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Abstract. The main assumption on which landslide suscep-

tibility assessment by means of stochastic modelling lies is

that the past is the key to the future. As a consequence, a

stochastic model able to classify past known landslide events

should be able to predict a future unknown scenario as well.

However, storm-triggered multiple debris flow events in the

Mediterranean region could pose some limits on the oper-

ative validity of such an expectation, as they are typically

resultant of a randomness in time recurrence and magnitude

and a great spatial variability, even at the scale of small catch-

ments. This is the case for the 2007 and 2009 storm events,

which recently hit north-eastern Sicily with different intensi-

ties, resulting in largely different disaster scenarios.

The study area is the small catchment of the Itala tor-

rent (10 km2), which drains from the southern Peloritani

Mountains eastward to the Ionian Sea, in the territory of

the Messina province (Sicily, Italy). Landslides have been

mapped by integrating remote and field surveys, producing

two event inventories which include 73 debris flows, acti-

vated in 2007, and 616 debris flows, triggered by the 2009

storm. Logistic regression was applied in order to obtain sus-

ceptibility models which utilize a set of predictors derived

from a 2 m cell digital elevation model and a 1 : 50 000 scale

geologic map. The research topic was explored by perform-

ing two types of validation procedures: self-validation, based

on the random partition of each event inventory, and chrono-

validation, based on the time partition of the landslide in-

ventory. It was therefore possible to analyse and compare the

performances both of the 2007 calibrated model in predicting

the 2009 debris flows (forward chrono-validation), and vice

versa of the 2009 calibrated model in predicting the 2007 de-

bris flows (backward chrono-validation).

Both of the two predictions resulted in largely acceptable

performances in terms of fitting, skill and reliability. How-

ever, a loss of performance and differences in the selected

predictors arose between the self-validated and the chrono-

validated models. These are interpreted as effects of the non-

linearity in the domain of the trigger intensity of the rela-

tionships between predictors and slope response, as well as

in terms of the different spatial paths of the two triggering

storms at the catchment scale.

1 Introduction

Debris flows are among the most hazardous geological phe-

nomena, which directly threat human lives in the light of

their high energy and rapid propagation over slopes and

drainage systems. In order to predict these phenomena, to-

gether with physically based approaches, which are mainly

focused on the detection of the rainfall thresholds respon-

sible for their triggering (e.g. Peres and Cancelliere, 2014;

Bordoni et al., 2015) and on the physical modelling of the

propagation phase (e.g. Schraml et al., 2015), susceptibility

models (Brabb, 1984), suitable to depict prediction images of

the sites where these phenomena are more likely to activate

on a catchment/regional scale, are required as well. Com-

bining the two approaches allows optimization of the use of

early warning systems (e.g. Lagomarsino et al., 2015; Segoni

et al., 2015; Stähli et al., 2015) – in doing so mitigating the

debris flow risk on a catchment/regional scale.

Landslide susceptibility assessment can be achieved by

means of different methods, among which the stochastic ap-

proach has gained increasing importance in the last 2 decades
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in regional assessment applications. In fact, statistic mod-

els produce objective, quantitative and verifiable estimates

of the spatial probability for new landslides in a given study

area. Moreover, the stochastic approach is very easily im-

plementable on geographic informative systems (GIS), mak-

ing use of the very diffused nature of present databases of

physical–environmental attribute layers. These methods are

based on some generally accepted assumptions, the basic one

being the past is the key to the future (Carrara et al., 1995).

Therefore, a susceptibility model constructed to reproduce a

past known landslide spatial distribution, will also be able

to predict the future locations of new failures. In particu-

lar, for a given study area, statistical techniques allow the

derivation and testing of the multivariate relationships be-

tween the spatial distributions of an inventory of landslides

(the known target pattern) for significance as well as testing

a set of physical–environmental variables (the predictors),

which, acting as controlling factors, are supposed to drive the

slope failures, on the basis of a geomorphological model. In

the framework of the above-recalled principle, the new land-

slides (the outcomes) will occur under the same conditions

which explain the known landslide distribution. Thus, a cali-

brated predictive model optimizes the functional relations be-

tween predictors and outcomes, maximizes its skill in fitting

the known target pattern (the calibration data set), and it is

finally tested for its correct reproduction of the unknown tar-

get pattern (the validation data set). As the controlling factors

are selected among the time-invariant preparatory causes, re-

gardless of how old the landslide inventory employed to cal-

ibrate the model is, as far as the basic assumption holds, any

calibrated model will be able to predict any past or future

unknown target pattern.

Unfortunately, very often, susceptibility assessment stud-

ies are affected by a lack of temporal information on the land-

slide inventory, which makes it impossible to perform a pure

temporal or chrono-validation.

Based on the scheme described above, in order to elude

the lack of temporal information, strategies for the validation

of the predictive models can be defined. Specifically, when

seasonal or event inventories (Guzzetti et al., 2012) are not

available, a validation can be performed by following a ran-

dom time partition procedure (Chung and Fabbri, 2003). In

this case, the source inventory is split into a calibration and a

validation subset to simulate the known and the unknown tar-

get patterns, respectively. In this work, the above scheme is

defined as a self-validation procedure to highlight the notion

that, under a morphodynamic perspective, calibration and

validation patterns are actually two partial and complemen-

tary sides of the same event. Conversely, the term chrono-

validation will be used when referring to pure temporal veri-

fication (Guzzetti et al., 2005), i.e. when the training and the

test target patterns belong to two temporally separated data

sets. A third scheme, frequently adopted for model spatial

transferability or exportation (e.g. Von Ruette et al., 2011;

Costanzo et al., 2012a; Lombardo et al., 2014; Petschko et

al., 2014), is based on the adoption of two different catch-

ments or areas for calibration and validation (spatial parti-

tion).

It is evident how the whole scheme of the stochastic ap-

proach is strictly dependent on the basic assumption being

held. Any changes in the real relationships between prepara-

tory causes and landslide activity will affect the prediction

skill of the obtained susceptibility models. Extreme events

produce morphodynamic responses that can lie outside of

the general rule. In fact, due to intense triggering, such as

a storm, the same area can result in an “out-of-range” slope

response because it could not be correctly predicted by a

model skilled in fitting “normal” landslide scenarios. This

could be a result of the non-linearity of the relationship be-

tween preparatory causes and landslides in the domain of the

trigger intensity. Besides, the Mediterranean storms are typi-

cally affected by randomness in time recurrence and magni-

tude and a great spatial variability, even at the scale of small

catchments. It is therefore necessary to check for this kind of

behaviour to find a strategy which maximizes the ability of a

susceptibility model to predict extreme events.

In spite of the wide diffusion of landslide susceptibil-

ity studies by means of statistical modelling, few cases are

focused on detecting predictive limits when facing storm-

triggered multiple debris flow events (e.g. Von Ruette et al.,

2011; Tseng et al., 2015). In particular, the application of

specific validation strategies to evaluate the effect of the trig-

ger phenomena in modifying the predictive performance of

the models is very rare. A contribution to this topic is pre-

sented here, drawing on a case study in north-eastern Sicily,

where two recent storm events (2007 and 2009) hit the Io-

nian side of the Peloritani Mountains (Fig. 1) with different

intensities. Specifically, the study area is the Itala catchment

(nearly 10 km2), which is located in the southern sector of

the Peloritan ridge.

