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Abstract. The republic of Georgia is a mountainous and tec-
tonically active area that is vulnerable to landslides. Because
landslides are one of the most devastating natural hazards,
their detection and monitoring is of great importance. In this
study we report on a previously unknown landslide in cen-
tral Georgia near the town of Sachkhere. We used a set of
Advanced Land Observation Satellite (ALOS) Phased Array
type L-band Synthetic Aperture Radar (PALSAR) data to
generate displacement maps using interferometric synthetic
aperture radar (InSAR). We detected a sliding zone of di-
mensions 2 km north–south by 0.6 km east–west that threat-
ens four villages. We estimated surface displacement of up to
∼ 30 cm/yr over the sliding body in the satellite line-of-sight
(LOS) direction, with the largest displacement occurring af-
ter a local tectonic earthquake. We mapped the morphology
of the landslide mass by aerial photography and field survey-
ing. We found a complex set of interacting processes, includ-
ing surface fracturing, shear and normal faults at both the
headwall and the sides of the landslide, local landslide ve-
locity changes, earthquake-induced velocity peaks, and loss
in toe support due to mining activity. Important implications
that are applicable elsewhere can be drawn from this study of
coupled processes.

We used inverse dislocation modelling to find a possible
dislocation plane resembling the landslide basal décollement,
and we used that plane to calculate the volume of the land-
slide. The results suggest a décollement at∼ 120 m depth,
dipping at∼ 10◦ sub-parallel to the surface, which is indica-
tive of a translational-type landslide.

1 Introduction

1.1 Landslides in Georgia

Landslides and related hazards are widespread in Georgia
(Nadim et al., 2006; Gracheva and Golyeva, 2010) and cause
substantial damage annually (van Westen et al., 2012). The
steep hillslopes, active geology and wet or even subtropical
climatic conditions in Georgia (van Westen et al., 2012) are
important factors that contribute to the high landslide sus-
ceptibility there. Over 5700 landslides have been identified,
ranging from small-scale slumps to large-scale mass wast-
ing of entire hillsides (van Westen et al., 2012). Approxi-
mately 700 of those landslides have been identified through
year-long mapping and fieldwork activities. A recent land-
slide susceptibility analysis based on geology, slope classifi-
cation and land cover mapping suggested that approximately
17 % of Georgia is located in high-hazard zones, and another
38 % is located in moderate-hazard zones (van Westen et al.,
2012). Landslide concentration is especially high and cov-
ers all scales in Adzharia, a region in southwestern Georgia
with a humid subtropical climate, with occurrence peaking
in spring and during summer storms (Gracheva and Golyeva,
2010).

Together with the steep topography and wet climate, tec-
tonics can be a significant trigger of landslides. The Ms 7.0
earthquake on 29 April 1991, for instance, triggered numer-
ous landslides and caused a loss of infrastructure and life
(Jibson et al., 1994). Some of these landslides were known
to be active already, but moving slowly. For example, the
slow-moving Chordi landslide accelerated and destroyed the
village of Chordi shortly after the earthquake. This case
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highlights the importance of monitoring slow-moving land-
slides that may accelerate due to unpredictable external trig-
gers. Slow-moving landslides in Georgia in particular can ac-
celerate abruptly, especially if extrinsic factors act as triggers
(Gracheva and Golyeva, 2010).

Although geologic mapping has been performed for some
of these landslides, dynamic and kinematic analyses of them
have received little scientific attention. As will be shown in
this work, space-based data allow analysis of displacement
rates and the identification of possible detachment planes of
a landslide, which, together with aerial images, provide a de-
tailed view of unstable masses and triggering factors ranging
from tectonics to man-made activity.

1.2 Landslide mechanisms

The dynamics, i.e. the appearance and displacement pattern
of a landslide, is primarily controlled by the geometry of the
sliding planes (Cruden, 1986). These planes are made up of
a combination of basal décollements and laterally delimit-
ing fractures. The décollement is usually not directly visible
and is also difficult to infer from remote sensing techniques.
Therefore, little is known about the geometric complexities
and dynamics of active décollement planes. The laterally de-
limiting fractures, in turn, are visible at the surface and com-
monly include a headwall fault, which is the surface expres-
sion of the main detachment, en echelon sets of strike-slip
and normal faults on either side with opposite senses and a
compressional zone in the landslide toe that forms thrust and
fold belts. The geometry of these sliding planes affects the
different types of movement. Movement of a landslide can
be translational, rotational, or complex (Cruden and Varnes,
1996). Rotational landslides move generally downward and
outward and are thought to be structurally confined by a
curved basal detachment plane (Highland and Bobrowsky,
2008). Translational slides move hillslope-parallel and are
structurally defined by a planar slope-parallel plane (High-
land and Bobrowsky, 2008). Most landslides likely involve a
combination of rotational and translational mechanisms. Be-
cause the network of these structures delimits the mass of a
landslide, structural characterisation of a landslide is impor-
tant for assessing the landslide volume.

Landslides exhibit a wide range in velocity, from ex-
tremely slow (10 mm year−1) to extremely rapid landslides
(10 m/s) (Cruden and Varnes, 1996). This broad velocity
range highlights a common problem in landslide monitor-
ing: the ability to detect and explore several scales of dis-
placement magnitude. This problem is described further in
the following section.

1.3 Landslide detection and displacement monitoring

Most active landslides are studied using field-based mor-
phological, structural and kinematic analyses. Ground-based
techniques are not appropriate for detecting a landslide in
a broad area because of the limited spatial resolution. Non-
intrusive remote sensing techniques have therefore become
widely used for the detection and mapping of the position,
size and shape of landslides (Cardenal et al., 2001; Guzzetti
et al., 2012) and potentially unstable slopes (Colesanti and
Wasowski, 2006; Ouimet, 2010). Remote sensing techniques
have specifically contributed to define states of activity, to
monitor landslides, to improve hazard analysis and to al-
low implementation in early warning systems (Canuti et al.,
2007). Remote sensing methods include aerial photographs,
multispectral optical images (Qi et al., 2010), differential
digital elevation models (DEMs) (Casson et al., 2005), in-
terferometric analysis of radar images (Riedel and Walther,
2008) and lidar data (Schulz 2004; Jaboyedoff et al., 2010)
and others.

