 0.3 to 0.005 forMw= 9.5 and from 0.3 to 0.04

for Mw= 7.5.

The skewness for the Mw= 9.5 set of events is shown in

Fig. 5d. To the north and south of the rupture the distributions

had a positive or zero skew. Everywhere else the distributions

were negatively skewed.
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Figure 6. The effect of σdepth (depth to the top edge of the rup-

ture) on the CoV and skewness of hmax. The magnitude of the

earthquakes for each set were (a) Mw= 7.5, (b) Mw= 8.5 or

(c) Mw= 9.5. σdepth= 2.5 km for all the figures shown here. The

mean depth to the top edge was 10 km. The bathymetry and other

parameters are otherwise the same as in the previous examples.

(d) The skewness of the distribution of the maximum tsunami wave

heights for a Mw= 9.5 and a σdepth= 2.5 km.

3.2 Depth

Figure 6a–c show the CoV maps when the depth to the top

edge of the fault was varied by a σdepth of 2.5 km for sets of

Mw= 7.5, 8.5 and 9.5 events. Depths above 0 km were re-

jected to prevent “air quakes”. This uncertainty is fairly low

for a typical earthquake, but was chosen to ensure that the

distribution in depth is still approximately Gaussian after re-

moving the “air quakes”.

These CoV maps had higher values on the hanging wall

side than the footwall side for the Mw= 7.5 case (Fig. 6a).

The CoV was also generally higher forMw= 7.5 than for the

other magnitudes. However, overall the CoV was much lower

than for strike variations. The range of CoV went from 0.2

to 0.002 for the Mw= 9.5 set of events and from 0.2 to 0.03

forMw= 7.5 set. However, the area covered with a high CoV

was much larger for the Mw= 7.5 case than it was for the

Mw= 9.5 case.

The skewness was negative on the footwall (left) side, pos-

itive to the north and south of the rupture and mostly near

zero on the hanging wall side for theMw= 9.5 case (Fig. 6d).
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Figure 7. The effect of varying multiple fault parameters on the

CoV and skewness. The magnitude of the earthquakes for each

set were again (a) Mw= 7.5, (b) Mw= 8.5 or (c) Mw= 9.5.

σstrike= 10◦, σdip= 5◦, σrake= 20◦ and σdepth= 2.5 km. The

bathymetry and other parameters are otherwise the same as in the

previous examples. (d) The skewness of the distribution of the max-

imum tsunami wave heights for a Mw= 9.5 and these σ values.

Multiple parameters

The final example for the uniform bathymetry case we show

here is one where all the parameters are allowed to vary

around their reference values. In the example shown in Fig. 7,

σstrike= 10◦, σdip= 5◦, σrake= 20◦ and σdepth= 2.5 km. The

magnitudes varied between Mw= 7.5, 8.5 and 9.5. As one

might expect this pattern was a combination of all the pre-

vious patterns; in this particular case it is dominated by

the strike pattern, particularly for the higher magnitudes.

The CoV ranged for Mw= 9.5 from 0.6 to 0.1 and for

Mw= 7.5 from 0.4 to 0.1. For Mw= 9.5, skewness varied

from strongly positive to weakly negative depending on the

azimuth (Fig. 7d).

3.3 Stepped bathymetry

Figure 8a shows what happens to a CoV map if a reflecting

barrier is placed due east of the fault. In this particular exam-

ple, we show the effect on the CoV for a Mw= 9.5 uniform

slip rupture with σstrike= 10◦. As described in Sect. 2.1 the

bathymetry increased east of 182.5◦ to 100 m a.s.l. (above sea

level). Everywhere else it was the same as in the previous ex-

amples. As can be seen in this example, the beam and the
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Figure 8. The effect of having a step in the bathymetry on the CoV

and skewness of hmax. (a) shows the CoV from a set of Mw= 9.5

events with a σstrike= 10◦. The elevation has a step at 182.5◦ where

it suddenly increases to 100 m a.m.s.l. The other parameters are oth-

erwise the same as in Fig. 2b. (b) The effect of the step on the

skewness of the distribution of the maximum tsunami wave heights

(cf. Fig. 3b).

regions just to each side of the beam had the highest CoV.

The CoV also increased as one moved further away from the

source. The range of the CoV for this example was from 0.5

to 0.001 just to the west of the epicentre.

Figure 8b shows the effect of this on the skewness field

(cf. Fig. 3b). The areas to both sides of the beam were

strongly positively skewed; those elsewhere were negatively

skewed. The pattern also changed immediately above and to

the west of the fault, where it was mostly positively skewed

but with some areas which had a strong negative skewness.

