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Abstract. The Canadian Forest Fire Weather Index (FWI)

System is the mostly widely used fire danger rating system in

the world. We have developed a global database of daily FWI

System calculations, beginning in 1980, called the Global

Fire WEather Database (GFWED) gridded to a spatial res-

olution of 0.5◦ latitude by 2/3◦ longitude. Input weather data

were obtained from the NASA Modern Era Retrospective-

Analysis for Research and Applications (MERRA), and two

different estimates of daily precipitation from rain gauges

over land. FWI System Drought Code calculations from the

gridded data sets were compared to calculations from in-

dividual weather station data for a representative set of 48

stations in North, Central and South America, Europe, Rus-

sia, Southeast Asia and Australia. Agreement between grid-

ded calculations and the station-based calculations tended

to be most different at low latitudes for strictly MERRA-

based calculations. Strong biases could be seen in either di-

rection: MERRA DC over the Mato Grosso in Brazil reached

unrealistically high values exceeding DC= 1500 during the

dry season but was too low over Southeast Asia during the

dry season. These biases are consistent with those previ-

ously identified in MERRA’s precipitation, and they rein-

force the need to consider alternative sources of precipitation

data. GFWED can be used for analyzing historical relation-

ships between fire weather and fire activity at continental and

global scales, in identifying large-scale atmosphere–ocean

controls on fire weather, and calibration of FWI-based fire

prediction models.

1 Introduction

Fire danger rating systems are used to identify conditions un-

der which vegetation fires can start and spread (Merrill and

Alexander, 1987). This is done by modeling the moisture

content of different classes of fuels in response to changing

weather conditions, and potential fire behavior if a fire were

to start. The Canadian Forest Fire Weather Index (FWI, see
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Table 1. Acronyms used in the paper.

Acronym Definition

ASEAN Association of Southeast Asian Nations

BoM Australian Bureau of Meteorology

BUI Buildup Index

CFS Canadian Forest Service

CPC Climate Prediction Center precipitation (Chen et al., 2008)

CRU Climate Research Unit

CWFIS Canadian Wildland Fire Information System

DC Drought Code

DMC Duff Moisture Code

DSR Daily Severity Rating

EnvCan Environment Canada

FFMC Fine Fuel Moisture Code

FWI Fire Weather Index

GFWED Global Fire Weather Database

GLFC Great Lakes Forestry Centre

GPM Global Precipitation Measurement

GTS Global Telecommunications System

ISI Initial Spread Index

ITCZ Intertropical Convergence Zone

KLIA Kuala Lumpur International Airport

LT Local time

MERRA Modern Era Retrospective-Analysis for Research

and Applications (Rienecker et al., 2011)

MMD Malaysian Meteorological Department

MODIS Moderate Resolution Imaging Spectroradiometer

NCAR National Center for Atmospheric Research

NCDC ISD National Climatic Data Center Integrated Surface Database

NCEP National Centers for Environmental Prediction

NOAA National Oceanic and Atmospheric Admininstration

NoFC Northern Forestry Centre

NWP Numerical Weather Prediction

QuickScat Quick Scatterometer

SHEFF Sheffield precipitation (Sheffield et al., 2006)

SMAP Soil Moisture Active Passive

SMOS Soil Moisture Ocean Salinity

SSM/I Special Sensor Microwave Imager

TMD Thailand Meteorological Department

TRMM Tropical Rainfall Measuring Mission

UEA University of East Anglia

WMO World Meteorological Organization

list of acronyms in Table 1) System (Van Wagner, 1987) is

the most widely used fire danger rating system in the world

(de Groot and Flannigan, 2014). It has operated in its cur-

rent form in Canada since 1970, and certain components have

been adapted for operational use in New Zealand, Fiji, parts

of the United States, Mexico, Argentina, Spain, Portugal, In-

donesia, Malaysia, and Finland (Taylor and Alexander, 2006)

and regionally across Europe (Camia and Amatulli, 2009). It

has been used for estimating future activity in boreal regions

(de Groot et al., 2013) and globally (Flannigan et al., 2013)

under different climate change scenarios. Because of its use

in such a broad range of fire environments, it is central to the

ongoing development of real-time global fire danger rating

systems (de Groot et al., 2006).

Use of the FWI System either operationally or for research

purposes begins with experimental fires and laboratory ex-

periments when possible, expert consultation, and historical

analyses of FWI variability and relationships to past fire ac-

tivity. Historical analyses are possible only after hourly mea-

surements of surface temperature, humidity, wind speed and

precipitation are compiled for as many years as available.

Typically, these data are from surface weather station net-

works, and require significant effort in constructing a gap-

free record, which is critical (Lawson and Armitage, 2008).

FWI System maps are usually calculated from geostatisti-

cally interpolated weather fields from the individual stations

(Lee et al., 2002).

Recent work has been done to calculate FWI System val-

ues from meteorological reanalyses over Portugal and Spain

(Bedia et al., 2012), the whole of Europe (Camia and Am-

atulli, 2010) the Great Lakes region of the US (Horel et al.,

2014) and Siberia (Chu and Guo, 2014) and globally for use

as a baseline against which fire danger in a changing climate

can be assessed (Flannigan et al., 2013). Reanalysis prod-

ucts have their own biases, but remain a critical research

tool because of their overall utility (Rienecker et al., 2011).

For the purposes of historical FWI System calculations, they

have the advantages over raw weather station data of pro-

viding spatially and temporally continuous records based on

estimates of weather input fields using the internal, physi-

cal consistency of a numerical weather prediction model and

modern data assimilation techniques. We argue that reanal-

ysis estimates provide the only practical means possible of

calculating FWI values consistently at continental scales.

This paper describes our development of a global FWI

data set for the period 1980–2012 gridded to a resolu-

tion of 0.5◦ latitude by 2/3◦ longitude based on the Na-

tional Aeronautics and Space Administration (NASA) Mod-

ern Era Retrospective-Analysis for Research and Applica-

tions (MERRA) (Rienecker et al., 2011). Because precipi-

tation in reanalyses tends to be less well-constrained by ob-

servations, we also use two global, gridded precipitation data

sets. Our goals were to

1. provide easily accessible historical FWI System data for

new regions of interest,

2. provide a consistent and homogenized product for con-

tinental and global-scale FWI analyses and

3. provide a product that can be easily updated and ex-

panded over time.

This paper is organized as follows. In Sect. 2, we de-

scribe the FWI System components, their input data require-

ments and procedures for starting and stopping the calcula-

tions in cold regions. In Sect. 3, we describe the meteoro-

logical fields used to construct the gridded database and the

weather station data against which we compare the gridded

calculations. In Sect. 4, we compare the gridded Drought

Code calculations to those from 48 individual weather sta-

tions across a representative set of locations, along with a

brief description of global patterns in the Fire Weather Index.

In Sect. 5, we summarize the results and suggest options for

future GFWED development.
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2 Description of the FWI System

The FWI System is composed of three moisture codes and

three fire behavior indices (Van Wagner, 1987). The mois-

ture codes track the moisture content of litter and forest

floor moisture content rather, in general, than live fuel mois-

ture. For all codes, increasing values reflect decreasing mois-

ture content, and “extreme” thresholds are drawn from the

Canadian Wildland Fire Information System (CWFIS, http:

//cwfis.nrcan.gc.ca), but these will be different in other re-

gions. The Fine Fuel Moisture Code (FFMC) is designed to

capture changes in the moisture content of fine fuels and leaf

litter on the forest floor where fires can most easily start. The

FFMC ranges from 0 to 99, with values greater than 91 clas-

sified as extreme. The Duff Moisture Code (DMC) captures

the moisture content of loosely compacted forest floor or-

ganic matter and relates to the likelihood of lightning igni-

tion. The DMC has no upper limit, but values greater than

60 are considered extreme. The Drought Code (DC) captures

the moisture content of deep, compacted organic soils and

heavy surface fuels. The DC also has no upper limit, but

values greater than 425 are considered extreme. The three

moisture codes are calculated on a daily basis using the pre-

vious day’s moisture codes and the current day’s weather.

