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Abstract. Structural damage assessment is critical after dis-

asters but remains a challenge. Many studies have explored

the potential of remote sensing data, but limitations of verti-

cal data persist. Oblique imagery has been identified as more

useful, though the multi-angle imagery also adds a new di-

mension of complexity. This paper addresses damage assess-

ment based on multi-perspective, overlapping, very high res-

olution oblique images obtained with unmanned aerial vehi-

cles (UAVs). 3-D point-cloud assessment for the entire build-

ing is combined with detailed object-based image analysis

(OBIA) of façades and roofs. This research focuses not on

automatic damage assessment, but on creating a methodol-

ogy that supports the often ambiguous classification of inter-

mediate damage levels, aiming at producing comprehensive

per-building damage scores. We identify completely dam-

aged structures in the 3-D point cloud, and for all other

cases provide the OBIA-based damage indicators to be used

as auxiliary information by damage analysts. The results

demonstrate the usability of the 3-D point-cloud data to

identify major damage features. Also the UAV-derived and

OBIA-processed oblique images are shown to be a suitable

basis for the identification of detailed damage features on

façades and roofs. Finally, we also demonstrate the possibil-

ity of aggregating the multi-perspective damage information

at building level.

1 Introduction

The challenges and importance of structural damage assess-

ment, in particular its critical role in efficient post-disaster

response, have placed this discipline in the spotlight of the

remote sensing community (Rastiveis et al., 2013). The in-

formation generated is primarily used by search and rescue

(SAR) teams but is also valuable for many other stakehold-

ers engaged in post disaster activities, such as those dealing

with estimation of economic loses, recovery, or reconstruc-

tion (Barrington et al., 2011).

For rapid damage assessment, remote sensing has been

found to be very useful, as it can cover large areas, and

image-based assessments are realized more rapidly than

through ground deployment of appropriately skilled survey-

ors. However, so far it has not reached the level of detail and

accuracy of ground-based surveys, a target our research aims

at helping to reach. The limitations of image-based dam-

age assessment are only partly related to the spatial reso-

lution of the sensors. The primary problem is the vertical

perspective of most operational sensors that largely limits

the building information to the roofs. This roof informa-

tion is well suited for the identification of extreme damage

states, i.e. completely destroyed structures or, to a lesser ex-

tent, undamaged buildings. However, damage is a complex

3-dimensional phenomenon, and important damage indica-

tors expressed on building façades, such as cracks or inclined

walls, are largely missed, preventing an effective assessment

of intermediate damage states.

Oblique color imagery, which shows both roof and

façades, was already identified as a potential solution by Mit-

omi et al. (2001), who attempted to use oblique TV footage

to map structural damage. Commercial oblique color data

acquired by Pictometry© of post-earthquake Port-au-Prince

(Haiti) were tested by Gerke and Kerle (2011a) and Cam-

bridge Architectural Research Ltd. (CAR), among others,

and were found to be more useful than conventional verti-

cal images. However, such data also lead to challenges re-

sulting from the multi-perspective nature of the data, such as
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how to create single damage scores when multiple façades

are imaged. Part of the solution to these challenges lies in

modern oblique data that are acquired as multi-perspective

stereo pairs, which allow the generation of 3-D point clouds.

These exceed standard LiDAR point clouds in terms of de-

tail, especially at façades, and provide a rich geometric envi-

ronment that favors the identification of more subtle damage

features, such as inclined walls, that otherwise would not be

visible, and that in combination with detailed façade and roof

imagery have not been studied yet.

Nevertheless, commercial oblique imagery is typically dif-

ficult to obtain in disaster situations, and control over data

acquisition with piloted aircraft (e.g. Pictometry©) tends to

be limited for researchers or disaster responders. Unmanned

aerial vehicles (UAVs) appear to be an alternative, especially

because of their ability to obtain data at higher spatial reso-

lution, but also because they afford more flexible data acqui-

sition that improves the quality of the point clouds that can

be derived.

The image interpretation process still typically relies on

expert-based visual assessment because of the complexity

of the task. Most operational post-disaster damage mapping,

such as the processing of satellite data acquired through the

International Charter “Space and Major Disasters”, remains

based on visual interpretation (e.g. Kerle, 2010; Voigt et al.,

2011). While oblique airborne data should in principle al-

low an easier and more accurate damage assessment, ow-

ing to their comparatively high spatial resolution and more

complete representation of a building, the data richness itself

actually hinders more automated analysis procedures. How-

ever, there seems to be an inherent limitation of remote sens-

ing imagery for damage assessment, regardless of type and

quality: visual analysis of the Pictometry© data of Port-au-

Prince by CAR also only achieved accuracy rates of 63 %

when compared with ground assessment (Corbane et al.,

2011, K. Saito, personal communication, July 2010). Never-

theless, expert-based visual assessment of complex data also

only relies on directly visible spectral indicators and rela-

tively coarse geometric information. Combining those indi-

cators that form the basis for visual assessment with more

subtle geometric features from 3-D point clouds may lead to

better performance.