The most commonly used method for landslide detec-
tion is the visual interpretation of optical images (Tofani et
al., 2013). Change detection techniques (Nichol and Wong,
2005) and classification with semi-automated object-oriented
methods (Martha et al., 2010) in optical imagery allow for
landslide mapping. Together with detection, these methods
allow monitoring and reconstruction of year-long time series.
For instance, rapid and large morphometric changes can be
quantified using change detection methods applied to high-
resolution optical data (Nichol and Wong, 2005). The com-
bination of these methods is also used to improve landslide
inventory maps (Guzzetti et al., 2012).

Interferometric synthetic aperture radar (InSAR) tech-
niques allow mapping of ground movement that occurs be-
tween two acquisition times (Hanssen, 2001). InSAR tech-
niques are increasing in popularity for landslide applica-
tions (Colesanti and Wasowski, 2006; Riedel and Walther,
2008; Tofani et al., 2013) as they are low-cost, almost glob-
ally applicable, high-resolution and independent of day or
night. The traditional two pass differential InSAR method
allows the detection and monitoring of slow (several cm per
year) landslides, following the classifications of Cruden and
Varnes (1996). Persistent scatterers SAR interferometry (PS-
InSAR) and Small BAseline Subset (SBAS) techniques al-
low analysis of the temporal and spatial evolution of ex-
tremely slow landslides (several mm per year) (Colesanti et
al., 2003b; Hilley et al., 2004; Guzzetti et al., 2009). Com-
binations of different InSAR techniques are useful to detect
and investigate different rates of landslides (García-Davalillo
et al., 2013).

Each of these techniques has its advantages and disad-
vantages. Combining optical and radar techniques creates
suitable conditions for the study of landslides (Strozzi et
al., 2013). In this work, we exploit aerial optical, satellite
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Fig. 1.Map of central Georgia showing land cover based on Landsat
TM information. The combination of bands 5, 4 and 3, represented
with red, blue and green, respectively, shows vegetation in bright
green colours and soil in mauve colours. The violet curves close to
Sachkhere and Chiatura show the main path of the Kvirila River.
The location of the Itskisi landslide is near Sachkhere. Faults indi-
cated by white symbols are thrust faults. The faults were defined by
Gamkrelidze (1978).

spectral and, foremost, InSAR data to analyse the dynamics
and changes of a landslide.

2 Study area

We concentrate our study on a site located in the central
western part of Georgia (42.30◦ N, 43.48◦ E) because of
the known landslide potential, slope angle and field access
there. We use a specific constellation to investigate the ef-
fect of extrinsic forcing (Fig. 1). Geologically, the region
belongs to the Dzirula block, which is a topographic fea-
ture of the Chiatura formation (Gamkrelidze and Shengelia,
2007) (Fig. 1). The geologic Chiatura formation was created
by sedimentary deposition, with a sequence of quartz-arkosic
sandstones and sands underlying an ore horizon that is over-
lain by siliceous sedimentary rocks to the west and shales and
shaly sandstones to the east (Edilashvili et al., 1974; Leonov,
1976).

The relief profile of the study area shows a gently slop-
ing morphology. The height varies only from 500 to 850 m;
thus the slope is moderate, with slope angles less than 20◦.
A significant part of the lower landslide flank is subject to
mining activity (Fig. 2), where quartz sand is excavated. The
nearby Kutaisi-Sachkhere thrust fault, located just∼ 5 km to
the north of the landslide area (Gamkrelidze and Shengelia,
2007), is thought to be active (seismic catalogue of Geor-
gia, http://seismo.ge) and thus has the potential to be an un-
predictable landslide trigger (Fig. 1). Other faults at larger
distances may also dynamically trigger the landslide, simi-

Fig. 2. Time series of Landsat images showing the development of
the mining area. The spatial resolution of the images is 30 m. These
images emphasise the vegetation and the boundary between land
and water. Bright colours indicate bare soil, which in this case is the
mining area. Panels(d–f) show several expansions that have opened
over the last 20 years.

lar to the 1991 Racha earthquake-triggered landslides at over
30 km distance (Jibson et al., 1991; Jibson et al., 1994).

3 Data and methods

3.1 Data

Data analysed comprise (a) satellite radar observations, (b)
optical Landsat data and aerial photographs, (c) digital ele-
vation data and (d) field inspection. The main focus of this
work is on the satellite radar observations and interferomet-
ric processing.

To generate the InSAR maps, we considered 12 images
of the Phased Array type L-band Synthetic Aperture Radar
(PALSAR) acquisitions from the Advanced Land Observ-
ing Satellite (ALOS). In many other satellite radar data, the
phase quality of the SAR signals degrades due to changes
in the backscattering properties of the surfaces (e.g. vegeta-
tion), which is less critical in L-band sensors (Strozzi et al.,
2005). The ALOS archives of our study area contain only
data acquired in ascending orbits, track 582 and frame 840,
which means that the ground is observed by the satellite only
from the west. The data set spans the period from July 2007
through June 2010. Five images are high-resolution single-
polarisation (fine mode single (FMS) polarisation) mode and
7 images are high spacing, dual-polarisation (fine beam dou-
ble (FBD) polarisation) mode. The range resolution is 10 m
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for the FBS mode and 20 m for the FBD mode. The azimuth
resolution is 5 m for both modes. To avoid decorrelation as-
sociated with snow cover, we excluded scenes acquired in
winter periods. The periods between master and slave im-
ages range from 46 to 138 days. The distance between two
satellite positions (orbits) characterised by a spatial baseline
was at most 1885 m, which is smaller than the critical spatial
baseline for ALOS (Sandwell et al., 2008).

