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Abstract. To reveal the preparatory processes of large inlandconsidered active prior to their occurrence (Imanishi et al.,
earthquakes, we systematically applied the pattern informat2006). Therefore, a more detailed survey of poorly mapped
ics (PI) method to earthquake data of Japan. We focused oactive faults is required to ensure accurate modeling of the
12 large earthquakes with magnitudes greater tan6.4 mechanisms underlying the occurrence of large inland earth-
(based on the magnitude scale of the Japan Meteorologicajuakes and to calculate strong motions at various sites in-
Agency) that occurred at depths shallower than 30 km be-<cluding plain regions. Moreover, further and more detailed
tween 2000 and 2010. We examined the relationship betweemvestigation of the statistical features of large inland earth-
the spatiotemporal locations of these large shallow earthquakes is also required. In particular, to ensure a compre-
quakes and the locations of Pl hotspots, which correspondhensive understanding of the preparatory processes of large
to grid cells of anomalous seismic activity during a desig- inland earthquakes, the systematic investigation of the statis-
nated time span. Based on a statistical test conducted usintical features of seismic activity prior to large inland earth-
Molchan’s error diagram, we investigated whether precur-quakes is essential.
sory anomalous seismic activity occurred in association with  Seismic activity is sensitive to stress in the crust (Di-
these large earthquakes and, if so, studied the characteristeterich, 1994; Dieterich et al., 2000; Toda et al., 2002).
time spans of such activity. Our results indicate that Japanes€&herefore, investigation of temporal changes in seismic ac-
inland earthquakes withf > 6.4 are typically preceded by tivity is essential to understand temporal variations in such
anomalous seismic activity in timescales of 8-10years. stress and may, in turn, provide information regarding the
possibility of occurrence of future large earthquakes. Tempo-
ral changes in seismic activity before large earthquakes have
been reported for various regions including Alaska (Bufe et
1 Introduction al., 1994; Kisslinger and Kindel, 1994), California (Bow-
man et al., 1998; Bowman and King, 2001; Bufe and Varnes,
Japan has been struck by many largex 6.4) inland earth- ~ 1993; Jaume and Sykes, 1999; Papazachos et al., 2005; Re-
quakes, including the 2000 western Tottori Prefecture earthsenberg and Matthews, 1988; Sobolev, 2003; Stuart, 1991,
quake, the 2004 mid-Niigata Prefecture earthquake, the 2008ykes and Jaume, 1990), central Asia (particularly the India—
west of Fukuoka Prefecture earthquake, the 2007 Noto Hant&urasia collision zone; Zheng et al., 1995), China (Wei et
earthquake, the 2007 Niigata-ken Chuetsu-oki earthquakeal., 1978; Yu et al., 2011), Greece (Karakaisis et al., 2002;
and the 2008 Iwate—Miyagi Nairiku earthquake. Most of Papazachos et al., 2005), Italy (Console et al., 2000), Japan
these earthquakes occurred along faults that had not been
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(Huang et al., 2001; Mogi, 1969; Nagao et al., 2011; OgataWyss (2000); to calculatd/; for each grid cell, we used
2004, 2005; Resenberg and Matthews, 1988; Papazachos #te surrounding 200 earthquakes. Application of this method
al., 2010; Katsumata, 2011a, 2011b), Russia (Borovik et al.producedM; < 3.5, which is consistent with the results of
1971), Taiwan (Chen, 2003; Chen et al., 2005, 2006; CherHuang et al. (2001) and Nanjo et al. (2010). Thus, we first
and Wu, 2006; Wu and Chiao, 2006; Wu and Chen, 2007; Wwsed events withiM > 3.5 (i.e., a cutoff magnitude of 3.5)
et al., 2008a, 2008b, 2011), and Turkey (Oztiirk and Bayrakfor application of the PI method. We also conducted analy-
2012). ses using events withl > 4.0 and 4.5 to examine the effects
The results of these previous studies imply that anomalousf different cutoff magnitudes on the statistical features of
seismic activity is associated with the preparatory processethe spatiotemporal Pl maps obtained.
of large earthquakes near their epicenters and in surround- The Pl method was originally developed based on the con-
ing regions over various timescales. However, few studiescept of pattern dynamics (Rundle et al., 2000). Stress can
to date have systematically investigated temporal changes ibe regarded as a space-time state variable in a system of
seismic activity prior to large earthquakes or the statisticaltrue deterministic dynamics, and is a fundamental measure