3.4 Realistic bathymetry

The previous examples all used flat or stepped bathymetric

models. While this is very useful for determining basic pat-

terns, in real cases, the bathymetry is highly non-uniform.

Here we repeat some of the above experiments for hypothet-

ical earthquakes on the Kermadec, Solomon Islands and Java

subduction zones. The bathymetry used for these three ex-

amples is shown in Fig. 9.

3.4.1 Kermadec event

Figure 10a–c shows the CoV maps for (a) σstrike of 10◦,

(b) σdip of 5◦ and (c) all the rupture parameters being al-

lowed to vary. The epicentre of the event was at 183.762◦ E,

28.993◦ S. The mean strike was 205◦. The other parameters

were the same as those list in Sect. 2.2. The magnitude is
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Figure 9. The bathymetry models used for the (a) Kermadec and

Solomon Islands scenarios and (b) the Java scenario. The red sym-

bols show the location of the epicentres for each scenario; a circle

for the Kermadec scenario, a square for the Solomon Islands sce-

nario and a triangle for the Java scenario.

Mw= 8.5 for all cases shown. For the last case, where mul-

tiple parameters were being varied, the σ values were the

same as those used in the example discussed in the “Multi-

ple parameters” section. As can be seen, the patterns in this

case were broadly similar to the uniform bathymetry case

(e.g. Fig. 2b) to the southeast of the epicentre but the non-

uniform bathymetry to the northwest of the epicentre greatly

increased the complexity of the pattern. Further away from

the epicentre, there were patches with a particularly high

CoV, such as those to the southeast of New Zealand. These

appeared to be in areas of shallow bathymetry or in areas
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Figure 10. The CoV and skewness maps of hmax from a set

of earthquakes on the Kermadec Trench. Each set consisted of

Mw= 8.5 earthquakes where either one parameter was allowed

to vary (cases a or b) or all five were allowed to vary (case c).

For (a) σstrike= 10◦, for (b) σdip= 5.0◦ and for (c) σstrike= 10◦,

σdip= 5◦, σrake= 20◦ and σdepth= 2.5 km. (d) The skewness map

for case c.

with some shallow bathymetry between them and the source.

The CoV in Fig. 10 ranges from 0.5 to 0.04.

Figure 10 shows the skewness values for the last case

(where all parameters allowed to vary). Skewness was gener-

ally non-zero and was neither consistently positive nor nega-

tive but rather varied across the region.

3.4.2 Java event

Figure 11a–c show the CoV maps for an event off Java with

the same set of σ values used in the previous example. The

epicentre of the event was at 107.33◦ E, 9.32◦ S. The mean

strike was 295◦. Again the broad pattern was similar to that

found from the uniform or stepped bathymetry models, but

this ceased as soon as any complex bathymetry was reached.

For example, the lines of maximum CoV split as the tsunami

went around the southwest corner of Western Australia. The

CoV range for Fig. 11c was 0.5 to 0.05.

60˚ 80˚ 100˚ 120˚

−40˚

−20˚

0˚(a)

0.0 0.1 0.2 0.3 0.4

CoV

60˚ 80˚ 100˚ 120˚

−40˚

−20˚

0˚(b)

0.0 0.1 0.2 0.3 0.4

CoV

60˚ 80˚ 100˚ 120˚

−40˚

−20˚

0˚(c)

0.0 0.1 0.2 0.3 0.4

CoV

60˚ 80˚ 100˚ 120˚

−40˚

−20˚

0˚(d)

−5 −4 −3 −2 −1 0 1 2 3 4 5

S

Figure 11. The CoV and skewness maps of hmax from a set of

earthquakes on the Java subduction zone. Each set consisted of

Mw= 8.5 earthquakes where either one parameter was allowed

to vary (cases a or b) or all five were allowed to vary (case c).

For (a) σstrike= 10◦, for (b) σdip= 5.0◦ and for (c) σstrike= 10◦,

σdip= 5◦, σrake= 20◦ and σdepth= 2.5 km. (d) The skewness map

for case c.

Figure 11d shows the skewness pattern for this case. Again

the pattern was only similar to the one found with flat

bathymetry until the wave reached complex bathymetry.

3.4.3 Solomon Islands event

Finally we show an example of the CoV where the

bathymetry is complex in the source region, in this case the

Solomon Islands subduction zone (Fig. 12). The epicentre

of the event was at 157.06◦ E, 8.43◦ S. The mean strike was

333◦. The basic patterns of flat bathymetry examples can now

barely be seen, if at all. The highly complex bathymetry in

the source made predicting the CoV pattern at a given loca-

tion difficult, if not impossible. The skewness map (Fig. 12d)

is similarly complex. The highest CoV and skewness value

were, in this case, due north of the earthquake’s epicentre.