We also tested radar data available from other satellite mis-
sions, such as ERS1/ERS2 and Envisat (C-band), however,
we found the interferograms to be of very low quality. We at-
tribute this to the shorter wavelengths of these sensors com-
pared to that of the ALOS L-band. The C-band has difficulty
penetrating through vegetation; therefore, the signal may be
decorrelated due to the vegetation (Wei and Sandwell 2010).
The L-band penetrates the vegetation much better than the
C-band does (Wei and Sandwell, 2010).

Landsat images from the Global Land Cover Facility
(GLCF) catalogue were used to trace the development of
the mining activity. We selected cloud-free images from the
30-year catalogue. We used Landsat TM band 7, i.e. short-
wave infrared (2090–2350 nm) for Landsat 4–5 (TM), as
shown in Fig. 2a–c and e and Landsat 7 (ETM+), as shown
in Fig. 2d and f, with 30 m resolution. The spectral re-
flectance of dry soil or sand increases with wavelength and
peaks at wavelength 2000–2200 nm (Chudnovsky and Ben-
Dor 2008). Therefore, sand is highly visible in band 7. Band
7 is also sensitive to the moisture content of the soil and veg-
etation. Moreover, the area of interest was analysed using
aerial photographs with pixel resolution∼ 0.6 m that were
recorded in 2007, at the beginning of our InSAR data set. We
also studied geological (Edilashvili et al., 1974), land cover
and topographic maps (scale 1: 5000, 1972).

An ASTER DEM (resolution 30 m) was used for morphol-
ogy analysis and InSAR processing. We also tested a Shuttle
Radar Topography Mission (SRTM) DEM (resolution of 1
and 3 arc seconds), which did not change our results.

In August 2011, we visited the area of the Itskisi landslide.
We validated the evidence for this landslide and mapped frac-
tures related to the landslide in the terrain. We found newly
formed cracks, some of them hidden by vegetation, mapped
and measured them with handheld GPS units, and compared
them to the InSAR and aerial photography database.

3.2 InSAR

The SAR interferometry (InSAR) method is the complex
multiplication of two radar images of the same ground target
(Hanssen, 2001). Each radar image contains amplitude and
phase information. The interferogram is calculated by dif-
ferencing the phase component of the two coregistered radar
images. The InSAR was successfully used for landslide de-
tection and monitoring (Colesanti et al., 2003a; Colesanti and
Wasowski, 2006).

To start the interferometric analysis, we coregistered all
SAR images to the image acquired at 4 September 2009.
Thus, each pixel in all images corresponds to the same lo-
cation on the ground. Raw images from the FBD mode
(14 MHz) were transformed to an FBS mode spacing
(28 MHz) using the ROI_PAC (Repeat Orbit Interferome-
try Package) software. Using DORIS (the Delft Object Ori-
ented Interferometric Software) software (Kampes and Usai,
1999), we built interferograms that contain the phase infor-
mation for each acquisition. The effect of topography was
calculated and removed from each interferogram using the
ASTER DEM and satellite ephemeris data (Hanssen, 2001).
Results are based on the assumption that the ASTER DEM
properly reflects the topography during differential InSAR
measurements. We generated multi-look images from inter-
ferograms with a factor of 2. The multi-looking is neces-
sary to equalise resolution in the azimuthal and in range di-
rections. Therefore, the pixel dimensions are approximately
9 m in the azimuthal direction and approximately 7.5 m in
the range direction. The interferograms were low-pass fil-
tered using adaptive spectral filtering (Principe et al., 2004).
We choose only interferograms with coherence higher than
0.4 after filtering. The corresponding wrapped phase val-
ues were unwrapped using the branch-cut phase unwrap-
ping algorithm (Goldstein and Werner, 1998) and SNAPHU,
a statistical-cost network-flow algorithm (Chen and Zebker,
2002). To correct for the effect of orbital error, wavelet multi-
resolution analysis and robust regression were used (Shirzaei
and Walter, 2011).

Some of the limitations of the InSAR method are related to
geometric distortion, for instance as “layover” and “shadow”
(Chen et al., 2011). In our case, however, the slope was
mostly gentle, except for steep sections in the mining ar-
eas, where no observations were possible. Another limita-
tion comes from the single viewing geometry and accord-
ingly from the unidirectionality of the displacement vectors
(Delacourt et al., 2007). Having only one viewing geometry
prohibits the extraction of the 3-D displacement and may af-
fect the interpretation of the deformation field.

3.3 Photographic analysis

The optical data of photographs were transferred to the
WGS84 reference frame and analysed in a geographical in-
formation system (GIS) using ArcMap’s editor functions.
Only one aerial photography was available; thus the anal-
ysis concentrated on lineaments. This includes manual de-
lineation and classification of lineaments, fractures, streams
and ponds. We used the aerial photography in close compar-
ison to the InSAR data. Specifically, fractures and morpho-
logic expressions in the aerial photography were compared
to changes in the displacement field derived from the InSAR
data. This comparison allowed us to test which fractures were
active and which were not. The contour map of the area was
created from an ASTER DEM in ArcMap, using 3-D analyst
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Fig. 3. A flow chart showing data and steps taken to estimate the
landslide volume and a sketch of the geometric figure that we used
for the volume calculation. “A” is the major axis of an ellipsoid
in the X direction, “B” is the major axis of an ellipsoid in theY
direction and “C” is the major axis of an ellipsoid in theZ direction.
h is the distance between the plane of the landslide surface and the
sliding plane.a is the major axis in theX direction of the sliding
plane. The volume is calculated for the area enclosed between the
plane of the landslide surface and the sliding plane.

tools. The area and perimeter of the landslide boundary were
further analysed in ArcMap.

