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Abstract. In this paper, we present a conceptual framework

for modelling clustered natural hazards that makes use of his-

torical event data as a starting point. We review a methodol-

ogy for modelling clustered natural hazard processes called

Poisson mixtures. This methodology is suited to the appli-

cation we have in mind as it naturally models processes that

yield cross-event correlation (unlike homogeneous Poisson

models), has a high degree of tunability to the problem at

hand and is analytically tractable. Using European wind-

storm data as an example, we provide evidence that the his-

torical data show strong evidence of clustering. We then de-

velop Poisson and Clustered simulation models for the data,

demonstrating clearly the superiority of the Clustered model

which we have implemented using the Poisson mixture ap-

proach. We then discuss the implications of including clus-

tering in models of prices of catXL contracts, one of the

most commonly used mechanisms for transferring risk be-

tween primary insurers and reinsurers. This paper provides a

number of unique insights into the impact clustering has on

modelled catXL contract prices. The simple modelling ex-

ample in this paper provides a clear and insightful starting

point for practitioners tackling more complex natural hazard

risk problems.

1 Introduction

The broad subject of interest in this paper is natural haz-

ard catastrophe risk modelling. Natural hazard catastrophe

risk models are widely used by the insurance industry to ad-

dress questions related to pricing, capital allocation and risk

management. Catastrophe risk models are often based on a

timeline simulation of the occurrences of a particular nat-

ural phenomenon. Timeline simulations are then translated

into a timeline simulation of financial losses on a portfolio

of insured risks. The timeline simulation of financial loss

on a primary insurance company portfolio is also used to

model the price of contracts used to transfer risk to reinsurers

(which provide insurance for primary insurance companies).

This transfer of risk enables improved risk return character-

istics of the companies involved in the insurance market and

provides for a more stable insurance industry which is able

to meet the obligations to policy holders in the event of a

natural hazard catastrophe. Catastrophe models cover natu-

ral hazard perils such as North Atlantic hurricanes, European

windstorms, Asian typhoons, global earthquakes and floods.

A useful starting point for building a catastrophe model

is to generate simulations based on the assumption that the

frequency distribution of the underlying process is Poisson.

While the Poisson assumption is oftentimes sufficient for

some natural phenomena, models based on the Poisson as-

sumption fail to accurately model the risk. For example, it is

now well known that European windstorms exhibit a strong

degree of clustering (Mailier et al., 2006). European wind-

storm models which are based on a Poisson assumption are

indeed useful as a starting point for risk assessment. How-

ever, the Poisson frequency distribution is too restrictive, in

that timeline simulations based on the Poisson assumption

do not exhibit the degree of variability that is evident in

historical data. As discussed in Mailier et al. (2006), Jan-

uary/February 1990 and more recently December 1999 had

in particular a high number of very intense windstorms caus-

ing considerable losses in the insurance industry (greater than

EUR 10 billion). These 2 years in particular are difficult to
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explain by European windstorm models that are based on the

Poisson assumption, as we will show in this paper. Other phe-

nomena of interest such as earthquakes, hurricanes, typhoons

and severe flooding events may also exhibit some degree of

clustering.

In this paper, we begin by describing a useful frame-

work for modelling clustered processes, applied very specif-

ically to the catastrophe modelling problem in an event-table

context. We adopt what we call a Poisson mixture mod-

elling framework, which has been previously described in

Wang (1998) and for example has been explored in Eas-

tou and Tawn (2010) in the context extreme value theory

for peak flows. Having done so, we build a clustered model

for historical European windstorm data, after which we ex-

plore the consequences of modelling clustering for common

risk transfer contracts (catXL contracts), developing novel

insights along the way.

The paper is structured as follows:

– In Sect. 2, we briefly describe a conceptual frame-

work for modelling clustered phenomena, using histor-

ical data as a starting point. This framework identifies

groups of historical events that are strongly associated

with oscillations in the physical system, which are the

source of clustering. We then provide a brief summary

and discussion of the mathematical properties of the

Poisson mixture methodology, our method of choice for

modelling clustered processes.

– In Sect. 3, we apply the Poisson mixture methodology to

develop a clustered model of historical European wind-

storm data. We demonstrate the superiority of the clus-

tered model compared to a model based on the Poisson

assumption. This section provides a simple and clear ex-

ample for practitioners to build upon.

– In Sect. 4, we provide new insights into the impact that

modelling clustering has on so-called catastrophe ex-

cess of loss contracts, which is one of the important

mechanisms for transferring risk between primary in-

surers and reinsurers. These insights are developed us-

ing numerical simulations and to a certain degree ana-

lytic theory.

– In Sect. 5, we provide a summary and conclusions.

2 A framework for modelling clustered natural hazard

processes

2.1 Motivation and background: Poisson versus

clustered timeline simulation

In Fig. 1, we provide a pictorial illustration of timeline simu-

lation. In year 1, there are three events occurring (represented

by the dots), in year 2 there are two events, and so on. On the

vertical axis is “loss”, which is a representation of financial

Figure 1. Above is a depiction of a simulation timeline. The dots

represent event occurrences. Years are on the x axis. Loss is repre-

sented on the vertical y axis. The red bar represents an “attachment

point”. The blue bar represents the “exhaustion point”.

loss against some insured exposure. Time is on the horizontal

axis, discretized into years. Each year represents a draw from

the distribution of possible event–loss occurrences. Whilst

event time stamps can be created to reflect the seasonality of

the phenomenon being considered, in this paper we ignore

seasonality and consider loss statistics based on annual time

scales. This choice mimics the most common insurance in-

dustry practice, in which the vast majority of risk transfer

takes place based on annual contracts.

In practice, there is a computer code that generates the

timeline simulation, consistent with some underlying fre-

quency distribution like the Poisson or negative binomial dis-

tribution. The physics of the system we are trying to model

dictates the appropriateness of any particular frequency dis-

tribution choice. In this paper, we are interested in physical

phenomena that exhibit strong “clustered” behaviour.

We begin with what we define as an event table. The event

table is comprised of M “events” where each event has a

mean annual rate λi , where i = 1, . . .,M . Assuming a Pois-

son frequency distribution, we can generate a timeline sim-

ulation of the number of events per year by simulating from

a Poisson distribution independently for each event in our

event table. This is by definition a homogeneous Poisson pro-

cess where the annual rates per event are fixed (see for exam-

ple Kingman 1993 for extensive discussion of the Poisson

process). We emphasize that in such a Poisson simulation,

there is zero correlation between the occurrences of different

events in our event table. The total annual rate λ=
∑
λi is

equal to the variance of the annual number of occurrences

σ 2. In the case of the Poisson simulation, the overdispersion

σ 2/λ= 1.

In this paper, we define clustered processes as those which

are overdispersive so that σ 2/λ > 1 and those which exhibit

cross-event correlation (which we define in due course). As

we will see in this paper, historical data suggest that large-

scale European windstorms exhibit overdispersion. Physi-

cally, European windstorm activity is strongly associated

with a number of different teleconnection patterns, including

the North Atlantic Oscillation (Mailier et al., 2006), which

drive the overdispersion. If we look at years 1990 and 1999

in the recent past (Mailier et al., 2006), it appears as though

European windstorms tend to happen in clusters of particu-
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larly intense events, at least suggesting that event occurrences

within particular years are correlated.

