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Abstract. Extreme-temperature events have consequences

for human health and mortality, forest disturbance patterns,

agricultural productivity, and the economic repercussions of

these consequences combined. To gain insight into whether

extreme-temperature events are changing in light of global

climate dynamics, the annual numbers of high-temperature

days (those with temperatures higher than 20, 22.5, and 25 ◦C

at 850 hPa) were analyzed across southern Europe from the

years 1978 to 2012. A significant increase in the frequency of

these days was found in many areas over the time period ana-

lyzed, and patterns in the spatial distribution of these changes

were identified. We discuss the potential consequences of the

increases in high-temperature days with regards to forest fire

risk, human health, agriculture, energy demands, and some

potential economic repercussions.

1 Introduction

Heat-wave events play a role in determining human health

and episodic mortality patterns, and are also recognized as

having marked impacts on agriculture, forestry, wildland fire,

and socioeconomic activities (Poumadère et al., 2005; Mills,

2005; Trigo et al., 2006; Kuglitsch et al., 2010; Cardil et

al., 2013). Multiple heat waves have been recorded in south-

ern Europe in recent years, including in 2003, when sum-

mer temperatures across Europe were very likely warmer

than any other summer looking back to 1500 (Luterbacher

et al., 2004). Extreme-temperature days and heat waves were

linked to above-average human mortality in the cities of

Madrid and Lisbon (García-Herrera et al., 2005), and in

France in 2003 (Poumadere et al., 2005). In addition, large

wildland fires are more likely during heat-wave events, burn-

ing thousands of hectares across multiple ecosystems in the

Mediterranean region (e.g., 1994 in Spain, 2003 in Portugal,

2007 in Greece). In Russia in 2010, unusual temperatures

around 40 ◦C were recorded and the resulting drought was

linked to wildfires that were responsible for hundreds of hu-

man deaths, covering much of the region with toxic smog

(Gobin et al., 2013). An unprecedented spring heat wave in

the USA and Canada peaked in intensity during March of

2012 (Gobin et al., 2013), followed by a summer of destruc-

tive and even fatal wildfires in North American forests.

Extreme-temperature events can also exacerbate other ef-

fects of global climate change. For example, climate-change-

related increases in average temperatures have been linked

to widespread insect outbreaks in North American forests

(Safranyik, 2004), which, coupled with wildfires propagated

by extreme-temperature events, can have an multiplied effect

on forest persistence. The synergistic effects of extreme tem-

peratures and their repercussions have been identified as pos-

sible mechanisms for the development of a positive feedback

cycle of global warming and continued loss of greenhouse

gases to the atmosphere.

Climate-change projections for the Mediterranean Basin

show a higher variability in weather conditions and an in-

crease in extreme weather events, with longer, more fre-

quent, and even more intense heat waves (Moriondo et al.,

2006; Diffenbaugh et al., 2007; Giorgi and Lionello, 2008;

Regato, 2008; Giannakopoulos et al., 2009; Barriopedro et

al., 2011). The Mediterranean is widely considered a climate-

change “hot spot” (Giorgi, 2006), meaning that the region is a
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Figure 1. Identification of the NCEP reanalysis analyzed points (National Center for 

Environmental Prediction) in the study area (Portugal, Spain, South France, Italy and 

Greece). Red points mean a significant increase (p-value<0.05) in the annual number of 

days with an air temperature higher than 20 ºC at 850 hPa (HTD20) in the June-

September period from 1978 to 2012. Green points mean that there were no significant 

changes in terms of annual number of HTD20.  