Photography taken by a geotagging camera allowed an
even closer view of the selected structures and their com-
parison to InSAR data.

A larger view was possible due to Landsat imagery. After
importing these image data to ArcGIS, we were able to visu-
alise the growing extent of the mining activity and its effect
on the displacement field.

3.4 Modelling

The sliding planes of a landslide play an important role in
the activity of the landslide (Petley et al., 2002; Petley et al.,
2005). Knowledge of the location, shape and the size of the
sliding plane allows estimation of the landslide volume. To
investigate the geometry of the sliding plane of the observed
displacement, we applied inverse modelling techniques. Dis-
placement maps produced from the InSAR data were used as
input data. We followed previous kinematic landslide studies
(Fruneau et al., 1996; Martel, 2004) where models were used
to describe landslide processes. These elastic models con-
sider a flat earth and a linear elastic rheology. In our model,
the main rupture plane of the landslide was simulated by a
planar dislocation plane (Okada, 1985). We herein consid-
ered this dislocation plane as a first-order approximation, be-
cause the model is simplified in a geometric and a physi-
cal sense. Geometrically, the models are simplified as they
rely on the half space assumption and the rectangular dislo-
cation plane, with an upper edge being parallel to the sur-

face. Physically, the models are unrealistic as they rely on a
linear elastic rheology and a dislocation along a plane. The
dislocation plane we used has 8 unknowns: length, width,
depth, two-dimensional position, dip and strike angles, and
dip-slip dislocation components. We used the genetic algo-
rithm to search the model and optimise the free parameters
(Shirzaei and Walter, 2009), choosing a wide range of pos-
sible solutions for the model parameters as a starting point.
The genetic algorithm defines a cost function and initialises
the genetic algorithm’s parameters.

We used this type of model because large landslides have
structures similar to tectonic faults (Fleming and Johnson,
1989). Structures found inside a landslide (Fleming and
Johnson, 1989) also motivated consideration of dislocation
planes in translational landslide rupture models (Fruneau et
al., 1996; Muller and Martel, 2000). We follow these previ-
ous works by assuming that our observed displacement fields
from InSAR may be simulated by planar dislocations within
an isotropic elastic half-space. All InSAR deformation mea-
surements were inverted to test the stability of the décolle-
ment plane. Only model parameters that emerged when the
genetic algorithm had stabilised, which means that the pa-
rameters had not changed for several iterations, were consid-
ered.

3.5 Estimation of landslide volume

A common way to calculate the rotational landslide volume
is to assume that the soil mass has the shape of an ellipsoid
(Cruden and Varnes, 1996; Marchesini et al., 2008). We ex-
pand on this concept by considering a more complex and re-
alistic landslide geometry: one containing both rotational and
translational components. A translational component is con-
sidered by an ellipsoid segment constrained by two parallel
planes (Fig. 3). The lower plane is the décollement as in-
verted from our InSAR data, and the upper plane reflects the
surface expression of the landslide (Fig. 3). There are two
semi-major axes,A andB. Consider the ellipsoid segment
with décollement planez = h, whereh is the depth of slid-
ing plane. This plane is parallel to the surface plane (XY)

located at depthh. The third vertical semi-major axisC can
be calculated as follows:

a = A ×

√(
1− (h/C)2), (1)

wherea is the axis of the ellipse formed by a section plane
z = h. It follows from the standard ellipsoid equation for the
coordinates of point (a, 0,−h). Then, we are able to calculate
the volume of the ellipsoid segment, which is constrained by
the two dipping planes:
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Fig. 4.Velocity (cm day−1) in the line-of-sight (LOS) direction from InSAR data. Given above each image are the two acquisition dates and
the spatial baselines (B). Interferograms that are temporally or spatially decorrelated are not shown. Black lines show the profiles on plot(c),
for which the topography and displacement velocities are shown below (Z-Z′, Y-Y ′, X-X ′). Polygons are marked with the letters “G”, “B”,
“R” and “M” (panel a) and present areas where average velocities were calculated for Fig. 9.

V =

h∫
0

π × A × B ×

(
1−

z2

C2

)
dz = π × A× (2)

B ×

(
h −

h3

3× C2

)
.

An alternative way to evaluate the volume of a transla-
tional or rotational landslide is based on the landslide erosion
rate (Hovius et al., 1997; Malamud et al., 2004; Larsen et al.,
2010), where the predicted volumeV of a landslide of area
S can be approximated by the following empirical relation:

V = 0.05× S1.3. (3)

The parameter 0.05 was determined empirically for soil
landslides (Larsen et al., 2010). An exponent in the range

of 1.1–1.3 characterises a soil landslide (Edilashvili et al.,
1974), similar to our case in Georgia.

The flow chart (Fig. 3) shows the steps that allow evaluat-
ing landslide volumes using the above-described methods.

4 Results

4.1 InSAR deformation field

Figure 4 shows the unwrapped and geocoded versions of the
InSAR data set. The warm colours (positive values) indicate
motion towards the satellite, while cold colours (negative val-
ues) indicate motion away from the satellite (Fig. 4).

We found the surface pattern of the deformation area to
be roughly kidney-shaped, where the major axis is approx-
imately north–south parallel to the slope. The landslide is
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Fig. 5. (a) Aerial photography covered by a displacement map derived from InSAR.(b–f) details of the black boxes in(a), allowing a
comparison between the displacement map and the morphology. Red pixels show movement towards the satellite. See text for discussion.

hence approximately 2 km long (north–south) and 0.6 km
wide (east–west). A similar pattern emerges from all interfer-
ograms, which confirms the displacement occurrence. How-
ever, the amplitude of the displacement varies, occasionally
even if the same duration is bracketed by the data (Fig. 4a–
c). This observation complicates the study because the land-
slide process is found to be highly non-linear. The displace-
ment velocity sharply increases in the interferogram from 4
September 2009 to 20 October 2009 and extends to almost
the entire kidney-shaped landslide surface. The maximum
difference between interferograms from 4 September 2009
to 20 October 2009 and 20 July 2009–4 September 2009
reaches 5 cm. We will provide more information about the
possible reasons for different amplitudes in the discussion
section.