2.2 Conceptual framework for modelling clustering

Here our intention is to simply describe a conceptual frame-

work for developing a model which exhibits clustering, when

historical data are available. This framework for modelling

clustering stems from physical principles. The idea is that

there exist certain physical drivers which in some years

favour the occurrence of certain types of events over oth-

ers (for example the North Atlantic Oscillation). We assume

that the events in our event table can be split into K unique

groups of events. Some of these event groups are assumed to

be strongly modulated by the physical environment in which

the events are embedded. This modulation, as it turns out,

is the source of overdispersion. In this formulation, each of

the events in the M event table belong to one unique group

among the K . We call these groups “clusters”. To model

the occurrence of clustering in the clusters we will need to

use frequency distributions which exhibit overdispersion and

are therefore not Poisson. For simplicity, we assume the be-

haviour of the clusters are independent of one another (al-

though this can be relaxed).

To split our event set into the K clusters, we assume the

existence of an archive of historical events. The historical

events are not part of the event table we use for timeline sim-

ulation but are simply used to help define the composition

of the clusters. A typical archive of historical events for ap-

plications we have in mind consists of 50 years of events.

Given an archive of historical events, the idea is to proceed

as follows: (1) apply a statistical clustering algorithm to an

archive of historical events, which defines the properties of

the K clusters; (2) use regression analysis to determine the

physical drivers of the different clusters defined on the his-

torical set to check for physical significance; (3) check that

the K clusters are behaving independently (this can be re-

laxed, but in any case it is important to be able to quantify

the correlation across clusters); (4) “match” the M events in

the event table to theK clusters defined on the historical data

using a nearest neighbour algorithm; (5) determine the target

overdispersion of each of the K clusters from the historical

data (with errors estimates); (6) apply a mathematical mod-

elling framework (such as the Poisson mixture formulation

described in Sect. 2.3) to generate simulations that are in the

suggested range of overdispersion from the historical data

and also exhibit an appropriate degree of within cluster cor-

relation.

The idea of applying statistical clustering algorithms is

now well established in the literature for tropical and extra-

tropical cyclone data (see Kossin et al., 2010; Camargo et

al., 2007, 2008; Gaffney et al., 2007). While the above de-

scribed application of statistical clustering algorithms is con-

venient, we recognize there are several uncertainties associ-

ated with this scheme. The results will be sensitive to the

choice of clustering algorithm, the details of the regression

analysis, the length and quality of the historical data (which

leads to uncertainty in target overdispersion) and the ability

to match the event set to the historical clusters. However, if

such uncertainties are carefully considered, our view is that

the above framework can provide a useful context for build-

ing clustered versions of models, which can be calibrated to

reflect the properties of the underlying natural phenomena.

In what follows, we review our chosen formulation for mod-

elling clustered processes.

2.3 Poisson mixture methodology

As before, we assume our stochastic event set is comprised

of a total of i = 1, . . .,M unique events with average an-

nual rates λi . Suppose we have divided this stochastic event

set into k = 1, . . .,K clusters. The kth cluster has Mk events

where each event belongs to one of the clusters and there-

fore
∑K
k=1Mk =M . Given our assumption that the clusters

are mutually independent, it suffices to understand the math-

ematical behaviour of one of the clusters before putting all

the independent clusters together in one timeline simulation.

We now focus our attention on the kth cluster comprised

of j = 1, . . .,Mk events. The important mathematical results

underlying the Poisson mixture formulation are drawn from

Wang (1998). Our intention here is to cast the Poisson mix-

ture formulation into our context and point out the key as-

pects/implications of the methodology for modelling cluster-

ing.

Let the discrete random variables N1, . . .,NMk
represent

the annual number of occurrences of events j = 1, . . .,Mk .

We want to generate a timeline simulation that is overdis-

persive and exhibits cross-event correlation. In the Poisson

mixture formulation, we “modulate” the event rates by ran-

dom draws from a gamma distribution before simulating any

particular year of events. This modulation leads to a simula-

tion with overdispersion greater than 1 and correlation in the

annual occurrences of events within the cluster. Let 2k be

a random variable drawn from the univariate gamma distri-

bution g(θk|αk,τk), where the shape parameter is αk and the

scale parameter is τk . In this notation the underscore k repre-

sents the kth cluster. Suppose we are generating a simulation

for year 1. The total number of events n1 to select from the

cluster is

n1|2k = θk,1 ∼ Poisson (θk,1λk) (1)

where λk is the total rate for cluster k, and θk,1 is the partic-

ular realization from the gamma distribution for year 1. To

determine which events to pick for year 1, we draw, with re-

placement, events from the cluster k where the probability of

any event being selected is proportional to its rate. This pro-

cedure is then repeated for all subsequent years in the simu-

lation.

The gamma distribution acts as a “modulator”. This mod-

ulator of the rates is intended to account for large-scale phys-
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ical drivers that increase/decrease the annual rate of the par-

ticular types of storms in cluster k. The idea is that historical

data will be our guide in determining the amplitude (vari-

ance) of this modulator. In this construction, our intention

is to not change the mean number of occurrences of all the

j = 1, . . .,Mk events. This can be done by ensuring that the

E[2k] = 1. Now, for the gamma distribution, we know that

E[2k] = αkτk . We choose αk = 1/τk and hence E[2k] = 1.

Since var[2k] = αkτ
2
k , this choice implies that var[2k] = τk .

So, the modulator has mean 1 and variance equal to the scale

parameter. Notice that in each year of simulation, each mem-

ber of the cluster is modulated by the same realization of2k .

In what follows, we summarize a number of key points that

we would like to emphasize related to using Poisson mixtures

for modelling clustered phenomena:

1. Using the results in Wang (1998), Appendix A provides

the expression for the probability generating function

consistent with the Poisson mixture framework. Doing

so allows us to compute important loss statistics (ex-

plored in Sects. 3 and 4) analytically. This is convenient

from an implementation point of view.

2. As discussed in Wang (1998), the Poisson mixture prob-

ability generating function implies a multivariate neg-

ative binomial distribution with mean annual rate of

λk =
∑Mk

j=1λj and variance λk + τkλ
2
k , which implies

that the overdispersion is 1+ τλk for the cluster as a

whole. The overdispersion is linear in both the variance

of the modulation and the overall rate for the cluster.

Finally, as discussed in Wang (1998), the marginal dis-

tributions are negative binomial with mean λj and vari-

ance λj + τkλ
2
j .

3. The Poisson mixture framework implies that the annual

occurrence of events within a cluster are correlated. As

shown in Wang (1998), the covariance coefficient for

the annual occurrences of any two events in the clus-

ter is equal to
cov[Na ,Nb]
E[Na ]E[Na ]

= var[2k] = τk (where Na
and Nb are the random variables associated with any

two events a and b in the set of j = 1, . . .,Mk events).

This is in contrast to the Poisson assumption, where the

annual occurrences of any two distinct events within a

cluster are uncorrelated. This Poisson mixture formu-

lation is designed to create “big years” in which many

intense events can occur in the same year, having dra-

matic impact on catastrophe-related exposures. As we

will show in the example provided in Sect. 3, models

which treat events independently do not yield model re-

sults that provide an accurate description of the histori-

cal data.

4. In Sect. 2.2, we discussed the idea that the K clusters

are independent (which is convenient for implementa-

tion purposes), but we could relax this assumption by

using Copula methods to rank correlate the K clusters

through their modulating gamma distributions.

5. Each of the k = 1, . . .,K clusters has an overdispersion

of 1+τkλk . We emphasize that the overdispersion can be

‘calibrated’ by choosing a τk designed to mimic results

from our historical catalogue.