characteristics of such activity. A systematic examination ofthat must be monitored to allow identification of its tempo-
precursory seismic activity is necessary to provide a compreral change in advance of large earthquakes. However, direct
hensive understanding of the preparatory processes of largebservation of stress change is difficult because earthquakes
earthquakes and may provide insight into the mechanismgccur below the surface of the earth. To address this, new in-
underlying these processes. To address this, we systemastruments have been developed to allow the observation of
cally investigated precursory changes in seismic activity forseismic activity with higher precision and accuracy; seismic
large earthquakes in inland Japan using the pattern informafactivity is considered to be a type of stress sensor (Ma et al.,
ics (P1) method, which has retrospectively succeeded in iden2005; Stein, 1999; Toda et al., 2002), and is determined based
tifying anomalous seismic activity prior to large earthquakeson seismographic information. Here, we selected seismic ac-
(Chen et al., 2005, 2006; Holliday et al., 2005, 2006; Rundletivity as a space—time state variable of pattern dynamics to
et al., 2002, 2003; Tiampo et al., 2002; Wu et al., 2008a, b,investigate change in an earthquake system.
2011). In Sect. 2, we introduce the analysis procedures used We applied the Pl method to earthquake data for Japan (the
to derive a spatiotemporal Pl map using the PI method, whichrectangular region in Fig. 1) as follows and as illustrated in
identifies PI hotspots exhibiting anomalous change in seisthe flowchart in Fig. 2. (1) The target region is set and di-
mic activity. The Pl maps illustrate the relationships betweenvided into grid cells with specific intervals (88: x 80 km
the spatiotemporal locations of areas of anomalous seismiand 10G&m x 100 km for cutoff magnitudes of 3.5 and 4.0
activity and those of large inland earthquakes; these mapsr 4.5, respectively). (2) The seismic intensity changg
are presented along with Molchan’s error diagrams in Sect. 3#,,t1, t2) is calculated for theéth grid cell for a target time
and are discussed in Sect. 4. period fromz; to ¢, (defined as the change interval), where
n=t—t(t. =4,6,8,10,12, and 14365 days) ancb = 1
October 1997 to 28 February 2011. This calculated change
2 Data and methodology is used to obtain an index (PI value) likely representing the
probability of earthquake occurrence during the prediction
We used the earthquake catalog maintained by the Japan M@eriod from#, to t3, wheresz — o = fo— 11 =t.. Seismic
teorological Agency (JMA). JMA initiated a new data pro- intensity [; (7, t) is defined as the number of earthquakes
cessing operation in October 1997, aiming to unify the earth-per day within a square area that includes itiegrid cell,
quake catalogs maintained by different organizations. Furaveraged over the time period between a reference gjime
thermore, JMA also began to relocate past seismic eventéwvherery <1, <ty andr is 1 January 1980) and The
using different velocity models and initiated changes in thelengths of the sides of the square are varied depending on
methods used to calculate the IMA's magnitutig (n 2003.  the cutoff magnitude, forming squares of 240 x 240 km
Accordingly, inhomogeneity has been induced in the earth-and 30&m x 300 km for cutoff magnitudes of 3.5 and 4.0
quake catalog; this inhomogeneity can be attributed primar-or 4.5, respectively. To obtain seismic intensity change, seis-
ily to differences between seismic networks, improvementsmic intensities/; (z,,r1) and I (1, t2) for theith grid cell are
in observation instruments, and changes made to data prazalculated for the corresponding time periods (izg.to 11
cessing methods (Habermann, 1987; Nanjo et al., 2011; Reand1, to t», respectively). Then, seismic intensity change is
senberg and Matthews, 1988). Investigation of the spatial andalculated as followsA [ (tp, 11, t2) = Ii (tp, t2) — I (tp, t1).
temporal homogeneity of the JMA earthquake catalog is im-(3) Step (2) is repeated to obtain seismic intensity changes
portant for evaluating temporal changes in seismic activity.for all grid cells. (4) To extract coherent trends in seismic
Therefore, to examine the homogeneity of the catalog, wentensity change during the period framto 2, seismic in-
mapped the minimum magnitude of completenddg) (with tensities’i(t,, t1) and I; (¢, t2) are calculated by shifting
grid cell intervals of 80 and 100 km at depths of 0—-30 km 7, from 1 to #1; then, seismic intensity chang®l;(#,t1,t2)
from January 1980 onward using the method of Wiemer ands normalized temporally by subtracting its temporal mean