The CoV ranged from 0.8 to 0.04 (Fig. 12c). The maximum

CoV was significantly higher in this case than for the other

two examples, even though the σ values for the various pa-

rameters were the same. However, the area of extremely high

CoV values were very small.

4 Discussion

A few general conclusions can be drawn from these results.

Firstly, the exact value of CoV and the skewness of its dis-

tribution was a very strong function of the choice rupture pa-

rameter, azimuth, distance and bathymetry. In some cases the

reasons for this can be fairly easily understood. For example,

consider a set of Mw= 9.5 earthquakes with varying strike.
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Figure 12. The CoV and skewness maps of hmax from a set of earth-

quakes on the Solomon Islands subduction zone. Each set consisted

of Mw= 8.5 earthquakes where either one parameter was allowed

to vary (cases a or b) or all five were allowed to vary (case c).

For (a) σstrike= 10◦, for (b) σdip= 5.0◦ and for (c) σstrike= 10◦,

σdip= 5◦, σrake= 20◦ and σdepth= 2.5 km. (d) The skewness map

for case c.

For points with the beam (i.e. in the main direction of tsunami

propagation) any change in strike, positive or negative, will

always act to reduce the hmax. For points outside the beam

any change would reduce hmax. Thus the distribution was

negatively skewed in the beam and positively skewed out-

side of it (Fig. 3). The magnitude of this effect will be at its

greatest for points just outside the beam since they can go

from being entirely inside the beam to entirely outside of it

with just a small change in strike. Thus the CoV was at a

maximum there (Fig. 2).

However, the patterns in the other cases are not as intuitive.

Having the maximum CoV along strike when the dip was

varied is due to the way the dip changes the initial crustal de-

formation pattern by bringing the line of displacement closer

to the trench. In a similar way, the other changes in CoV are

due to the way changes in other parameters affect the initial

deformation pattern.

The fact that the patterns and values change with magni-

tude suggests strongly that these effects are also linked to

the changing dimensions and aspect ratio of the source re-

gion. At lower magnitudes (Mw= 7.5 in our examples) the

source appears to be “point-like” except in the near field.

At intermediate magnitudes (Mw= 8.5 in our examples) the

source dimensions mean that the source is more “area-like”.

At large magnitudes (Mw= 9.5 in our example) the aspect ra-

tio changes such that the length becomes much greater than

the width, and the source becomes “line-like” in the far field.

The reduced sensitivity to uncertainty in depth between

Mw= 7.5 andMw= 8.5 can be understood in this context. At

Mw= 7.5 the rupture width was small and therefore occupies

a small range of depths, so uncertainty in the depth of the

top edge made a significant change to the overall deforma-

tion pattern and subsequent tsunami. However at Mw= 8.5

the larger rupture surface already occupies a wide range of

depths, so uncertainty in the depth of the top edge made pro-

portionately less difference overall.

A result of this complexity is that it is very difficult to

make general statements about the level of uncertainty in

hmax given an uncertainty in any of the source parameters.

For some particular locations or azimuths a small uncertainty

in strike made very little difference to the result (i.e. less than

10 %); in other locations it changed hmax by 20 % or even by

more than 50 % (Fig. 2). It all depended on the azimuth, and

for the latter examples, the bathymetry between the source

and the location. This is broadly consistent with Gica et al.

(2007) where the same 10◦ change in strike could change the

wave height measured at Hawaii by between 12 and 84 %;

depending on the location of the earthquake relative to the

island. When the bathymetry in the source location was com-

plex, such as in the Solomon Islands case (Fig. 12), the CoV

and skewness maps became impossible to distinguish from

noise and only general statements about the maximum upper

bound on the CoV or S can really be made.

Initially, the authors assumed that it might be possible to

treat the uncertainty in the source parameters as an aleatory,

rather than epistemic uncertainty in PTHAs as discussed in

the Sect. 1. However, our study shows that including σ un-

certainties in PTHAs as aleatory uncertainty can only ever

be very approximate. It will always be difficult to be sure

whether the values used are not over- or underestimating the

hazard at a particular location given the highly, and incon-

sistently, skewed distributions of hmax. Since the skew can

change from positive to negative over very short length scales

these issues cannot be simply solved by using a different type

of σ (e.g. a log-normal σ ). The ideal solution clearly has

to be to run a large number of models to try to ensure that

the hazard from the events in any tails of these skewed dis-

tributions are included in the assessment. However, this can

become very computationally challenging for larger assess-

ments.