6. Our experience with European windstorm data suggests

that the more severe/intense events tend to be the ones

that exhibit clustering (consistent with the findings in

Vitolo et al., 2009; Pinto et al., 2013). Hence, we can

in principle divide each of ourK clusters into a Poisson

and overdispersive part. Physically based thresholds can

be used to divide up the K clusters as desired. By doing

so, the overdispersion of the kth cluster becomes 1+

τk
λ′k

2

λk
, where λ′k is the sum of the rates of the events

in the overdispersive subset (and clearly λ′k < λk). This

subsetting lowers the overall overdispersion of the kth

cluster (for a fixed gamma variance). In our experience,

this added flexibility is helpful in model calibration.

3 A simple clustered model of European windstorm

data

We now examine whether or not clustering exists in a data set

based on 135 of the most intense windstorms to occur in Eu-

rope over the period from 1972 to 2010. We use a data set of

European windstorm event reconstructions discussed exten-

sively in Bonnazi et al. (2012). The reconstructions consist

of 135 of the most intense windstorms to occur in Europe

over the period from 1972 to 2010. Using 3 s peak gust data

collected from 1972 to 2010 covering 15 European countries,

a set of 135 event reconstructions on a high-resolution vari-

able resolution grid was created. The event reconstructions

consist of maps of local maximum gusts experienced during

the passage of the 135 synoptic events. The high-resolution

reconstructions were then aggregated to the CRESTA (Catas-

trophe Risk Evaluation and Standardizing Target Accumula-

tions) level for Germany, United Kingdom, France and Den-

mark (our chosen domain of interest for demonstration pur-

poses). CRESTA represents a coarse spatial grid that is com-

monly used in the insurance industry (see www.cresta.org for

example). For each storm, a single number, called the storm

severity index, was produced by computing the following for

each storm:

SSI250=

∑
(vi − v0)

3Ai∑
Ai

1/3

, (2)

where the sum takes place over all affected CRESTA zones

for a particular storm, vi is the wind gust at CRESTA cell

i, and Ai is the area of the ith CRESTA cell. We use a

threshold of v0 set to 25.0 ms−1 (hence our notation SSI250).

The summation takes place over all CRESTA cells in the su-

perset of Germany, United Kingdom, France and Denmark.

The storm severity index correlates well to aggregated dam-

age/loss due to the passage of the storms and is therefore par-
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ticularly appropriate for the risk modelling applications we

have in mind. The set of 135 storms we consider contains fa-

mous European windstorm events such as 87J, Daria, Vivian,

Anatol, Lothar, Martin and Kyrill. For details related to the

observational data set, the storm reconstruction method and

how the 135 most severe storms were selected, the reader is

referred to Bonazzi et al. (2012). Using the time series of the

number of storms per year over the 39-year data record, we

find a sample overdispersion of 1.39, strongly suggesting the

time series exhibits clustering. While it is beyond the scope

of this paper to provide an in-depth study with regards to the

physical drivers that cause this clustering, we note that there

is a considerable literature which studies the physical drivers,

and a few relevant references will be provided in Sect. 5.

In what follows, we first dig deeper into the historical data,

using statistics that are commonly used in catastrophe risk

management. After doing so, we build a Poisson model of

the data, demonstrating the inadequacy of the model in ex-

plaining the data. We then calibrate a clustered model using

the Poisson mixture formulation (using specific calibration

criteria that we define), showing its superiority over the Pois-

son model.

In the upper left panel of Fig. 2, the red line depicts the

empirical occurrence exceedance probability (OEP). On the

horizontal axis we have SSI250 and on the vertical axis we

have return period (RP), which is the inverse of the ex-

ceedance probability. The OEP is defined as follows: there

is a probability distribution associated with the annual maxi-

mum SSI250 (loss). For any given SSI250 threshold (on the

horizontal axis), the integral of this probability distribution

from the threshold to infinity is the OEP (or 1 minus the

cumulative probability up to the SSI250 threshold). Simi-

larly, we can define the OEP2 as follows: there is a prob-

ability distribution associated with the second annual max-

imum SSI250. The OEP2 (where 2 denotes the second an-

nual maximum) is, for any given SSI250 threshold, equal to

the integral of the probability distribution associated with the

second annual maximum from the threshold to infinity. We

define the OEP3 and OEP4 analogously. The red curves on

the upper right, lower left and lower right panels of Fig. 2

represent the empirical OEP2, OEP3 and OEP4 curves. The

empirical curves are derived from our 39-year times series

of SSI250 from the historical data. We provide more for-

mal definitions of the OEP and OEP2 Appendix B (the OEP3

and OEP4 follow a similar logic to what is shown in the Ap-

pendix B). We refer readers to a book on order statistics by

David and Nagaraja (2003) for a comprehensive treatment

of order statistics mathematics. Note that the empirical EP

curves are computed in the following way: for each case

(OEP, OEP2, OEP3, OEP4) we have a time series of n= 39

SSI250 values (note, for example, that in the case that there

is only one event in a given year, the second, third and fourth

maximums are set to 0) and we order the SSI250 values in

increasing order indexed by m= 1, . . .,39. For the mth order

statistic, the empirical EP is set equal to 1−
m−1/3
n+1/3

(using the

median of the beta distribution which describes the proba-

bility distribution of the cumulative probabilities). The grey

bounds on the red empirical EP curves represent the 5/95

quantiles of the beta distribution which represents the uncer-

tainty in assigning the EP value. Note that the uncertainty

increases for higher exceedance RP values, as we would ex-

pect. The reader is referred to Makkonen (2006) and refer-

ences therein for an in-depth discussion related to choosing

a method for assigning empirical EP values.

We now build a model of the data using a Poisson assump-

tion and see how well the Poisson model matches empirical

OEP, OEP2, OEP3 and OEP4. To build the Poisson model

of the data we start by taking the 135 values of historical

SSI250 and fit a generalized Pareto distribution, using the

smallest SSI250 value as the threshold. This choice of thresh-

old is justified in that the 135 storms is a representation of

extreme events. This generalized Pareto distribution of the

data represents the distribution of SSI250 given that there is

an event. We call this the conditional SSI250 distribution.

We then assume that the annual rate of storm occurrence is

λ= 135/39 (simply the number of historical events divided

by the number of years in the historical data). We then gener-

ate a 105-year simulation of event frequency using a Poisson

assumption. For each event occurrence, we sample from the

generalized Pareto distribution to obtain a simulated SSI250.

The resulting OEP curve is depicted by the blue line in the

upper left panel of Fig. 2. Notice that at short return periods

(2–5 years) the blue line is well above the empirical curve

and even strays from the empirical curve uncertainty bounds.

Looking at the results for the OEP2, OEP3 and OEP4, we

find that the Poisson model underestimates the exceedance

probability at the long return periods (or high SSI250 thresh-

olds). In the case of the OEP4, the Poisson model is outside

the empirical uncertainty bounds for return periods greater

than 50. This implies that the Poisson model does not gen-

erate enough of what we call “big years” with multiple large

SSI250 events. For example, in 1990, our historical data have

four large events (with large insured losses): Daria, Vivian,

Herta and Wiebke with SSI250 values of 5.53, 5.91, 4.17 and

4.14 respectively. If we take the 4th largest event in SSI250

(Wiebke), we find the return period to be well over 10000

years. Our opinion is that a model which assigns such a long

return period to a year which has occurred in the historical

record is of limited utility. Based on these results, we con-

clude that the Poisson model gives a poor representation of

the empirical OEP, OEP2, OEP3 and OEP4. Perhaps it is not

surprising given the lack of variability in the Poisson (with its

overdispersion of 1.0) compared to the 1.39 in the historical

data.