The three fire behavior indices reflect the behavior of a fire

if it were to start. The Initial Spread Index (ISI) is driven by

wind speed and FFMC and represents the ability of a fire to

spread immediately after ignition, with values greater than

15 considered extreme. The Buildup Index (BUI) is driven

by the DMC and DC and represents the total fuel available

to a fire, with values greater than 90 considered extreme.

The Fire Weather Index (FWI) combines the ISI and BUI

to provide an overall rating of fireline intensity in a refer-

ence fuel type and level terrain, with values greater than 30

considered extreme. Additionally, the Daily Severity Rating

(DSR) is scaled from the FWI to provide categorical diffi-

culty of control measures. The fire behavior indices reflect

surface weather conditions and do not reflect dryness or sta-

bility aloft which can also strongly influence fire behavior

(Haines, 1988). Dowdy et al. (2009) provide an accessible

description of the underlying equations. Taylor and Alexan-

der (2006) summarize the history behind the FWI System

and how different fire management agencies have adopted

different components for specific fire management needs.

FWI System calculations require measurements of 12:00

local time (LT) instantaneous temperature at 2 m, relative hu-

midity at 2 m and sustained wind speed at 10 m, and precip-

itation totaled over the previous 24 h (van Wagner, 1987).

Measurements are taken in a clearing but the FWI Sys-

tem was designed such that the indices are representative of

the conditions within a forest stand (Lawson and Armitage,

2008). Because each day’s calculation requires the previous

day’s moisture codes, weather records must be continuous

and any missing data must be estimated (Lawson and Ar-

mitage, 2008). Too much missing weather data, particularly

precipitation, can lead to errors that accumulate over time.

In cold regions, the calculations begin with the arrival

of spring and are stopped with the onset of winter (Law-

son and Armitage, 2008). Ideally, the spring startup mois-

ture code values reflect whether or not winter was dry, how-

ever this is defined. We based our startup approach on that

of the Canadian Wildland Fire Information System (CW-

FIS), described at: http://cwfis.cfs.nrcan.gc.ca/background/

dsm/fwi. First, snow conditions are examined for the pos-

sibility of startup after a winter with substantial snow cover,

defined as having a mean snow depth of 10 cm or greater

and snow present for a minimum of 75 % of days during

the 2 months prior to startup. This requirement was mod-

ified from the CWFIS approach of considering snow days

in January and February to allow for seasonality in re-

gions other than Canada. In this case, startup occurs when

the station has been snow-free for 3 consecutive days, and

moisture code values representing wet, saturated conditions

(DMC= 6, DC= 15) are used. For locations without signif-

icant snow cover, startup occurs when the mean daily tem-

perature is 6 ◦C or greater for 3 consecutive days. The DMC

is set to 2 times the number of days since precipitation and

the DC is set to 5 times the number of days since precipita-

tion. The FFMC is set to 85, regardless of whether significant

winter snow cover was present because of its short memory,

with a timelag of 3 days required to lose 2/3 of the free mois-

ture content in light, fine fuels for a standard drying day in

Canada, defined as having noon temperature of 21.1 ◦C and

45 % RH. The timelag for DMC fuels is 14 days (rather than

the 12 days stated in Van Wagner (1987), S. Taylor, personal

communication, 2015), and 51 days for DC, reflecting longer

equilibration times. The calculations are stopped with either

the arrival of snow or a mean temperature below 6 ◦C for

three consecutive days.

This approach was chosen to capture the effect of win-

ters with below-normal precipitation, but to avoid fuel and

site-specific parameters described in the approach of Lawson

and Armitage (2008), which required too much local expert

knowledge for our global scope. We also masked out fire-free

regions for which the FWI System calculations are not mean-

ingful. Cold regions were excluded based on the requirement

that mean annual temperature be greater than−10 ◦C. Desert

regions were excluded based on the requirement that mean

annual precipitation be greater than 0.25 mm day−1. Cells

where these criteria were not met were excluded for all years.

Based on the temperature criteria, parts of the Canadian and

Russian high Arctic were excluded. Based on the precipi-

tation criteria, the Sahara, Gobi and much of the Arabian

Peninsula were excluded. Mean annual temperature and rain-

fall fields are provided as part of the data distribution.
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3 Weather data

In this section we describe the meteorological fields used

for the gridded FWI calculations and the individual stations

from regional agencies and data repositories against which

the gridded calculations were compared. All data are avail-

able as part of the distribution, as is contact information for

individual agency sources.

3.1 Gridded fields

The starting point for our calculations was the NASA Mod-

ern Era Retrospective-Analysis for Research and Applica-

tions (MERRA, Rienecker et al., 2011). MERRA is NASA’s

state-of-the-art reanalysis product which uses the GEOS

5 atmospheric general circulation model run at 1/2◦ lati-

tude× 2/3◦ longitude horizontal resolution and with 72 ver-

tical levels. Sea surface temperature and sea ice boundary

conditions are prescribed from Reynolds et al. (2002). Ob-

servational constraints from a wide variety of in situ and

remotely sensed sources are used. Pressure, temperature,

humidity and wind observations are obtained from surface

weather stations, upper air stations, aircraft reports and drop-

sondes, ship and buoy observations, as well as weather satel-

lites and research instruments such as the Moderate Resolu-

tion Imaging Spectroradiometer (MODIS) and Quick Scat-

terometer (QuikSCAT). Raw radiance data are assimilated

directly from microwave and infrared sounders with differ-

ent observational periods, using embedded forward radiative

transfer models to estimate instrument-equivalent fields. Pre-

cipitation is constrained most directly from Special Sensor

Microwave Imager (SSM/I) radiances and Tropical Rainfall

Measuring Mission (TRMM) rain rate estimates when avail-

able, but not by surface gauges. Further details are provided

by Rienecker et al. (2011) and references therein.

Among FWI input variables, the MERRA precipitation es-

timates are the least constrained by observations and there-

fore most strongly influenced by the model physics (Rie-

necker et al., 2011), which, for convective precipitation es-

pecially, must be approximated using subgrid-scale param-

eterizations. This introduces considerable uncertainty into

the MERRA precipitation. We therefore considered FWI

System calculations using two other daily, global precipi-

tation data sets that are based on rain gauge data. Sheffield

et al. (2006) have produced global 1◦× 1◦ fields of mete-

orological fields useful for land hydrology models. Their

precipitation estimates start with monthly precipitation es-

timates from the University of East Anglia (UEA) Cli-

matic Research Unit (CRU) monthly global gridded product

(Mitchell and Jones, 2005) which are distributed at a daily

frequency using National Centers for Environmental Pre-

diction (NCEP)/National Center for Atmospheric Research

(NCAR) reanalysis (Kalnay et al., 1996).