Nat. Hazards Earth Syst. Sci., 14, 84859 2014 www.nat-hazards-earth-syst-sci.net/14/849/2014/



M. Kawamura et al.: Anomalous seismic activity prior to large shallow earthquakes in Japan 851

and dividing by its temporal standard deviation. Addition-
ally, AIi(t,t1,t2) is normalized spatially to highlight un-
usual seismic intensity changes. The valu\df (¢;, 1, 12)
varies depending on the grid cells in whigh's fixed; there-

fore, it can be normalized spatially by subtracting its spa-
tial mean and then dividing by its spatial standard devia-
tion for each value of,. The spatiotemporally normalized
seismic intensity change can then be obtained, denoted as
Ali(ty,11,12). (5) Most of the effects of random fluctuation

in seismic intensity change and background seismic inten-
sity change are eliminated by normalization, such that the
preseismic change can be represented by the spatiotempo-
rally normalized seismic intensity changﬂ](tb,tl,zz). The
preseismic change that occurs during preparatory processes
1a0° 195° e e can be seismic quiescence, seismic activation, or even both;
therefore A i (tp, 11, t2) Mmay be negative or positive. To in-
corporate all preseismic change and reduce the fluctuation of
random noise, we take the absolute value of the spatiotem-
porally normalized seismic intensiﬂyAfi (tp, 11, t2) | and
average this absolute value over all valuesofo obtain
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‘Aﬁ (tp, 11, tz)‘. (6) Then, the probability of earthquake oc-
—_—

currencepP;(t1,t2) is defined as#;Afi (tp, 11, tz)‘ and the aver-

age probability as the mearp, of P; (11, t2). The probability

of earthquake occurrence relative to the background mean,

33°N 4

30°N 2

AP (t1,t2) = ’AI} (tb,tl,tz)‘ — up, is further divided by the
spatial maximum 4 Pmax); thus the obtained P,/ A Pmax is
defined as PI value. The common logarithm of the PI value
is color coded and plotted on a Pl map (not shown in the
present study). (7) The end of change intemgals moved
forward (1 andr3 are changed accordingly, by the same time
interval) and steps (2) to (6) are conducted again. (8) Finally,
the common logarithm oA P; / A Pmax (P1 value) for each
grid cell for each change interval is color coded and plotted
on a spatiotemporal Pl map (Figs. 3-5).

39°N q
36°N 4

33°N

3 Results
30°N
Figures 3-5 illustrate the spatiotemporal Pl maps for cut-
‘ ' ‘ ‘ off magnitudes of 3.5, 4.0, and 4.5; grid cells with large
130° 195° 140°E 14" changes in seismic activity (i.e., Pl hotspots) for different
Fig. 1. Maps showing epicenters within rectangular regions used forchange intervals (4, 6, 8, 10, 12, and 14years) are high-
co T ; lighted. Colored grid cells with the common logarithm of Pl
Pl analysis for threshold magnitudes(a 3.5, (b) 4.0, and(c) 4.5. values greater than0.4 (i.e., between-0.4 and 0) represent