Three profiles taken from one of the InSAR images
(Fig. 4, profilesZ-Z′, Y -Y ′, X-X′) clearly indicate that
no displacement was observed outside the landslide. The
bulk of the landslide moves at similar rates, except that
sharp gradients can be observed in the toe region. The gaps
(Fig. 4, profilesY -Y ′) indicate areas of mining activity,
where no data are presented due to mining activity, steep
topography or erosion.

4.2 Comparison of InSAR to optical images

The surface of the landslide is hummocky and fissured. We
found several local protrusions and depressions on the land-
slide body, which were also clear from the profile (Fig. 4,
profiles Z-Z′, Y-Y ′, X-X ′). Figure 4c presents locations of
profiles (Fig. 4, profiles Z-Z′, Y-Y ′, X-X ′).

We tested for correlation between the InSAR results and
aerial photography (Fig. 5). In most cases, the displacement
signals show a strong gradient within the activity zones of the
landslide (Fig. 5b–e). Figure 5b shows active graben struc-
tures close to the areas of mining activity. Accordingly, these
places show displacement gradients. Figure 5c demonstrates
correlation between antithetic faults and the displacement
map, best visible by the blue pixels on east side of fault.
Figure 5d presents a secondary landslide where the scarp
area has a negative displacement and the toe has a positive
displacement compared to the InSAR results. The geomor-
phology is complex in Fig. 5e: the river path and the shape
of topographic isolines suggest that the area was not part of
the landslide. However, the displacement signal is similar to
the signal on the landslide (Fig. 5e). This observation may
suggest that the area was in fact part of the landslide. The
gradient visible in the InSAR data correlates with transverse
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Fig. 6. View of the landslide from the northeast(a) and from the
back of the landslide, east–west(b). There are slopes cut by min-
ing activity in image(a). The white arrow shows the direction of
landslide movement. The view of the landslide from the back(b)
shows landslide activity structures that are present in the aerial pho-
tograph correlated with the InSAR signal in Fig. 5.(c) and(d) show
secondary landslides and fractures, respectively. Their positions are
shown in image(b).

ridges, possibly associated with the landslide toe. Figure 5f
presents an area where fault structures were observed in the
field. However, the InSAR result does not show a signifi-
cant displacement gradient, possibly indicating that the faults
had not been active during the InSAR survey. The interfero-
grams suggest that these and some of the fault areas are stable
(Fig. 5a and f). It is likely that these landslide structures have
either very low or no activity, or that any activity is masked
by the high density of vegetation. These landslide structures
are shown in both Fig. 5 and the survey photographs (Fig. 6).

Because the InSAR data were available only in ascending
orbits, a reconstruction of the absolute horizontal and ver-
tical components of the displacement was not possible. We
assume, however, that most of the motion is westward be-
cause the morphology displays a slope orientation to the west
(Fig. 6a). At localised regions, significant ground movement
is detected at sites with slopes facing east, thus in the oppo-
site direction. The observation that the movement is affecting
both westward- and eastward-facing slopes may lead us to
speculate that the type of movement is relatively deep seated
and involves both synthetic and antithetic faults (Fig. 6b) to

Fig. 7. Simplified structural map of the Itskisi landslide. Contour
lines are based on SRTM DEM and have 30-metre intervals. The
features mapped are presented in the legend. The possible body of
the landslide is within the red line(a). The red dashed line shows
the landslide boundary detected from the morphology.(b) is a de-
tail of the black box in(a). Aerial photograph shows the fissured,
hilly surface of the landslide(c). Structures are well aligned with
the orientation of the Okada plane, as obtained from modelling of
the landslide process (Fig. 8, Table 1, strike parameters).

form horst and graben structures. In other words, local mor-
phologic features (Fig. 6c and d) and slopes have only minor
influence on the moving mass, which is controlled instead by
the large-scale topography and a deep-seated décollement.

Due to the slow rate of the landslide, the surface activ-
ity of the sliding area is not clear in optical Landsat satellite
imagery (Fig. 2). Investigation of high-resolution aerial pho-
tographs, however, reveals further structural features such
as folds, steps, lineaments, faults, outcrop sites and ponds
(Fig. 7). We used these structural features to identify the type
and complexity of movement for this landslide area.

We created a sketch of the landslide in GIS, using aerial
and InSAR results as well as field observations (Fig. 7). We
identified partly water-filled ponds in the transition zone of
the centre to the upper part of the landslide (Fig. 7). Al-
though the ponds and boggy areas are morphologically well
explained, they were not present on the 1972 topographic
map, implying that they developed more recently. Further-
more, some houses were built in locations where ponds are
located today, for instance, close to the eastern slope (latitude
42.2975◦ N, longitude 43.488◦ E). In the field, we identified

Nat. Hazards Earth Syst. Sci., 14, 675–688, 2014 www.nat-hazards-earth-syst-sci.net/14/675/2014/



E. Nikolaeva et al.: Landslide observation and volume estimation in central Georgia 683

Table 1.Output parameters from inversion model for different interferograms (Fig. 8a–c).

Case Temporal Length, Width, Depth, Dip Strike Dip-slip
baselines, days km km km m

a 46 1.45 0.8 0.19 −9◦
−36 −0.134

b 46 1.3 0.6 0.12 −8.2◦ −40 −0.17
c 92 1.37 0.67 0.14 −7.4◦ −39 −0.12

Fig. 8. Observed quantities (left), modelled quantities (middle) and
the residual (right). The mining activity was not accounted for in
the modelling. The parameters of the model are given in Table 1.

trees or their remnants inside the ponds, which supports the
idea that the ponds have appeared recently.