The National Oceanic and Atmospheric Administration

(NOAA) Climate Prediction Center (CPC) produces esti-

Figure 1. Mean MERRA snow depth (top) and fraction of active

FWI calculation days (bottom) for May, 1980–2012. The fraction

of active FWI calculation days refers to the number of days in May

where DC calculations are not shut down due to cold conditions or

snow cover.

mates of global, daily precipitation fields over land from

rain gauge data (Chen et al., 2008) at 0.5◦× 0.5◦ resolu-

tion. Their optimal interpolation method makes use of the co-

variance structure of the precipitation field, which, compared

to more simple distance-only-based interpolation methods,

should improve estimates where orography is important. The

accuracy of gauge-based estimates ultimately depends on the

rain gauge density, which for our purpose was most sparse in

northern Canada and Alaska, northern Russia, sub-Saharan

Africa and equatorial Southeast Asia. The Sheffield and CPC

precipitation fields will share much of the same raw data and

should not be considered truly independent. The important

differences in this context are in their approaches to inter-

polation over sparse regions and estimates at a daily time

scale. In total, we produced three global FWI System data

sets: MERRA only, MERRA with Sheffield (SHEFF) pre-

cipitation, and MERRA with CPC precipitation. Throughout

the paper we refer to each FWI version by the name of the

precipitation input.

Figure 1 shows the mean May snow depth and fraction

of days over which the FWI System is active, based on our

startup and shutdown procedures. The maps essentially show

Nat. Hazards Earth Syst. Sci., 15, 1407–1423, 2015 www.nat-hazards-earth-syst-sci.net/15/1407/2015/
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the dependence and variability of FWI System startup on

snow cover as the fire season is starting at higher latitudes

in the Northern Hemisphere, in this case estimated from

MERRA.

3.2 Station data

We compared the calculations from gridded data to those

based on individual station data for a representative set of

48 stations obtained from a variety of sources (Table 2).

Whenever possible, data were used that had previously been

used by individual agencies for FWI System calculations.

As such, the length of record varied by agency, as did the

pre-processing procedures, which are described below. We

sought pairs of stations in the same region to guard against

localized effects and possible errors in single weather station

records. Similar to the use of the two precipitation data sets,

this is not a strict validation of the gridded FWI calculations

per se, since some of the weather station data will have been

assimilated into the MERRA analyses or the gridded precip-

itation fields. The comparison to station-based calculations

instead provides a sense for users of the smoothing that oc-

curs for grid-cell scale calculations. Individual station calcu-

lations were compared to the mean over the area defined by

the station coordinates buffered by a 1/2◦ latitude and lon-

gitude band. Snow depth was generally not available for the

station data and was instead sampled from the MERRA esti-

mates. This also simplified our comparison by eliminating

DMC and DC startup values as a potential difference be-

tween data sets.

Table 2 lists the stations used and the periods covered. The

majority of stations were from World Meteorological Organi-

zation (WMO)-level synoptic stations and will therefore ad-

here somewhat to a common set of data quality standards.

For consistency, comparison with the gridded FWI calcula-

tion was over the period of available data only for each indi-

vidual station. Additional quality control and gap filling was

applied following local procedures that we now describe.

Data for Canadian stations came from Environment

Canada for the years 1979–1998, 1999 or 2006. Data were

available only for the fire season, which was determined us-

ing a temperature threshold as outlined in Wotton and Flan-

nigan (1993).

Data for stations in Thailand had no more than 3 % missing

data for any of the input parameters. Missing data were in-

terpolated temporally or spatially, and subject to established

homogeneity tests for temperature and precipitation (Alexan-

dersson, 1986; Manomaiphiboon et al., 2013). Wind siting

was rated at least “fair” for all stations, indicating the ab-

sence of large barriers to unobstructed wind measurements.

For Australia, four pairs of stations were selected with

each of these stations having no more than 0.7 % of days with

missing data for any of the input parameters. Missing data for

wind speed, relative humidity and temperature were replaced

by the mean of the previous and subsequent days of avail-

able data, and missing data for precipitation were replaced

by data from the nearby station (using the station pairs listed

in Table 1). The rainfall data are for the 24 h period prior to

09:00 LT on the listed day. The four pairs of Australian sta-

tions have operated continuously throughout the study period

(i.e., without being moved to a different location).

Data for Mexico and Guatemala were obtained from the

Mexico Forest Fire Information System operated by the

Canadian Forest Service at the Northern Forestry Centre.

Weather data are collected in near real time from stations op-

erated by the meteorological offices of the respective coun-

tries and supplying observations through the WMO’s Global

Observing Program and Global Telecommunications Ser-

vice. The closest pairs of stations with the best observation

records were chosen for this study, which were Mexicali

and Tijuana in northwestern Mexico and Huehuetenango and

Guatemala City Aurora in Guatemala.

When no direct agency FWI System input data were avail-

able in regions, we obtained raw hourly weather data directly

from the NOAA National Climatic Data Center (NCDC)

Integrated Surface Database (ISD) (Smith et al., 2011). In

many cases for the ISD stations, there were large periods

of missing data. Missing values were filled with those from

MERRA for the sake of being able to continue the calcu-

lations. Periods with too much missing station data over an

antecedent period, however, were excluded from our monthly

climatological means and comparison. We required that 80 %

of the previous 120 days had precipitation reporting for at

least 18 h per day, similar to the requirement in Field et

al. (2004) for their DC calculations over western Indonesia.

This allowed us to make use of the precipitation reported as

both daily and hourly totals, but with an effort to avoid intro-

ducing a systematic bias due to missing precipitation reports.

The start and end years in Table 2 indicate the full period over

which some data were available, but in most case the actual

periods included when comparing the DC to the gridded data

sets were much shorter, often only a few years. Stations in

southern Europe tended to have higher quality from the mid-

2000s onward, for example, whereas data from Indonesia

was typically only of sufficient quality in the mid-1990s. The

comparisons with the gridded calculations take this into ac-

count, but we therefore make comparisons between stations

with a fair degree of caution. Information on data quality for

the NCDC stations is provided as part of the GFWED data

distribution.

4 Results

We used the Drought Code for our comparison between sta-

tion and gridded calculations because it will most directly

capture the sensitivity to different precipitation input data

sets. In the following sections, we present DC comparisons

for North America, Central and South America, northern Eu-

rope and Siberia, southern Europe, Thailand, Malaysia and

www.nat-hazards-earth-syst-sci.net/15/1407/2015/ Nat. Hazards Earth Syst. Sci., 15, 1407–1423, 2015
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Table 2. Weather stations used for comparison to gridded calculations. Abbreviations are as follows: Environment Canada (EnvCan), Global

Telecommunications System (GTS), Canadian Forest Service Northern Forestry Centre (NoFC), National Oceanic and Atmospheric Ad-

ministration National Climatic Data Center (NCDC), Canadian Forest Service Great Lakes Forestry Centre (GLFC), Australian Bureau of

Meteorology (BoM), Thailand Meteorology Department (TMD), Malaysian Meteorological Department (MMD). Environment Canada sta-

tions are specified by their agency identifiers and World Meteorological Organization (WMO) identifiers when available. All other stations

are specified by their WMO identifiers. For the NCDC stations, data completeness and periods used in the analysis are provided as part of

the data distribution.