The red stars with labels (A)—(L), which correspond to earthquake ) T . ith | h . o .
indices in Table 1, indicate the locations of large earthquakes Withfspatlotempora ocations with large changes in seismic activ-

magnitudes larger thalf = 6.4. The black circles denote locations ItY; such changes likely represent seismic quiescence or seis-
of earthquakes with magnitudes larger than a threshold magnitud&ic activation and are related to high probabilities of earth-
as shown in respective panels. TiiandY axes of the rectangular quake occurrences during the prediction periods, the lengths
region in each panel correspond to the east-northeastward and iaf which are equal to those of the change intervals (Fig. 2).
perpendicular (north-northwestward) directions, respectively. TheThe grid cells colored red represent the greatest changes in
inset of (a) shows a map view of the tectonic setting around the seismic activity, which typically correspond to the highest
Japanese islands; PA: Pacific Plate, PH: Philippine Sea plate, EWrobabilities of earthquake occurrence in the prediction pe-
(AM): Eurasian Plate (Amurian Plate), OKH: Okhotsk Plate. riod. Conversely, the grid cells colored deep blue represent
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(a) (Start of making spatiotemporal Pl map]
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| | |
- Start time of earthquakes used for analysis: 7, I S~ . L
« Time grid interval: At (days) f h b {3 0,:Standard deviation of /
« Length of change interval r,—+, (= predicton period r,-1.): 7. (days)
+ Start and end times of the end of change interval: fq., 260
(t, and 1;are changed according to the movement of ,from fto g so that i, -, =6, - 1= 1)
- Rectangular region for analysis (setting three points):
(LONG,, LAT,), (LONG,, LAT;), (LONG, LAT3) Calculating temporal normalization of seismic intensity change

(I): Spatial mean of 7

+ Spatial grid interval: Ax (km) (as to 1,):
. -
H Hypocenter catalog / Aj(t foE )_ Ali(tb’tl’tz)_Ali(fb’tl’ti)
iNfpef1"2) =
|Setling end time of change interval: &, (1, =6, — 1.) (1> = fgans fagan + AL, bogan+ 2A1., /za.a)l O,
T
Y

Calculating spatial normalization of temporally normalized seis-
mic intensity change:

T = =
Y Al (I 1,1,) = Alu(tb»flwtz)“(A[f(’hsfufz»
|Setting calculation grid cell: x; (7 = l—n)l i\fpeteta) = G
Al
Calculating seismic intensity for the time interval of #,-,and #,—1, in grid cell x;: Calculating earthquake occurrence probability (temporal mean
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I(t.1) = ﬁfn n,(t)dr and I{t,6) = = f,# )t cﬁangeg: erer perey Y
17k " 2k T
ﬂg(f)' Number of events occurring in grid cell x; and its specified neighbors P;(IJ ,tz) = |A‘/f. (t,,,tl,tz)

)

Calculating seismic intensity change for /-1 in grid cell x;: Calculating earthquake occurrence probability relative to avera-
A]J.(th ,tl,fz) = Ir.(z,,,rz) - I,.(th ,tl) ged background probability (subtracting spatial mean of P, from

P):
APf(tl‘tl) = Pi(rufz) 7<P1(t1’t2)>
X=X +Ax No ]
Pl vale = AE(!l,rz)/max(AH(rl,rz))
is color coded and plotte'd on the map.
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Fig. 2. (a)Flowchart of the procedure for obtaining Pl maps, which illustrate the spatial distribution of grid cells with large seismicity changes
above a particular threshold (referred to as Pl hotspgi¥)llustration of the method for obtaining the spatiotemporal PI map obtained by
combining Pl maps obtained based on the process descrilfell the X andY axes in each Pl map correspond to those of the rectangular
region in each panel of Fig. 1. The thick vertical black line in the spatiotemporal PI map represents the edgésaafshange.
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Table 1. Earthquake index assigned to each of 12 large earthquakes with magnitudes larger=th@d with corresponding occurrence
date, epicenter (longitude and latitude), depth, and magnitude.

Earthquake Date Longitud&)( Latitude ¢) Depth Magnitude
index (km)

(A) 1 Jul. 2000 139.19 34.19 16.1 6.5
(B) 30 Jul. 2000 139.41 33.97 17.0 6.5
©) 6 Oct. 2000 133.35 35.27 9.0 7.3
(D) 26 Jul. 2003 141.17 38.41 11.9 6.4
(E) 23 Oct. 2004 138.87 37.29 13.1 6.8
(F) 23 Oct. 2004 138.93 37.31 14.2 6.5
(G) 20 Mar. 2005 130.18 33.74 9.2 7.0
(H) 25 Mar. 2007 136.69 37.22 10.7 6.9
() 16 Jul. 2007 138.61 37.56 16.8 6.8
J) 14 Jun. 2008 140.88 39.03 7.8 7.2
(K) 20 Dec. 2008 142.70 36.53 0.0 6.6
L) 11 Aug. 2009 138.50 34.79 23.3 6.5