We now use the Poisson mixture method to develop a clus-

tered model for the data. The intended scope of this work is

to build a clustered model that satisfies what we feel are rea-

sonable calibration benchmarks, in turn demonstrate its supe-

riority over the Poisson assumption and then understand its
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Figure 2. The upper left panel depicts a set of occurrence ex-

ceedance probability (OEP) curves. On the vertical axis we have the

return period (1 divided by the exceedance probability). On the hor-

izontal axis is the SSI250 intensity measure. The red line represents

the OEP derived from the 135 representative European windstorm

events (historical data). The blue line depicts a model of the data

using a Poisson frequency assumption. The green line represents a

clustered model for the data using a Poisson mixture methodology.

The shaded grey bounds represent the 5/95 uncertainty bands on

the empirical OEP curve. The upper right panel depicts the OEP2

derived from the distribution of the second maximum loss (same

plotting convention as for the upper left). The lower left and lower

right panels depict analogous results for the third and fourth event

occurrence distributions (OEP3 and OEP4 respectively).

behaviour in the context of risk transfer contracts (Sect. 4).

We now describe our calibration criteria: (1) it is now well

established that a high degree of clustering is more associ-

ated with intense systems (Mailier et al., 2006; Pinto et al.,

2013; Vitolo et al., 2009). As such, our intention is to build

a clustering model where only the more intense storms are

clustered to mimic our best understanding of the phenomena

(using SSI250 as our measure of intensity). (2) We aim to

build a model which yields an overdispersion that is reason-

ably close to what is obtained from the historical data (1.39).

(3) We aim to build a model which lies within the range of

uncertainty associated with the empirical OEP, OEP2, OEP3

and OEP4.

To generate the clustered simulations, we start with an

event table derived from the 105-year Poisson simulation. We

choose an SSI250 threshold and gamma variance. Events be-

low the SSI250 threshold are simulated using a Poisson as-

sumption. Events with SSI250 greater than or equal to the

threshold are simulated using the Poisson mixture method

for the chosen gamma variance. This procedure yields a new

105-year clustered simulation. To find the model configu-

ration that matches our calibration criteria, we constructed

a large ensemble of models for various combinations of

(1) SSI250 threshold and (2) gamma variance used on the

clustered storms, until we found a model that met our cal-

ibration criteria. The outcome of this calibration procedure

was that we chose an SSI250 threshold of 2.5 and gamma

variance 1.5. In the historical data roughly 21 % of storms

lie above SSI250, which shows that we have clustered the

most intense events only. This model configuration happens

to achieve an overall overdispersion of 1.38, very much in

line with the historical data value of 1.39. Figure 3 depicts

results arising from the model calibration process varying

the SSSI250 threshold (labelled THRS in Fig. 3) and gamma

variances (labelled ALPHA in Fig. 3). In Fig. 3, the grey un-

certainty bands are associated with the empirical OEP (only

up to SSI250 3.2), as in the upper left panel of Fig. 2. In

the upper panel of Fig. 3 we show results for a fixed gamma

variance but varying the SSI250 threshold. The lower panel

of Fig. 3 depicts results for a fixed SSI250 threshold but vary-

ing the gamma variance. Figure 3 gives visual confirmation

that our chosen model parameters are reasonable from the

perspective of the empirical OEP and its associated uncer-

tainty.

In Fig. 2, the green lines depict the OEP, OEP2, OEP3

and OEP4 results from the clustered model. For the OEP, we

see that the clustered model lies within the uncertainty bands

associated with the empirical curve. Interestingly, the clus-

tered OEP curve is less than or equal to the Poisson OEP,

which is a property of the Poisson mixture methodology as

we have applied it (an informal demonstration of this is given

in Appendix C) and is more in line with the empirical curve,

especially at short return periods. For the OEP2, OEP3 and

OEP4, the clustered model is higher than the Poisson curve

(at longer return periods) and lies within the range of uncer-

tainty associated with the empirical curves. In our view, the

clustered model is a better model, because it is more con-

sistent with the statistics associated with the historical data.

The return period of the year 1990 read off the OEP4 curve is

between 500 and 1000 years. Unlike the Poisson case (with

a return period of well over 5000 years), our view is that the

clustered model is much more reasonable, given that we have

a year in the historical set where the fourth largest storm has

an SSI250 of 4.14. The reason our calibrated model gener-

ates shorter return periods for years with a large number of

intense SSI250 events (compared to the Poisson model) is

(1) the SSI250 threshold, which emphasizes clustering on

more intense events (consistent with our scientific under-

standing of clustering and Vitolo et al., 2009; Pinto et al.,

2013); (2) the overdispersion of the clustered model, which

gives a reasonable fit to historical data; and (3) the correlation

across the intense SSI250 events that are clustered.

In conclusion, using the Poisson mixture methodology, we

have built a clustered model that clusters intense storms,

gives a reasonable match to historical overdispersion and

generates OEP statistics that are within the range of uncer-

tainty implied by the limited historical set (the Poisson model
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Figure 3. The upper and lower panels depict results arising from the

clustered model calibration process. THRES represents the SSI250

threshold, whereas ALPHA indicates the gamma variance. The up-

per panel depicts OEP curves from various model combinations

with fixed gamma variance 1.5 and varying SSI250 threshold. The

lower panel depicts OEP curves from various model combinations

for fixed SSI250 2.47 threshold but varying gamma variance. The

grey uncertainty bands are associated with the empirical OEP curve

derived from the historical data.

is unable to do so). The behaviour of the model is, in our

opinion, vastly superior to the Poisson model, particularly

due to the shorter return periods assigned to significant years

with large numbers of intense storms. As such, the model we

have built provides a useful demonstration of the principles,

which can be built on for more complex problems and cali-

bration methodologies/criteria.

4 Implications of clustering for catastrophe excess of

loss contract pricing

Catastrophe excess of loss contracts (hereafter catXL con-

tracts) are a common type of contract in the insurance indus-

try. Such contracts are widely used to transfer risk from pri-

mary insurance companies to reinsurance companies. In what

follows, we are interested in understanding the differences in

key inputs to contract prices that arise when we switch from

Poisson-based simulation models to clustered models, using

the models developed in the previous section to generate nu-

merical results.

First, we define the type of catXL contract that we study

in this paper. We focus on so-called aggregate limit con-

tracts due to their common use in the industry. Consider

again the timeline simulation depicted in Fig. 1. Suppose

that the timeline simulation represents losses due to Euro-

pean windstorms for a given insurance company portfolio.

The so-called attachment point (loss level) A is depicted by

the red dotted line in Fig. 1. The so-called exhaustion point

(loss level) E is depicted by the blue dotted line in Fig. 1.

Let the loss associated with event i in year j be li,j . For each

event loss, we can compute the loss to the “layer”. The layer

is defined by the loss values between the attachment point A

and exhaustion point E. For li,j the loss to the “layer” is 0

if li,j <A and otherwise equal to the min(E−A,li,j −A).