In order to investigate our topic, the debris flows activated

on the occasion of the two extreme events were mapped by

integrating remote and field surveys, and a simple set of pre-

dictors was prepared by utilizing a 1 : 50 000 scale geological

map and a 2 m cell digital elevation model (DEM). Statistical

models were obtained by applying the stepwise (forward) bi-

nary logistic regression technique (Hosmer and Lemeshow,

2000), which has been largely adopted in landslide suscep-

tibility studies (Atkinson et al., 1998; Ohlmacher and Davis,

2003; Süzen and Doyuran, 2004; Brenning, 2005; Carrara

et al., 2008; Costanzo et al., 2014; Lombardo et al., 2014;

Heckmann et al., 2014), demonstrating suitability for the ge-

omorphological task and producing high performances, also

in comparative studies (Guzzetti et al., 2006; Othman et al.,

2015; Rossi et al., 2010). Multi-temporal high-resolution im-

ages (provided by ARTA – Assessorato Regionale Territo-

rio e Ambiente) were made use of in order to prepare two

landslide event inventories (Guzzetti et al., 2012), so that

two types of modelling procedure are performed and vali-

dated: self-validation, based on the random partition into a
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Figure 1. Study area: (a) geographical setting and rain gauge locations; (b) geology.

calibration and a validation subset of each event inventory,

and chrono-validation, based on the temporal partition into

the 2007 and 2009 cases. The latter procedure was applied to

analyse the performances both of the 2007 calibrated model

in predicting the 2009 debris flows source areas (forward

chrono-validation) and of the 2009 calibrated model in pre-

dicting the 2007 debris flow source areas (backward chrono-

validation). By analysing and comparing the predictive per-

formances of binary logistic regression for the four types of

models, the role of the triggering rainfall intensities is out-

lined and discussed.

2 Background

Testing a susceptibility model against future landslides is

quite a hard task, especially because it would require re-

searchers to “wait for the future to happen” (Guzzetti, 2005).

Nevertheless, when a multi-temporal landslide inventory is

available, the validation can be performed using a tempo-

ral criterion to separate calibration and validation data sets.

Among others, Guzzetti et al. (2005) performed a “tempo-

ral verification procedure” which evaluates the effect of five

landslide inventory updates on the performance of a suscep-

tibility model. Similarly, other authors used a temporal crite-

rion to validate the results of landslide susceptibility analysis

at different scales (Zêzere et al., 2004; Vergari et al., 2011;

Wang et al., 2014), but none of them worked with storm-

triggered debris flows and event inventories. Von Ruette et

al. (2014) adopted a spatial partition scheme, with a partial

insight into temporal validation which was limited for pre-

dicting the landslides triggered by two rainfall events in two

close, but different, catchments. Chang et al. (2014) concen-

trated their focus on exploring the role of rainfall in control-

ling the chrono-validation performance for a much larger-

scale case, demonstrated in a larger area (2868 km2), where

a network of 24 rain gauges recorded nine great typhoon

events.

The Messina area (Fig. 1) and the debris flow event of

2009 have been the focus of study in several scientific articles

centred on different topics. Several studies have been devoted

to the implementation of remote and semi-automatic tech-

niques for landslide recognition and mapping of such a sig-

nificant multiple occurring regional landslide event (Ardiz-

zone et al., 2012; Mondini et al., 2011; Ciampalini et al.,

2015). Del Ventisette et al. (2012) focused their research on

the Giampilieri village area, analysing the triggering mecha-

nism and estimating the volumes involved in the debris flow.

They also applied a method based on conditional analysis in

order to obtain a susceptibility map. Goswami et al. (2011)

and De Guidi and Scudero (2013) explored the relationship

between tectonic setting and landslide susceptibility, taking

the Giampilieri and Scaletta catchments as study areas. Re-
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ichenbach et al. (2014) evaluated the influence of land-use

change on debris flow susceptibility for the Briga catch-

ment. Stancanelli and Foti (2015) compared two different

numerical models for simulating the 2009 debris flow event

in the lower coastal sector of the affected area. Aronica et

al. (2012a) published a detailed description of the 2009 event,

with an insight into the saturation conditions of the soils and

an evaluation of the difference of DEMs in the total volume

of mobilized material for the Giampilieri catchment. Rain-

fall thresholds for the landslide activations have been investi-

gated by Gariano et al. (2015), in the framework of a regional

study, and by Peres and Cancelliere (2014), who conducted

a specific study on the Ionian-Peloritan area, hit by the 2009

event. Lombardo et al. (2014) tested spatial exportation tech-

niques for logistic regression-based susceptibility models, in

the Briga and Giampilieri catchments.

With regards to the 2007 event, Aronica et al. (2012b) ap-

plied a physically based modelling tool to simulate the debris

flows affecting a very small catchment, located 5 km south of

the Itala stream.

In contrast to the above-mentioned research, in this paper,

by studying two well split event inventories produced by two

triggering events with different intensities, the relationship

between controlling factors of triggers and morphodynamic

responses are examined, and their effects on the predictive

performance of stochastic susceptibility modelling are veri-

fied. Moreover, until now, no study has been published for

the Itala catchment on the 2007 event, nor chrono-validated

models and maps have been produced for the 2009 event.

3 General framework

3.1 Study area

The study area is located in the north-easternmost edge of

Sicily (southern Italy), on the Ionian slopes of the Pelori-

tan ridge, 20 km southward from the town of Messina

(Fig. 1a). Specifically, the Itala catchment is located in the

Itala municipality territory, stretching 10 km2 and whose tor-

rent drains south-eastward for near 6 km from Mt. Scud-

eri (1259 m a.s.l.) to the Ionian Sea. Geologically, the area

is situated between the Mandanici, Mela and Aspromonte

structural units (Messina et al., 2004), which are separated

by thrusts and further fractured by the neo-tectonic faults.

These units are made of high- to medium-grade metamorphic

rocks. In particular, the Mandanici unit is primarily char-

acterized by the outcropping of phyllites, while Mela and

Aspromonte units mainly consist of paragneisses and mica

schists (Fig. 1b).

According to the Köppen classification (Köppen, 1923),

the climate in the region is classified as Mediterranean (Csa)-

type, being therefore characterized by a dry season from

April to September and a wet season from September to

March, with an average yearly rainfall of nearly 900 mm. In
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Figure 2. Bar plot showing the cumulative (1 day, 3, 7, 10 and 20

days) rainfall in mm respectively for the main nine events recorded

in the Itala catchment area.

addition, due to the warm water of the Mediterranean Sea

and the proximity of the ridge to the sea coast, storm events

are frequent in the autumn season in this area of Sicily.

Due to the limited length, together with high steepness of

the Ionian-Peloritan torrents, although they are usually al-

most dry, under raining conditions the discharge can rapidly

increase, causing floods which affect the infrastructure (es-

pecially roads) located in the proximity of the riverbanks.

Moreover, during autumn storm events, the combination of

the hydrologic regime and geomorphologic setting occasion-

ally determines severe morphodynamic responses, including

multiple debris flows and debris flood events, such as those

which occurred in 2007 and 2009. The potential occurrence

of this kind of event makes the whole area of Ionian-Peloritan

catchments one of the most exposed zones to hydrogeologi-

cal risk in Sicily.

