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Abstract. We apply failure forecast models by exploiting

near-real-time monitoring data for the La Saxe rockslide,

a large unstable slope threatening Aosta Valley in northern

Italy. Starting from the inverse velocity theory, we analyze

landslide surface displacements automatically and in near

real time on different temporal windows and apply straight-

forward statistical methods to obtain confidence intervals on

the estimated time of failure. Here, we present the result

obtained for the La Saxe rockslide, a large unstable slope

located in Aosta Valley, northern Italy. Based on this case

study, we identify operational thresholds that are established

on the reliability of the forecast models. Our approach is

aimed at supporting the management of early warning sys-

tems in the most critical phases of the landslide emergency.

1 Introduction

The use of analytical and numerical models to determine the

occurrence of natural hazards is a major research subject.

For landslides, this topic not only has great relevance in the

scientific community but also strongly affects best practices

for efficient land planning and management. The approaches

used to forecast landslide occurrence mainly depend on the

spatial scale analyzed (regional vs. local) and the temporal

range of forecast (long term vs. short term), as well as the

triggering factor and the landslide type being considered. A

certain proportion of landslides are triggered by intense and

prolonged rainfall events; thus, a large number of studies

have focused on the relationship between intensity/duration

of rainfall and the consequent activation (or re-activation) of

landslides (Wieczorek and Guzzetti, 1999). In general, the

main inputs for these analyses are retrieved from rain gauge

data and historical landslide catalogs. Models are used to

identify and calibrate the intensity and duration thresholds

that, if exceeded during a rainfall event, indicate the likely

occurrence of landslides in a specific area with a specified

degree of uncertainty. Early warning systems (EWSs) based

on this approach rely on the acquisition of near-real-time data

from rain gauges and consider both measured precipitation

and rain forecasts based on meteorological models (Rossi et

al., 2012). EWSs of this type are used worldwide and are usu-

ally applied at regional scales; they constitute a suitable so-

lution in areas where the combination of climatic conditions,

landslide susceptibility, and dense population generates high-

risk exposure.

By considering large slope instabilities, event forecast-

ing may be approached in a different manner. Large unsta-

ble slopes display a wide range of failure behaviors, from

slow slope deformations to rapid and catastrophic rockslides.

One of the most critical issues related to these phenomena

is their likelihood of evolving into impulsive gravitational

events involving some or all of the unstable mass (e.g., rock-

falls and/or rock avalanches). In this context, surface dis-

placements and/or deep-seated deformation often represent

the key information for a proper understanding and interpre-

tation of the phenomenon (Wieczorek and Snyder, 2009).

When unstable slopes menace populations and/or impor-

tant infrastructure, monitoring networks are set up as the ba-

sis of EWSs. In such situations, EWSs may rely on thresh-

olds defined with respect to direct measurements of physi-

cal parameters describing the landslide evolution over time,

i.e., surface and/or sub-surface displacement data (Michoud

et al., 2013). If thresholds are exceeded, specific actions are
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typically prescribed to reduce the consequences of a potential

landslide failure on the population and/or exposed infrastruc-

ture (Medina-Cetina and Nadim, 2008). The identification of

thresholds for rockslide displacements (or velocities) is gen-

erally approached by performing back analyses on the avail-

able monitoring data and/or considering similarities to previ-

ous case studies in terms of geology and volume of the mate-

rial involved. However, this is not always possible. Problems

with the identification of these thresholds are well known,

mainly resulting from the complexity of the phenomena ana-

lyzed, as well as from the large number of variables involved

(Crosta and Agliardi, 2002). Moreover, an additional limi-

tation of this approach is that the efficacy of EWSs is lost

when the last threshold is exceeded. Once this condition is

reached, the time before a slope failure produces a (partial

or total) landslide occurrence is still unknown, and thus the

critical situation can be protracted for long periods. This is

usually the most critical stage of the landslide emergency.

In the last decades, several modeling procedures have been

proposed for the estimation of the time of failure (ToF) for

landslide phenomena. These approaches, hereafter referred

to as failure forecast methods (FFMs), analyze the evolu-

tion of the landslide deformation over time (i.e., the strain

rate) and are based on the assumption that under constant

stress conditions, landslide materials follow the creep mech-

anism. After the pioneering work of Saito (1965), a num-

ber of authors have attempted to estimate ToF using differ-

ent approaches, including simplified empirical and/or graph-

ical solutions, analytical models known as “regression-only”

methods, and physically consistent methods (see Federico

et al., 2012, and references therein). The “inverse-velocity”

method proposed by Fukuzono (1985) has been widely con-

sidered and has led to successful applications both in large-

scale laboratory experiments and in real landslide scenarios

(Dick et al., 2015; Mazzanti et al., 2015; Rose and Hungr,

2007). This approach exploits the evolution over time of the

inverse value of the surface velocity (v) by assuming that fail-

ure approaches as v−1 tends to zero.