values lower than-0.4 and highlight locations with only miss rate versus fraction of grid cells occupied by the alarm
small changes in seismic activity, indicating low earthquakearea. Here, miss rate is defined as the numbev/cf 6.4
occurrence probability in the prediction period. The red andevents located outside the alarm area normalized by the total
white stars in each panel represent the spatiotemporal locazumber ofM > 6.4 events. A line connecting (0,1) to (1,0)
tions of target (i.e.M > 6.4) earthquakes (Table 1). In par- indicates the random miss rate, which corresponds to a line
ticular, the red stars indicate target earthquakes that occurreaf no significance. We used the method of Zechar and Jordan
in the prediction periods following change intervals with the (2008) to calculate the lower 95% confidence level of the
common logarithm of PI values higher that0.4, whereas random miss rate. In the statistical test, variation in the miss
the white stars indicate that the target earthquakes occurredate in response to changes in the alarm area was calculated
outside the prediction periods. For convenience, we hereafteby changing the lower threshold of Pl values that correspond
refer to the total spatiotemporal area occupied by predictiorto large seismicity changes (black open circles in Figs. 9—
periods that follow change intervals with large seismicity 11). The best performance of the Pl method is found in the
changes (or high earthquake occurrence probabilities) as thieottom-left corner of each diagram. Conversely, we do not
alarm area. regard the performance in areas of the plot above and to the
Figures 6-9 show the spatiotemporal alarm area maps foright of the lower 95 % confidence level curve of the random
the same cutoff magnitudes as in Figs. 3-5, respectively; panmiss rate as statistically significant. Therefore, we focused
els a—f in Figs. 6-9 denote the alarm area maps for differenprimarily on the data represented by the black open and large
change intervals of 4, 6, 8, 10, 12, and 14 years, respectivelyblack solid circles located below and to the left of the lower
White grid cells illustrate the alarm area. Black grid cells 95% confidence level curve. The large black solid circles
show the nonalarm area, which indicates the total spatiotemin Figs. 9—-11 correspond to the results shown in Figs. 3-8,
poral areas outside the alarm area. The black and white stamghich were obtained by setting the lower threshold of the
correspond to the red and white stars in Figs. 3-5, respeccommon logarithm of the Pl value representing large seis-
tively; labels A-L in panels a and d denote the earthquakemicity change during the change interval+40.4.
indices in Table 1. Statistical features of Molchan’s error diagrams for respec-
Here, we focus on whether each large earthquake octive cutoff magnitudes (Figs. 9-11) can be described as fol-
curred within the alarm area. Therefore, it is necessary tdows. As to cutoff magnitude of 3.5, miss rates and frac-
quantitatively compare the statistical performance of the spations of grid cells occupied by alarm areas (denoted by black
tiotemporal Pl maps for different cutoff magnitudes, different open circles and large black solid circles in Fig. 9) for 8 or
change intervals, and different lower thresholds of Pl valuelOyear change intervals (Fig. 9c, d) performed better than
representing large seismicity change during the change inthose for other change intervals although they are located pri-
terval or high earthquake occurrence probability during themarily above and to the right of the lower 95 % confidence
prediction period. For this purpose, we used Molchan’s errorevel curve. In the case of a cutoff magnitude of 4.0, miss
diagram (Kagan, 2007; Molchan, 1997; Shcherbakov et al.yates and fractions of grid cells occupied by alarm areas for
2010) to examine the coherence between the spatiotempor&, 10, or 12 year change intervals (Fig. 10c—e) showed bet-
locations of target earthquakes and the fraction of grid cellser performances than for other change intervals. Especially,
occupied by the alarm area. Figures 9—11 present plots dfhe statistical performance for the 10 year change interval is
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Fig. 3. Spatiotemporal PI maps for a cutoff magnitude of 3.5, illus- Fig. 4. As in Fig. 3, but for a cutoff magnitude of 4.0.
trating the locations of grid cells with large seismicity changes (Pl
hotspots) for different change intervals betwegandr, (fo — 11 =