ID Name Country Lat. Lon. Source Start year End year

1123970 (71203) Kelowna Canada 49.88 −119.48 EnvCan 1980 2006

1126150 (71889) Penticton Canada 49.48 −119.58 EnvCan 1980 1998

5050960 (–) Flin Flon Canada 54.77 −101.85 EnvCan 1980 1999

5052880 71867 The Pas Canada 53.82 −101.25 EnvCan 1980 1999

6072225 (–) Earlton Canada 47.71 −79.83 EnvCan 1980 1999

7098600 (71725) Val-dOr Canada 48.10 −77.78 EnvCan 1980 1995

760016 Mexicali Mexico 32.63 −117.00 GTS-NoFC 1999 2012

760023 Tijuana Mexico 32.55 −116.97 GTS-NoFC 1999 2012

786270 Huehuetenango Guatemala 15.32 −91.47 GTS-NoFC 1999 2012

786410 Guatemala City Guatemala 14.58 −90.52 GTS-NoFC 1999 2012

836120 Campo Grande Brazil −20.45 −54.72 NCDC 1980 2012

833620 Cuiaba Brazil −15.65 −56.10 NCDC 1980 2012

24600 Stockholm Arlanda Sweden 59.65 17.95 GTS-NoFC 2001 2012

24640 Stockholm Bromma Sweden 59.35 17.95 GTS-NoFC 2001 2012

29740 Helsinki Vantaa Finland 61.32 24.97 GTS-NoFC 2004 2012

29750 Helsinki Malmi Finland 61.25 25.05 GTS-NoFC 2001 2012

106160 Hahn Germany 49.95 7.27 GTS-NoFC 2001 2012

107080 Saarbruecken Germany 49.22 7.12 GTS-NoFC 2001 2012

286960 Kalachinsk Russia 55.03 74.58 NCDC-GLFC 1980 2010

296360 Toguchin Russia 55.23 84.40 NCDC-GLFC 1980 2010

80010 La Coruna Spain 43.37 −8.42 NCDC 1980 2012

80420 Santiago Spain 42.89 −8.41 NCDC 1980 2012

83910 Seville Spain 37.42 −5.88 NCDC 1980 2012

84100 Cordoba Spain 37.84 −4.85 NCDC 1980 2012

160880 Brescia Italy 45.42 10.28 NCDC 1980 2012

160900 Verona Italy 45.39 10.87 NCDC 1980 2012

166430 Aktion Greece 38.62 20.77 NCDC 1980 2012

166820 Andravida Greece 37.91 22.00 NCDC 1980 2012

483270 Chiang Mai Thailand 18.77 98.97 TMD, NCDC 1980 2012

483030 Chiang Rai Thailand 19.96 99.88 TMD, NCDC 1980 2012

484050 Roi Et Thailand 16.12 103.77 TMD, NCDC 1980 2012

484070 Ubon Ratchathani Thailand 15.25 104.87 TMD, NCDC 1980 2012

486500 Kuala Lumpur IA Malaysia 3.08 101.65 MMD 2005 2012

486480 Petaling Jaya Malaysia 3.08 101.65 MMD 2005 2012

964710 Kota Kinabalu Malaysia 5.93 116.05 MMD 2004 2012

964910 Sandakan Malaysia 5.25 118.00 MMD 2004 2012

962210 Palembang Indonesia −3.00 104.75 NCDC 1980 2012

962370 Pankalpinang Indonesia −3.00 104.75 NCDC 1980 2012

966550 Palangkaraya Indonesia −1.00 114.00 NCDC 1980 2012

966450 PangkalanBun Indonesia −2.70 111.70 NCDC 1980 2012

948650 Laverton Australia −37.86 144.76 BoM 1980 2012

948660 Melbourne Australia −37.67 144.83 BoM 1980 2012

942380 Tennant Creek Australia −19.64 134.18 BoM 1980 2012

943260 Alice Springs Australia −23.80 133.89 BoM 1980 2012

946380 Esperance Australia −33.83 121.89 BoM 1980 2012

946370 Kalgoorlie-Boulder Australia −30.78 121.45 BoM 1980 2012

947670 Sydney Australia −33.95 151.00 BoM 1980 2012

947760 Williamtown Australia −32.50 151.00 BoM 1980 2012
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Figure 2. Monthly mean Drought Code (DC) for three regions in

Canada and northwestern Mexico. MERRA, SHEFF and CPC DC

are from the GFWED gridded fields over the latitude and longitude

range specified in the caption. The other two DC plots are for repre-

sentative weather stations in that range. Note the different DC scale

for Mexico.

Indonesia and Australia. This is followed by a brief descrip-

tion of Global FWI patterns for January and June. For con-

text, the regional descriptions include general characteristics

of the fire environment, such as primary fuel types, timing of

the fire season, and the number and size of fires. Comparisons

in fire statistics should be interpreted only in the most general

sense, and are only meaningful within a region. Mean fire

size is a commonly reported statistic, but because frequency–

size distributions can be highly non-normal (Millington et

al., 2006; Cui and Perera, 2008), a mean fire size may not

be a useful measure of center. Furthermore, reported means

will be highly sensitive to the minimum reported fire size,

which can vary across fire agencies, and over time as smaller

and smaller fires are reported (Hincks et al., 2013). We hope

in particular that the daily-resolution FWI fields provided as

part of the GFWED data distribution will be useful in un-

derstanding the drivers of fire–size distributions in regions

where detailed fire statistics are available.

4.1 North America

Figure 2 shows the monthly mean DC for three regions in

Canada, for each of the three gridded data sets and two

weather stations, and for northwestern Mexico. The south-

ern British Columbia (BC) interior DC captures the southern,

drier part of Canada’s Montane Cordillera ecozone (Stocks

et al., 2002). Fires in this region are numerous but tend to

be smaller (Jiang et al., 2009), more often caused by humans

and subject to intense fire management due to relatively high

population density compared to other forested regions of the

country. The DC values between the two stations are consis-

tent for the station-based calculations, peaking in September

with values approaching DC= 450 (Fig. 2a). The DC season-

ality is captured well by the MERRA and CPC-based cal-

culations, but has a low bias for the SHEFF precipitation,

the DC for which peaks closer to DC= 350. Presumably

this is because of the lower spatial resolution CRU/NCEP

reanalysis-based estimates used in SHEFF and the influence

of weather stations on the much wetter west coast.

Large (> 200 ha) fires occur most frequently in Canada in

the Boreal Shield West ecozone (Stocks et al., 2002). Us-

ing our startup definition, the DC fire season starts in April

(Fig. 2b), 1 month later than in British Columbia. Both sta-

tions are located in Manitoba, in the western portion of

the ecozone. The DC peaks in August–September between

DC= 250 and 300, reflecting the net drying that occurs in

deeper fuels over the summer. The MERRA only-based DC

(blue line) has a slightly higher bias than the SHEFF or

CPC-based DC relative to the station-based calculations, but

all gridded DC calculations peak within the DC= 300–425

danger class for that region during August and September,

consistent with long-term CWFIS estimates. For reference,

Amiro et al. (2004) determined that the maximum DC in this

region calculated over days with large (> 200 ha) fires only

was over DC= 400 during September. The lower DC val-

ues in the Boreal Shield East ecozone (Fig. 2c) compared

to the Boreal Shield West values are consistent with a lower

burned area. In the Boreal Shield West ecozone, an estimated

0.761 % percent of the forested area burns annually com-

pared to 0.145 % in the Boreal Shield East ecozone (Stocks et

al., 2002). This is presumably due to the influence of large-

scale, cyclonic precipitation originating in the southern US

which rarely arrives in the Boreal Shield West (Paciorek et

al., 2002), and appears to have a slightly stronger influence

on the Val-D’or station which is to the east of Earlton. The

spread between the MERRA, SHEFF and CPC-based DC

calculations is comparable to the differences between the two

stations.