The inhabited areas of the Itala catchment are located in

very dangerous areas, either at the base of very steep ter-

raced slopes, or near the outlet of the streams. With respect

to the land use, the area can be divided into an eastern and

a western sector. The former is highly terraced and mainly

cultivated with citrus groves; the latter is characterized by

chestnut forests and pastures. The study area is strongly af-

fected by wildfires during the summer season; this influences

the density of vegetation, the soil structure and the erosional

processes acting on the slopes.

3.2 Historical records of rainfall events

The storm events of 2007 and 2009 have been analysed on the

basis of two rain gauges belonging to the “Osservatorio delle

Acque Sicilia”, located in Briga and Messina Osservatorio

(Fig. 1a). In particular, as the Peloritan area was historically

hit by other storm events, a detailed analysis of antecedent

rainfall conditions and of the historical record of debris flow

events was carried out. The most important extreme meteoro-

logical events were selected first and, on the basis of the his-
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Figure 3. Time series of 2 months’ precipitation for the Messina (Ist. Geofisico) and Briga rain gauges: (a) October 2007; (b) October 2009.

torical archive of the two main local newspapers (“Gazzetta

del Sud” and “Giornale di Sicilia”), the associated landslide

activity was identified. However, the estimation of the sever-

ity of the slope responses to the triggering storms cannot be

accurately assessed at a basin scale from this kind of his-

torical data. Therefore, with the exception of the 2007 and

2009 inventories, the classification of the debris flow events

was limited to a qualitative ordinal scale (no landslides: N-L;

tens of landslides: T-L; hundreds of landslides: H-L), based

on the significance and frequency of damage reported for the

Itala catchment area.

By analysing the daily cumulated rain from 1975 to 2011

(with the exception of 6 years with no rainfall data: 1987,

1988, 1989, 2003, 2004 and 2005), the nine heaviest rain-

fall events were detected on the basis of a 100 mm thresh-

old, which corresponds approximately to the rain quantity

recorded during the 2007 event. Figure 2 shows the 1-,3-, 7-

and 20-day cumulated rainfall for the nine events, together

with the corresponding debris flow activity reported for the

Itala catchment area (indicated by red labels on the bar plot).

Among the nine selected events, only five caused important

multiple occurrence of debris flows, whose effects were re-

ported in local newspapers. In fact, for the cases of 2 De-

cember 1996, 8 September 2000 and 20 January 2009, no

landslide events were reported in local newspapers, which

could indicate that either no landslides were activated or that

they were not significant enough in terms of damage caused

to the villages. In these cases, the daily peak of rain was not

anticipated by significant rain in the previous days. The more

intense event of 1 March 2011 was responsible for the acti-

vation of tens of debris flows in a sector located about 5 km

south of Messina, but no landslides are reported for the Itala

catchment.

Among the events which caused reported landslides, the

30 October 1985 and 4 October 1996 events have very sim-

ilar characteristics. In both cases, the main events were an-

ticipated by significant precipitation in the antecedent 72 h.

In contrast to this, the event of the 24 November 1995 was

recorded with 123 mm day−1 and 155 mm week−1. Looking

at the 3 days and 7 days before the main event, the quan-

tity of rain does not seem intense enough to lead to multiple

debris flow occurrences, as it is very similar to the rate of pre-

cipitation recorded on 2 December 1996, when no landslides

were triggered. Nevertheless, if a longer interval is consid-

ered (10 and 20 days) the cumulative quantity of rain ex-

ceeded 300 mm. This could justify the landslides being ac-

tivated on this occasion, which were reported in the journal

“Gazzetta del Sud” on 26 and 27 November.

The 26 October 2007 and the 1 October 2009 events are

quite distinct when compared to the others. In fact, on the

one hand, the 2007 daily rainfall event was anticipated by 3

dry days and heavy rainfall condition in a period of a week;

www.nat-hazards-earth-syst-sci.net/15/1785/2015/ Nat. Hazards Earth Syst. Sci., 15, 1785–1806, 2015
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Figure 4. Overview of the area hit by the 2009 event: (a) Guidomandri village: debris avalanches are observable on the triangular facets

parallel to the coast; (b) Itala village: channelized debris flows crossing the urbanized area.

on the other hand, the severity of the 2009 rainfall event is

evident in both the daily (more than 200 mm) and in the 10-

and 20-day precipitation, which exceeded 350 and 400 mm,

respectively. In particular, Fig. 3a shows that the main event

in 2007 (registered at Briga with 102 mm of rain in 24 h)

was anticipated by longer and more extended raining periods,

which lasted from 20 to 23 October, resulting in a cumulative

weekly rainfall of 220.4 mm. The storm triggered hundreds

of debris flows in the whole area, but only 73 in the Itala

catchment. The 2009 event (Fig. 3b) presented the highest

daily rain (nearly 220 mm); moreover, it followed two previ-

ous events: on 16 September, 49.2 mm in 6 h; and on 23–24

September, 79.6 mm in 10 h, determining a cumulative rain

quantity which exceeded 412 mm in 20 days. As a conse-

quence, on 1 October 2009 in an area of less than 10 km2,

hundreds of debris flows and debris flood events caused large

damage to buildings and main roads in the Itala catchment.

To give a view of the large spatial variability of rain-

fall storms in this area, it is worth noting that although in-

tense rainfall was recorded at the Briga rain gauge (102 and

220 mm day−1, respectively), low values were recorded for

the Messina Osservatorio (3.6 mm day−1 and no rain, respec-

tively). This demonstrates that such extreme events are very

localized, with rainfall conditions significantly changing in a

range of a distance of only 15 km. However, although the au-

thors believe that the small-scale rainfall distribution is very

important for the prediction of the debris flow locations, the

rain gauge network is not dense enough to evaluate the vari-

ability of the rain conditions at the catchment scale. There-

fore, this variable cannot be introduced in the susceptibility

models.
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4 Materials and methods

The application of binary logistic regression (BLR) for land-

slide susceptibility assessment typically requires the follow-

ing steps: the partition of the study area into mapping units,

which are then characterized with respect to a set of poten-

tial predictors; the assignment of stability conditions to each

mapping unit, based on its spatial relation with a set of known

landslides (e.g. inclusion or intersection); the extraction of

a balanced (stable/unstable) data set from the whole set of

mapping units; the regression of the modelling function; and

the verification of the performance of the model in correctly

predicting stability conditions for each pixel, the latter de-

fined on the basis of a set of unknown landslides.

This chapter describes the methods and the model building

strategies which have been adopted to investigate the main

research topic: exploring skills and limits in predicting the

source areas of storm-triggered debris flows.

4.1 Landslide inventory

The typologies of the landslides that were activated during

the 2007 and 2009 events are mainly classified as channel-

ized debris flows and debris avalanches or hillslope debris

flows (Varnes, 1978; Hutchinson, 1988; Hungr et al., 2001,

2014), which affected the weathered mantle of the metamor-

phic bedrock on the very steep slopes of the Itala catchment

(Fig. 4). However, as this paper aimed to study susceptibil-

ity to new activations or the prediction of source areas, the

whole set of phenomena was processed as a single type, us-

ing in the following the general sense of the term debris flow.

The very few cases of bedrock landslides, such as falls and

rotational slides, were deliberately excluded from the analy-

sis, as they would have required a different approach both in

terms of controlling factors and statistical methods.