4, 6, 8, 10, 12, and 14 years; = 1 January 1997-28 February
2011). Length of change interval for each panel is shown on the
labels of vertical axes. Lo#(/ Pmax) means the common logarithm
of the PI value (Fig. 2a). Grid cells with the common logarithm of
Pl values greater than0.4 (i.e., between-0.4 and 0) are regarded
as locations with large seismicity changes, including seismic qui-
escence and activation, during the specified change interval. Red”
grid cells correspond to the highest probability of earthquake occur-
rence. Deep blue cells indicate values lower th&, representing
locations with small seismicity changes and indicating low proba-
bilities of earthquake occurrences in the prediction periods follow-
ing the change intervals. Horizontal and vertical axes denote the
cumulative distance along thé axis and the end of change inter-
val used for evaluating seismicity change, respectively (Figs. 1, 2b).
The red stars indicate the locations of target earthquakes that oc“)
curred in the prediction periods following the change intervals with :
large seismicity changes. The white stars denote those with smallf”"”“’z
seismicity changes. The vertical black lines, which correspond to s =" B
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Fig. 5. As in Fig. 3, but for a cutoff magnitude of 4.5.

statistically significant in that the black open and large black

solid circles are located primarily below and to the left of the Pl method performed better for 8 or 10 year change intervals
lower 95 % confidence level curve of the random miss ratethan for others.

For the cutoff magnitude of 4.5, miss rates and fractions of Summarizing the common statistical performance of the
grid cells occupied by alarm areas (shown in Fig. 11c anderror diagrams for cutoff magnitudes of 3.5, 4.0, and 4.5
d) were plotted primarily below and to the left of the lower (Figs. 9-11), there appears to be some relationship between
95 % confidence level curve of the random miss rate when 8he locations of > 6.4 events and the number of grid cells

or 10 year change intervals were adopted, indicating that th@ccupied by alarm areas for 8 or 10year change intervals.
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magnitude of 3.5. The alarm area is defined as the total spatiotem-

poral area occupied by the prediction periods that follow the change

intervals with large seismicity changes, or with the common loga- Especially, for cutoff magnitudes of 4.0 (10 year change in-
rithm of PI values higher thar0.4. The black and white stars cor- tervals) and 4.5 (8 or 10year change intervals), the null
respond to the red and white stars in Figs. 3-5, respectively. Whitehypothesis, which states that there is no significant relation-
grid cells correspond to the alarm area; black grid cells show theship between the locations &f > 6.4 events and the num-
nonalarm area, which is defined as the complement of the alarn“ber of grid cells occupied by alarm areas, was rejected at a

area. The vertical black lines and horizontal and vertical axes are a
in Fig. 3. The labels (A)—(L) correspond to the earthquake indices
in Table 1.
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onfidence level of 95 %. In addition to showing that applica-
tion of the PI method to the shallow earthquake data of Japan
produces the best statistical results for change intervals of 8—
10years, this statistical performance demonstrates that such
change intervals reflect the characteristic time period asso-
ciated with preparation for the occurrence of large shallow
earthquakes in Japan.

4 Discussion and conclusions

We applied the PI method to the earthquake catalog cover-
ing the inland areas of Japan. Because seismicity rate is a
proxy for stress rate (Dieterich, 1994, Dieterich et al., 2000;
Toda et al., 2002), the position of a Pl hotspot is considered
to reflect an area with significant temporal change in stress
rate during a given change interval. In the present study,
we focused on the occurrence (or nonoccurrence) of each
large shallow earthquake that occurred during each predic-
tion period, where the prediction period followed a change
interval in which the observed seismicity change exceeded a
given threshold; we varied the threshold as part of a statis-
tical test using Molchan’s diagram to check the robustness
of the analysis result and to infer the characteristic timescale
of precursory anomalous seismic activity. Typically, in cases
where Pl hotspots are located on the epicenter of a large
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inland earthquake, the stress rate around the focal regio N \ e AN NG o o
of the earthquake increases. Therefore, the observation ¢ \ § P Y
temporal change in the locations of Pl hotspots is a key fac- £.. g, \ \\
tor in improving the physical understanding of stress state N e \
near the source area of a future, large inland earthquake ar .. o1 P

the preparatory processes of such earthquakes. As discuss ~* o = & & = o AT
in Sect. 3, our analysis identified PI hotspots on a timescale
of 8—10years in regions within the focal regions of all target Fig. 11.As in Fig. 9, but for a cutoff magnitude of 4.5.
earthquakes prior to their occurrences.