Automatic image analysis techniques for building dam-

age assessment (BDA) can be broadly grouped into pixel-

and object-based methods. In a variety of domains, object-

based techniques have shown advantages over pixel-based

approaches (Yamazaki and Matsuoka, 2007). This tendency

has to do with the spatial resolution of modern remote sens-

ing images, where target elements are clusters of pixels that

are better captured by objects rather than pixels (Johnson

and Xie, 2011). Additionally, object-based image analysis

(OBIA, in the literature also referred to as object-oriented

image analysis, OOA) adds a cognitive dimension that is ex-

pected to help in a detailed object classification.

In this study we thus aimed at maximizing the potential

of modern multi-perspective oblique imagery captured from

UAVs, using both the high-resolution image data and derived

3-D point clouds, resulting in a detailed representation of all

parts of a building. This comprehensive appraisal that ap-

proaches ground-based damage assessment in terms of com-

plexity and completeness was coupled with a semi-automatic

extraction of a range of damage indicators using OBIA. This

allowed a complete characterization of the images, especially

by using OBIA’s cognitive dimension for the damage fea-

tures extraction. In this study we did not yet aim at an auto-

matic classification into per-building damage scores. Instead,

our assumption was that severe damage could be determined

directly from the 3-D point cloud data, while for the distin-

guishing of lower damage levels structural engineering ex-

pertise remains necessary. Therefore, in an earlier study, a

Master of Science thesis that triggered this more detailed re-

search (Fernandez Galarreta, 2014), we created a set of ex-

periments to enhance the UAV images by annotating them

with the OBIA-extracted damage features. The damage fea-

tures were given to experts in ground-based damage assess-

ment to assess the added value of the OBIA information, but

also to study scoring variability and uncertainty among the

experts.

Therefore, in the final part of this study we addressed the

multi-perspective dimension of the data set, taking into ac-

count all information collected from the façades and roofs,

and aggregating it at a building level by mimicking the cog-

nitive assessment process of ground surveyors.

2 State of the art in image-based damage assessment

Remote sensing for BDA has undergone tremendous changes

over time. Its roots go back to George Lawrence and his

49 pound camera attached to a set of kites over earthquake-

ravaged San Francisco in 1907, and today, companies such as

Skybox (2013) can deliver HD videos from satellites. How-

ever, the challenges of BDA are only partly rooted in image

type and spatial image resolution; viewing angle, understand-

ing of the damage features, subjectivity, amongst others, are

factors that also play a role in the complexity of this kind of

study.

The utility of almost every platform and sensor, in their

multiple combinations, has been assessed for BDA. There are

many examples of successful studies where the results ob-

tained have been satisfactory and useful, e.g. Li et al. (2010)

using VHR satellite imagery, Ehrlich et al. (2009) processing

VHR radar imagery, or Khoshelham et al. (2013) employing

aerial LiDAR data sets. For a deeper review of platforms and

data types used for damage mapping see reviews by Kerle

et al. (2008), Zhang and Kerle (2008), and Dell’Acqua and

Gamba (2012).

For the above mentioned studies, regardless of their differ-

ent sensor/platform combinations, the perspective constraint
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applies: the typically near-vertical perspective of sensors ef-

fectively limits the damage signature to the roofs (Gerke

and Kerle, 2011a), resulting in a high dependence on prox-

ies, e.g. changes in shadows, or evidence of blow-out debris

(Kerle and Hoffman, 2013). In reality, structural damage is a

phenomena expressed in all parts of the building and, in par-

ticular, the intermediate damage levels tend to display dam-

age evidences in their façades, absence of which in vertical

data constitutes a several limitation for complete BDA.

To solve this constraint, color images have been acquired

from an oblique perspective to allow the evaluation of build-

ing façades. Mitomi et al. (2001) and Rasika et al. (2006)

were examples of early use of this type of non-conventional

imagery. However, despite studies such as by Weindorf et

al. (1999) that tried to overcome low image quality issues,

challenges continued to persist. Recent, more sophisticated

and controlled image acquisition systems, such as Pictome-

try or multi-head mid-format camera systems offered by Mi-

crosoft or Hexagon, have allowed data processing based on

advanced photogrammetry and machine learning principles

(Gerke and Kerle, 2011b). However, besides the improve-

ments offered by oblique imagery acquired from piloted plat-

forms, UAVs provide additional advantages (Nonami et al.,

2010): fully controlled flight, VHR imagery of up to 2 cm

resolution that allows detection of fine cracks, and the large

degree of image overlap that supports the generation of very

detailed point clouds. However, UAVs are still in develop-

ment and have to overcome a variety of issues, such as short

battery life, and thus limited area of coverage, unforeseen be-

havior in variable atmospheric conditions, typically limited

pilot training of the user, and legislation that severely limits

the use of UAVs in most countries.

As stated before, image interpretation for BDA is not triv-

ial, especially in complex urban areas. Manual approaches

constitute an easy and direct method, though with a number

of constraints compared with automatic approaches. Con-

versely, they are capable of addressing damage holistically,

i.e. in its entirety, as expert knowledge can be well matched

to a given level of ambiguity and uncertainty (Rastiveis et

al., 2013). Automatic approaches developed to date have

struggled to deal with uncertainty inherent in damage assess-

ment, although approaches such as by Rastiveis et al. (2013),

who explored fuzzy decision making approaches, or by Li et

al. (2010), who studied urban damage detection incorporat-

ing support vector machines and spatial relations, have been

trying to overcome this limitation.