 

 

 

 

 

 

 

 

Figure 1. Identification of the National Center for Environmental Prediction (NCEP) reanalysis analyzed points in the study area (Portugal,

Spain, the south of France, Italy, and Greece). Red points mean a significant increase (p value < 0.05) in the annual number of days with an

air temperature higher than 20 ◦C at 850 hPa (HTD20) in the June–September period from 1978 to 2012. Green points mean that there were

no significant changes in terms of annual number of HTD20.

sensitiveindicator of changes that have already occurred, and

it is expected to be a sensitive responder to predicted changes

due to its location at the intersection of tropical and mid-

latitude atmospheric and oceanographic processes. Although

numerous authors have explored the relationships between

predicted climate change and expected increases in tempera-

tures (e.g., Giorgi and Lionello, 2008; Giannakopoulos et al.,

2009), few have identified spatial patterns and differences in

magnitude of recent changes in extreme-temperature-day fre-

quencies. In order to explore trends in extreme-temperature

events over time across southern Europe, we analyzed (i) an-

nual number of high-temperature days and their spatial dis-

tribution, and (ii) temporal trends of extreme-temperature

events to identify and quantify significant changes over the

1978–2012 period.

Although extreme events can be interpreted using a va-

riety of metrics, we focused on air temperature at 850 hPa

as a reference – the air temperature at approximately

1500 m a.s.l. (above sea level) where pressure is 850 hPa –

because it is used by many forecast agencies and is an indi-

cator of heat waves or the evolution of temperatures in suc-

cessive days (AEMET – Spanish Meteorological Agency;

Trigo et al., 2006). In addition, some problems that affect

near-surface reanalysis do not occur when using tempera-

tures at this altitude (Ogi et al., 2005). We assessed trends in

the number of high-temperature days (HTDs) with three dif-

ferent temperature thresholds: 20, 22.5, and 25 ◦C. Because

the 95th percentile weather, or the “hot tail”, has been iden-

tified as an important metric for predicting future heat stress

and amplification by soil moisture loss in the Mediterranean

Basin (Diffenbaugh et al., 2007), we also analyzed this vari-

able using the summer period (June–September) from 1978

to 2012.

2 Methods

2.1 Study area

This work focused on southern Europe because it is expected

to be the most susceptible European area to a significant in-

crease in extreme-temperature events and to sustain some of

the most significant impacts (Giorgi, 2006; Giannakopoulos

et al., 2009). In all, 34 points were used for the analysis, dis-

tributed systematically across the region (Fig. 1). This region

comprises Portugal, Spain (Mediterranean Coast, points 2, 3,

4, 8, 9, and 14; interior Spain, points 6, 7, and 13; northern

Spain, points 10, 11, and 12) the south of France, Italy (Ital-

ian Peninsula, points 22, 23, 25, 26, 27, and 28; Italian is-

lands, points 19, 20, and 21), and Greece. These points were

chosen in order to capture a representation of trends for all

of southern Europe below the 45th parallel.

2.2 High-temperature days (HTDs)

We used reanalysis data from the National Centers for En-

vironmental Prediction (NCEP) and the National Center for

Atmospheric Research (Kalnay et al., 1996) to characterize

the high-temperature days on a synoptic scale. NCEP output

data have a horizontal resolution of 2.5◦ latitude–longitude.

We analyzed the 34 points distributed in the study area, as

shown in Fig. 1. Daily air temperature data at 850 hPa pres-

sure level at 00:00 UTC were analyzed from 1978 to 2012.

We chose the air temperature at 850 hPa as a reference be-

cause it is used by Meteorological Services to forecast and

display heat waves or the trend of temperatures in succes-

sive days (AEMET). It is also used by different agencies

across southern Europe (i.e., Aragón Forest Service, Castilla-

La-Mancha Forest Service, Catalonia Fire-Fighting Service,

Valencia Fire-Fighting Service, CFVA in Sardinia, Italy) to
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analyze past fire weather events and to forecast daily poten-

tial fire occurrence and behavior (Trigo et al., 2006; Garcia-

Ortega et al., 2011). In this manner, it provides adequate re-

gional coverage and it is representative of the surface, avoid-

ing some of the problems that affect near-surface reanalysis

(Ogi et al., 2005; Trigo et al., 2005, 2006).