Some previous studies have examined such precursory
seismicity changes related to large inland earthquakes irseismic indices prior to the occurrences of eight large in-
Japan. Takahashi and Kumamoto (2006) discussed the rdand earthquakes in Japan; in fact, four of these earthquakes
lationships between some seismic indices and the degreeere also included in the present study (earthquake indices
of fault evolution by investigating temporal changes in the (C), (D), (E), and (G) in Table 1). The seismic indices used
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included the cumulative number of earthquakes, ¢hend ina, 1983), Kato et al. (1997) demonstrated the appearance of
b values of the Gutenberg—Richter relation (Gutenberg andegional seismic quiescence in the continental crust before a
Richter, 1944), the AS function (Habermann, 1983), and thelarge interplate earthquake due to regional stress relaxation;
LTA (long-term average) function (Habermann, 1991; Wu such relaxation could occur as a result of preseismic sliding
and Chiao, 2006). The results presented by Takahashi andn the boundary between a subducting oceanic plate and the
Kumamoto (2006) demonstrated that precursory seismic quieverriding continental plate. Kato et al. (1997) also argued
escence occurred on timescales of 1-7 years over areas #itat the mechanism underlying seismic quiescence could ap-
spatial scales of 100 km, centered at the epicenters of large ply to other types of earthquakes, including intraplate earth-
inland earthquakes (C), (D), (E), and (G) in Table 1. Al- quakes on active faults. Therefore, the anomalous seismicity
though it appears that the precursory time intervals deterobtained in the present study may reflect a temporal change
mined by Takahashi and Kumamoto (2006) are inconsistenin crustal seismicity associated with regional stress relax-
with those obtained in the present study, this may be due tation prior to a large earthquake (Kawamura et al., 2013; Wu
differences in the areas included when calculating the tempoand Chiao, 2006; Wu et al., 2008a, b).
ral changes in seismic activity: the areas of 240x 240 km We conclude that anomalous seismic activity likely pre-
and 30Gm x 300 km used in the present study are more ex-cedes the occurrence &f = 6 or M = 7 large shallow earth-
tensive than the areas a9 x0.2° and P x 1° used by Taka- quakes in inland areas of Japan on timescales of 8-10 years.
hashi and Kumamoto (2006). In considering the implications of our study for the prepara-
Yoshida and Aoki (2002) examined the seismic activity tory processes of large shallow earthquakes in Japan, it would
that occurred prior to the 1891 Nobi earthquake (Mikumo be informative to investigate the existence of anomalous seis-
and Ando, 1976; Nakano et al., 2007), the 1964 Niigatamic activity preceding large earthquakes elsewhere. More-
earthquake (Hirasawa, 1965), the 1983 central Japan Seaver, if such activity were found, it would be enlightening to
earthquake (Satake, 1985), and the 2000 western Tottori Presompare the associated timescales with those described for
fecture earthquake in Japan (earthquake index (C) in Table 1Japan in the present study. This should provide a more com-
Fukuyama et al., 2003; Ohmi et al., 2002). Their results in-prehensive understanding of the mechanisms responsible for
dicated that the precursory seismic quiescence of the earththe occurrence of large shallow earthquakes.
quakes occurred more than 10 years before the earthquakes.
Moreover, the results for the 2000 western Tottori Prefecture _
earthquake indicated that the related precursory seismic qui~cknowledgementsie thank the Japan Meteorological Agency
escence began to occur 10 years before the occurrence of tifgVA) for the use of the unified earthquake catalog. Each
earthquake within a rectangular region of k50x 350km  rvPocenter in the catalog was determined by analyzing, in an
. , integrated fashion, the earthquake data of Hokkaido University,
that included the earthquake’s source area. It should be noteg; <4 University, Tohoku University, the University of Tokyo,
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