Within the class of automatic approaches, OBIA tech-

niques frequently outperform pixel-based methods for rea-

sons given above. In particular, recent work aiming at

automatic identification of optimal segmentation settings,

e.g. Drăgut et al. (2014)’s ESP 2.0 tool, the plateau objec-

tive function of Martha et al. (2011), or research on the use

of machine learning for better identification of suitable im-

age features and for threshold / parameterization (e.g. Stumpf

and Kerle, 2011) have increased the utility of OBIA for more

complex automated procedures.

Besides the object-based approach, one of the most inter-

esting advantages of OBIA is its cognitive dimension. This

has already been exploited in other fields, such as landslide

mapping (Lu et al., 2011), but to date has not been used for

detailed BDA. This cognitive dimension aims at supporting a

damage-feature extraction that frequently is more conceptual

than physical (Kerle and Hoffman, 2013). Damage features,

due to their complexity and variability, are frequently hard

to reduce to a number of parameters to describe them as an

image-feature.

BDA conventionally makes use of a damage scale. The

European Macroseismic Scale of 1998 (EMS-98; Grünthal,

1998) is a damage scale that classifies buildings from D1

(negligible damage) to D5 (total collapse). Even though it

is the most commonly used damage scale for image-based

BDA, the EMS-98 was originally created for ground surveys,

leading to several drawbacks such as vague description of

damage features. Besides, it is based on damage features that

do not add up linearly to a per-building damage score. Ex-

amples that illustrate the challenges of using a scale might

require a new approach in the near future.

3 Methods and data used

This study aimed at generating per-building damage scores

based on oblique, multi-perspective, highly overlapping and

very high resolution imagery. Those were primarily acquired

with a UAV, and partly with a camera attached to a pole, (de-

tails on image acquisition are given in Sect. 3.1). From the

multi-view imagery, 3-D point clouds were generated to al-

low experts to visually identify the most affected building:

D4–D5 (Sect. 3.2). Subsequently, the façade and roof images

of the buildings that were still standing were analyzed with

OBIA, where damage features were extracted Sect. 3.3). In

a separate experiment by Fernandez Galarreta (2014) the im-

age data of buildings for which the 3-D point clouds did not

reveal extensive damage, or the damage features were not vi-

sually identified, were subjected to expert assessment. Each

image with overlaid information from the OBIA damage-

feature extraction being assigned to an EMS-98 score and

a certainty measurement. The process of aggregating the in-

dividual scores at building level, and thereby simulating the

understanding of the expert surveyors on the ground, is de-

scribed in detail in Sect. 3.4. Figure 1 provides an overview

of the methodology.

3.1 Data used

The data for this study were collected with an Aibot X6 V.1

UAV (Fig. 2a), and with a camera attached to a 7 m pole

(Fig. 2b). Several acquisition campaigns were made: Gronau

(Germany), Enschede (The Netherlands) and several loca-
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Figure 1. Overview of the methodology. ∗ Fernandez Galarreta (2014).

Figure 2. The two platforms used to collect data. (a) Aibot X6 V1 UAV, (b) camera attached to a pole.

tions near Bologna (Italy), where an earthquake in 2012

caused extensive structural damage. The images of the build-

ing used in this study belong to different buildings, although

sometimes we use them as a part of one conceptual building

which does not exist in the real world.

The UAV flights were planned beforehand using the way-

point capability of modern UAV systems, and included both

vertical and oblique image acquisition. The former was de-

fined in a stripwise manner to achieve 80 % end lap and 30 %

side lap, using a Canon 600D with a 40 mm fixed zoom

Voigtländer lens. Flying at 70m altitude resulted in image

footprint of approx. 40 × 25 m and a nominal pixel resolu-

tion of 7 mm. The oblique flight was realized using a circular

setup, i.e. to fly a circle with a radius of 70 m and a camera

nick angle of 45◦.

For the camera attached to the pole, a simple Canon Power

Shot S100 was used to simulate an UAV flight. The camera

was moved around the building at an approximate distance

of 15 m to the façade using three different camera heights (3,

5 and 7 m). This resulted in images with pixel resolutions of

better than 1 cm.

3.2 3-D point cloud assessment

The aim of this step was that experts could visually identify

in the 3-D point cloud a number of damage features that are

related to D4 and D5: total collapse, collapsed roof, rubble

piles and inclined façades. This step was expected to be ex-

pert subjective because the definition of thresholds for the

identification of the mentioned damage features would be a

mistake due to their complexity and variety of representa-

tions. It was also meant to limit the more detailed assessment

to those building without clear D4-D5 damage features ex-

pressed in their 3-D point clouds.

The test data set used to identify the damage features com-

prised four 3-D point clouds (Fig. 3) generated from the

oblique overlapping images as explained below.

Image processing started with the computation of cam-

era parameters, such as intrinsic and orientation informa-

tion, using a structure-from-motion approach. Musialski et
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Figure 3. The 3-D point clouds used to identify the mentioned damage features. (a) Total collapse (Italy: pole-based), (b) partly collapsed

roof (Germany: UAV-based), (c) rubble pile (Italy: pole-based), and (d) frontal view of an inclined wall (Italy: pole-based). Scale approx.

al. (2013) give a comprehensive overview of state-of-the-

art algorithms, such as implemented in the software Au-

todesk 123D Catch (Autodesk-123D, 2014). The scale of the

sparsely reconstructed scene and the placement of the local

coordinate system is generally arbitrary; hence, a local co-

ordinate system was subsequently defined where the z axis

was chosen to point upwards. In those cases where GPS was

available (for the UAV, not for the pole images), the scale and

coordinate layout were defined through GPS information.

