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Abstract. In this communication, I improve the detection

and modeling of the over-dispersion of winter storm occur-

rence. For this purpose, the generalized Poisson distribution

and the Bayesian information criterion are introduced; the

latter is used for statistical model selection. Moreover, I re-

place the frequently used dispersion statistics by an over-

dispersion parameter which does not depend on the consid-

ered return period of storm events. These models and meth-

ods are applied in order to properly detect the over-dispersion

in winter storm data for Germany, carrying out a joint esti-

mation of the distribution models for different samples.

1 Introduction

A possible over-dispersion of the occurrence of European

winter storms is the topic of previous studies (e.g., Mailier et

al., 2006; Pinto et al., 2013; Karremann et al., 2014). Over-

dispersion means that the variance (a spreading parameter)

of the number of events per storm season is larger than the

corresponding expectation. This is frequently called cluster-

ing. However it is difficult to detect statistical significance

of over-dispersion of historic winter storms due to the small

sample sizes and the relatively small over-dispersion (cf. Vi-

tolo et al., 2009).

Here I present a combination of statistical models and

methods that improve the modeling of the over-dispersion

of European winter storms and the detection of its statistical

significance. The generalized Poisson distribution (GPD) is

introduced in the following section. It is more universal than

the negative binomial distribution (NBD) which is already

applied to storms (e.g., Karremann et al., 2014). In Sect. 3,

I introduce an over-dispersion parameter which remains the

same for each return period, in contrast to frequently used

dispersion statistics (e.g., Karremann et al., 2014). The cor-

responding thinning process is also explained. In Sect. 4, I

introduce the statistical model selection by an information

criterion. Finally, I use this criterion when I apply the GPD

to the data set of German winter storms analyzed in Karre-

mann et al. (2014). Therein the over-dispersion in the data

of historic storms is well detected by an over-dispersion pa-

rameter, estimated for a large sample of storms from climate

model simulations.

2 The generalized Poisson distribution (GPD)

The occurrence of European winter storms on a timescale can

be modeled by an inhomogeneous Poisson process (Mailier

et al., 2006). In consequence, the number of storms per sea-

son, with a magnitude equal to or larger than a defined level,

can be modeled by a distribution that is a mixture of Pois-

son distributions (PDs). The NBD is such a mixture and is

already applied to storm occurrence (e.g., Sakamoto, 1973;

Karremann et al. 2014). The PD is a limit case of the NBD

and includes neither over- nor under-dispersion. In contrast

to the limitations of the NBD to the case of over-dispersion

(cf. Johnson et al., 2005, Eq. 5.5), the GPD can consider over-

dispersion or under-dispersion and includes the PD as a spe-

cial case. The GPD is more universal and it also is a mixture

of PD in case of over-dispersion (Joe and Zhu, 2005). Hence

I use the GPD. The GPD has been developed by Consul and

Jain (1973) and is formulated for the discrete random vari-

able X ≥ 0 for count data with

P(x)=
λ(λ+ xθ)x−1

x!
e−λ−xθ , x ≥ 0. (1)
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It describes the probability of X=x and uses the parameters

λ> 0 and θ . The expectation E(X) and variance V (X) can

replace the parameters λ and θ having

θ = 1−

√
E(X)

V (X)
(2)

and

λ=

√
E(X)3

V (X)
. (3)

A certain inhomogeneous Poisson process of event occur-

rence in time does not necessarily need to result exactly in

a NBD or a GPD for the count data of events per storm sea-

son. But I assume that the GPD is at least an appropriate

approximation. The similarity of the NBD and the GPD for

the case of over-dispersion supports this assumption; each

approximates the other. This is later validated for and by the

analyzed storm data.

The parameters of the GPD can be estimated by the well-

known maximum likelihood (ML) method. Therein the pa-

rameter vector θ , with the maximum of the logarithmized

likelihood function

log(L(θ))=

nx∑
x

log(P (x;θ)) (4)

represents the point estimation. nx is the observed number

of seasons with X= x. The ML method is recommended for

the NBD (Johnson et al., 2005) and the GPD (Consul and

Shoukri, 1984). Therein, the estimated expectation Ê(X) is

equal to the sample mean. The moment method is also an es-

tablished estimation method for discrete distributions in con-

trast to the least square method (cf. Johnson et al., 2005).