The stations in Mexico capture the DC conditions toward

the southern extent of North America (Fig. 2d). Tijuana is

a coastal city with a Mediterranean climate, separated by a

low mountain range from Mexicali, which is on the western

edge of the Sonoran desert. This arid environment has fu-

els similar to those found in the San Diego area in southern

California (Minnich and Chou, 1997), consisting of areas of

chaparral and grassland in the mountains and some broadleaf

trees in the intermittent riparian zones. Fires are generally

smaller on the Mexican side of the border compared to the

Californian side, possibly in part due to differences in sup-

pression programs (Minnich and Chou, 1997). Over 1920–

1971, for example, the mean fire size in chamise chaparral

of California was 921 ha compared to 101 ha for the same

vegetation type in Mexico (Minnich and Chou, 1997). Due

to the aridity of this environment, DC values routinely ex-

ceed DC= 1000 and often reach DC= 1500 in the hottest

and driest summer periods. During the wetter seasons, the

www.nat-hazards-earth-syst-sci.net/15/1407/2015/ Nat. Hazards Earth Syst. Sci., 15, 1407–1423, 2015
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Figure 3. Monthly mean DC for Guatemala and the Mato Grosso

of Brazil. MERRA, SHEFF and CPC DC are from the GFWED

gridded fields over the latitude and longitude range specified in the

caption. The other two DC plots are for representative weather sta-

tions in that range.

DC values are usually reduced to the DC= 700–800 range

in Mexicali and DC= 300–500 in the coastal Tijuana area,

with the lower values in Tijuana presumably due to influence

of winter precipitation at its coastal location. The absence of

winter snow or a strong wet season means that, on average,

deep fuel moisture does not fully recharge and the DC does

not “zero-out”. The MERRA data generally has the highest

DC values, although all model variations closely follow the

DC trends in the hot and dry late summer and early autumn

period. The CPC and SHEFF DC are lower than either station

during the spring.

4.2 Central and South America

The stations in Guatemala capture seasonally wet conditions

in Central America (Fig. 3a). Huehuetenango and Guatemala

City fall in the Tropical Mountain ecological zone at simi-

lar elevations roughly 100 km inland from the Pacific Ocean.

Trees are diverse and include oak, cypress, pine and fir (Ve-

blen, 1978). Most fires appear to be human-caused due to

agricultural slash and burn practices or escaped trash burns

(Monzón-Alvarado et al., 2012). The fire problem intensifies

with deadfall left from pine beetle infestations (Billings et

al., 2004). About 90 % of the annual rain falls between May

and October, with slightly higher temperatures during the dry

season from February through June. Based on the CPC pre-

cipitation estimate, the Huehuetenango area receives slightly

more annual precipitation (∼ 1570 mm), with an increasing

gradient up the escarpment to the north, than Guatemala City

(∼ 1130 mm). The DC should therefore range from high win-

ter values to near-zero through the summer and early fall.

This trend is shown by the station and gridded data, with the

mean March DC approaching DC= 500 at Guatemala City

at the end of the dry season. MERRA and SHEFF DC gen-

erally fall in between the two stations during the entire year.

The CPC DC is consistently higher than the drier Guatemala

City DC. This difference is greatest during May and June,

perhaps because the CPC data are not capturing spotty, con-

vective precipitation during the onset of the monsoon.
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Figure 4. Monthly mean DC for northern Europe and Siberia.

MERRA, SHEFF and CPC DC are from the GFWED gridded fields

over the latitude and longitude range specified in the caption. The

other two DC plots are for representative weather stations in that

range.

The Brazilian Mato Grosso is an important region of sea-

sonal fire activity resulting from agricultural burning (Mor-

ton et al., 2013). The peak DC approaching DC= 500

(Fig. 3b) is similar to the Guatemalan stations, but with op-

posite seasonality, peaking in August and September at the

end of the dry season. The SHEFF and CPC DC are in close

agreement with the station data. The MERRA DC, however,

has an extremely high bias, reaching peak DC= 1500 and

a minimum of DC= 750. This reflects a strong low precip-

itation bias in the MERRA precipitation relative to gauge-

based estimates (Lorenz and Kunstmann, 2012) that is strong

enough to maintain extreme DC throughout the year.

4.3 Northern Europe and Siberia

The DC seasonality of the boreal forest region in northern

Europe and Siberia (Fig. 4) is similar to those of the Canadian

boreal region, the Boreal Shield West (Fig. 2b) especially.

Peak DC values occur in September after most seasonal fuel

drying has occurred and decreases as autumn progresses with

decreasing environmental drying conditions. The fire season

in Siberia ends in October (Fig. 4d), earlier than the other re-

gions, due to the earlier arrival of snow. Although the range

of fire weather conditions in northern boreal Eurasia is simi-

lar to boreal North America, the continental fire regimes have

important differences (de Groot et al., 2013a). In compar-

ing large fire characteristics, those in boreal North America

had a mean size of 5930 ha compared to 1312 ha in boreal

Russia, but a fire return interval of 179.9 years compared to

52.9 years in boreal Russia (de Groot et al., 2013a). Diver-

gent continental boreal fire regimes are attributed to differ-

ences in tree species even though Picea, Pinus, Larix, Abies,
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Figure 5. Monthly mean DC for four regions in southern Europe.

MERRA, SHEFF and CPC DC are from the GFWED gridded fields

over the latitude and longitude range specified in the caption. The

other two DC plots are for representative weather stations in that

range.

Populus and Betula spp. occur throughout the circumpolar

boreal region (de Groot et al., 2013b). The boreal fire regime

of northern Europe and Russia east of the Urals is simi-

lar to the southern boreal of Canada with many fires being

human-caused but small in size due to population size, ex-

tensive suppression capacity and road access (Lehsten et al.,

2014). There is generally fair agreement between the data

sets, save for anomalously high peak MERRA DC over Ger-

many (Fig. 4c), which is consistent with Lorenz and Kunst-

mann’s (2012) identification of lower precipitation over Cen-

tral Europe in MERRA relative to gauge-based data sets.

4.4 Southern Europe

The stations in northwestern Spain and northern Italy form

a transect across the northern Mediterranean and the stations

in southern Spain and Greece across the southern Mediter-

ranean (Fig. 5). In the Mediterranean the DC does not re-

flect the moisture conditions of deep soil organic layers, as

soils are typically poor and a deep organic layer is normally

absent (Chelli et al., 2014). Instead, we interpret the DC as

a general indicator of seasonal drying. Some studies found

DC to correlate with live fuel moisture content of Mediter-

ranean shrubs (e.g., Castro et al., 2003; Pellizzaro et al.,

2007; Chelli et al., 2014). There, increases in DC above 600–

800 are likely not reflecting an actual increase in fire danger

because the fuels have become as dry as possible. This is also

likely the case in other semi-arid regions.

Northwestern Spain has a marked Atlantic climate with the

highest precipitation amount in the Iberian Peninsula. Atmo-

spheric circulation in the summer is highly variable, alter-

nating between strong dry and humid periods (Diez, 1993).

It is one of the more fire-prone regions in Spain (Padilla and

Vega-Garcia, 2011) with∼ 6000 fires per year, typically con-

centrated during short dry summer periods. The total burned

area is ∼ 30 000 ha per year, but the mean fire size of 4.9 ha

is less than in the rest of Spain (7.6 ha) due to aggressive sup-

pression policy (Padilla and Vega-Garcia, 2011). Extremely

large (> 500 ha) fires constitute only 0.13 % of all fires, but

fire-fighting agencies are often challenged by many fires

burning at the same time (Padilla and Vega-Garcia, 2011).

Fire occurrence patterns are affected more by human activ-

ities than by biophysical characteristics of the fire environ-

ment (Padilla and Vega-Garcia, 2011), but there is an August

peak in fire activity. The DC peaks in September (Fig. 5a),

and is higher at La Coruna (DC= 500) on the coast, com-

pared to Santiago located 50 km inland. The CPC and SHEFF

DC fall in between the two stations, with MERRA being

slightly higher throughout the year.