Similarly, this also means that tsunami databases for

tsunami forecasting and warning systems need to be very

large. Current warning and forecasting systems still rely on

the use of a limited set of precalculated scenarios and do not
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currently include any assessment of the spatial distribution of

the CoV for each scenario, although the CoV between differ-

ent scenarios has been calculated (Greenslade et al., 2013).

Given the large number of possible events, calculating the

CoV for each event would be an extremely large computa-

tional task. It was also noticeable that the CoV distribution

for events involving realistic bathymetry tends to become

very scattered in shallow coastal areas outside of the near

field, possibly the result of complex interference patterns in-

volving multiple waves. This is similar to the scattering in

hmax from shallow bathymetric features observed by Mof-

jeld et al. (2004). Another explanation might be that the res-

olution of the grids used in our study was not high enough

in the coastal regime to properly assess the CoV. In either

case, many forecast methodologies rely on warning zones,

which are sections of coast in which a warning threshold

is crossed once a particular proportion of maximum wave

heights (e.g. the 95th percentile) exceeds a specified level

(e.g. Uslu and Greenslade, 2013). An area for further study

is to see to what extent thresholds defined in these aggre-

gate terms are sensitive to uncertainties in source parameters.

If this does effect the reliability of thresholds, it therefore

seems advisable to move away from precalculated tsunami

databases and use fast tsunami simulation programs instead

that allow for the calculation of both the CoV andµmax as the

tsunami event unfolds (i.e. ensemble forecasting). The CoV

and the shape of the distribution of hmax from this ensemble

of models can then inform about the reliability of the tsunami

forecast (and thus the warning) for any given point of inter-

est. It also suggests that warnings should try to move towards

taking uncertainties in the source into account more directly

in the warning, for example using Bayesian networks (Blaser

et al., 2011, 2012).

In addition to the potential issues just discussed, our re-

sults also indicate that the inversion of the tsunami source

based on DART® buoy information will be affected by the

relative positions of the source and the DART® buoys. If a

DART® buoy happens to be located in an area that has a

low CoV for a particular fault parameter, we would expect

the resulting inversion for that parameter to be poorly con-

strained. In other words, the inverted source is non-unique.

For example, if the inversion only has DART® buoys close

to aMw= 9.5 earthquake, the maximum wave height at those

DART® buoys will not be significantly affected by an error

in strike unless one of them happens to be close to the edge of

the rupture (see Fig. 2c–d). Thus the strike may not be well-

constrained. However, the same error in strike could make a

large difference in the observed maximum wave height fur-

ther from the source (i.e. in the red areas in Fig. 2c–d). This is

consistent with the observation of Wang (2008) that gauges

off the centre line of the tsunami propagation are more use-

ful for constraining the source than those in tsunami beam

itself. Ultimately, this sort of effect will create more uncer-

tainty in the predicted wave fields. Reducing the uncertainty

ideally requires techniques which can measure the tsunami

wave height over broad areas (e.g. using remote sensing) or

include additional types of data (e.g. seismic or geodetic).

Also many inversion algorithms assume a Gaussian or log-

normal distribution of misfits; as can be seen from the maps

of skewness, this is not always the case. The effect of this on

tsunami inversion assumptions is also be another potential

area of future research.

5 Conclusions

The main conclusion of this study is that “the uncertainty in

the maximum wave height of a tsunami is a complex function

of our uncertainty in the source parameters and bathymetry”.

Even for the case of a completely flat bathymetry, complex

patterns of CoV and skewness were seen. These patterns be-

came even more complex when realistic bathymetries were

used. While the specifics of these CoV maps may be influ-

enced by the particular choice of numerical and bathymetry

models used here, the overall patterns are probably not.

For example, the high CoV lobes to each side of the beam

when the strike was varied appear to be a function of the

beam-like nature of tsunami propagation. Thus any model or

bathymetry is likely to have a broadly similar CoV map even

if the details may be different.

Given the complexity of CoV (and thus σ ), simplified

methods of taking earthquake uncertainty into account in

PTHAs have the potential to be quite inaccurate. Depend-

ing on the way σ or CoV is chosen, they will overestimate

the hazard in some locations and underestimate it in others.

Also, σ does not follow a simple-normal or log-normal dis-

tribution as shown by the fact that the skewness also changes

with distance and azimuth. This suggest that the best way

to incorporate uncertainty in earthquake parameters in fu-

ture PTHAs is still to model all reasonably possible earth-

quake ruptures. Similarly, these results give further impetus

towards using real-time ensemble tsunami propagation mod-

els for warnings, rather than relying on limited catalogues

of possible future tsunamis. The already substantial compu-

tational task of both activities will thus likely need to grow

even further in future in order to take uncertainties such as

these into account.
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