We identified visible scarps for this region from the aerial
photograph and field observations (Fig. 7). The major areas
of debris are on the eastern slope of the landslide. Over the
course of our field season, the debris flow tracks, debris fan
deposits and scars evolved. Newly formed cracks hidden by
vegetation were found during field surveying.

The area affected by landslide processes was calculated in
GIS using a polygon created based on InSAR, aerial pho-
tography and field observations (Fig. 7). We found that the
area of the kidney-shaped landslide identified by its mor-
phology is approximately 2.9 km2, the perimeter of total area
affected by the landslide is approximately 7.48 km, and the
area having a displacement signal from InSAR is approxi-
mately 0.9 km2.

4.3 Modelling results

We inverted the three best interferograms with temporal
baselines of 46 or 92 days. Figure 8 shows the observed

displacements from InSAR data, model simulations of the
same geometry and residuals that show the difference be-
tween those two displacement fields. In all these data sets,
the optimum décollement plane is sub-horizontal and dips
slightly to the northwest. The residuals are generally less than
5 cm, which means that the signal was simulated very well
and the residuals approach the noise level. The highest resid-
ual is in the deposition zone of the landslide. Table 1 shows
the output parameters for the model initiated with different
values of input parameters. We detected a slight variation in
the location and geometry of the sliding plane. For example,
the dip ranges between−7◦ and−9◦ westward, the strike
ranges between 35◦ and 40◦ northeast–southwest, the dip slip
ranges between−12 and−0.17 m to the northwest and the
depth ranges from 120 to 190 m below the surface. As these
inversions provide an indirect view on the décollement plane,
we can now elaborate on the landslide volume.

4.4 Landslide volume

Using the ellipsoid segment concept, we calculated the ge-
ometrically predicted volume based on the surface affected
and the location of the décollement plane. We present dis-
placement on the surface as an ellipse with semi-major axes
A and B, which have values of 1 and 0.3 km, respectively
(Fig. 3). The axisA is found from modelling as the length
parameter (average 0.65 km) andh is the modelled depth of
the detachment plane (average 0.12 km). Based on these pa-
rameters and using Eq. (2), we estimated the volume of the
Itskisi landslide to be 0.09 km3. We did not include dip in
our volume estimation because the slope of the target area is
approximately 10◦, which is similar to the dip angle of the
décollement as obtained from inverse modelling.

Following the empirical Eq. (3) and using the affected
landslide area as determined from InSAR, we obtain a land-
slide volume of approximately 0.046 km3, which is half the
volume estimated above. Several reasons may explain this
difference. Firstly, we do not take the slope of the planes that
are truncated ellipsoids into account. Secondly, the exponent
1.3 is applicable for both shallow soil-based and for deep
bedrock landslides. We choose this coefficient only because
we have no accurate data about the location of the bedrock.
In both case, the models were simplified by the half space
assumption. In other words, topography and material hetero-
geneity were not considered.
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5 Discussion

In this work, only a limited satellite radar data set was avail-
able. In Georgia this may result from a combination of po-
litical sensitivities, lack of previous scientific interest, and
acquisition conflicts with other study areas.

The remaining data, however, allowed us to obtain new
insights into a specific landslide case in Georgia. Eight reli-
able interferograms spanning over 3 years were produced to
map the extent and amount of movement on the ground. Out
of these, three interferograms have a noise level that makes
them difficult to interprete, whereby up to 50 % of the ex-
pected signal is attributed to noise. The remaining five inter-
ferograms, however, were of a high and consistent quality.

In this work we speculate about the relationship between
landslide acceleration and extrinsic processes. We note that
although an earthquake occurred during the observation pe-
riod, at a time coinciding with the largest landslide displace-
ments in the InSAR data set, additional and complementary
data at the landslide site would be needed to make a stronger
case for a direct relationship between these events. As long
as in-site observations are not made of the Itskisi landslide or
similar landslides, a clear understanding of external triggers
remains elusive. The same limitation also concerns rainfall
data. No accurate weather data was available to us, which is
why we herein used weather models instead of in-site rain
gauge observation.

The relationship of a landslide area to anthropogenic ac-
tivities, here meaning mining is a critical issue. Because the
Itskisi landslide has destroyed the Itskisi village and is threat-
ening others, liability issues restrict a great deal of scientific
communication between ourselves and mine operators. In ad-
dition, our own survey showed that not only one mining com-
pany but at least 17 are involved in extracting sands from
the landslide toe region, which makes a control on extraction
rates and volume even more difficult. Here we relied more
on satellite imagery (Landsat), which clearly show the vast
spread of the area of effected by mining.

We use both InSAR and optical data for the detection and
kinematic analysis of a landslide in Georgia. The landslide
is 0.9 km2 in area, subject to a motion of up to 6 cm within
46 days and affects a populated region and a major mining
site. Although we use radar data from a single direction (as-
cending satellite pass) only, the combination of InSAR dis-
placement maps, aerial photography analysis and modelling
provides information about the landslide dynamics. One of
the important problems that may be encountered in the pro-
cessing of radar images is the loss of coherence due to spatial
or temporal factors. For this reason, we excluded some inter-
ferograms from our analysis and modelling. In the following
section, we discuss the effects of extrinsic processes, such as
those related to rainfall, earthquake and mining activity, on
landslide dynamics.