For year j , with Nj events, the aggregate loss to the “layer”

is simply the sum of all event losses to layer. We now define

the aggregate limit as (E−A)(r + 1), where r = 0,1,2, . . .

is an integer which represents the number of so-called re-

instatements. For any given year j , the annual loss can be at

most (E−A)(r+1). In other words, for any given year j , if

the sum of all the event losses to layer exceeds the aggregate

limit, the annual aggregate loss is capped by the aggregate

limit.

We define a random variable AL|r as the annual aggregate

loss for a given number of re-instatements. Again, for any

given year, the annual aggregate loss is the sum of the event

losses to the layer, capped by the aggregate limit. In this pa-

per, we are interested in studying the expectation and stan-

dard deviation of the random variable AL|r , which we denote

by E(AL|r) and
√
E(AL|r −E(AL|r))2 respectively. Typi-

cally, all the losses to the layer (as defined above) are covered

by a reinsurance company which has a contract with an insur-

ance company. The insurance company pays a premium for

this contract. The expectation and standard deviation are key

components in formulas which are used to determine the re-

quired premium (or price) that primary insurance companies

pay to reinsurers.

In what follows, we discuss two extreme cases which are

relatively easy to characterize. We begin by looking at the

case of infinite re-instatements (r =∞), and then move onto

the more complicated case of zero re-instatements (r = 0).

The larger the number of re-instatements, the larger the po-

tential aggregate annual loss to layer. For larger numbers of

re-instatements, generally more risk is passed on from the in-

surance company to the reinsurer. However, the insurer will

oftentimes have to pay a larger premium for contracts with

larger numbers of re-instatements. Understanding these two

extreme cases is helpful in understanding the more difficult

case of finite re-instatements.

4.1 Infinite re-instatements

In the case of infinite re-instatements, the aggregate limit is

unbounded, and the random variable we consider is the un-

capped annual aggregate loss, which for year j is given by
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Figure 4. The upper left panel depicts the OEP curves for the Pois-

son (POI) and clustered (CLU) models of the data. The vertical and

horizontal lines on the upper left panel depict the SSI (loss) and

return period thresholds of the attachment and exhaustion point of

the catXL layer under consideration (note that the SSI values are

the same as in Fig. 2 which are labelled as SSI250). The attachment

and exhaustion points are consistent with the 2- and 20-year return

periods derived off the Poisson OEP curve. The mean loss to layer

as a function of the number of re-instatements is shown in the upper

right panel. The lower left panel depicts the standard deviation of

the annual aggregate loss to layer as a function of the number of

re-instatements. The lower right panel depicts the percentage con-

tribution of the first annual maximum loss to the catXL mean and

standard deviation of the loss for the case of zero re-instatements.

∑Nj
i=1min(E−A,li,j−A) (note that events for which li,j <A

are excluded from the sum). We look at results from our

105-year simulations discussed in Sect. 3 for the Poisson and

clustered cases. Note again that SSI250 is analogous to loss.

Before looking at the expectation and standard deviations

of the annual aggregate loss, we need to define the attachment

and exhaustion points A and E. Results will be discussed for

two cases which are depicted in Figs. 4 and 5. In the case

of Fig. 4, the attachment and exhaustion points A and E re-

spectively are the SSI (loss) thresholds consistent with the

2- and 20-year RP defined off the Poisson OEP. In Fig. 5, A

and E are defined by the loss thresholds consistent with the

20- and 50-year RP defined by the Poisson OEP. Our expe-

rience is that similar types of definitions of A and E can be

found in real contracts applied in the insurance industry. The

loss thresholds which define the attachment and exhaustion

points on Figs. 4 and 5 are depicted by the horizontal lines.

We now describe the results in Fig. 4 in detail. In the up-

per left panel of Fig. 4, we plot the OEP curve generated

Figure 5. As in Fig. 4 except that the attachment and exhaustion

point are defined at 20- and 50-year return periods respectively.

from our Poisson and clustered timeline simulations (again,

as discussed in Sect. 3). In the upper right panel of Fig. 4,

we plot the mean loss (again taking SSI as our proxy for

loss), for both the Poisson and clustered case, as a function

of the number of re-instatements. When the number of re-

instatements is 106 (effectively infinite in this context and

labelled as such), the mean loss for the Poisson and clustered

cases are equal to each other within numerical precision. In

the lower left panel of Fig. 4, we plot the standard devia-

tion of the loss to the layer as a function of the number of

re-instatements. For 106 re-instatements, the standard devia-

tion of the annual aggregate loss to layer is much higher than

the Poisson. The results in Fig. 5 for 106 re-instatements are

qualitatively identical.

So why does clustering impact the standard deviation of

the annual aggregate loss but not the mean loss? At least in-

tuitively, these results seem to make sense. If our natural haz-

ard peril is more volatile due to clustering, perhaps it is not

surprising that clustering increases the standard deviation of

the annual aggregate loss, especially in the case of infinite

re-instatements in which there is no cap on the annual aggre-

gate loss and losses due to all events are counted. Further-

more, clustering does not change the number of occurrences

of any particular event over a long timeline simulation, so in

the case where there is no cap on the annual aggregate loss,

the impact on the mean loss makes sense.

In more detail, we first note that the inclusion of clustering

has no impact on the mean annual rate of occurrence of any

particular event (as implemented in this study). This implies

that the distribution of loss conditional on an event occurring
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is unchanged by the inclusion of clustering. As discussed in

Appendix D, for any given loss threshold the frequency of ex-

ceedance is by construction not impacted by the inclusion of

clustering (at least for our Poisson mixture formulation of the

clustering model). As shown in Appendix E, the mean loss

to the layer is given by the product of the event exceedance

frequency (EEF) evaluated at the attachment point times the

mean loss to layer for events that have losses beyond the at-

tachment point. These quantities are unaffected by the inclu-

sion of clustering, and therefore we understand why the mean

loss to layer for infinite re-instatements is the same for both

the Poisson and clustered versions of the models.

We now address the question of why, in the infinite re-

instatements case, the standard deviation of the annual ag-

gregate loss is increased when we include clustering in our

simulations. In any given year of simulation, the event losses

can be sorted in descending order. We can determine which

event is the first maximum, second maximum and so on. In

the infinite re-instatements case, as there is no cap on the an-

nual aggregate loss, the loss in any particular year of sim-

ulation is simply the sum of the losses to layer generated

by the first, second and so on maxima. The losses incurred

by the first, second and so on maxima can be thought of as

correlated random variables. For example, for our 105-year

Poisson simulation, the linear correlation between the first

and second maximum is approximately 0.64 (obtained using

the losses before passing through the layer). The clustered

simulations impose a higher degree of correlation between

the first and second maximum, which we found to be 0.74.

Recalling the expression for the variance of the sum of cor-

related random variables, it appears that the clustered simu-

lations have higher variance of the annual aggregate loss due

to the increased correlation. Ultimately, this higher degree of

correlation arises from the property of the Poisson mixture

formulation which imposes cross-event correlation of events

within a cluster.

As for the price of the contract, recall that both the ex-

pectation and standard deviation are key inputs to pricing

formulas. While for the infinite re-instatements case the ex-

pectation of the aggregate annual loss is unchanged, the in-

creased standard deviation due to the correlation imposed by

the Poisson mixture formulation can result in higher model-

based contract prices. In this case, clustering introduces ad-

ditional volatility which drives the price increase.