The stations in southern Spain capture a typical inland

Mediterranean climate with dry hot summers. The vegeta-

tion is dominated by a mosaic of shrublands and low forests

with frequent crown fires (Keeley et al., 2011). Although

this is a fire-prone area and large fires may occur, fire ac-

tivity is less remarkable than in other Mediterranean regions

(Pausas and Paula, 2012) with 900 fires each year, having a

mean size of 13.5 ha and total annual average burned area

of 12 000 ha. In the extremely dry climatic condition of the

area, fuel structure tends to be more relevant in driving fire

activity than the frequency of climatic conditions conducive

to fire (Pausas and Paula, 2012). Wildfires are more fuel-

limited and more extreme climatic conditions (higher aridity

than in more mesic regions) are needed for fires to spread

successfully (Pausas and Paula, 2012). The peak of the fire

season is typically in June, July, August, corresponding to

values between DC= 500 and 1000 (Fig. 5b). The DC sea-

sonality and magnitude at the Seville and Cordoba stations

are essentially identical, with both stations in the low-lying

Guadalquivir river basin. All gridded data slightly overesti-

mate DC in summer months, and the MERRA DC is slightly

higher throughout the year.

The stations in northern Italy south of the Alps reflect a

sub-continental temperate climate, with predominantly de-

ciduous broadleaved forest (Zumbrunnen et al., 2009; Wastl

et al., 2013). The peak of the fire activity is in March–April,

after snowmelt and before leaf flushing. Population, vegeta-

tion phenology and short-term dryness of surface soil layers

often triggered by Foehn winds off the Alps are the main

drivers, rather than long term DC. Fires in this region are

on average small, with mean fire size ∼ 2 ha and 98 % of

fires smaller than 10 ha, and rarely achieve crown involve-

ment (Zumbrunnen et al., 2009; Wastl et al., 2013). The sta-

tion and gridded data are all similar, peaking at the end of the

summer near DC= 500 (Fig. 5c).

The stations in Greece reflect a Mediterranean climate, but

one was less arid than southern Spain and one had severe fire

incidence and frequent large fires during the summer. 1.2 %
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Figure 6. Monthly mean DC for two regions in Thailand. MERRA,

SHEFF and CPC DC are from the GFWED gridded fields over the

latitude and longitude range specified in the caption. The other two

DC plots are for representative weather stations in that range.

of fires are larger than 500 ha and the average fire size is

45 ha. DC peaks in August–September with extremely high

values approaching DC= 1000, slightly lower at Aktion due

to its coastal location, 100 km to the north (Fig. 5d). SHEFF

and CPC are in good agreement with Andravida weather sta-

tion and MERRA has a high DC bias throughout the year.

Seasonal drought is an important driver of fire activity in the

area, but as in the rest of the Mediterranean region, the deep

organic layer of soil is absent in most cases, thus DC reflects

seasonal drying rather than moisture content of deep organic

fuels. Significant relationships of monthly burned area and

FWI components (DC and ISI), were found for the Mediter-

ranean region (Camia and Amatulli, 2009) and for individual

southern European countries including Greece (Amatulli et

al., 2013).

4.5 Thailand

The fire season in Thailand is from early December to early

May during the southward displacement of the Intertropical

Convergence Zone (ITCZ) (Tanpipat et al., 2009; Chien et

al., 2011). Fires are usually human-caused for the purposes

of gathering non-timber products, hunting and agriculture,

and occur primarily in the afternoon (Tanpipat et al., 2009;

Chien et al., 2011). Thailand is an important region for pos-

sible FWI System use, given the persistence of its fire and

haze problem and the expanding role of the Association of

Southeast Asian Nations (ASEAN) for fire management, to

which the FWI System is central (de Groot et al., 2007).

Figure 6 shows monthly mean DC for two regions in Thai-

land. Biomass burning is the dominant emissions source for

particulate matter in northern Thailand (Nguyen and Lee-

lasakultum, 2011), which experiences periodically severe

haze as a result. The DC peaks in March and April near

DC= 500 at both stations, followed by the end of the dry

season (Fig. 6a). In Chiang Mai, there is also a secondary

dry period in July, but its absence in Chiang Rai suggests lo-

cal effects or artifacts of input data common to both gridded

precipitation data sets. The minimum DC in both locations

occurs in the August to September period during the height

of the Asian summer monsoon. The SHEFF and CPC-based

DC are in good agreement with station data for both loca-

tions, both falling between the two stations during most of the

year. There is a strong low DC bias in the MERRA data set

throughout the year. The DC in northeast Thailand (Fig. 6b)

has roughly the same seasonality, but with a higher March

peak of DC= 600. The CPC, SHEFF and station-based DC

are all in strong agreement, and the MERRA-based DC again

shows a low bias. Compared to northern Thailand, there is a

smaller difference between the two stations in the northeast,

which we attribute to the region’s uniform topography.

4.6 Malaysia and Indonesia

The stations in Malaysia and Indonesia are representative of

the equatorial Southeast Asia fire region identified by van

der Werf et al. (2010). Fire activity in southern Sumatra and

southern Kalimantan is higher than in Sabah or Peninsular

Malaysia (van der Werf et al., 2008; Langner and Siegert,

2009; Giglio et al., 2013). On the average, close to 5 % of

these Indonesian regions burn per year, while the comparable

statistic for these Malaysian regions is less than 0.3 % (Giglio

et al., 2013). This is due to greater forest loss over the past

two decades in Indonesia, principally due to deforestation

fires for establishing palm oil, timber and pulp paper planta-

tions, as well as escaped fires linked to illegal logging activ-

ities (Langner and Siegert, 2009; Mukherjee and Sovacool,

2014). These fires have left many areas with highly degraded

forests that are prone to even more fires, especially during El-

Niño events (Hoscilo et al., 2011). These problems are miti-

gated in Malaysia to some extent by more active monitoring,

regulation and enforcement by government authorities and

fire suppression (Langner and Siegert, 2009; Forsyth, 2014;

Mukherjee and Sovacool, 2014) compared with Indonesia.

The fire seasons in the region are controlled by rainfall sea-

sonality. Different regions of Indonesia and Malaysia have an

annual wet–dry cycle, a semi-annual cycle or have no clear

wet and dry cycles (Aldrian and Susanto, 2003). In southern

Sumatra and southern Kalimantan, the monsoon consists of

two distinct phases with the wet season occurring in the early

part of the year (January–March) and the dry season in the

middle of the year (July–September) (Aldrian and Susanto,

2003).

The seasonal DC patterns for Peninsular Malaysia, Sabah,

southern Sumatra, and southern Kalimantan (Fig. 7) reflect

these rainfall patterns. Southern Sumatra has the strongest

DC seasonality (Fig. 7c); the longer dry season allows mean

DC approaching DC= 300 to be reached in September. The

timing and magnitude are well captured by the SHEFF and

CPC data sets, but a wet MERRA bias results in lower DC.

The seasonality in southern Kalimantan is similar (Fig. 7d),

but on average, the peak DC of DC= 200 is lower than

Sumatra.

The DC seasonality in Malaysia is less consistent than

Indonesia. In Peninsular Malaysia (Fig. 7a), both stations

have a July peak, but which is higher at KLIA compared
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Figure 7. Monthly mean DC for two regions in each of Malaysia

and Indonesia. MERRA, SHEFF and CPC DC are from the

GFWED gridded fields over the latitude and longitude range spec-

ified in the caption. The other two DC plots are for representative

weather stations in that range.

to Petaling Jaya, perhaps reflecting localized effects. The

CPC DC corresponds closely to that in Petaling Jaya, and

MERRA has very little seasonality. In Sabah (Fig. 7b), there

is a strong DC seasonality in Kota Kinabalu, but not in San-

dakan. The difference is likely due to complex air–sea inter-

action and topography, with the two stations separated by the

Crocker mountain range. The more complicated seasonality

in Malaysia reflects the fact that it falls outside of the dis-

tinct rainfall zone identified by Aldrian and Susanto (2003).