Through the subsequent dense image matching (Furukawa

and Ponce, 2010), the initial point cloud was substantially

densified. In case of well-textured areas one 3-D point for

each image pixel is achievable. The accuracy of the points

depends mainly on the image configuration. In our case the

standard deviation was estimated to be in the range of the

pixel resolution.

Following the construction of the 3-D point cloud, for each

point, a local tangent plane was computed from adjacent

points. In particular, the z component of the normal of this

plane was of interest. It is the smallest eigenvector computed

from the co-variance matrix of the neighborhood points. The

z component takes values from 0 (vertical) to 1 (horizontal),

and it was converted to degrees by calculating its arcsine; it

scaled the parameter from 0◦ (vertical) to 90◦ (horizontal)

for better user understanding. The expected outcome was the

possibility to visually identify D4 and D5 damage elements

from the z component of the 3-D point cloud.

More automatic approaches for BDA with LiDAR point

clouds have previously been attempted (Khoshelham et al.,

2013; Oude Elberink et al., 2011). However, approaches for

the denser point clouds damage-feature extraction are still

being developed (Weinmann et al., 2013).

3.3 OBIA-based damage-feature extraction

The goal of this step was to proceed with a more detailed

façade and roof analysis of the buildings that did not show

any D4–D5 damage feature in the previous step. Several al-

gorithms were created in eCognitionTM (Trimble, 2013) to

extract from the images several damage features that can be

expected in those façades and roofs. The importance of this

section relied on three aspects: the detail of the damage as-

sessment that was similar to ground-based surveys, the focus

on the façade damage features that tend to be excluded in

the conventional remote sensing based BDAs, and the use of

OBIA to bring the cognitive dimension into the BDA frame-

work, which helped to simulate expert-based assessment.

The data set used in this section comprised 11 VHR

images that represented roofs and two different types of

façades: concrete and brick (Fig. 4). The selection of the im-

ages was done manually due to the complexity of the sce-

narios. For each of the three types, a rule set was created to

extract the damage features.

The damage-feature extraction can be subdivided into two

steps: image segmentation and object classification, followed

by results export and accuracy assessment. But first useful

damage features to be extracted from the images had to be

identified. In this case the same damage features as in Fer-

nandez Galarreta (2014) were selected: cracks, holes, inter-

section of cracks with load-carrying elements and dislocated
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Table 1. Segmentation parameters and classification features for the three developed rule sets.

Parameters Roof Concrete Brick

façade façade

1st segmentation: Scale factor 75 100 25

multiresolution algorithm Shape 0.2 0.8 0.2

Compactness 0.2 0.5 0.2

2nd segmentation: Maximum spectral 20 20 35

spectral difference difference

segmentation

Classification Features Area Area, max. difference, relative border to – ,

compactness, rectangular fit and

length / width ratio (Trimble, 2011)

Figure 4. Examples of the different images used in this section. (a) Roof with dislocated tiles, (b) cracks in concrete façade, and (c) cracks

and hole in brick façade. Scale approx.

tiles. These damage features are the characteristic of interme-

diate damage in façades and roofs. In addition, non-damage

related features also had to be classified as part of the pro-

cess: façade, window, column and intact roof.

1. Image segmentation: the aim of image segmentation

was to generate meaningful damage related objects that

could be easily characterized. In order to achieve that a

two-step segmentation approach was implemented. This

was chosen over automatic segmentation approaches

such as the Estimation of Scale Parameter (ESP 2.0;

Drăguţ et al., 2014), because of the possibility of ob-

jectively using such a parameter selection process as an

extra tool to capture the target objects. The two-step

segmentation started with a multiresolution segmenta-

tion algorithm, using a small scale factor (Table 1). This

resulted in a desired over-segmentation meant to cap-

ture every small detail in the image, such as individ-

ual bricks, tiles and sections of cracks. The secondary

parameters (shape and compactness) were modified ac-

cordingly in order to fit the requirements of the image-

features that had to be captured: individual and con-

trasted image-features (Table 1). Subsequently, a spec-

tral difference segmentation was applied on the pre-

viously generated objects. The goal was to merge the

more homogeneous objects (façade and intact roof ob-

jects) into larger ones, whilst retaining the heteroge-

neous, damage related objects (cracks and dislocated

tiles) as smaller contrasted objects for easy character-

ization in the next step. To achieve that, different max-

imum spectral difference (MSD) threshold values were

tested, with values from 1 to 80 being tested to observe

the effects on the end result. In general low parameter

sensitivity was observed, with MSD values from 10 to

20 giving similar end results in all cases. This low sensi-

tivity was even more prominent on the concrete façades

where similar results were obtained with MSD values

from 10 to 40. This result suggested that transferring

this two-step approach to similar building images could

be straightforward. The final selected parameters for the

different scenarios are summarized in Table 1.