4.2 Zero re-instatements

In the case of zero re-instatements, the cap on the annual

aggregate loss to layer isE−A (since r = 0). To compute the

annual aggregate loss in any given year, we first add up all the

losses to layer for each event occurrence. We take the sum of

event losses to layer as our annual aggregate loss but cap it at

E−A. We now discuss the results in Figs. 4 and 5 based on

our numerical experiments. The upper right panels of Figs. 4

and 5 reveal that the mean loss is lower in the clustered case

for zero re-instatements. The imposition of the cap on the

annual aggregate loss has changed the situation considerably

from the infinite re-instatement case where the mean losses

are theoretically equivalent.

Why then is the mean loss lower for the clustered model?

Suppose, for the sake of argument, that the annual aggregate

loss can be explained nearly entirely by the first maximum

loss. In this case, we can gain insight by just looking at the

distribution of the maximum annual loss. In this case, the

mean loss would be well approximated by the integral of the

OEP curve from the attachment point A to the exhaustion

point E (Klugman et al., 2012). As shown in Appendix C,

clustering leads to an OEP curve that is less than or equal to

the OEP curve generated from the Poisson model. When we

add clustering to our simulations, the effect is to create more

simulation years with large numbers of events. This has the

effect of lowering the probabilities of the first maximum ex-

ceeding a given threshold because clustering piles in events

into the same years (compared to the Poisson simulation).

In the case of zero re-instatements, we place a cap on the

annual aggregate loss, which gives more importance to the

first maximum and in turn lowers the mean loss in the clus-

tered case. In the lower right panels of Figs. 4 and 5, we plot

the percentage contribution of the annual maximum loss to

the zero re-instatement mean and standard deviation. In both

cases, the first maximum explains the vast majority of the

mean and standard deviation.

With regards to the standard deviation, suppose again that

the first maximum in each year of simulation explains nearly

all the annual aggregate loss (capped at E−A). In this case

we can approximate the variance using integration of the

OEP curve (Klugman et al., 2012). A lower OEP curve then

implies lower annual aggregate loss variability. If we look to

the numerical results in Figs. 4 and 5, we find the follow-

ing: in Fig. 4 we find a higher annual aggregate loss to layer

standard deviation for the clustered simulations with zero re-

instatements. In Fig. 5 we find a lower annual aggregate loss

to layer standard deviation for the clustered simulations with

zero re-instatements. The results in Fig. 5 are more in line

with the reasoning based on the first maximum loss being the

dominant contributor. The lower right panels of Figs. 4 and

5 confirm this reasoning: in the case of Fig. 5, the first maxi-

mum is the dominant contributor (not the case in Fig. 4). This

corresponds to our intuition that the maximum loss would be

the dominant contributor for layers with higher return periods

for the attachment and exhaustion points (in Fig. 4 the layer

is defined for return periods 2–20 and in Fig. 5 for 20–50).

Based on these results, it is difficult to draw a very gen-

eral conclusion. However, our results do demonstrate that in

the case of zero re-instatements, it is likely that the annual

maximum loss explains the majority of the loss to layer. As a

result, the integral of the OEP can be used to understand, to

first order, the behaviour of changes in catXL contract prices

when shifting from a Poisson to clustered model.
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5 Summary and conclusions

This paper addresses the problem of how to model clustered

natural hazard phenomena and explores the consequences of

clustering for an important class of risk transfer contracts

used to manage natural hazard risk. We provide a simple con-

ceptual framework for building a clustered model and review

the properties of a Poisson mixture formulation of this frame-

work. Using an archive of historical European windstorm

data, we demonstrate the superiority of a Poisson-mixture-

based clustered model over a Poisson model. We then ex-

plore the consequences of modelling clustering in the con-

text of catastrophe excess of loss contracts, one of the most

common and important risk transfer mechanisms.

Section 2 describes our conceptual framework in detail

and is based on the idea of identifying cluster groups asso-

ciated with unique physical drivers, an approach that is well

established in the literature (Kossin et al., 2010; Camargo et

al., 2007, 2008; Gaffney et al., 2007). Section 2 continues

by reviewing a Poisson mixture methodology (e.g. Wang,

1998) for modelling clustered processes. The Poisson mix-

ture methodology introduces overdispersion by modulating

the annual rate of storms within a cluster group using random

draws from a prescribed gamma distribution. In the context

of natural hazard risk modelling, our view is that this method-

ology has a number of useful properties: (1) this methodol-

ogy goes beyond the homogeneous Poisson process by en-

forcing cross-event correlation, (2) has an overdispersion that

can be calibrated to reflect the properties of the underlying

natural phenomena and (3) is analytically tractable which

leads to useful insights and can make numerical implementa-

tion easier. Variants of the Poisson mixture approach we de-

scribe have been in applied in other contexts: see for example

Eastou and Tawn (2010). Beyond Poisson-mixture-type ap-

proaches, we note that many alternatives for modelling clus-

tering exist: see for example Villarini et al. (2013) for recent

work.

In Sect. 3, we begin by analyzing data derived from a set

of 135 European windstorm event reconstructions, represent-

ing intense events that occurred during the period from 1972

to 2010. Each historical wind-field reconstruction is summa-

rized by a storm severity index which is a quantity that is

related to the insured loss. We find that this historical record

has an overdispersion of 1.39. We then build a model of the

data based on a Poisson frequency assumption. Not only is

the Poisson model under-dispersive (by definition having an

overdispersion 1.0), we find that the occurrence exceedance

statistics (representing the statistics of the first, second, third

and fourth annual storm severity maxima) given by the Pois-

son model do not lie within the range of uncertainty implied

by the empirical data. We find that the Poisson model as-

signs a very long return period (> 5000 years) to a year like

1990 (with four significant events) in the historical data. We

then use the Poisson mixture methodology to build a clus-

tered model. The criteria that we chose to use in calibrating

the clustered model were as follows: (1) the model should

only cluster the more intense events; this is consistent with

the finding in the scientific literature that more intense events

exhibit the highest degree of clustering (Mailier et al., 2006;

Pinto et al., 2013; Vitolo et al., 2009). (2) The model should

generate occurrence exceedance statistics that lie within the

range of uncertainty implied by the historical data. (3) The

model overdispersion should be reasonably close to the his-

torical data. In the model calibration process, a large ensem-

ble of models was tested, varying both the storm severity in-

dex threshold (beyond which clustering was applied) and the

gamma variance. Our chosen model generated an overdis-

persion of 1.38, and the occurrence exceedance statistics are

consistent with the range of uncertainty implied by the histor-

ical data. The clustered model also assigned a return period to

the important year 1990 of between 500 and 1000 years. For

these reasons, our view is that the clustered model is vastly

superior to the Poisson model.

The historical data set used in Sect. 3 appears to exhibit

strong clustering. While it is beyond the scope of this paper

to explore the physical drivers in detail, we note that Euro-

pean windstorm clustering has been shown to be associated

with a number of large-scale atmospheric patterns such as

the North Atlantic Oscillation (e.g. Mailier et al., 2006; Pinto

et al., 2009). We believe that these patterns are the underly-

ing driver of the high degree of overdispersion we see in our

chosen historical record. The approach we have outlined for

modelling clustering is what we would call a “top-down” ap-

proach, in that we are using statistical modelling to model the

behaviour we see in the data in order to generate good natural

hazard risk models. One inherent limitation of this approach

is the limited historical record that we have to work with.

In the long run, we anticipate that clustering models will be

more strongly informed by numerical modelling. For exam-

ple in Pinto et al. (2013) the use of numerical modelling for

understanding clustering is discussed.

Section 4 explores the impact that clustered simulations

have on statistics used in models of catXL contract prices.