Landslide recognition was performed by integrating a field

survey, which was carried out soon after the 2009 disaster,

and orthophoto analysis which allowed the slopes to be vi-

sualized at different dates. In particular, high-resolution lidar

(Light Detention And Ranging) data were used from two dif-

ferent acquisitions, 2008 and 2009, respectively. These data

were provided by the Territory and Environment Department

of the Sicilian government (ARTA 2008 – Assessorato Re-

gionale Territorio e Ambiente) and the National Civil Pro-

tection (PCN 2009, Protezione Civile Nazionale). The ARTA

2008 data (taken in August) include 0.25 m pixel orthopho-

tos and a DEM, with 2 and 0.22 m for horizontal and vertical

resolution, respectively. The PCN 2009 data were acquired 6

days after the 2009 event and includes 15 cm pixel orthopho-

tos, and a 1.1 m cell DEM. In addition, multi-temporal (2005,

2006, 2010 and 2012) Google Earth™ (GE) images were

analysed in order to compare the 2007 and 2009 mapped phe-

nomena with the previous and following slope conditions.

An event inventory (Guzzetti et al., 2012) has to report

only those landslides which have been triggered by a single

specific trigger occurrence, such as an earthquake, rainfall

or snowmelt. To fit this constraint, first landslide mapping

was carried out on the 2008 and the 2009 images, obtaining

a first version of the 2007 and 2009 inventories. However,

the mapped landslides were supposed to be activated during

26 October 2007 for the first inventory and 1 October 2009

for the second. Therefore, the morphologies mapped on 2007

were also compared with the 2006 GE images. By combining

the data obtained from the three time frames, five different

cases were obtained (Fig. 5): (a) debris flows mapped on the

2007 orthophotos but which activated before the 2007 event;

(b) debris flows which activated during the 2007 event but

did not reactivate or retreat during the 2009 event; (c) debris

flows which activated during the 2007 event that retreated

or reactivated during the 2009 event; (d) debris flows which

activated during the 2007 event which had been completely

eroded during the propagation phase of the 2009 event and

(e) debris flows which activated during the 2009 event in

precedent stable areas.

The final event inventories (Fig. 6) contained 73 debris

flows for 2007, corresponding to cases (b), (c) and (d), and

616 for 2009, corresponding to case (e). Each landslide in-

ventory was stored in two separated vector layers: the first

containing a polygon representing the source areas, and the

second containing the landslide identification points (LIP),

corresponding to the highest point along the crown of each

mapped phenomenon (Costanzo et al., 2012b, 2014; Lom-

bardo et al., 2014).

4.2 Binary logistic regression

Binary logistic regression (BLR) is a multivariate statistical

technique, based on a frequentist approach, which is used

to model the expected value of a response variable (the out-

come) by a linear combination of either continuous and/or

discrete predictor variables (Hosmer and Lemeshow, 2000).

With respect to other frequentist methods (e.g. discriminant

analysis), it does not require any linearization or transforma-

tion to obtain normal distributed covariates. Moreover, the

outcome of BLR is easily interpretable for applied scientists.

In binary logistic regression the response variable Y as-

sumes one of the two mutually exclusive values of 0 (no land-

slide) or 1 (landslide) for stable mapping units or unstable

mapping units, respectively.

The relationship between the predictors and the probabil-

ity for the response variable to assume the value 1 is lin-

earized by the logit function (Y ), which corresponds to the

following transformation:

logit(Y )= ln[P(Y = 1)/ (1−P(Y = 1))]

= α+β1x1+β2x2+ . . .+βnxn, (1)

where P (Y = 1) is the probability that the response variables

assumes the value 1, α a constant term or intercept, x1, x2,

. . . xn are the input predictor variables and the βn their co-

efficients. Therefore, once the logit function is calculated,
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Figure 5. Comparison of morphologies between two different images resulting in five different cases: (a) debris flows recognized on the

2007 orthophoto but which activated before the 2007 event; (b) debris flows which activated in 2007 which did not reactivate or retreat in

2009; (c) debris flows which activated in 2007 that retreated or reactivated in 2009; (d) debris flows which activated in 2007 which were

completely included in 2009; (e) debris flows which activated in 2009.
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Figure 6. Debris flow event inventories: (a) 2007 inventory containing 73 debris flows; (b) 2009 inventory containing 616 debris flows.

and the β1,β2, . . .βn values are known, the probability can

be back-calculated using the following formula:

P(Y = 1)= elogit(Y ) / [1+ elogit(Y )
]. (2)

This equation ensures that, for any given case, the probability

P(Y = 1) will not be less than 0 or greater than 1 with logit

(Y ) ranging in the full ±∞ interval.

The odds ratios (OR), which are calculated by simply ex-

ponentiating βn, indicates how likely (or unlikely) it is for

the outcome to be positive (unstable cell) when a unit change

of an independent variable occurs (Hosmer and Lemeshow,

2000). Negatively correlated variables will produce negative

βn and OR limited between 0 and 1; positively correlated

variables will result in positive βn and OR greater than 1.

In order to estimate the best intercept and βn coefficients,

the logistic regression uses the maximum likelihood algo-

rithm. This maximizes the value of the log-likelihood func-

tion (LL), which indicates how likely is to obtain the ob-

served value of Y , given the values of independent variables

and coefficients (Menard, 2002). In particular, the global fit-

ting of the regressed model on the data domain is usually

expressed by −2LL (negative log-likelihood) which is an es-

timator based on the maximum likelihood criterion. The dif-

ferences in −2LL value between the model with only the in-

tercept (LINTERCEPT) and the full model (LMODEL) have a χ2

distribution, so that the significance of the regressed coeffi-

cients can be easily tested (Ohlmacher and Davis, 2003; Ak-
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Figure 7. Discrete variables: (a) outcropping lithology (GEO; see Fig. 1 for description); (b) land use (USE); (c) aspect (ASP).

gun and Turk, 2011). In other words, the−2LL test estimates

the significance of the increase in model fitting produced by

the introduction of the predictors.

In the present research, we applied BLR under a step-

wise selection routine, which has already been successfully

adopted in landslides and debris flow susceptibility studies

(Begueria, 2006; Meusburger and Alewell, 2009; Atkinson

and Massari, 2011; Costanzo et al., 2014; Heckmann et al.,

2014; Lombardo et al., 2014). The stepwise selection is an

iterative procedure, which selects the best performing and

most parsimonious set of predicting variables. It can be per-

formed either in forward or in backward mode. In the first

case, the procedure starts from an “intercept only” model and

consists in selecting and adding, at each step, the variable

which maximises the log-likelihood value. On the contrary,

the backward stepwise selection starts from a full model,

including all the variables, and removes the variables itera-

tively until the model reaches the best fitting. In the forward

stepwise selection, at every step the procedure introduces all

the variables iteratively and selects the one that maximizes

the −2LL values. The first factor to be included is the one

that produces the greatest change in the log-likelihood, with

respect to the intercept. Applying the chi-square distribution

of the −2LL values, the iterative calculation stops when the

significance level of the increase, produced by including a

new predictor, is lower than 1%. Thus, the final result is the

restricted list of variables, each with its order of importance

(i.e. the iteration in which it was picked up) that can be sub-

mitted to the final BLR.