We note, however, that the apparently strong differences be-

tween data sets reflect a narrower DC scale and should not be

over-interpreted.

El-Niño-induced droughts are a recurrent feature of the re-

gion, and hence, inter-annual variability in rainfall across the

regions is high (van der Werf et al., 2008; Field and Shen,

2008; Field et al., 2009; Spessa et al., 2015). As such, there

is considerable variation surrounding the long-term mean

monthly DC values shown in Fig. 7. Field et al. (2004) es-

timated that the severe fire episodes in 1994 and 1997 in

Sumatra and Kalimantan were associated with DC greater

than DC= 400. During non-El Nino years, and on average,

this DC threshold is not reached and heavy fuels, especially

peat, remain too moist to burn.

Viewed regionally across Southeast Asia, the DC season-

ality in Thailand (Fig. 6a, b) is opposite that of Indonesia

(Fig. 7c, d), with Malaysia (Fig. 7a, b) falling in between.

MERRA-derived DC is consistently lower than all DC prod-

ucts in all regions, especially during the dry season. This is

similar to Thailand, and consistent with previous work show-

ing that MERRA has a wet bias in Southeast Asia relative to

gauge-based estimates (Lorenz and Kunstmann, 2012).
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Figure 8. Monthly mean DC for four regions in Australia. MERRA,

SHEFF and CPC DC are from the GFWED gridded fields over the

latitude and longitude range specified in the caption. The other two

DC plots are for representative weather stations in that range.

4.7 Australia

Monthly mean DC values are shown in Fig. 8 for four re-

gions in Australia. In Western Australia (Fig. 8a), the sea-

sonal cycle of the DC values based on the gridded data

is similar to that of the station-based data, in that maxi-

mum values occur during the warmer months and the min-

imum values during the cooler months. The DC values

based on the Esperance station data are lower than those

based on the Kalgoorlie-Boulder station data, with a max-

imum approaching DC= 700 in March and a minimum of

DC= 100 in September. This is consistent with Esperance

being located nearer to the coast with a cooler and wetter cli-

mate than Kalgoorlie-Boulder, where the August minimum is

DC= 500. The DC values based on the gridded data are sim-

ilar in magnitude to those based on the more inland station

(Kalgoorlie-Boulder), with DC values based on SHEFF and

CPC data being highly consistent throughout the year with

the Kalgoorlie-Boulder station-based data. The DC values

based on MERRA are somewhat higher than the Kalgoorlie-

Boulder station-based data during the cooler months of the

year, and relatively similar to the other two gridded data sets

during the warmer months of the year.

In the Northern Territory (Fig. 8b), the DC values based on

the Tennant Creek station data have a maximum approaching

DC= 1000 during spring (from about September to Novem-

ber) corresponding to the later part of the tropical dry sea-

son in the Southern Hemisphere. The DC values based on

the Alice Springs station data have a less pronounced sea-

sonal cycle than the case for Tennant Creek, due to Alice

Springs being located somewhat further south and having a

more temperate climate than Tennant Creek. The DC values

based on the gridded data have magnitudes broadly similar
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to the station-based data with a seasonal cycle similar to the

case for Tennant Creek (i.e., a more pronounced spring maxi-

mum than the case for Alice Springs). There is little variation

between the three gridded data sets for any month of the year.

In New South Wales (Fig. 8c), the gridded data are con-

sistent with the station data in having maximum DC values

during the warmer months of the year. The DC values based

on the gridded data tend to be larger in magnitude than those

based on the station data. This is consistent with the grid-

ded data representing the mean conditions throughout a grid

cell, whereas the two stations are both located very close to

the coast and have relatively moderate temperatures and high

rainfall as compared to nearby inland regions.

In Victoria (Fig. 8d), the DC values based on the data from

the two stations are very similar to each other throughout

the year, peaking at DC= 600 in March. These stations are

located relatively close to each other and both have strong

maritime influences on their climate. The DC values based

on the SHEFF and CPC data are almost identical to those

based on the station data for all months of the year. The DC

values based on MERRA data capture the seasonal cycle, but

are consistently higher by DC= 200.

Regional fire activity in Australia broadly follows the tim-

ing of the seasonal cycle of DC values shown in Fig. 8.

In Victoria, fire activity predominantly occurs during the

warmer months of the year, with a peak in fire activity around

the later parts of summer from about January to March, while

noting that occasional serious fires are likely to occur any-

time from about November to April (Luke and McArthur,

1978; Russell-Smith et al., 2007). For example, the fire af-

fected region during the January to March period is on av-

erage about 0.41 % of the southeastern mesic region of Aus-

tralia, compared with only about 0.03 % from April to June,

0.05 % from July to September and 0.11 % from October to

December (Russell-Smith et al., 2007). The DC values for

the Victorian stations peak from February to April, indicat-

ing considerable overlap with the period of peak fire activity

in this region, as well as a tendency towards a time lag of

about 1 month compared to the timing of fire activity. This

time lag could be expected to some degree, given that the

fuel drying speed indicated by the DC is about 52 days (i.e.,

the time to lose about two thirds of its free moisture above

equilibrium), as compared to about 12 days for the DMC and

2/3 of a day for the FFMC, with the FFMC and DMC also

being important indicators of severe fire weather conditions

in Australia in addition to the DC (Dowdy et al., 2010).

4.8 Summary of DC comparisons

Over northern latitudes with winter shutdown (Montane

Cordillera, Boreal Shield West, Boreal Shield East, Swe-

den, Finland, Germany and Siberia), DC peaks in August

and September between DC= 200 and 500. Mediterranean

regions showed the same seasonality, but in southern Spain

and Greece, the hottest regions considered, values exceeded

Figure 9. Global gridded mean FWI for January and July based on

MERRA precipitation (1980–2012), Sheffield precipitation (1980–

2008) and CPC precipitation (1980–2012).

DC= 1000 depending on the data set. DC values across data

sets diverged over the course of the summer from similar, low

startup values, but no systematic differences were apparent

across different data sets, except perhaps that the DC calcula-

tions based on SHEFF had lower peak values in the Montane

Cordillera, east Boreal Shield and Sweden and Siberia.

Regions in Australia exhibited the weakest DC season-

ality. In Western Australia and the Northern Territory, val-

ues ranged between DC= 500 and 1000, never, on average,

“bottoming-out”. DC values were lower in New South Wales

and Victoria, but also not, on average, reaching 0, which was

the case for the two stations presumably due to their coastal

location.

Guatemala, the Brazilian Mato Grosso and Thailand have

the strongest wet–dry seasonality. Excluding MERRA, DC

peaked between DC= 400 and 600 and approached 0 during

the wet season. The lowest overall values were in equato-

rial Southeast Asia which lacks as pronounced a dry season.

The Malaysian regions lacked pronounced seasonal maxima

and the gridded products never exceeded seasonal means of

DC= 100. The Indonesian regions had a greater seasonal-

ity, but with seasonal peaks of less than DC= 300. As stated

above, this seasonal average masks strong interannual vari-

ability.