2. Object classification: the overall strategy to classify

both façades and roofs attempted to emulate the ap-

proach of surveyors in the field. It started by classi-

fying the largest objects first: intact roof and façade

objects. Once those were classified, the rest of the

classes (windows, columns, cracks, holes and dislocated

tiles), more geometrically differentiable, were identified

based on a number of object image-features (Table 1).

With the basic damage features classified, their topo-

logical relationships were subsequently used to define

their semantic dimension and, hence, identify crossing
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cracks (cracks crossing columns) and connecting cracks

(cracks touching windows or holes).

For a more detailed explanation of the segmentation ap-

proach followed in this study and for a deeper description

of the created rule sets, see Sect. 4.2 in Fernandez Galar-

reta (2014).

1. Export: the classified objects were exported to Ar-

cGIS 10.1 (ArcGIS, 2013). The objects were stored as

vectors with two of their properties attached: area in m2

and length in m. These stored vectors created a damage

inventory with a very detailed geometric description of

the extracted damage features.

2. Accuracy assessment: the accuracy assessment was

based on a set of statistical measurements that com-

pared the areas of the extracted damage features with

the area of reference damage features digitized in Ar-

cGIS by creating individual polygons for each damage

feature found. Comparing these data sets two accuracy

measurements, correctness and completeness, were de-

rived (Fig. 5). To calculate them, three indicators were

needed (Fig. 5): false positive (FP), false negative (FN),

and true positive (TP).

The overall workflow resulted in one set of extracted dam-

age features for each of the images, which, together with

their associated information, were meant to facilitate image-

based visual damage assessment. Besides the extracted ob-

jects themselves, this step also produced a number of statis-

tical indicators used within this paper to assess the quality of

the extraction. As a way of providing the damage informa-

tion to the damage evaluator in your tests we experimented

with a 3-D wire-mesh construct on which different damage

types can be interactively switched on when needed.

3.4 Aggregation of multi-perspective damage

information

In the final step, an approach to aggregate multi-perspective

damage information, resulting from the expert-based dam-

age classification of roof and façade images carried out in

Fernandez Galarreta (2014), was developed.

Six experts in BDA analyzed different façade and roof

images enhanced with the OBIA-extracted damage features,

and assigned EMS-98 scores to each image. In addition they

were asked to rate their classification confidence – from un-

certain (1) to very certain (3). For more information about

how the experiment was set up, see the results section “Inter-

face design and testing” in Fernandez Galarreta (2014).

This section can be subdivided into a number of steps:

1. Collection of the per-façade / roof expert-based damage

classification: out of the experiment carried out in Fer-

nandez Galarreta (2014) a table with expert-based per-

façade / roof damage information was obtained.

Figure 5. Equations for the correctness and completeness accuracy

measurements based on the accuracy indicator: false positive (FP,

red), false negative (FN, blue), and true positive (TP, green) (Joshi,

2010).

2. Aggregation algorithms development: according to the

information obtained from several field guides (Baggio

et al., 2007; ATC, 2005) and interviews carried out with

experts in the field, two aggregation algorithms were

created to generate per-building damage scores.

3. Aggregated outcome assessment: the two algorithms

were applied to the expert-based damage classification

table to generate aggregated damage scores and cer-

tainty measurements.

4 Results

4.1 3-D point cloud assessment

The visual assessment of the 3-D point cloud’s z compo-

nent allowed the identification of the previously listed dam-

age features to classify a building as D4–D5 (total collapse,

collapsed roof, rubble pile and inclined façade; Fig. 6).

Total collapse (Fig. 6a) can be easily identified by the ab-

sence of planar building sections. For the partially collapsed

roof (Fig. 6b) the indicator was the shift towards a more ver-

tical value of the collapsed section of the roof. Rubble piles

(Fig. 6c) are recognizable from the z component variation, as

well as the positive elevation anomaly. Finally, the z com-

ponent deviation from the vertical readily signals inclined

façades (Fig. 6d).

4.2 OBIA-based damage-feature extraction

For the 11 test images, three rule sets were created. The ob-

tained results were the following: roofs (Fig. 7), concrete

façades (Fig. 8), and brick façades (Fig. 9).

The images shown in Fig. 8b and c were edited to remove

visible damage features. The rule sets were re-run on those

images to test their performance in a damage-free environ-

ment. The results are shown in Fig. 8b’ and c’.

After the classification, the results were exported to Ar-

cGIS 10.1 as vectors with the associated attributes: area and

length. These vectors represented the damage inventory envi-

ronment where the experts could gain more inside about the

damage features that were extracted.

The results of the accuracy assessment described in

Sect. 3.3 IV are shown in Table 2.
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Table 2. Results of the accuracy assessment.

Accuracy Fig. 7a Fig. 7b Fig. 8a Fig. 8b Fig. 8c Fig. 8d

parameter dislocated intact Cracks Cracks Cracks Cracks

tiles façade

Correctness 66.6 % 100 % 65.7 % 25.9 % 87.2 % 84.8 %

Completeness 32.9 % 100 % 62.4 % 50.6 % 64.2 % 38.2 %

Accuracy Fig. 8b’ Fig. 8c’ Fig. 9a Fig. 9b Fig. 9c

parameter Intact Intact Cracks Cracks and Cracks and

holes holes

Correctness 100 % 100 % 57.0 % 53.6 % 72.4 %

Completeness 100 % 100 % 45.5 % 79.1 % 89.8 %

Figure 6. Z component visualization of target damage features: (a) collapsed building, (b) partially collapsed roof (outlined in white),

(c) rubble pile (outlined in white), and (d) vertical façade (blue) compared to a simulated inclined façade (green). Scale approx.