All the statistical analyses which are hereafter discussed

were performed by using open source software (TANAGRA:

Rakotomalala, 2005).

4.3 Covariates and outcome status assignment

The first step in modelling the debris flow susceptibility us-

ing a stochastic approach is to select those mapping units in

which the study area has to be partitioned. Mapping units are

the basic spatial elements in which the model will be able

to produce a prediction. Two main types of mapping units

are adopted in literature: hydro-geomorphological units and

regular grids. The former allows the model to take advan-

tage of the morphodynamic homogeneity of the area which

is included in each single unit, corresponding to hydrological

or slope units; the latter optimizes the matching between the

spatial resolution of the source layers of some important pre-

dictors, typically having the same grid structure of the DEM.

In the present research, a raster-based structure was

adopted by partitioning the study area into a grid of 8 m
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Figure 8. Continuous variables: (a) slope (SLO); (b) topographic wetness index (TWI); (c) plan curvature (PLAN); (d) profile curvature

(PROF); (e) distance from tectonic elements (DFAULTS).

square cells, which required also the rasterization of the spa-

tial distribution of all the covariates.

Starting from a DEM and a geological map, the following

eight potential predictors have been selected and their value

assigned to each cell in which the study area has been par-

titioned (Figs. 7 and 8): outcropping lithology (GEO), land

use (USE), aspect (ASP), steepness (SLO), topographic wet-

ness index (TWI), plan (PLAN) and profile (PROF) curva-

tures and distance from tectonic features (DFAULT).

Outcropping lithology and tectonic features are proxy

variables expressing the mechanical properties of the

bedrock and the weathered mantle. These variables were ob-

tained from a 1 : 50 000 available geological map (Lentini et

al., 2007), which was derived from 1 : 10 000 field surveys.

Information on land use allows the model to summa-

rize those potential modifications of the natural structure of

the regolithic mantle and the bedrock which are related to

anthropogenic activities. In order to express these proper-

ties, a land-use map, based on the analysis of the orthopho-

tos ARTA 2007/2008 and PCN 2009 and field recognition,

was prepared. The final land-use map contains six classes:

(i) medium-high vegetated terraces (MHVT); (ii) low vege-

tated terraces (LVT); (iii) chestnut forests (CF); (iv) pastures

(P); (v) urbanized areas (UA); (vi) river beds and beaches

(RB).

Slope steepness, plan and profile curvatures are related to

the energy of the relief. Steepness is commonly used as a

predictor in landslide susceptibility and very often it demon-

strates a very high importance. In fact, especially for debris

flow analysis it is expected to be one of the most significant

variables because it is directly linked to the shear strength

acting onto the potential shallow failure surface. Moreover,

for shallow failures presenting slide or flow mechanisms, the

topographic surface and the rupture plane or zone can be con-

sidered as almost parallel. In this case, the slope steepness is

a proxy for the real inclination of the potential failure surface.

Steepness also controls the overland and subsurface flow ve-

locity and runoff rate. At the same time, the topographic cur-

vatures control the divergence and convergence, both of sur-

face runoff and shallow gravitational stresses (Ohlmacher,
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2007). Curvatures are expected to be the best proxy variables

for convergent flow of water (plan curvature) and changes in

flow velocity (profile curvature). In this study the profile cur-

vature and the plan curvature were used, which correspond

to the second derivatives of the slope steepness and the as-

pect, respectively.

The topographic wetness index is defined as ln(As / tanβ),

where As is the local upslope area draining per contour unit

length, and β is the local slope angle. It describes the exten-

sion and distribution of the saturation zones assuming steady-

state conditions and uniform soil properties. By comparing

the field data, it has been demonstrated that TWI can be con-

sidered a proxy variable directly related with the properties

of soil, in particular with the soil moisture, A horizon depth,

phosphorus content and organic matter (Moore et al., 1993).

Aspect controls the intensity of the solar insolation at the

Earth’s surface, and as a consequence, also the evapotranspi-

ration and flora and fauna distribution and abundance. It is

very important to consider the erosional processes related to

the chemical physical weathering, operated by water, temper-

ature and vegetation, in the determination of landslide sus-

ceptibility. Further, ASP frequently assumes a role of proxy

variable for the attitude of the rock layers.

The source for the calculation of the topographic attributes

was the DEM ARTA 2007/2008 subsequently resampled at

8 m pixel size with the nearest neighbour approach. The re-

sampling operation on the original DEM (2 m pixel size)

smoothed the effects of microtopography and possible noise

existing on the original data.

All the factors were calculated using SAGA GIS (System

for Automated Geoscientific Analysis, Conrad, 2007).

Once the layers of the predictors were obtained, they

were combined in a multivariate grid whose cells status (sta-

ble/unstable) was defined on the basis of the intersection with

the LIPs. Each cell hosting at least one LIP was set as un-

stable, in order to calibrate the models in predicting the lo-

cations of future LIPs, which in our scheme correspond to

debris flow initiation areas.

4.4 Validation procedures and model building strategy

Model validation is a mandatory component of susceptibil-

ity assessment studies (Carrara et al., 2003; Guzzetti et al.,

2006; Frattini et al., 2010; Rossi et al., 2010). No matter the

method adopted in modelling the susceptibility, rigorous and

quantitative validation procedures are the only criterion for

accepting or rejecting a predictive model.

The validation of a model requires the availability of a cal-

ibration and a validation set of landslides or outcomes. The

training landslides are applied to calibrate the maximum-

likelihood fitting, so that the regression coefficients are op-

timized; the predicted probability which is generated by the

model is then compared to the actual unknown target pat-

tern which is defined by the validation landslides set. The

accuracy of a model is then evaluated by comparing the pro-

duced prediction image to the known (calibration) and un-

known (validation) target patterns. In particular, the degree

of fit expresses the ability of the model to classify the known

cases, while the prediction skill is the ability to predict the

unknown cases.

As proposed by Chung and Fabbri (2003), calibration and

validation data sets can be obtained by time partition, ran-

dom time partition or spatial partition. The first is possible

when multi-temporal landslides inventories are available, the

second is based on randomly partitioning single-epoch data

sets and the third on sub-dividing the study area into two

similar sub-sectors. Random time partition procedures can be

applied either on the landslide inventory (Conoscenti et al.,

2008a) or on the mapping units database (Conoscenti et al.,

2008b), whilst spatial partition can also be performed also

on not nested or adjacent areas such as in the study aimed

at susceptibility model exportations (von Ruette et al., 2011;

Costanzo et al., 2012a; Lombardo et al., 2014).

However, validating a model requires precision, robust-

ness and geomorphological adequacy or coherence for test-

ing its accuracy, both in terms of predictive performance

and inner structure of the model. The latter corresponds, in

a stepwise BLR procedure, to the rank and the coefficients

of the selected predictors (Frattini et al., 2010; Costanzo

et al., 2014; Lombardo et al., 2014). Moreover, as BLR

does for balanced (positive/negative cases) data sets, a sin-

gle regressed data set must contain the positive cases (unsta-

ble cells) and an equal number of randomly selected nega-

tives (Atkinson et al., 1998; Süzen and Doyuran, 2004; Ne-

feslioglu et al., 2008; Bai et al., 2009; Van Den Eeckhaut

et al., 2009; Frattini et al., 2010; Costanzo et al., 2014),

which could determine a low representativeness of the anal-

ysed cases. In particular, in this study, each pixel contain-

ing a LIP has been considered as being in the diagnostic

area (Rotigliano et al., 2011), while the negative cases have

been randomly selected in the catchment, outside the land-

slide polygons. In order to obtain a better dispersion of points

and to avoid autocorrelation of the spatial variables, the dis-

tance in the random selection was maximized. Therefore,

every model was composed of 146 balanced cases (posi-

tive/negative), for 2007, and 1232 balanced cases, for 2009.