5.1 Impacts

The landslide may affect surrounding infrastructure, popula-
tion and river flow. Landslide can dam river (Fig. 7), which
may induce major hydrological hazards such as floods or the
loss of drinking water resources. Landslide also affects ero-
sion and can cause short-term losses of topsoil and vegeta-
tion. Landslide damming has both short- and long-term ef-
fects (Schuster and Highland, 2003). The Itskisi landslide di-
rectly affected four villages: Itskisi, Makhatauri, Savane and
Irtavaza (Fig. 10). The village of Itskisi was located directly
on the landslide and moved downslope. Houses there were
damaged, and most of the population left the village. The
villages Savane and Makhatauri are separated by a river at
the foot of landslide. In the scenario of landslide occurrence,
the landslide may block a river and reach the village Savane,
which is approximately 300 m away from the landslide area.
The village Itavaza is located on the opposite slope of the
landslide.

Understanding this type of landslide is therefore particu-
larly important because eyewitnesses have reported increase
in landslide hazards and risk over the past few decades.

5.2 Factors triggering landslides

A displacement signal is detected in each interferogram
shown in Figure 4 and is particularly strong in interferograms
with short temporal baselines. Because variation in the dis-
placement rates affects only the kidney-shaped landslide area
and not the stable surroundings, we conjecture that this vari-
ation is not an artefact. The normalised velocity value sug-
gests highly variable slip rates. The changes in the velocity
may be due to variations in groundwater, which are a func-
tion of rainfall intensity or seasonal water variations such as
snowmelt.

We select the average velocity at four different places on
the landslide (Fig. 4a–h) to investigate the relationship be-
tween changes in velocity and precipitation. We compare
these velocities to average monthly precipitation data (Fig. 9
black curve), which are based on the atmospheric general
circulation model ECHAM5 (http://www.mpimet.mpg.de).
The spatial resolution is roughly equivalent to 2.8 degrees
in both directions, latitude and longitude (Roeckner et al.,
2003). The period from June 2007 to January 2010 has
a maximum precipitation value of 150 mm. The interfero-
grams from 17 October 2008 to 4 March 2009, 2 Decem-
ber 2008 to 4 March 2009 and 20 October 2009 to 20 Jan-
uary 2010 (Fig. 4) cover periods with monthly precipitation
below 150 mm, while all other interferograms cover intervals
with monthly precipitation less than 100 mm. The velocity in
the interferogram from 2 December 2008 to 4 March 2009
is slightly higher (0.01 cm day−1) than in the interferogram
from 4 March 2009 to 20 July 2009. However, we observe
that the interferograms that display highest landslide dis-
placements do not concur with episodes of high monthly
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Fig. 9. Distribution of precipitation (black curve, left scale) based
on ECHAM5. The coloured lines (green, blue, red) and bar graphs
(magenta) show velocities (right scale) within the area identified by
letters “R”, “G”, “B”, “M” in Fig. 4a.

average precipitation (Fig. 9). These interferograms cover the
time from 20 July 2009 to 20 October 2009 and 15 July 2007
to 30 August 2007. Thus, the apparent acceleration of the
landslide in September–October 2009 cannot be explained
by rainfall.

Inspection of the global earthquake catalogue (CMT)
shows that a magnitude Mw= 6.0 earthquake on 7 Septem-
ber 2009 occurred at 10 km depth and a distance of only ap-
proximately 30 km from the landslide. On 18 July 2007, an-
other earthquake occurred, this one with magnitude Ml= 3.8
at 15 km depth (http://seismo.iliauni.edu.ge/) at a distance of
12 km. The observed increase of the displacement rates at
these times suggests that these earthquakes may have had a
triggering influence. Such a triggering influence is in agree-
ment with work by Jibson et al. (1994), where numerous
landslides were triggered following an earthquake at a dis-
tance of approximately 30 km.

These discussions are relevant given the ongoing mining
activity during the period of this study. There is 68.07 Ha
of mining area covered by 17 mining companies (source:
www.gwp.org, licenses issued for the use of mineral re-
sources in Georgia), as shown in Fig. 2 (bright areas). These
images do not allow clear analysis of the landslide, but they
do show the development of mining activity (Fig. 2, bright
areas). Quartz sand extraction began in 1968 and accelerated
greatly in 2007, reaching rates that continue today. This may
explain why the points closest to the active mines show the
highest velocities in 2007 (Fig. 9, margin line, year 2007).

We conclude that the landslide may have been triggered
by rainfall, earthquakes and the man-made removal of the
toe. Unfortunately, due to the lack of good topographic data,
ground data and field information at that time, no clear rela-
tion between the earthquakes and the triggering of the land-
slide movements could be found.

Fig. 10. (a)Three-dimensional GIS visualisation showing InSAR-
measured displacements in cm (4 April 2009–20 October 2009) on
a digital elevation surface (ASTER, resolution 30 m) combined with
an aerial photograph. The area is 3.5 km east–west by 4.8 km north–
south in size. The colour scale bar indicates displacement. Four vil-
lages were affected by the landslide.(b) The profile along the region
of interest runs west–east along theX − X′ transect shown in(a).
The colour scale for the profile points is the same as for the 3-D vi-
sualisation above. The vectors are directed to the line-of-sight. The
length of the vector indicates the magnitude of the displacement,
which was artificially increased by a factor of 100 for better visi-
bility. The slip plane for the Itskisi landslide is estimated based on
results from remote sensing, field observations and modelling. Our
model favours the landslide to be complex, with both a translational
part (Okada model) and rotational elements (dashed red curves).

5.3 Conceptual model

Our structural mapping and analysis of InSAR data suggest
that several smaller sliding blocks combine to form the larger
landslide complex. We applied a model to study the internal
geometry of the landslide.