Recently, starting from Fukuzono’s method, Manconi and

Giordan (2014) proposed a new approach to achieve land-

slide ToF forecast by considering near-real-time monitoring

data. While in Manconi and Giordan (2014) we presented the

details on the failure forecast modeling approach, in this pa-

per we aim to define operative thresholds based on the results

of the failure forecast models. Our goal is to contribute to fill-

ing an important gap, i.e., supporting authorities and decision

makers during the time frame between the point when thresh-

olds set on displacements (or its derivatives) are exceeded

and the occurrence of a (partial or total) landslide failure.

2 Failure forecast in near real time

Let us assume that an active monitoring network is deployed

on the landslide area and that the information on the defor-

Figure 1. Schematic representation of the evolution over time of

landslide velocity prior to a failure event, by considering materi-

als behaving under creep conditions. The evolution towards fail-

ure may have different phases characterized by non-linear accelera-

tions. While thr1 and thr2 are static thresholds defined from a priori

information on the landslide behavior, thr3 is based on the results

from the failure forecast modeling obtained in near real time.

mation field is delivered in near real time. Figure 1 depicts an

example of the temporal evolution that might be observed in

landslide surface velocity prior to failure occurrence. Under

these conditions, the monitoring network is usually coupled

to an EWS based on three stages associated with two prede-

fined velocity (v) thresholds: (i) v < thr1= landslide velocity

is below values considered critical; (ii) v > thr1=warning

conditions; (iii) v > thr2= alarm. When thr1 or thr2 are ex-

ceeded at a specific measurement point (or area), the EWS

can be set to send alert messages (e.g., via SMS and/or email)

to the responsible authorities. The latter must evaluate the

situation and eventually activate specific civil protection pro-

cedures (Allasia et al., 2013; Intrieri et al., 2012). An EWS

using thresholds based only on the actual measured defor-

mation values does not provide any information about the

possible evolution of the landslide towards failure. Indeed,

the time between the passing of thr2 to the slope failure is

unknown, posing serious concerns for the management of

emergency scenarios. For example, if the civil protection

procedures associated with the stage “v > thr2” are “evacua-

tion of inhabited buildings” or “closure of the access roads”,

the main question of decision makers under these condi-

tions is “how long should we keep buildings empty and/or

roads closed?”. In several scenarios, due to the high vari-

ability of landslide behavior, uncertainty over which protec-

tion procedures to adopt can last for several days or even

weeks, causing discomfort to the population and economic

loss. Adoption of failure forecast models during this criti-

cal phase could mitigate these problems. More specifically,

here we apply Fukuzono’s inverse-velocity method by con-

sidering several calculation time windows (CTWs, data ac-

quired over the last 12 h, 24 h, 48 h, 1 week, etc.) and iter-

Nat. Hazards Earth Syst. Sci., 15, 1639–1644, 2015 www.nat-hazards-earth-syst-sci.net/15/1639/2015/



A. Manconi and D. Giordan: Landslide early warning based on failure forecast models 1641

ate the procedure several times (e.g., N = 1000 iterations)

within a bootstrap resampling strategy (readers are referred

to Manconi and Giordan, 2014, for more detail). This ap-

proach is aimed at evaluating the evolution of landslide sta-

tus by considering data over different periods, as well as

deriving robust assessments of errors associated with the

ToF estimate. In addition, the fit of the forecast to the ob-

servations is evaluated by calculating Pearson’s correlation

coefficient (CC) between the model and the data. Normal-

ized CC values, when statistically significant, can be in-

terpreted as a measure of the reliability (R) of the com-

puted forecast model. At this stage, we consider a num-

ber of R ranges, as follows: (i) 50 % < R < 60 %=model

reliability is low, failure is unlikely but the situation must

be surveyed; (ii) 60 % < R < 75 %=model reliability is

higher, a failure within the estimated ToF range starts to

be more likely; (iii) 75 % < R < 90 %=model reliability is

high, a failure within the estimated ToF range is likely;

(iv) R > 90 %=model reliability is very high, a failure

within the estimated ToF range is highly probable. In general,

the results of the failure forecast procedure presented herein

must be read as follows: if the landslide velocity continues

to increase as in the last CTW, the probability of observing a

failure within the estimated ToF range is R %.

Additional information to take into account when inter-

preting the FFM results is the consistency of the forecast

among different CTWs as well as the evolution tendency of

R. For example, if R progressively increases and/or remains

stable over high values (e.g., R > 75 %), the probability of

observing a failure is higher.