This heavily reduces the number of actually analysed cases to

a very small percentage of the cells in which the study area is

partitioned, so that a need of testing the representativeness of

the worked subset also arises. To control the possible effects

introduced by this procedure, multi-extraction of negatives

are to be performed and more than one data set regressed.

Specifically, a multiple extraction produces m different bal-

anced data sets, each composed by the union of the same

positives and a different set of randomly extracted negatives.

Multi-fold cross validation procedures are then applied, by

resampling the same data set n times to perform n replicates

of the regression procedure, finally obtaining n×m outcomes

of the same performance indexes or model parameters.
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Table 1. Value prediction and confusion matrix of cross-folded validation for the 2007 data set.

Error rate Mean 0.336 SD 0.028

Value prediction Confusion matrix

Observed

Value Recall 1-precision Yes No Sum

Yes 0.645 0.331
Predicted

Yes 1348 668 2016

No 0.683 0.340 No 742 1442 2184

Sum 2090 2110 4200

Table 2. Value prediction and confusion matrix of cross-folded validation for the 2009 data set.

Error rate Mean 0.219 SD 0.011

Value prediction Confusion matrix

Observed

Value Recall 1-precision Yes No Sum

Yes 0.777 0.216
Predicted

Yes 14 335 3948 18 283

No 0.786 0.221 No 4115 14 502 18 617

Sum 18 450 18 450 36 900

In this research, two suites of 10 data sets were extracted

for both the 2007 and 2009 models; a 10-fold cross vali-

dation procedure was then applied to each data set, which

gave a total of one hundred probability estimates (10 repli-

cates× 10 subsets) for each mapping unit, on which tests of

accuracy and precision of the predictive performance were

based. Moreover, each of the one hundred replicates resulted

in a set of ranked predictors and regression coefficients, the

comparison of which allowed us to test the precision and the

robustness of the model.

Once a cut off for the estimated probability is fixed to

split positive and negative predictions, the crossing with a

target pattern results in the production of true positives (TP),

true negatives (TN), false positives (FP: type I errors) and

false negatives (FN: type II errors) cases. Contingency ta-

bles are used to summarize these data and to compute the

model error rate, (TP+TN) / (TP+TN+FP+FN), sensi-

tivity or true positive rate, (TP/(TP+FN)), and 1 – speci-

ficity or false positive rate, (FP / (TN+FP)). Moreover, in

order to assess the prediction accuracy of the models, the

Hanssen and Kuipers (1965) (HK) skill score was also used.

This index is defined as the difference between true posi-

tive and false positive. The HK maximum values measure the

ability of the forecast system to discriminate between events

and non-events. Maximizing these values means minimizing

the probability range where the user would be unsure of the

forecast.

A cut-off independent technique for estimating the accu-

racy of a predictive model is represented by receiver operat-

ing characteristic (ROC) curves, which depict the trade-off

between success and failures for the decreasing probability

threshold, in sensitivity versus 1-specificity plots. The area

under the curve (AUC) in the ROC plots is the most adopted

metric for the accuracy of the predictive models.

The precision and accuracy of the model can also be rep-

resented in spatial terms, by preparing prediction and error

maps. For each mapping unit, the mean susceptibility and

the dispersion of its estimates are plotted and compared to

the actual distribution of the unknown positives.

In order to investigate the main research topic, two

kinds of modelling procedures have been conducted. A self-

validation scheme was applied for each of the two event in-

ventories (2007 and 2009), by randomly splitting (90/10 %)

the 10 extracted balanced data sets of the two temporal suites

into a calibration and a validation subset. For each data set,

the random splitting procedure was applied 10 times, result-

ing in one hundred self-validated replicates.

A chrono-validation scheme was then applied, by calibrat-

ing the model with the whole event inventory of each epoch

and validating the performance in matching the event inven-

tories of the other. We hereafter refer to forward chrono-

validation, if calibrating with 2007 and validating with 2009,

and vice versa to backward chrono-validation, if calibrat-

ing with 2009 and validating with 2007. For each tempo-

ral model suite, we produced 10 prediction images based on

www.nat-hazards-earth-syst-sci.net/15/1785/2015/ Nat. Hazards Earth Syst. Sci., 15, 1785–1806, 2015



1798 M. Cama et al.: Predicting storm-triggered debris flow events

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

9

10

b
2

b
n

F
D

N
b

M
L
E

a

U
A P

C
F E S

S
E

S
W W

S
L
O

P
E

P
L
A

N
c
v
x

P
R

O
F

c
n
c

P
R

O
F

c
v
x

D
F

A
U

L
T

S

ν R

a) 

b) 

β  

Figure 9. Selected variables for the 2007 suite of models: (a) ranking and frequency; (b) β values.

the 10 data sets of the other suite, again having one hundred

backward and one hundred forward chrono-validated repli-

cates.

5 Results

The results of the cross-validation procedures for the one

hundred 2009 and 2007 self-validated models are presented

in Tables 1 and 2. Generally, the 2009 models (Table 2) re-

sulted in a better performing prediction with lower (0.336,

for 2007; 0.219, for 2009) and more stable error rates. Sim-

ilarly, the ROC-AUCs (Table 3) attested to the good quality

of the models, with a higher performance for the 2009 model

(2009 AUC was 0.85, 2007 AUC was 0.70) and no evidence

of overfitting.

With regards to the predictors, the 2007 model suite se-

lected five variables (Fig. 9), four of which had a frequency of

more than 5/10: west and south-west slope aspect, steepness

and phyllites to meta-arenites (FDNb) outcropping lithology

resulted as the main causative factors for the 2007 debris

flows. A larger set of variables (17) was included by BLR

in the 2009 model suite (Fig. 10), 15 of which were selected

more than five times. Among the topographic variables, the

most important were: steepness, all the pixels without any

northward aspect component, profile curvatures (both con-

cave and convex) and plan convex curvature of slopes. To-

gether with topographic variables, FDNb and paragneiss to

mica shists (MLEa) lithologies, distance from tectonic ele-

ments (DFAULTS) and chestnut forests (CF) and pastures

(P) land-use classes were always selected with high and sta-

ble rankings. Concerning the β-coefficients, only profile cur-

vature concavity, the variables DFAULT and CF and P land

uses showed negative values, indicating inverse correlation

with the debris flow source areas.

Once the overall quality of the predictive performance of

the 2007 and 2009 models was assessed, regressions were

run for the 10 full (without splitting into calibration and

validation subsets) data sets of each event inventory, which

maximized the fitting of the models. For both these full

self-validated models (Fig. 11), the obtained ROC-AUCs are

above the good performing threshold (> 0.81 for 2007; > 0.87

for 2009), with average error rates of 0.26 for 2007, and 0.22

for 2009. The 2007 and 2009 full models were then submit-

ted to forward and backward chrono-validation, respectively,

resulting in largely acceptable ROC-AUCs (> 0.75) and error

rates (< 0.3), although a loss in the predictive performance of

both the temporal predictions was observed. In particular, by

comparing the self-validation and the chrono-validation per-
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Figure 10. Selected variables for the 2009 suite of models: (a) ranking and frequency; (b) β values. For purposes of representation, the

coefficients of the topographic curvatures are reported as log β values.