CatXL contracts are used by insurance companies to trans-

fer risk to reinsurance companies. In the limit of infinite re-

instatements, we find that clustering has no impact on the

mean loss but increases the standard deviation of the annual

aggregate loss due to the increased correlation between the

first, second and so on maxima in the timeline simulation.

For small numbers of re-instatements, and in particular zero

re-instatements, we find that in cases where the maximum

annual loss represents the vast majority of loss to the catXL

contract layers, one can understand the impact that cluster-

ing has on the mean and standard deviation by understanding

the impact that clustering has on the occurrence exceedance

probability curve. These results provide unique insights into

the impact modelling clustering is expected to have in catXL

contract pricing. The results in this paper can be used as a

starting point to understand the case where we have an inter-

mediate number of re-instatements.
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We anticipate that in the future, non-Poisson/clustered nat-

ural hazard catastrophe risk models will be more commonly

used to quantify risk, and some of the understanding we have

developed in this paper may be useful in that wider context.
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Appendix A: Probability generating function for the

Poisson mixture formulation

By definition, the probability generating function conditional

on one particular 2= θ is given by

PN1,...,NMk |2

(
z1, . . .,zMk

)
= E

[
z
N1

1 , . . .,z
NMk
Mk
|2= θ

]
(A1)

for cluster k. The expectation is over the joint frequency dis-

tribution for the random variables N1, . . .,NMk
. To develop

the probability generating function for the Poisson mixture

framework frequency distribution, we need to integrate over

the modulating gamma distribution (g(θ |1/τk,τk)) as fol-

lows:

PN1,...,NMk

(
z1, . . .,zMk

)
=

∞∫
−∞

E
[
z
N1

1 , . . .,z
Nk
k |2= θ

]
g (θ |1/τk,τk)dθ, (A2)

where τk is the variance of the gamma modulating distribu-

tion (cluster k). The above expression can be shown to be

PN1,...,NMk

(
z1, . . .,zMk

)
= [1− τk (λ1(z1− 1)− . . .

−λMk
(zMk
− 1)

)]−1/τk . (A3)

As noted in Wang (1998), this defines a multi-variate nega-

tive binomial distribution with a mean annual rate of λk =∑Mk

j=1λk,j and variance λk + τkλ
2
k .

Appendix B: Definitions of the OEP and OEP2

We start by defining the occurrence exceedance probability.

Let M1 be a random variable representing the maximum an-

nual loss (or intensity SSI250 as in Sect. 3). Let N be a ran-

dom variable representing the number of events in a year.

Given an event occurrence, assume that F(l) represents the

cumulative probability of the loss L at loss threshold l. For

a given loss threshold l the cumulative probability that the

maximum annual loss is below l is given by

FM(l)= Pr(M ≤ l)= p0+p1F(l)+p2F(l)
2
+ . . ., (B1)

where pn is the probability of getting n= 0,1,2, . . . events.

The first term accounts for the probability of getting zero

events in any given year. The second term accounts for the

probability of getting one event (and if we do get one event,

it needs to be below the threshold and hence the F(l) in the

second term on the right hand in the above equation). The

third term in the above expression represents the case where

we have two events in a given year, and both must be be-

low the threshold. The summation continues up to values of

N for which the annual probability is 0 (if that occurs). By

definition, the OEP(l)= 1−FM(l).

To obtain the OEP2, we have the following cumulative

probability for the random second annual maximum loss:

FM2(l)= Pr(M2≤ l)= p0+p1+p2(F (l)
2

+ 2F(l)(1−F(l)))+p3

(
F(l)3+ 3F(l)2

(1−F(l)))+ . . . (B2)

The logic behind the third term above is as follows: if there

are two events, one configuration where the second ran-

dom maximum is below l is where both events are below

l whose probability is given by F(l)2. However, there are

two other configurations that need to be accounted for: one

event is below the threshold and one event is above. The to-

tal probability associated with these configurations is given

by 2F(l)(1−F(l)) (as this can happen in two ways). By def-

inition, the OEP2= 1−FM2(l). Similar logic can applied to

the case of the OEP3 and OEP4. The basic idea is that given

a fixed number of events, one needs to account for all the

possible ways the maximum under consideration can be be-

low a given threshold. Readers are referred to David and Na-

garaja (2003) for a comprehensive treatment of these order

statistics.

Appendix C: Impact of clustering on the OEP

In Appendix B, the expression for the cumulative probability

of the maximum annual loss is shown. This, by definition,

is the probability generating function of F(l). For a Pois-

son frequency assumption FM(l)= e
−λ(1−F(l)). For a Pois-

son mixture implementation in which we preserve the mean

annual rate of occurrence, the probability generating func-

tion shown in Appendix A leads to the following expres-

sion for the cumulative probability of the maximum loss:

FM(l)= (1− τλ(F (l)− 1))−1/τ .

The OEP for the Poisson case is given by 1 minus the cu-

mulative probability or just 1− e−λ(1−F(l)). The OEP for the

clustered case is 1− (1−τλ(F (l)−1))−1/τ . To simplify, we

define C = 1−F(l). The key to understanding the relativity

of the Poisson and clustered OEP is to look at the ratio of the

Poisson OEP to the clustered OEP given by

1− e−λC

1− (1+ τλC)−1/τ
. (C1)

As the loss threshold becomes large, C→ 0, and the above

ratio tends to 1. This implies that the Poisson and clustered

OEP converge to one another for large loss thresholds. As

well, the above ratio is less that 1 (not shown here) for all loss

thresholds (for positive values of τ ), which is easily demon-

strated numerically or by simple proof.
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Appendix D: Impact of clustering on the event

exceedance frequency

Assume that we have an event table comprised of M events

with mean annual rates of λi where i = 1, . . .,M . The dis-

tribution of loss associated with event i is p(li). Consider

a simulation using only the event i. We want to compute

the average annual number of losses that exceed l∗, which

is called the event exceedance frequency. This is by defini-

tion the mean annual rate of event i times the probability that

the loss exceeds l∗ (given that event i has occurred):

EEFi(l
∗)= E(Ni)p(li > l

∗). (D1)

For the entire event set, we take the sum over all events to get

EEF(l∗)=

M∑
i=1

E(Ni)p(li > l
∗), (D2)

which can be re-written as

EEF(l∗)=

M∑
i=1

(

∞∑
ni=0

pnini)p(li > l
∗), (D3)

where pni is the annual probability of getting ni occurrences

of event i. Note that while clustering will change the pni val-

ues, the sum will not change, because by construction we

only consider the case where the expectation is not changed.

The formulation of Poisson mixtures we have discussed in

this paper does not, therefore, change the EEF.

Appendix E: Catastrophe excess of loss contract: mean

loss for infinite re-instatements

We consider a catXL contract with an attachment point E

and exhaustion point A (as defined in Sect. 4). We consider

an aggregate limit AL= (E−A)(1+ r) where r is the num-

ber of re-instatements. We consider the limit as r→∞. Our

event table is comprised of i = 1, . . .,M events. Assume that

each event has an event loss distribution p(li). First con-

sider the event i. Let Sni represent a random variable repre-

senting the sum of losses due to ni occurrences of event i.

Let pni represent the annual probability of getting ni oc-

currences of event i in a year. Let E(Sni ) be the expected

loss to the catXL layer due to ni occurrences of event i.