3 What does over-dispersion mean?

Mailier et al. (2006), Vitolo et al. (2009) and Karremann et

al. (2014) define the over-dispersion in the random distribu-

tion of the number of storms as serial clustering, and quantify

it by the dispersion statistics

φ = V (X)/E(X)− 1. (5)

However, the terms cluster and clustering have different

meanings. A cluster in an auto-correlated time series consists

of a number of observations that represent a partial series

of exceedances of a given threshold (Coles, 2001, Fig. 5.4),

e.g., of the time series of river discharge. An earthquake

cluster is a group of earthquake events that include a main

event with a large magnitude and a series of secondary events

(after- and/or foreshocks; e.g., Ogata, 2001). There is a rela-

tion in time and space between these events. If a clustering of

storm magnitudes existed, similar to the clustering of earth-

quakes, the number of smaller storms with low return peri-

ods (RPs) should be higher for years with an event with a

high RP. Nevertheless, this cannot be stated for the data ana-

lyzed by Karremann et al. (2014). This fact is associated with

the physical processes leading to the occurrence of cyclone

clusters (Pinto et al., 2014).

Here, X is the number of storms, in a season, whose

storm magnitudes have RPs equal to or larger than a con-

sidered return period (CRP). If over-dispersion in the count

variable X were generated only by an inhomogeneous Pois-

son process at the timescale, then each storm event would

be independent of the others. In this case, the increase of

the CRP from CRPold to CRPnew includes a random thin-

ning of the sampling of X. Therein, the survival probabil-

ity Psurvival=CRPold/CRPnew with CRPold>CRPnew is the

probability of a storm event of the sample with CRPold to be

also member of the sample with a higher CRPnew. The RP of

the magnitude of a storm, which is also a random variable,

determines if this storm stays in the sample with CRPnew

or not. In other words, the counted storm events are thinned

out by the increasing of the CRP. A possible over-dispersion

with V (X)>E(X) is determined independent of the CRP by

(cf. Mack, 2002)

V (X)= E(X)+βE(X)2, (6)

where the over-dispersion parameter β ≥ 0 (β = 0 means no

over- or under-dispersion). This is a result of well-known re-

lations between random variables (cf. Ross, 2007). I present

a derivation of Eq. (6) in the Supplement. The relation be-

tween the expectation of the storm number and the CRP is

obviously E(X)= 1/CRP. The important advantage of the

over-dispersion parameter β is that it has one fixed value for

all CRP, in contrast to the over-dispersion statistics φ which

depends on the CRP (cf. Karremann et al., 2014; they use the

term return level). An example of the corresponding relations

is shown in Fig. 1. The over-dispersion statistics φ decreases

with the increasing of CRP= 1/E(X) for the fixed β. This

behavior explains very well, as by Karremann et al. (2014;

Table 3), the estimations for large storm samples from cli-

mate model simulations. It seems to be likely that the over-

dispersion of storms is caused by inhomogeneous occurrence

intensity of events in time.

4 Statistical significance and model selection

Statistical significance means that a certain assumption

and/or modeling is likely appropriate and correct. It is fre-

quently insured by a test, such as the likelihood ratio test, in

the model selection. The statistical significance of a model

can also be provided indirectly by an appropriate statistical

model selection among different alternatives by means of an

information criterion. It is recommended, for example, for

regression analysis with binary variables instead of a clas-
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Figure 1. Relation between variance and expectation accord-

ing to Eq. (6) with dispersion parameter β = 0.307 and corre-

sponding behavior of dispersion statistics φ according to Eq. (5)

(CRP= 1/E(X)).

sical t test (Fahrmeir et al., 2013). The functionality of such

model selection can also be validated by Monte Carlo simula-

tions (Raschke and Thürmer, 2010). Here, I apply for model

selection the well-known Bayesian information criterion of

Schwarz (1978):

BIC=−2L(θ)+m log(n). (7)

In Eq. (7) m stands for the number of estimated parameters

and has to be taken into account while applying a criterion for

model selection to avoid an over-fit. This sounds simple and

reasonable, but it is not fulfilled in every model (cf. Raschke,

2014). The sample size is again n in Eq. (7), and log(L(θ)) is

the logarithmized likelihood function (cf. Eq. 4). A smaller

BIC indicates the better model, the smallest the best. A larger

difference between the criteria of alternative models indi-

cates a better differentiation. BIC is very popular in statistics

(Lindsey, 1996; Upton and Cook, 2006; Ismail and Jemain,

2007; Claeskens and Hjort, 2008), based on the Kullback–

Leibler distance and also related to the likelihood ratio test.

In contrast to the latter, the BIC also considers the case of

equal number of parameter, and many alternative models can

be easily compared. If the BIC selects the models (or the

most models) with over-dispersion instead of a model (or the

most models) without, then the statistical significance of the

over-dispersion is proved.

I do not apply any goodness-of-fit test here because there

is no special goodness-of-fit test for the NBD or GPD

(cf. Stephend, 1986), and moreover the χ2 test does not

work well for small sample size (see, e.g., Raschke, 2009).

The goodness of fit was also not discussed by Karremann et

al. (2014).

Figure 2. Estimated distributions for the DWD sample with

CRP= 1.