Figure 11. Distribution of the AUC and error rate values calculated

on the 10 replicates for 2007 and 2009 modelling and 100 models

during the chrono-validation process.

Figure 12. Comparison of the mean ROC curves obtained for the

self-validated and chrono-validated models.
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Table 3. HK values for the 100 replicated chrono-validations (in bold, the maximum values).

2007/2009 2009/2007

Score FP-rate TP-rate HK Score FP-rate TP-rate HK

0.990 0.000 0.000 0.000 0.970 0.000 0.000 0.000

0.941 0.010 0.089 0.080 0.925 0.010 0.086 0.076

0.898 0.024 0.175 0.151 0.890 0.026 0.166 0.139

0.862 0.040 0.259 0.219 0.860 0.038 0.250 0.212

0.815 0.062 0.337 0.275 0.820 0.057 0.340 0.283

0.764 0.089 0.411 0.322 0.778 0.074 0.419 0.345

0.723 0.116 0.484 0.368 0.729 0.094 0.495 0.400

0.681 0.147 0.552 0.404 0.646 0.131 0.568 0.438

0.635 0.185 0.614 0.429 0.558 0.174 0.620 0.446

0.581 0.233 0.666 0.433 0.481 0.228 0.662 0.434

0.518 0.290 0.710 0.420 0.394 0.296 0.704 0.408

0.457 0.354 0.746 0.392 0.323 0.359 0.737 0.378

0.402 0.416 0.783 0.366 0.265 0.410 0.781 0.371

0.350 0.482 0.818 0.336 0.219 0.466 0.822 0.356

0.304 0.549 0.850 0.300 0.176 0.532 0.865 0.334

0.263 0.617 0.882 0.266 0.143 0.598 0.895 0.296

0.224 0.686 0.913 0.227 0.113 0.662 0.927 0.265

0.183 0.757 0.942 0.186 0.081 0.737 0.962 0.225

0.138 0.829 0.970 0.140 0.055 0.816 0.978 0.162

0.087 0.912 0.987 0.076 0.030 0.903 0.987 0.084

0.014 1.000 1.000 0.000 0.007 1.000 1.000 0.000

Figure 13. Susceptibility and error maps for the 2007 and the 2009 calibrated models: (a), (c) mean susceptibility; (b), (d) error maps.

Nat. Hazards Earth Syst. Sci., 15, 1785–1806, 2015 www.nat-hazards-earth-syst-sci.net/15/1785/2015/



M. Cama et al.: Predicting storm-triggered debris flow events 1801

Figure 14. Map of residuals calculated as percentage differences between the two (2007 and 2009) mean susceptibilities.

Figure 15. Dispersion density plot calculated using a 2-D binned

kernel density algorithm (range for density calculation 0.045 xy).

Positive cases for 0.5 cut-off values are reported for the two inven-

tory events.

formances, a decrease in AUC from 0.81 to 0.77 for 2007,

and from 0.87 to 0.78 for 2009, arose. Also, the mean error

rate values increased from 0.26 to 0.30 for 2007, and from

0.20 to 0.28 for 2009. It is worth noting the strong decrease

in performance affecting the 2009 model, which led the two

chrono-validations to be almost equivalent. In Fig. 12, the

calculated mean (over 100 replicates) ROC curves are shown.

Coherently, the HK mean scores are comparable between for-

ward and backward validations, presenting a maximum of

0.433 and 0.446, respectively (Table 3).

A spatial view of the obtained prediction images for the

2007 and 2009 models is given in Fig. 13. In particular, the

susceptibility maps show the spatial distribution of the mean

probabilities for the 10 replicates, whilst the error maps de-

scribe the dispersion of the estimates, represented by a 2σ

interval.

At a first glance, the two susceptibility maps appear quite

different: the 2007 map shows a more diffused and graduated

susceptibility, with the north-western and south-eastern sec-

tors of the catchment hosting high susceptible areas. On the

contrary, the 2009 map is characterized by a marked spatial

separation between the north-eastern high susceptible sector

and the remaining larger part of the catchment, which has a

low susceptibility. In terms of error maps, the 2007 model is

affected by a generally higher level of error, with the maxi-

mum values located in the central sector and minimum val-

ues along the stream network. The 2009 model, on the con-

trary, produced lower errors, with the exception of the stream

network, which is characterized by relatively higher values,

and two single small areas, corresponding to the outcrops of

poorly diffused lithologies (see Fig. 1).

To compare the two landslide susceptibility maps, taking

into consideration the distribution of the debris flows which

occurred in 2007 and 2009, LIPs were located onto a map

of the residuals. This map represents the difference between

the two (2007 and 2009) mean susceptibilities (Fig. 14). The

residuals confirmed the dissimilarity between the two models

in estimating the susceptibility of the catchment, with higher

probabilities in the southern and north-western sectors for the
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forward-validated models, and in the north-eastern sector for

the backward-validated models, respectively.

By comparing the two susceptibility estimates in a disper-

sion density plot (Fig. 15), the above-described trend is ver-

ified. The two models linearly agreed in the higher range of

susceptibility, whilst a larger dispersion existed in the lower

and intermediate susceptibility range. In particular, for the

stable areas (near the origin of the plot) the higher densities

pixels are shifted toward a more than 45◦ steep linear trend,

marking an overestimation for the 2007 calibrated model.

From a binarized perspective, by setting the cut-off value

for stable/unstable discrimination to 0.5, the final number

of joint predictions (II, for TP, and IV, for FN sectors) was

77 %, whilst disjoint predictions (I and III sectors of the plot)

reached 23 %. The two chrono-validated models performed

in predicting the whole set of observed positives with differ-

ent results: the backward-calibrated model produced 46+ 3

(67 %) true positives and 13+ 11 (33 %) false negatives for

the 2007 LIPs, while the forward-calibrated model produced

395+ 50 (72 %) true positives and 90+ 81 (28 %) false neg-

atives for the 2009 LIPs.

6 Discussion

In this study, the findings of previous studies (Zêzere et al.,

2004; Guzzetti et al., 2005; Vergari et al., 2011; Wang et al.,

2013) regarding the effectiveness of temporal partition pro-

cedures to explain future landslides are generally confirmed

here, even in the case of debris flows triggered by an extreme

rainfall event. The above-described results attest to a sym-

metry between forward and backward chrono-validations, as

well as the main assumption on which stochastic modelling

is based. However, through the analysis of the self-validated

models, it was identified that the 2009 model resulted in a

higher predictive performance, with a higher number of se-

lected variables. This could be interpreted as a direct conse-

quence of the greater number of debris flows which compose

the 2009 inventory (1 order of magnitude more), so that a

larger spectrum of multivariate conditions of the slopes was

involved in failures and included in the data sets for the fitting

of the models. However, the first four selected predictors for

the 2009 model correspond to those composing the structure

of the 2007 model: slope morphology (steepness, curvature

and aspect), soil use and outcropping lithology.