Inspired by the research of Fleming and Johnson (1989),
Muller and Martel (2000) and Martel (2004), we use a dislo-
cation model to evaluate the depth of the sliding plane. The
hypothesis is that the structures of large landslides are sim-
ilar to tectonic faults. For instance, the seismic and geode-
tic observations confirmed analogous behaviour of landslide
detachment planes and tectonic faults (Gomberg and Bodin,
1995). Moreover, the geometry of these two elements may
also be related, as was found between adjacent ridges paral-
lel to the San Andreas Fault in the Carizzo Plains of Cali-
fornia and the trend of the slide-bounding strike-slip fault on
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the Slumgullion landslide in Colorado (Gomberg and Bodin,
1995). In our model, we had to ignore parameters that may
play important roles in the development of the landslide pro-
cess. We did not consider possible material heterogeneity,
nor did we take into account topography or the distributions
of possible driving forces and gravitation. Our model also
does not show the evolution of a landslide and secondary
slides and has difficulty predicting the true shape of the slid-
ing plane. However, in the first approximation, the model
selects the potential sliding plane most susceptible to fail-
ure from an infinite number of potential surfaces. In addi-
tion, translational slides can be connected to upslope and
downslope rotational slides (Fig. 10). The lengths of the dis-
placement vectors remain the same at certain areas (Fig. 10,
profile), and the distribution of the displacement vectors is
a function of the slip-surface sliding plane (Casson et al.,
2005). The equal displacement vectors in the centre zone of
the landslide indicate a uniform translational landslide there
(Casson et al., 2005). However, the lengths of the displace-
ment vectors increase from east to west, which implies the
presence of rotational landslide elements in the upper zone
(Fig. 10, profile).

The complete picture of the landslide therefore consists of
a planar (translational) fault at depth that curved toward the
toe and headwall to form a combined rotational-translational
landslide body. Secondary landslides developed and mi-
grated, piggybacking on each other. Antithetic faults and
horst and graben structures developed. The grabens formed
ponds and destroyed the Itskisi village, whereas the horst
structures are currently exploited by mining activity. A lo-
cal girdle of subsidence surrounding the mine highlights the
effects of the loss of toe support. Landslides may be triggered
by mining intensification (as in 2007) or earthquakes (as in
2009). A direct link to rainfall was not found, though we note
that the rainfall database was poor.

Previous studies show the efficiency of combining differ-
ent remote sensing images for monitoring and characteris-
ing landslide processes (Strozzi et al., 2005; Casson et al.,
2005). Using both radar and optical satellite images allows
us to trace the behaviour of landslides in space and time and
to evaluate an area affected by possible landslides. A concep-
tual model was developed based on observational data from
remote sensing (Casson et al., 2005). The aim of the concep-
tual model is the evaluation of the volume of possible land-
slides for the hazard mass movement.

6 Conclusions and perspective

Landslides in the area of the Caucasus Mountains are not
well monitored due to the high costs and difficult logistics
of doing so. As we demonstrate, the combination of InSAR
data, aerial photography analysis, Landsat imagery and other
information allows us to identify and monitor a landslide in
the centre part of Georgia. The displacement rate of the land-

slide is from 10 cm year−1 to 30 cm year−1, covering an area
of approximately 0.9 km2. Our data suggest that the landslide
movement is not stable, occasionally displaying a significant
acceleration. These episodes of high landslide mobility may
be associated with potential external triggering mechanisms,
such as rainfall, man-made activity or a tectonic earthquake.

We characterise the landslide movement and determine
displacement velocities within the landslide body. By com-
bining this work with modelling, we are able to more pre-
cisely explore the dimensions and detachment plane geome-
try and further illuminate potential hazards and environmen-
tal interactions. The maximum depth of the landslide detach-
ment plane ranges from 0.12 to 0.19 km.

Field observations show good correlation of surface frac-
tures and the displacements obtained from InSAR data
(Figs. 5 and 6). We identify a number of factors that may
trigger landslides. Mining caused a loss of mass in the toe.
The intensification of mining exploration locally increased
the landslide velocity. In addition, the most dramatic veloc-
ity increase was found in association with a Mw= 6.0 earth-
quake located 30 km from the landslide.

This landslide poses threats to human lives and structures
that support transportation and natural resource management
in four villages. The landslide or its part may be activated
given the proximity (∼ 30 km) of a possible focus of a strong
earthquake (Keefer 1994; Wasowski, 2002).

This finding has important implications for hazard assess-
ment because the location and type of landslides in Georgia
apparently vary in time. The mining industry, which provides
and improves infrastructure and prosperity in the region, also
may contribute to triggering landslides.

Over the past 30 years, the use of remote sensing tech-
niques in the geosciences has increased dramatically. The
number of satellites with various temporal and spatial reso-
lutions, bands and broad coverage has also increased. In this
regard, there is greater opportunity to explore an event with
various data sets. The probability of data being available for
unexpected geological disasters is also higher. This remote
sensing development plays a major role for creating a data
archive for Georgia, where high hazards exist but only small
numbers of observational tools are used.

The results of this study demonstrate that complex remote
sensing techniques have the potential to become good tools
for early warning of landslide disasters. Satellite data al-
low monitoring landslides in space and time. The displace-
ment distribution obtained from InSAR data can be used in a
model to characterise the geometry and spatial evolution of
the landslide slip surface. Its temporal evolution can also be
investigated with remote sensing data.

Our work suggests the landslide to have a decade long his-
tory, which is developing. From Landsat imagery we see that
the man-made activity has significantly increased. Our own
survey and questioning of residents further support the fact
that the mining activity has strongly increased in the past 8
years. One may speculate that the effect of man-made activity
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on landsliding may even augment more risk as unloading in
the toe region continues. Moreover, as the landslide is hence
further developing, also interacting processes, such as earth-
quake or rainfall triggering may alter with time. Therefore,
close observation and further work with a more regular data
acquisition are needed, allowing detection of displacement
rate changes at higher detail. Also, monitoring of mining ac-
tivity may also help to clarify the impact that man-made ac-
tions have on natural hazards. In this view, the Itskisi land-
slide may provide an excellent laboratory, where such inter-
acting and cascading processes might be well studied.
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