Figure 7. Result of applying the roof rule set on two roof images. Scale approx.

4.3 Aggregation of multi-perspective damage

information

The outcome of the experiment carried out in Fernandez

Galarreta (2014), where six experts assessed five images rep-

resenting a real case scenario, is summarized in Table 3.

Together with this table the experts also provided feed-

back on the usability of the information provided. For more

detailed information on this feedback, see Fernandez Galar-

reta (2014) Sect. 4.3.5 “Summary of the received feedback”.
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Figure 8. Results of applying the concrete rule set on six concrete façade. (b’) and (c’) were edited in order to remove the damage feature.

(a) and (d) highlight cases of connecting and crossing cracks. (a) highlights with a circle the location of a connection, the small nature of a

crack connecting with a window makes it hard to visualize it in the illustration. (d) illustrates a crack crossing a column as a green object

(highlighted by circle). Scale approx.

Figure 9. Results of applying the brick rule set on three brick façade images. Scale approx.

An aggregation algorithm was created for the damage

scores (Table 4) and the certainty measurements were sim-

ply scaled to a percentage following Eq. (1):

(
∑

Certainty measurements) × 100/15). (1)

The result of applying the previously presented algorithm

(Table 4 and Eq. 1) on the individual per-façade / roof clas-

sification (Table 3) is presented in Table 5. A total of six fi-
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Figure 10. Result of the two-step segmentation of a concrete façade.

Scale approx.

nal per-building damage scores and certainty measurements

were generated.

5 Discussion

Structural damage assessment is a priority after a disaster

event, and the potential of remote sensing has already been

demonstrated in many studies. However, the lack of methods

to achieve a comprehensive damage evaluation based on all

external components of a building motivated our work.

5.1 3-D point cloud assessment

We aimed at assessing whether a 3-D point cloud allows the

identification of damage features indicative of D4 or D5 dam-

age. Except for the identification of rubble piles (Fig. 6c) in

situations where the grass around a building partially masked

rubble presence, the results demonstrated that the visual as-

sessment of the point cloud’s z component was very useful to

identify those damage features. In addition, it allows experts

to identify subtle damage signatures, such as inclined walls

(Fig. 6d), that are difficult to recognize in traditional BDA ap-

proaches. Nevertheless, the 3-D point-cloud assessment was

not focused on the actual data processing and automatic anal-

ysis of the data sets, because of its expected complexity and

novelty. Thus it focused on generating the 3-D point-clouds

using existing approaches, before proceeding with a visual

assessments of the data sets to identify the cited damage fea-

tures.

5.2 OBIA-based damage-feature extraction

Previous research on BDA suggests that, regardless of the

data type and quality used, the detection of intermediate dam-

age scales remains ambiguous, being strongly influenced by

the expertise and experience of the assessor. Besides, given

the absence of proven automated damage assessment meth-

ods, we accept that a certain subjectivity was inherent to

Figure 11. Example of misclassified crack due to segmentation

problems. Scale approx.

this problem. The underlying idea of this work was thus to

have experts, who typically assess structural damage based

on holistic evaluation, either in the field or using image data,

to assess if the information from OBIA aids their assessment.

Consequently, we opted for an OBIA approach to identify

damage features to assess if those can meaningfully sup-

port visual damage mapping by experts. The damage detec-

tion was largely successful, achieving reasonable correctness

and completeness rates (Table 2). However, several problems

were found during the segmentation and the classification,

in addition to problems related to the accuracy assessment,

all of them addressed in more detail below. The two-step

segmentation aimed at generating large homogeneous non-

damage objects, whilst highlighting smaller damage features,

and was largely successful throughout the different scenarios

(e.g. Fig. 10). This formed the theoretical approach for the

OBIA-based damage-feature extraction.

5.2.1 Segmentation

The two-step segmentation aimed at generating large ho-

mogeneous non-damage objects, whilst highlighting smaller

damage features, and was largely successful throughout the

different scenarios (e.g. Fig. 10). This set the theoretical ap-

proach for the OBIA-based damage-feature extraction.

The majority of published OBIA studies suffered from

limited transferability, due to the need for trial-and-error seg-

mentation parameter adjustment. In our study, the two-step

approach effectively reduces the parameter sensitivity, es-

pecially for concrete façades where a relatively large MSD

threshold range led to comparable results, although more re-

search in this direction would be needed to improve this fact.

Despite the overall very satisfactory performance of the two-

step segmentation, problems remained where damage fea-

tures approached non-damage background with similar spec-

tral characteristics or patterns, such as cracks in brick walls
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Table 3. The collected damage scores and certainty measurements from the six experts that carried out the interface test in Fernandez

Galarreta (2014).