The comparison between the performances of the self-

validated and the chrono-validated models has highlighted a

loss in accuracy which is slightly more marked for the higher

performing self-validated 2009 model. Therefore, although

a large difference between the accuracy of the two self-

validated models is observed, the comparison between the

forward and backward chrono-validated models shows very

smoothed differences in terms of ROC-AUC and error rates.

This suggests that, in spite of the higher performance which

the 2009 model obtained in classifying the same 2009 event,

its skill in back-predicting the 2007 debris flow source areas

is the same shown by the 2007 event in forward-predicting

the debris flow source area of 2009.

The loss in performance demonstrated by the 2009 model

suggests that using self-validated models for temporal pre-

diction can mislead the user in estimating the performance

of the model. In fact, one would expect that the model cali-

brated with the largest landslide inventory would be the best-

performing in chrono-validation as it also includes the less

extreme morphodynamic responses. However, in spite of the

similar inner structure of the 2007 and 2009 models, the pre-

dictive performance of the 2009 backward model lowered

to the same ROC-AUC and error rates of the 2007 forward

model. The reason for this behaviour could be connected to

the different local characteristics of the two storm events,

which hit the slopes differently, even in such a small catch-

ment. This would indicate, for this study case, that inside

a 10 km2 area there are two different pasts and two differ-

ent futures, depending on which of the two storm events are

used for calibration. This is a similar finding to that obtained

for chrono-validation procedures by Chang et al. (2014) in a

larger-scale (tropical cyclones) study, whose predictive mod-

els even resulted in being “capable of predicting landslides

triggered by a strong typhoon but not a weak typhoon” (i.e.

their best model missed nearly all the landslide cells trig-

gered by the weak typhoon events).

At the same time, a non-linearity of the morphodynamic

response of the slopes (different coefficients and/or predic-

tors) could affect the performance in chrono-validation: a

larger event does not produce a larger response which include

less intense storms, but rather a different one. The larger the

difference between the triggering events, the greater the dis-

tinction in the response of the preparatory conditions.

In the domain of the predictors, this is highlighted by the

different inner structures of the models. If compared to the

2007 event, the 2009 event also activated eastern and south-

eastern-facing pixels, as well as high metamorphic-grade

(MLEa) lithologies and terraced deposits; topographic curva-

tures, distance from faults and soil use (the latter with nega-

tive coefficients) have also taken an important role in control-

ling the distribution of the debris flow source areas. However,

this richer structure of the model does not increase its predic-

tive ability with respect to the distribution of the 2007 debris

flows; the backward chrono-validation does not demonstrate

this greater accuracy. This suggests that the 2007 debris flows

were activated through different, even if largely overlapping,

mechanisms.

In the domain of the geographical space, the map of the

residuals provided a spatial view of the different behaviour

of the two models, giving the interpreter clues for the real

path followed by the two storm fronts inside the Itala catch-

ment. The 2009 model markedly overestimated the suscepti-

bilities in the central-northern sector of the catchment, whilst

the 2007 model produced higher susceptibilities than 2009

in the north-western inner mountain sector. Regardless of the
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different intensities, this spatial trend suggests that the 2009

storm path was limited to the coastal area, whilst the 2007

storm affected the whole catchment more homogeneously,

activating also the slopes of the mountain sector. This inter-

pretation is also confirmed by the different spatial distribu-

tion of the debris flows of the two event inventories and it

agrees with the findings on a much larger scale of Chang et

al. (2014).

However, from a risk perspective, the difference between

the two models did not produce a significant loss in predic-

tion, as only a limited number of cases resulted in a false

positive prediction. This is why the mapped debris flows are

largely located in the more susceptible pixels. However, the

results of the present research have confirmed that the larger

difference between the two models has been observed in the

intermediate susceptibilities interval, which is the same re-

gion of the error plots where the self-validated models show

poor precision. This difference is also attested by the HK

scores, which confirmed the good prediction skills, but with

maximum values proximal to 0.45. Under the considered

triggering conditions, the multivariate relationship between

debris flow activation and predictors is in fact linear, so that

no single marked cut-off value for probability accurately dis-

criminates positives from negatives. Nevertheless, it is worth

highlighting the selection of a 0.5 cut-off value, which re-

sulted in a higher performance for the temporal prediction

of the positive cases (forward chrono-validation) of the 2007

calibrated model.

Finally, it is worth comparing here the results obtained for

chrono-validation (AUC was0.77 / 0.78), with the ones from

Lombardo et al. (2014), which applied a spatial exportation

scheme in two catchments very close to each other. In fact, a

higher performance (AUC was 0.83) resulted for the predic-

tion skill of the transferability procedure which was adopted

there, by calibrating the model in the Briga catchment to pre-

dict the Giampilieri debris flows, using event inventories pro-

duced by the same 2009 storm-triggering event. Sharing the

triggering event allows for a better predictive ability, in spite

of the circumstance that, in a spatial partition scheme, the

calibrated model is totally blind with respect to the validation

area, in terms of the spatial combination of the predictors and

the target pattern (the unknown debris flows).

7 Conclusions

The results obtained in this research confirmed that the basic

assumption on which susceptibility modelling is based (the

past is the key to the future) must be critically accepted in the

case of extreme events. In fact, in the case of the two storm

events considered here, the dissimilarities in the intensity

and the real path of the two storm fronts produced measur-

able differences in the behaviour of the two derived predic-

tive models, both in the domain of the predictors and in the

spatial pattern of the susceptibility maps. Two main causes

have been recognized here: on the one hand, the slopes did

not linearly respond to the trigger intensity, so that different

predictors and coefficients were fitted by the two regressed

models; on the other hand, effects produced by the spatial

non-homogeneity of the rain intensity for each single storm

event, even at the scale of such small catchments, were de-

tected.

In terms of the operative use of the susceptibility maps, the

effects identified attest to the risk of either over- or under-

estimating the susceptibility, both for the 2009 and 2007

models. In particular, limits arise in the general perspective

of using the most severe and available inventory for cali-

brating the best-performing model. In fact, in this research

it was verified that this best-performing self-validated model

did not result in the most accurate one in chrono-validation,

also demonstrating susceptibility underestimation and false

negative production.

In the present study, the differences between the two mod-

els basically reside in the intermediate susceptibility interval,

so that a precautionary approach in reclassifying the suscep-

tibility map could be adopted, accepting the precision limits

in the intermediate probability classes. However, larger dif-

ferences between the triggering storms to which calibration

and validation event inventories are connected could result

in larger predictive limits and more misleading susceptibility

maps.

The strict relation between trigger intensity, slope response

and prediction performance arises also from the comparison

of this study to another study carried out by applying spatial

partition or transferability validation strategies in two adja-

cent catchments for the same 2009 trigger, obtaining a better

predictive performance. In the opinion of the authors, this

difference confirms limitations of the chrono-validation pro-

cedure when working with extreme rainfall events. For this

reason, the application of transferability or chrono-validation

should be evaluated from time to time on the basis of the

availability of historical records of phenomena, information

on the trigger event, and similarity with other areas where

debris flow events have already occurred. At the same time,

the production of susceptibility maps such as those presented

in this paper constitutes a basic starting point for modelling

propagation, run-out and magnitude associated to the pre-

dicted phenomena, so that an estimation of the debris flow

hazard is achieved within a given area.
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