We used several HTD categories considering different

temperature thresholds. (1) HTD20: the days with an air

temperature higher than 20 ◦C at 850 hPa; (2) HTD22.5: the

days with an air temperature higher than 22.5 ◦C at 850 hPa;

(3) HTD25: the days with an air temperature higher than

25 ◦C at 850 hPa; (4) HTDp95: the 95th percentile of air tem-

perature at 850 hPa in the June–September period from 1978

to 2012. The use of the 95 % percentile helps capture the

different implications for human health, energy systems, and

natural vegetation and disturbances for temperature extremes

in different locations. For example, in the northern section of

the study area, where mean temperatures are generally lower,

a temperature above 20 ◦C would exceed the 95th percentile,

while the same temperature would be nearly 5 degrees below

the 95th percentile at the southern latitudes.

The limit of 20 ◦C of air temperature at 850 hPa was cho-

sen because it provides high temperatures in surface and

typically low relative humidity in the territory, and is as-

sociated with heat waves in many zones in the study area

(Montserrat, 1998; Cardil et al., 2013). We analyzed tem-

poral trends in relation to the annual number of HTDs in

all four categories using least squares fitted linear regres-

sion models and tested whether slopes differed significantly

from 0 (p < 0.05). For the locations in which significant tem-

poral changes were found to exist, we further investigated

spatial patterns of change. To determine whether significant

differences in number and changes in high-temperature days

across latitudes and longitudes, we used a one-way “analysis

of variance” (ANOVA) followed by Tukey’s “honestly sig-

nificant difference” (HSD) test.

3 Results

The annual number of HTDs differed in relation to the dif-

ferent areas and countries. Generally, points with higher lat-

itude had fewer HTDs in all categories (Fig. 2). The points

with a higher annual number of HTD20, HTD22.5, and HTD25

are located on Spanish Mediterranean Coast (points 2, 3,

and 4) and in the south of Portugal (point 1; Fig. 2). How-

ever, points located in Greece at the same latitude had a sig-

nificantly lower number of these days. The island of Sardinia

(point 21) and the Balearic Islands (point 9) had higher num-

bers of extreme-temperature days in relation to other loca-

tions at the same latitude. The same results were obtained in

relation to the 95th percentile in terms of temperature during

the June–September period from 1978 to 2012.

Temporal trends in terms of annual number of HTDp95,

HTD20, HTD22.5, and the 95th percentile for all analyzed

points are shown in Table 1 and Fig. 3. Note that the HTD25

category is not in Table 1 because no significant trends were

found at any point, mainly due to the low number of these

days. A significant increase in the annual number of HTD20

was found in locations around the Spanish Mediterranean

Coast (Fig. 1 and Table 1). However, in other parts of Spain

and Portugal, the annual number of HTDs did not change in

any analyzed temperature threshold. In the south of France,

no significant changes over the study time period analyzed

were detected. However, significant increases in the annual

number of HTD20 and/or the 95th percentile were found in

the majority of sites in Italy and Greece (except in Sicily).

Extreme weather days are becoming more frequent in these

areas. Additionally, the highest increases in terms of annual

number of HTD20 were found in Greece and along the Span-

ish Mediterranean Coast (0.60 HTD20 more per year over the

entire period). In Italy, significant increases were found, but

they were lower than those in Greece or along the Spanish

Mediterranean Coast (0.35 HTD20 more per year).

When all sites were considered, HTD20 was higher over-

all in coastal vs. inland locations (8.8 vs. 5.1 days increase

in days over time; p= 0.005). Percentage change in HTD25

differed between locations, being negative along the coast

(−4.4 %) and positive inland (+41.6 %, p < 0.05). Other

differences associated with proximity to the Mediterranean

Coast were not detected. Although significant primarily for

political planning, some overall differences among countries

were detected. Italy had a higher change in HTD95 than Spain

(4.1 vs. 2.3 days, p < 0.05), and Spain had a greater relative

change in HTD25 than Italy (43.3 % vs. −25.9 %, p < 0.05).

Greece had more than three times the increase in HTD20

than France (9.6 vs. 2.3 days, p < 0.05). Regarding HTD22.5,

there is a difference among northern locations (points 14

and 28) vs. southern locations (3, 4, 22, and 23) in Spain and

Italy. The southern locations displayed a significant increase

(0.3 HTD22.5 more per year) in the number of HTD22.5.