4.9 Global FWI variability

Figure 9 shows the mean global Fire Weather Index (FWI)

during January and July for all three data sets. The mean

FWI is calculated from 1980–2012, excluding 1979 as a

moisture code equilibration year. We describe FWI season-
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ality according to selected fire regions defined by van der

Werf et al. (2010), starting with the MERRA-based calcula-

tions. In January, FWI calculations are not active over the bo-

real North America and boreal Asia regions. Over temperate

North America and Europe, mean FWI values reflect only a

small number of anomalous warm and snow-free days during

which the calculations were active. At low latitudes, the high-

est values based on MERRA are over northern hemispheric

Africa, which contributes significantly to global emissions,

when the ITCZ is displaced to the south. FWI is also high

(> 40) in areas of southern hemispheric South America, the

southern half of Australia, excepting its eastern coast, and

northwest India. There are moderate (20–40) FWI values in

Mexico and parts of continental Southeast Asia. Elsewhere,

the FWI is generally low, including over the Amazon basin,

northern hemispheric South America, the Congo basin, and

equatorial Southeast Asia.

In June, the FWI System is active over the northern boreal

regions, and does generally not exceed 30. Although an FWI

of 30 is well below the seasonal peak at low latitudes, this

can reflect severe fire danger conditions over the boreal re-

gions (see, for example, the FWI categorical classification for

the CWFIS, http://cwfis.nrcan.gc.ca). In the northern temper-

ate regions, high values are seen over the fire-prone regions

of the western US (approaching 50) and the Mediterranean.

The extremely high FWI over northern hemispheric Africa

has mostly been replaced by low FWI during the wet sea-

son and onset of the West African monsoon. By July, the dry

season in equatorial Southeast Asia has just started and FWI

values are still low. High FWI values are seen in southern

hemispheric South America, corresponding, for example, to

the active fire season in the Brazilian Mato Grosso (Chen et

al., 2011; Fernandes et al., 2011), with comparable increases

over southern Africa and northern Australia, all correspond-

ing to the northward shift of the ITCZ.

In Australia, the three gridded data sets show strong simi-

larities to each other in most regions during January and July.

The highest FWI values during January tend to occur in the

southern and southwestern regions, due to the dry and hot

summer conditions of the temperate climate, while during

July the highest values occur in the northern regions corre-

sponding to the tropical dry season. The FWI values in east-

ern Australia are generally not as high as in other parts of

mainland Australia, consistent with previous studies based

on numerical weather prediction (NWP) analyses (Dowdy et

al., 2010), relating to the significant maritime influences that

occur in this region (e.g., trade wind transport of moist air

inland from the Pacific Ocean).

Viewed globally, there is strong agreement between the

three data sets. All major seasonal differences in the MERRA

FWI are present in the SHEFF and CPC FWI. In January, the

strongest difference was over central South America, where

SHEFF and in particular CPC FWI were much lower than

MERRA. This is consistent with the strong low precipita-

tion bias in MERRA over the region identified by Lorenz

Figure 10. Mean 1979–2012 CPC rain gauge coverage (gauges/grid

cell) for the globe (top), Canada (middle), Southeast Asia (bottom).

The number of active rain gauges can change significantly from year

to year. This information is provided as part of the data distribution.

and Kunstmann (2012), and effect on the DC described

previously. SHEFF and CPC FWI are higher over Mexico,

northern hemispheric Africa, continental Southeast Asia and

northern Australia. In June, the higher MERRA values per-

sist, but with an eastward shift. Sheffield and CPC FWI

tended to be higher over the southeast US, East Africa and

southern India.

The consistency in the differences between MERRA and

the two gauge-based FWI calculations reflects the common

station data used in computing the latter two. Whether or

not the gauge-based calculations are better will ultimately

depend on the underlying rain gauge density (Lawson and

Armitage, 2008). This information was available for the CPC

precipitation data set, shown in Fig. 10 during the 1979–2012

www.nat-hazards-earth-syst-sci.net/15/1407/2015/ Nat. Hazards Earth Syst. Sci., 15, 1407–1423, 2015
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period. Values less than 1 indicate stations not operating dur-

ing the full analysis period. Users are encouraged to consider

rain gauge density for any region over which analyses are

performed.

Globally, gauge density is highest over the US, east-

ern Brazil and the populated coastal regions of Australia

(Fig. 10). Density is reasonably high over central South

America, which suggests that the low bias in the MERRA

precipitation is genuine and that the MERRA FWI values

there are unreliable. This is likely the case for MERRA’s high

precipitation and low FWI biases over continental Southeast

Asia also, or for Thailand at least, where the CPC station

density is high. In the northern boreal region, coverage is

sparse but fairly even across fire-prone areas. In Southeast

Asia, rain gauge density is low over the severe burning re-

gions of Borneo and Sumatra. This limits spatially detailed

FWI analysis over the region, although previous analyses

have shown that precipitation covariance over the region is

strong enough (Aldrian and Susanto, 2003) that the FWI Sys-

tem values should provide useful information at a provincial

or state level. Identifying a more appropriate FWI version

over tropical Africa is difficult due to the sparse and uneven

gauge distribution, as cautioned by Chen et al. (2008) for

precipitation-based analyses in general.

5 Summary

We have developed a global database of the Canadian FWI

System components using MERRA reanalysis and two dif-

ferent gauge-based precipitation data sets. This data set can

be used for historical relationships between fire weather and

fire activity at continental and global scales, in identifying

large-scale atmosphere–ocean controls on fire weather, cali-

bration of FWI-based fire prediction models, and as a base-

line for projections of fire weather under future climate sce-

narios as the reanalysis products improve.

Compared to the station-based calculation, the strongest

differences between the three data sets occurred for the

MERRA-based DC calculations at low latitudes. These bi-

ases were in either direction: over the Mato-Grosso peak dry

season DC was higher than station or gridded rain gauge cal-

culations by a factor of 3 (Fig. 3b), but,conversely had a low

bias over Southeast Asia (Figs. 6, 7). We attribute these bi-

ases to the inherent difficulty in modeling convective pre-

cipitation, which remains a central challenge to numerical

weather and climate modeling (Arakawa, 2004), and has dis-

proportionate effects over the tropics. Temperature, wind and

humidity discrepancies could also contribute to the differ-

ences between gridded and station-based calculations, par-

ticularly over regions with significant topography. While we

have examined only one reanalysis-based product, we ar-

gue that FWI System calculations based solely on reanaly-

sis products will be subject to the same discrepancies, and

that alternative precipitation estimates are important to con-

sider. Users are encouraged to conduct analyses over all three

precipitation-based data sets in GFWED.

In the future, we hope to increase the number of ver-

sions using other input data sets, for example, other state-of-

the-art reanalyses or satellite-based precipitation estimates

such as the Global Precipitation Climatology Project (GPCP)

(Huffman et al., 2009), Tropical Rainfall Measuring Mission

(TRMM) (Huffman et al., 2007) and Global Precipitation

Measurement (GPM) (Smith et al., 2007) mission. There is

also the potential to compute the moisture codes using new

soil moisture retrievals from the Soil Moisture and Ocean

Salinity Mission (SMOS) (Kerr et al., 2010) and Soil Mois-

ture Active Passive (SMAP) (Entekhabi et al., 2010) mis-

sion. The data sets could also be extended to include other

weather-based fire danger indices such as the Nesterov In-

dex, which continues to be used operationally and for re-

search purposes (Thonicke et al., 2010) the McArthur For-

est Fire Danger Index (McArthur, 1967; Noble et al., 1980),

and, to capture the influence of atmospheric instability, the

Haines Index (Haines, 1988). In regions with seasonal snow

cover, different moisture code startup procedures and snow

cover estimates should be examined, ideally taking into ac-

count local land cover and topographic characteristics as de-

scribed in Lawson and Armitage (2008). We hope that users

of the data continue to compare gridded fire weather calcu-

lations against those from weather stations, particularly for

regions not considered here, and from secondary meteoro-

logical networks not used in any of the MERRA, Sheffield

or CPC data sets. We also encourage comparison for compo-

nents other than the DC, especially the ISI and FWI which

are strongly influenced by surface winds.
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