To facilitate the exploitation of this information based on

failure forecasting as well as to provide a straightforward

understanding of the modeling results to people without de-

tailed knowledge of the inverse-velocity theory, we designed

specific representations aimed at summarizing the obtained

results (see Fig. 2). We have implemented this procedure

within the ADVICE system (Allasia et al., 2013), and failure

forecast plots are generated automatically when monitored

target velocities exceed v > thr2.

3 Application to Mont de La Saxe rockslide

Active mass movement affects a large portion of the south-

ern flank of the Mont de la Saxe, in the northwestern part of

Aosta Valley, northern Italy. The rockslide, hereafter referred

to as La Saxe, involves an unstable volume of ca. 8× 106 m3

(Crosta et al., 2014, 2015) and poses a hazard to part of the

Courmayeur municipality, i.e., Entreves and La Palud vil-

lages. In addition, the landslide threatens a crucial point of

route E25, an important highway connection crossing Eu-

rope from north to south and ensuring commercial activities

between Italy and transalpine countries. Continuous moni-

toring of surface displacements started in 2009 and showed

that spring snowmelt causes progressive acceleration of the

Figure 2. Example of the failure forecast plots. The x axis rep-

resents the different computational time windows (CTWs), while

the y axis indicates the predicted time to failure (TTF=ToF-now,

where now is the time of the current computation). The bar length is

a function of the TTF range between 5 and 95 percentiles computed

with the bootstrap procedure (see text for details). The bar colors

depend on the forecast model reliability values (R). Black triangles

indicate the reliability tendency with respect to the previous model:

an increase (or decrease) occurs when current R is higher (or lower)

by 1 %. N/A indicates that the modeling results are not reliable; thus

the failure forecast model is not applicable.

surface displacements, which may locally reach up to sev-

eral decimeters or even meters per day. Over the years, these

acceleration phases have led to failures of portions of the

landslide body, with volumes ranging from minor rockfalls

up to relatively larger mass wasting (> 1× 104 m3). The

monitoring network deployed includes several instruments

to measure surface displacements (Crosta et al., 2014), as

follows: (i) a robotized total station (RTS) measuring every

hour the 3-D position of approximately 30 optical targets in-

stalled on the landslide body; (ii) a ground-based synthetic

aperture radar (GB-SAR), measuring at time intervals rang-

ing from a few minutes to approximately 1 h, adapted de-

pending on the current landslide velocity; (iii) 8 continuous

GPS receivers, also installed on the landslide body. How-

ever, the EWS thresholds are based mainly on measurements

performed via the RTS. When one or more RTS point tar-

gets overcome predefined warning and/or alarm levels (1 and

2 mm h−1, respectively, considered over a 24 h observation

window), specific civil protection procedures are activated,

including the interruption of road traffic and evacuation of in-

habitants from edifices located in areas potentially involved

in a failure event.

Starting at the end of March 2014, a specific sector of the

La Saxe rockslide started to accelerate (see Fig. 3), with sur-

face velocities reaching values up to 5–6 cm per day. This

acceleration phase has caused a large number of minor rock-

falls as well as two main failure events: (i) 17 April 2014,

20:00 CET, ca. 5× 103 m3 and (ii) 21 April 2014, 23:00 CET,

ca. 3× 104 m3. Figure 4 shows examples of the failure fore-

cast plots generated in near real time from RTS measure-

ments on target B4 during this particular phase. Target B4

was installed close to the zone characterized by the largest

displacements and at that moment was considered to be one
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Figure 3. Frontal view of the La Saxe rockslide (April 2013). Red

dashed line is the limit of the unstable slope, while blue dashed

line defines the most active landslide sector. B4 and B6 are the lo-

cation of the RTS targets considered for the failure forecast. Col-

ored areas represent the zones collapsed on 21 April 2013 (reddish),

17 April 2014 (orange), and 21 April 2014 (yellow), respectively.

of the most representative for understanding the evolution of

this kinematic domain. We noticed that from 31 March to

15 April, the reliability of the FFM progressively increased

for all the CTWs considered. At this stage, landslide mate-

rial had reached surface displacement rates larger than sev-

eral centimeters per hour, and a failure was considered highly

probable.