5 Over-dispersion of winter storms in Germany

Karremann et al. (2014) have published samples of num-

bers X of winter storms per season. They have counted

storms with a RP of their storm magnitude which fulfill the

condition RP≥CRP. Therein the cases are presented where

CRP= 1, 2 and 5 year. The data are listed in the Supple-

ment and include a sample of historic storms from a period

of 30 years (n= 30), with magnitudes calculated based on

wind station data (DWD) and on data from reanalyzed his-

toric storms (NCEP, ERAI), as well as a very large sam-

ple (n= 4092) obtained from a climate model simulation

(GCMcorr). I do not consider the other samples presented by

Karremann et al. (2014). The storm magnitudes (return level

with return periods in Coles, 2001) are measured by Karre-

mann et al. (2014) by using two indexes which consider the

wind speed of different sites (stations or grid points) in Ger-

many and beyond. Details and issues such as the quantifica-

tion of storm magnitudes are not topics of this work and do

not affect the introduced models and methods.

In a first analysis I have estimated for all samples the pa-

rameters for distributions PD, NBD and the GPD. The re-

sults are listed in Table 1. In every ML estimation applies

Ê(X)= 1/CRP, as described in the previous sections. The

estimated distributions for DWD data with CRP= 1 year are

shown in Fig. 2. It is clear that the NBD and the GPD are very

similar. Additionally, the BIC for the NBD and GPD are al-

most equal for all samples (Table 1). NBD and GPD approx-

imate each other as assumed in Sect. 2. However, the BIC

detect the PD as the best model for 56 % of the samples of

historic storms. The over-dispersion is detected only in 44 %

of the historic storms. But over-dispersion is detected clearly

for all GCMcorr samples from climate model simulations.

In a second analysis, I have linked the estimations of dif-

ferent samples. For the large GCMcorr sample of climate

model simulations with CRP= 1 year, the estimated over-

dispersion parameter of the GPD is β̂ = 0.307± 0.031. I ap-
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Table 1. BIC for some samples of winter storm in Germany accord-

ing to Karremann et al. (2014) (n= 4092 for GCMcorr, otherwise

n= 30).

Sample PD, NBD, GPD, GPD with

m= 1 m= 2 m= 2 β =0.307

of GCMcorr,

m= 1

GCMcorr, CRP= 1 11 253.55 11 121.61 11 123.50 –

GCMcorr, CRP= 2 7800.35 7757.99 7758.58 –

GCMcorr, CRP= 5 4432.85 4428.19 4428.15 –

NCEP, CRP= 1 83.04 86.38 86.38 83.40

NCEP, CRP= 2 60.55 63.57 63.58 60.19

NCEP, CRP= 5 38.30 37.94 37.95 37.16

ERAI, CRP= 1 84.43 87.33 87.33 84.01

ERAI, CRP= 2 59.17 62.55 62.55 59.32

ERAI, CRP= 5 36.10 39.24 39.25 35.93

DWD, CRP= 1 91.23 89.76 89.69 87.32

DWD, CRP= 2 66.54 63.43 63.33 63.21

DWD, CRP= 5 38.30 37.94 37.95 37.16

ply this parameter value to estimate the GPD for the his-

toric storm samples. Therein GPD is now parametrized by

the expectation and the over-dispersion parameter. The lat-

ter is now known and only the expectation is estimated. Both

determine the variance V (X) according to Eq. (6). This esti-

mation procedure is possible because the over-dispersion pa-

rameter does not depend on the CRP. The GCMcorr sample is

relatively large (n= 4092� 30) and independent of the sam-

ples of historic storms. Furthermore, all samples are from the

same random variable X – the number of winter storms per

season in Germany for the current climate. Using this special

procedure with one known parameter, over-dispersion in the

data of historic winter storms in Germany can be properly de-

tected (Table 1, last column). The BIC selects the GPD with

known over-dispersion β = 0.307 in 78 % of the samples of

historic storms. Thus the over-dispersion is largely proved

for historic storms.

6 Summary

In this communication, I have improved the detection and

modeling of the over-dispersion of winter storm occurrence.

For this purpose, the GPD, information criterion for the

model selection and an over-dispersion parameter have been

introduced. The GPD has the advantage of being more uni-

versal than the NBD previously used. The application of the

information criterion BIC indirectly ensures statistical signif-

icance. In addition, the over-dispersion parameter β is more

universal than the dispersion statistics φ because the over-

dispersion parameter is the same for every CRP. All this el-

ements are used in the analysis of the winter storm data for

Germany by Karremann et al. (2014). The statistical over-

dispersion in historical storm time series for recent decades

could be largely proven by a combination of these elements.

In this way, the basic conclusions by Karremann et al. (2014)

– i.e., that there is over-dispersion in winter storms in Ger-

many – have been confirmed at a higher level of statistical

analysis.

The Supplement related to this article is available online

at doi:10.5194/nhess-15-1757-2015-supplement.
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