Damage scores

Expert Façade 1 Façade 2 Façade 3 Façade 4 Roof

Expert 1 3 3 2 2 1

Expert 2 2 2 1 1 1

Expert 3 3 3 3 1 2

Expert 4 3 2 2 1 3

Expert 5 3 3 3 1 1

Expert 6 2 3 2 1 2

Legend 4: D4, very heavy damage 3: D3 heavy damage 2: D2, moderate damage 1: D1, negligible damage

Certainty measurements

Expert Façade 1 Façade 2 Façade 3 Façade 4 Roof

Expert 1 3 2 2 3 3

Expert 2 2 2 2 3 2

Expert 3 2 2 2 2 2

Expert 4 3 3 2 2 1

Expert 5 2 2 2 1 1

Expert 6 1 1 1 2 1

Legend 3: very certain 2: quite certain 1: uncertain

Figure 12. (a) Example of misclassified roof tiles (false negative), (b) example of a letter classified as a crack in a concrete façade (false

positive), and (c) example of non-related objects classified as cracks in a brick façade (false positive). Scale approx.

(Fig. 11). Resulting segmentation errors propagated into the

analysis stage, leading to misclassifications.

5.2.2 Classification

The classification part of the rule sets had to deal with com-

plex scenarios, many target damage features and a range of

different images, leading to limited, but unavoidable errors.

They included both false negatives (Fig. 12a) and false pos-

itives (Fig. 12b and c). This particular concentration of er-

rors in the brick façades has to do with the actual pattern

that the façade presents. The complex pattern presented in

the brick façades challenges the segmentation algorithm that

creates small non-damage related objects that during the clas-

sification process are mistakenly classified as cracks. Con-

crete façades, having a smother texture pattern, facilitate the

segmentation algorithm task of creating large objects for the

intact part of the façades, and small object for the damage-

related ones. Nevertheless, in general, the damage-feature

classification was found to be very satisfactory, especially in

the concrete façades. We aimed at a compromise of reaching

acceptable accuracy values whilst maximizing rule set trans-

ferability. Three rule sets were applied to 11 images to test

that flexibility.

5.2.3 Accuracy assessment

This research focused on finding and extracting damage fea-

tures from façade and roof images to support subsequent

expert-based damage classification. The aim was not an au-
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Table 4. Description of the algorithm created to aggregate the per-

façade / roof damage score at the building level.

Per-façade / roof damage score Per-building

damage

score

One or more D4 evidences1 D4

> 50 % of the façades are D32 D3

< 50 % of the façades are D33 D2

> 50 % of the façades are D23 D2

< 50 % of the façades are D24 D1

1 D4, very heavy damage; 2 D3 heavy damage; 3 D2, moderate

damage; 4 D1, negligible damage.

Table 5. Results of the aggregation of the individual expert-based

per-façade / roof classifications.

Expert Aggregated Aggregated

damage certainty

score measurements

Expert 1 D2 86 %

Expert 2 D1 73 %

Expert 3 D3 66 %

Expert 4 D2 73 %

Expert 5 D3 53 %

Expert 6 D2 40 %

1 D4, very heavy damage; 2 D3 heavy damage; 3 D2,

moderate damage; 4 D1, negligible damage.

tomatic delineation and extraction of those damage features.

For this reason, an accuracy assessment of the detected dam-

age features based on digitized reference objects is only par-

tially appropriate. This is because, to our knowledge, the sig-

nificance of different types of misclassification has not yet

been addressed in the literature. Clearly, errors in terms of

absolute length of a feature, falsely identified connectivity to

specific structural building elements, or number of identified

dislocated tiles, still need to be assessed from a structural en-

gineering perspective. However, it is important to notice that

although the images seem to be well classified (e.g. Fig. 8a–

d), the completeness parameters are still rather low. This was

due to the actual extraction process that consistently missed

parts of the crack borders, which consistently led to false pos-

itives around those cracks. It is also important to notice that

the extraction in Fig. 8b’–c’ reached 100 % correctness and

completeness, which is explained by the absence of damage

features, which the rule set processed correctly.

Further, traditional accuracy assessment approaches do not

address the semantic dimension of the extracted features. Ac-

cording to the feedback obtained after the expert-based per-

façade/ roof classification (Sect. 4.3.5 in Fernandez Galar-

reta, 2014) errors such as the one in Fig. 12b are flagged as

FP, yet to an expert analyzing damage based on the OBIA

damage features this type of misclassification posed no prob-

lem. For the specific case of Fig. 12b, the expert knowledge

allows an easy recognition of such an object as an artefact of

the façade, a letter. It is directly understood as a non-damage

related object despite its erroneous classification.

5.3 Aggregation of multi-perspective damage

information

In the final step of the methodology the damage information

generated at the façade / roof level had to be aggregated at the

building level. This section was successful; however, many

challenges and constraints were found that raise questions

concerning essential parts of this research.

5.3.1 Per-façade / roof expert-based individual damage

classification

Referring to Table 3, the most important conclusion was the

obvious presence of subjectivity in the classification. The six

experts assessed the exact same simulated scenario and none

of them agreed for the individual damage scores. Most agree-

ment was found for the image of the intact façade. On the

other hand, the experts tended to provide more variable dam-

age scores for the roof image, which may indicate that the

surveyors typically do not have access to the roofs, hence

have limited experience in roof damage assessment.

For the certainty measurements more homogeneous ten-

dencies were found within each expert. In general experts

tended to be more for images that contained some form of

damage feature, and were more uncertain when no damage

features were present. This was an interesting point, because

the image showing an intact façade was the one where the

experts agreed the most, yet they felt less certain about it.