4 Discussion and conclusions

We presented an approach aimed at updating operational

EWS thresholds by including values based on the results of

the failure forecast method. Our approach has been applied to

forecast landslide events associated with the evolution of the

La Saxe rockslide during the 2014 emergency scenario. The

results show that reliability thresholds applied to FFM re-

sults can be used to help the interpretation of the evolution of

the landslide body towards a failure and to provide additional

support for early warning purposes. Despite the limited num-

ber of events observed so far, we evaluated the performance

of the proposed methodology by building contingency tables

(Jolliffe and Stephenson, 2012). For this purpose, we have

taken into account the failure forecast results for the La Saxe

failure event of 21 April 2013 (see Manconi and Giordan,

2014) and the two major events that occurred in 2014. In par-

ticular, the analysis was performed by using for “event fore-

casting” only those models with reliability (R) higher than

a predefined value. Among them, models predicting a ToF

range that included the time of the real events observed have

been considered to be “true positive”, while “false alarms”

are models predicting a ToF range earlier than the real event

occurrence, and “missed alarms” are models predicting a ToF

range later than the real event occurrence. Models with R be-

low the predefined reliability threshold have been considered

to be “non-event forecasts” and thus as true negatives. The

analysis was performed on forecast models producing relia-

bility thresholds R > 75 % and R > 90 % in the week preced-

ing the failure (see Supplement). We note that the model hit

rate for the 2013 event is on the order of 0.8 (see Table S7)

and depends highly on the computational time windows con-

sidered. However, the modeling procedure yields a consistent

number of false alarms, although among these, the mean dis-

tance between the predicted and the real event is on the order

of 2.5–3 days. Moreover, we note that by considering only

the forecast models with R > 90 %, the number of missed

alarms approaches zero. For the 2014 events, the evaluation

of the model performance with standard contingency estima-

tors is difficult to interpret. The event of 21 April 2013 oc-

curred after a straightforward evolution towards failure, and

the target analyzed was installed right on top of the collapsed

landslide sector (see Fig. 3). By contrast, the 2014 emergency

scenario was characterized by a different evolution. In par-

ticular, in the period from 15 to 21 April 2014, a progres-

sively increasing number of rockfalls and minor collapses

were observed (Bertolo and Arrighetti, 2014), and the land-

slide acceleration was highly non-linear. In addition, while

the landslide acceleration trend was recorded by several RTS

targets, none of them was located right on the sectors that fi-

nally collapsed (see Fig. 3). This is a main limitation of using

this type of failure forecast model on point data: if the point

is not representative of the collapsing sector, the forecasted

time of failure can be inaccurate. Under these conditions, the

use of time series retrieved from GB-SAR, which provide

a spatially distributed map of surface displacements, can be

helpful; however, in this specific case, SAR data accuracy

suffered from the occurrence of very large and/or rapid de-

formation, hindering its measuring capabilities due to signal

decorrelation (see Casu et al., 2011).

For the above-discussed reasons, it is difficult to identify

proper failure events for cases like those encountered during

the La Saxe 2014 emergency phase. In these specific cases,

instead of failure events it is more appropriate to define a

“critical time range” when failure may occur. Based on the

modeling results obtained for the La Saxe case study, we

can consider thr3=R > 75 % to be a good compromise to

catch in advance the occurrence of the critical time range (see

Fig. 1). We emphasize that, as for forecast models relevant to

other natural phenomena (e.g., meteorological events), our

results are based on statistical inference and must always be

considered in terms of probability. Moreover, unpredictable

changes of the boundary conditions, as well as deviations in

the material behavior from the classical creep theory, may

deeply affect the results of the forecast model (Mazzanti et

al., 2015).

The main advantage of the method presented herein is that

additional thresholds are based on the results of failure fore-
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Figure 4. Results of the failure forecast procedure obtained in near real time during the 2014 emergency scenario. Note how the TTF

predicted varies depending on the CTW considered.

cast models computed in near real time and thus rely only

on the status of the landslide as defined by the measurements

currently available, requiring neither a calibration period nor

back analyses. It is worth mentioning that our method has

been developed to achieve reliable short-term failure fore-

casts and is not intended for medium- and long-term pre-

dictions of the ToF. On the contrary, we aim to provide a

supporting toolbox to manage EWSs in critical situations,

especially when predefined early warning thresholds are ex-

ceeded. EWS managers can benefit from the additional in-

formation provided by the FFM because when the reliabil-

ity of the forecast is high and a landslide failure thus more

likely, authorities can be informed in advance (in an auto-

matic and/or semi-automatic manner) and thus have the time

to take countermeasures. The final interpretation of landslide

failure potential must be provided by experienced users who

have a deep knowledge of landslide phenomena, have access

to additional data on landslide status, and are conscious of

the limitations of FFM. Thus, the FFM information can be

better interpreted by taking carefully into account additional

evidence from other data sources, depending on the specific

context. Further investigation on the reliability and accuracy

of the method presented herein will be performed, mainly by

considering different data sources as well as performing tests

on a larger number of case studies.

The Supplement related to this article is available online

at doi:10.5194/nhess-15-1639-2015-supplement.
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