The expected loss due to ni occurrences of event i is sim-

ply E(Sni )= ni
∫ E
A
(1−p(li < l))dl, which is ni times the

integral of 1 minus the cumulative probability for the loss of

event i. Then, by definition, the expected loss due to event i,

is

∞∑
ni=0

pnini

E∫
A

(1−p(li < l))dl = λi

E∫
A

(1−p(li < l))dl, (E1)

where λi is the expected number of annual occurrences of

event i. The above is completely general in that pni need not

be Poisson. Now, the mean annual loss (denoted “AAL” for

average annual loss) is simply

AAL=

M∑
i=1

λi

E∫
A

(1−p(li < l))dl, (E2)

adding up the contributions from each event in our event ta-

ble. Dividing both sides above by λtot =
∑M
i=1λi gives

AAL

λtot

=

∑M
i=1λi

∫ E
A
(1−p(li < l))dl

λtot

=

E∫
A

CEP(l)dl, (E3)

where “CEP” is the conditional event exceedance probability

by definition. Hence, we see that the mean annual loss can be

written as λtot

∫ E
A

CEP(l)dl.

We can shift our point of view in the above argument and

think of E(Sni ) as the expectation of the losses to the catXL

layer given only the events whose loss distributions have sup-

port beyondA. We denote this Ẽ(S̃ñi ). We can think of pni as

the annual probability of getting ni events with losses above

the attachment pointA, which we denote p̃ñi . Finally, we can

think of p̃(̃li) as the probability distribution of the loss to the

layer given that the event loss is above A. Our mean loss due

to event i then becomes

∞∑
ñi=0

p̃ñi ñi

∞∫
0

(1− p̃(̃li < l))dl. (E4)

In the equation above, we integrate the loss distribution from

0 to ∞ so we are guaranteed to cross the exhaustion point

(where there will be a delta function). Taking the sum of

the above equation over the M events, we get a mean loss

equal to λ̃
∫
∞

0
ACEP. In this set up, λ̃ is the exceedance rate

of event losses above the exhaustion point A and
∫
∞

0
ACEP

is the mean loss to layer per event given that it causes a loss

to the layer (A is used to denote above the attachment). Fi-

nally, as we have discussed above, the exceedance frequency

of event losses beyond any loss threshold is unaffected by the

inclusion of clustering (as we have constructed it that way).

Therefore, catXL mean losses do not change with the inclu-

sion of clustering.

www.nat-hazards-earth-syst-sci.net/15/1357/2015/ Nat. Hazards Earth Syst. Sci., 15, 1357–1370, 2015



1370 S. Khare et al.: Framework for modelling clustering

Acknowledgements. The authors would like to thank Greer

Kingston and Kechi Nzerem for helpful contributions during the

research and development phase of model development that was

the precursor to the results presented in this paper. We also thank

the anonymous reviewers for comments that led to significant

improvements in the paper. Any views or opinions presented in this

article are those of the authors and do not necessarily represent

those of their employers.

Edited by: B. Merz

Reviewed by: two anonymous referees

References

Bonazzi, A., Cusack, S., Mitas, C., and Jewson, S.: The spatial

structure of European wind storms as characterized by bivariate

extreme-value Copulas, Nat. Hazards Earth Syst. Sci., 12, 1769–

1782, doi:10.5194/nhess-12-1769-2012, 2012.

Camargo, S. J., Robertson, A. W., Gafffney, S. J., Smyth, P., and

Ghil, M.: Cluster analysis of typhoon tracks. Part I: General prop-

erties, J. Climate, 20, 3635–3653, 2007.

Camargo, S. J., Robertson, A. W., Barnston, A. G., and Ghil,

M.: Clustering of eastern North Pacific tropical cyclone tracks:

ENSO and MJO effects, Geochem. Geophys. Geosyt., 9,

Q06V05, doi:10.1029/2007GC001861, 2008.

David, H. A. and Nagaraja, H. N.: Order statistics, Wiley Series in

Probability and Statistics, 2003.

Eastou, E. F. and Tawn, J. A.: Statistical models for overdispersion

in the frequency peaks over threshold data for a flow series, Water

Resour. Res., 46, W02510, doi:10.1029/2009WR007757, 2010.

Gaffney, S. J., Robertson, A. W., Smyth, P., Camargo, S. J., and

Ghil, M.: Probabilitic clustering of extratropical cyclones using

regression mixtures models, Clim. Dynam., 29, 423–440, 2007.

Kingman, J. F. C.: Poisson Processes. Oxford Studies in Probabil-

ity, 3. The Clarendon Press, Oxford University Press, New York,

1993.

Klugman, S. A., Panjer, H. H., and Willmot, G. E.: Loss models –

from data to decisions, Wiley Series in Probability and Statistics,

2012.

Kossin, J. P., Camargo, S. J., and Sitkowski, M.: Climate modulation

of north Atlantic hurricane tracks, J. Climate, 23, 3057–3076,

2010.

Mailier, P. J., Stephenson, D. B., Ferro, C. A. T., and Hodges, K. I.:

Serial clustering of extratropical cyclones, Mon. Weather Rev.,

134, 2224–2240, 2006.

Makkonen, L.: Plotting positions in extreme value analysis, J. Appl.

Meteorol. Climatol., 45, 334–340, 2006.

Pinto, J. G., Bellenbaum, N., Karremann, M. K., and Della-Marta,

P. M.: Serial clustering of extratropoical cyclones over the North

Atlantic and Europe under recent and future climate conditions,

J. Geophys. Res.-Atmos., 118, 12476–12485, 2009.

Pinto, J. G., Zacharias, S., Fink, A. H., Leckebusch, G. C., and Ul-

brich, U.: Factors contributing to the development of extreme

North Atlantic cyclones and their relationship with the NAO,

Clim. Dynam.-Atmos., 32, 711–737, 2013.

Villarini, G., Smith, J. A., Vitolo, R., and Stephenson, D. B.: On the

temporal clustering of US flood and its relationship to climate

teleconnection patterns, Int. J. Climatol., 33, 629–640, 2013.

Vitolo, R., Stephenson, D. B., Cook, I. M., and Mitchell-Wallace,

K.: Serial clustering of intense Europeanstorms, Meteorol. Z.,

18, 411–424, 2009.

Wang, S. S.: Aggregation of correlated risk portfolios: Models and

algorithms, available at: https://www.casact.org/pubs/proceed/

proceed98/980848.pdf, 1998.

Nat. Hazards Earth Syst. Sci., 15, 1357–1370, 2015 www.nat-hazards-earth-syst-sci.net/15/1357/2015/

http://dx.doi.org/10.5194/nhess-12-1769-2012
http://dx.doi.org/10.1029/2007GC001861
http://dx.doi.org/10.1029/2009WR007757
https://www.casact.org/pubs/proceed/proceed98/980848.pdf
https://www.casact.org/pubs/proceed/proceed98/980848.pdf

	Abstract
	Introduction
	A framework for modelling clustered natural hazard processes
	Motivation and background: Poisson versus clustered timeline simulation
	Conceptual framework for modelling clustering
	Poisson mixture methodology

	A simple clustered model of European windstorm data
	Implications of clustering for catastrophe excess of loss contract pricing
	Infinite re-instatements
	Zero re-instatements

	Summary and conclusions
	Appendix A: Probability generating function for the Poisson mixture formulation
	Appendix B: Definitions of the OEP and OEP2
	Appendix C: Impact of clustering on the OEP
	Appendix D: Impact of clustering on the event exceedance frequency
	Appendix E: Catastrophe excess of loss contract: mean loss for infinite re-instatements
	Acknowledgements
	References