This could be related to their experience, which would tell

them that even in the absence of visible damage features, the

façade might still be somehow compromised.

In addition to the table (Table 3) obtained from Fernan-

dez Galarreta (2014), feedback was sought from the experts

about the usability of the overlaid OBIA-derived damage in-

formation, using a wire-mesh construct (Fig. 13). Our as-

sumption had been that such information was going to aid the

expert’s classification, reducing the ambiguity of the inter-

mediate damage levels. However, the feedback showed that

such information, because it was mainly based on spectral

information, was not considered to be useful, since the same

damage features can be readily identified by an experienced

analyst in the raw images. This conclusion summarized from

the experts’ feedback affected directly the scope of the study.

However, it must be recognized that this study not only has

the potential to show the experts the damage features based

on spectral information. It is also capable of providing in-

formation that otherwise would be invisible, such as inclined

façades in the 3-D point cloud. In addition we also experi-

mented with the possibility of identifying those damage fea-
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Figure 13. Example of the wire mesh with OBIA extracted infor-

mation overlaid. Yellow indicated holes, and red indicated cracks in

the façade (for better contrast, the color scheme was changed from

the previous examples).

tures that affect adjacent façades, by first classifying cracks

in separate façade views, and then identifying those that con-

nect. This process mimics the holistic analysis of ground-

based damage assessment, whilst eliminating the risk associ-

ated with such ground work.

5.3.2 Aggregation algorithms

Two functions were used to aggregate the individual dam-

age and certainty scores at the building level. This asks for

several assumptions to be made, and semantic rules to be

defined. For the aggregation of damage scores (Table 4), in

general, significant damage, even if only affecting parts of a

structure, has a disproportionate significance for the perfor-

mance of the entire building, also because it suggests further

invisible damage. Therefore, in our study we gave priority

to D4 damage elements, meaning that the presence of this

score in any façade or roof determined the score for the en-

tire building in an attempt to not underestimate the overall

damage.

For the rest of damage levels a more symmetric approach

was followed. Field-based BDA relies on a holistic, expert-

based information integration. However, also other studies

(e.g. Kerle and Hoffman, 2013) emphasized that damage ev-

idence does not add up linearly, hence mathematic integra-

tion rules are ultimately poorly suited. To our knowledge

there has been no research yet on the significance of dam-

age indicators on adjacent or opposite façades for the overall

structural integrity of the building, or to what extent observed

damage pattern can be extrapolated to occluded façades.

Such studies based on structural engineering principles are

needed for better semantic integration of image-derived dam-

age features to be possible.

The aggregation of the certainty measurements (Eq. 1) had

to represent the expert’s certainty that led to the final per-

building damage score; hence, all certainty measurements

had to be averaged to represent the reality of the expert as-

sessment for that building.

5.3.3 Aggregated outcome assessment

Table 5 shows the results of the damage and certainty mea-

surement aggregation of the expert analysis results presented

in Table 3. The principal conclusion was that the algorithms

were not able to reduce the subjectivity effect associated with

the per-façade / roof scores as expected. The final aggregated

damage scores ranged from D1 to D3. A similar effect can be

seen for the certainty measurements that ranged from 40 to

80 %. Nevertheless, the certainty measurements are an excel-

lent indicator of the source of this subjectivity effect. It can

be seen in the Table 5 how different experts showed differ-

ent self-confidence when tagging an image with an EMS-98

score.

Nevertheless, the goal of this study of generating more

comprehensive per-building damage scores was reached. The

produced scores of this study not only take into account the

overall structure of the building; they also aggregate the in-

formation collected from each one of the façades and roofs

of the building to provide an individual per-building damage

score.

6 Conclusions and further work

In this paper we addressed a number of problems, starting

with the identification of a number of principal gaps in the

existing literature: (i) remote sensing-based BDA does not

reach the ground-based BDA level of detail, (ii) façade as-

sessments tend to be missed, (iii) the multi-perspective di-

mension of BDA has so far been relatively un-explored,

(iv) UAVs, as a very detailed source of information, have not

been used in this field, and (v) OBIA’s cognitive dimension

has not previously been exploited for BDA at such a level of

detail.
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We successfully used 3-D point clouds to identify D4–D5

building damage, and exploited the cognitive dimension of

OBIA to assess at a detailed level damage on both façades

and roofs, which is largely lacking in traditional BDA. How-

ever, in our understanding, the main constraint of this study

is the actual aggregation of the damage information collected

from the different parts of the building. The approach of

dealing with individual façades and roofs not only failed to

reduce the subjectivity of the classification, it actually in-

creased complexity by adding the topological relationships

of the damage features in the buildings. Besides, it requires

the creation of aggregation algorithms to bring the informa-

tion to building level, which mimics the cognitive process

followed by ground surveyors.

A solution may be a building damage classification

directly performed in a 3-D environment, where experts can

analyze the entire building using both geometric information

from the 3-D point cloud and the OBIA-based damage

feature simultaneously. Nevertheless, this would still suffer

from the subjectivity that characterizes expert-based image

analysis. In summary, more research is needed to automat-

ically extract damage features from point clouds, combine

them with spectral and pattern indicators of damage, and

to couple this with engineering understanding of the signif-

icance of connected or occluded damage indictors for the

overall structural integrity of a building.
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