At higher latitudes, the increase in the number of days with

an air temperature at 850 hPa higher than 20 and 22.5 ◦C was

less than that at lower latitudes (Fig. 4). However, the rel-

ative increase in HTD20 was significantly larger at higher

latitudes (Fig. 5), considering only sites where significant

temporal changes were evidenced. However, considering

22.5 and 25 ◦C thresholds, the relative increase in HTDs did

not change consistently with latitude. In relation to the days

that exceeded the 95th percentile, at higher latitudes there

was an increase in both number of days and relative increase

in number of days (Figs. 4 and 5). In most points included

within the study scope, there was an increase in both the

number of days in HTD20, HTD22.5, and the 95th percentile

and the relative increase in these categories from 1978–1987

to 2002–2012. The highest relative increases were found in

Italy and Greece, with values higher than 100 %; in other

words, more than a doubling in the number of days (Table 2).
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Figure 2. Mean annual number of days with an air temperature higher than 20 ◦C (orange points), 22.5 ◦C (red points), and 25 ◦C (purple

points) at 850 hPa in the June–September period from 1978 to 2012.

4 Discussion

Mean, maximum, and minimum temperatures have increased

and will likely continue to increase in southern Europe in

the future (Moriondo et al., 2006; IPCC, 2007; Giorgi and

Lionello, 2008; Giannakopoulos et al., 2009). Our study

showed that there was also a trend towards more frequent

HTDs in the summer (June to September) in Mediterranean

coastal areas and at more southerly latitudes across the study

area. This is in agreement with other studies on temperature
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Table 1. Simple linear regression analysis of significant trends in annual number of HTDp95, HTD20, and HTD22.5 over time in the study

area during the June–September period from 1978 to 2012. Point locations are mapped in Fig. 1.

Point Latitude/ Country (p values) and/slope coefficients

longitude HTD20 HTD22.5 HTDp95

1 37.5◦/352.5◦ Portugal n.s. (0.480)/0.111 n.s. (0.090)/0.156 n.s. (0.370)/0.057

2 37.5◦/355◦ Spain n.s. (0.107)/0.295 n.s. (0.083)/0.199 n.s. (0.646)/0.031

3 37.5◦/357.5◦ Spain +(0.009)/0.525 +(0.029)/0.344 n.s. (0.182)/0.103

4 37.5◦/0◦ Spain +(0.008)/0.531 +(0.002)/0.545 n.s. (0.084)/0.142

5 40◦/352.5◦ Portugal n.s. (0.354)/0.118 n.s. (0.375)/0.054 n.s. (0.552)/0.048

6 40◦/355◦ Spain n.s. (0.296)/0.115 n.s. (0.836)/−0.012 n.s. (0.651)/0.028

7 40◦/357.5◦ Spain n.s. (0.072)/0.248 n.s. (0.884)/0.009 n.s. (0.893)/0.008

8 40◦/0◦ Spain +(0.003)/0.484 n.s. (0.173)/0.118 n.s. (0.278)/0.084

9 40◦/2.5◦ Spain +(0.001)/0.600 +(0.018)/0.222 n.s. (0.238)/0.094

10 42.5◦/352.5◦ Spain n.s. (0.870)/0.015 n.s. (0.963)/0.002 n.s. (0.878)/0.011

11 42.5◦/355◦ Spain n.s. (0.710)/0.032 n.s. (0.805)/0.011 n.s. (0.684)/0.032

12 42.5◦/357.5◦ Spain n.s. (0.273)/0.092 n.s. (0.550)/0.020 n.s. (0.381)/0.067

13 42.5◦/0◦ Spain n.s. (0.078)/0.147 n.s. (0.251)/0.038 +(0.044)/0.139

14 42.5◦/2.5◦ Spain +(0.010)/0.246 n.s. (0.486)/0.025 n.s. (0.058)/0.131

15 45◦/0◦ France n.s. (0.305)/0.051 n.s. (0.301)/0.031 n.s. (0.319)/0.077

16 45◦/2.5◦ France n.s. (0.159)/0.085 n.s. (0.178)/0.037 n.s. (0.081)/0.142

17 45◦/5◦ France n.s. (0.108)/0.115 n.s. (0.297)/0.022 n.s. (0.114)/0.135

18 45◦/7.5◦ France n.s. (0.111)/0.102 n.s. (0.240)/0.146 +(0.044)/0.167

19 37.5◦/12.5◦ Italy n.s. (0.181)/0.219 n.s. (0.179)/0.154 n.s. (0.513)/0.054

20 37.5◦/15◦ Italy n.s. (0.166)/0.222 n.s. (0.051)/0.186 n.s. (0.369)/0.073

21 40◦/10◦ Italy +(0.022)/0.371 +(0.032)/0.183 n.s. (0.096)/0.125

22 40◦/15◦ Italy +(0.014)/0.354 +(0.014)/0.182 +(0.014)/0.200

23 40◦/17.5◦ Italy +(0.006)/0.374 n.s. (0.978)/−0.001 +(0.019)/0.190

24 42.5◦/10◦ Italy +(0.011)/0.278 n.s. (0.459)/0.023 +(0.032)/0.200

25 42.5◦/12.5◦ Italy +(0.003)/0.354 +(0.047)/0.090 +(0.014)/0.211

26 42.5◦/15◦ Italy +(0.002)/0.353 n.s. (0.452)/−0.008 +(0.005)/ 0.213

27 45◦/10◦ Italy n.s. (0.080)/0.088 n.s. (0.610)/−0.008 +(0.013)/0.240

28 45◦/12.5◦ Italy +(0.038)/0.097 n.s. (0.353)/−0.009 +(0.023)/0.198

29 37.5◦/20◦ Greece +(0.011)/0.362 n.s. (0.065)/0.160 n.s. (0.169)/0.097

30 37.5◦/22.5◦ Greece +(0.003)/0.447 n.s. (0.060)/0.130 n.s. (0.052)/0.125

31 37.5◦/25◦ Greece +(< 0.001)/0.605 +(0.025)/0.168 +(0.009)/0.165

32 40◦/20◦ Greece +(0.001)/0.431 +(0.032)/0.153 +(0.005)/0.231

33 40◦/22.5◦ Greece +(< 0.001)/0.449 n.s. (0.081)/0.108 +(0.010)/0.223

34 40◦/25◦ Greece +(0.001)/0.413 n.s. (0.078)/0.087 +(0.012)/0.218

+ Significant increase over time (p value < 0.05), n.s. not significant trend (p value < 0.05) and value in parenthesis means the

pvalue in the analyzed trend. The slope of the regression line is also shown in bold.

trends, which have been shown to be correlated to wildfire

size and occurrence (Cardil et al., 2013, 2014). Overall, in

southern Europe, most high-temperature days are related to

the weather system that brings hot, dry air masses from North

Africa (Rodriguez-Puebla et al., 2010; Pereira et al., 2011).

However, we did not find the same HTD trends in NW Iberia,

where other reports have documented increased warming of

surface temperatures from 1974 to 2006 (Gómez-Gesteira et

al., 2011), or in interior Spain. It is plausible that air fluxes

from North Africa do not reach this area as frequently as

they do in other regions, or that their influence is mitigated

by other weather systems associated with Atlantic currents.

Some HTDs might simply be caused by summer heating in

central Spain (Spanish Plateau, 800 m a.s.l.).

Areas with the highest increases in terms of the annual

number of HTD20 (June–September period) were found both

in Greece and along the Spanish Mediterranean Coast. These

areas are likely to be especially susceptible to the variety of

impacts associated with heat-wave episodes, including eco-

logical, social, and economic impacts. While higher-latitude

(more northern) sites exhibited a smaller increase in the num-

ber of days with HTD22.5 and HTD20 than lower latitudes,

the number of days exceeding the 95th percentile increased

with increasing latitude. This finding is corroborated by the

higher relative increase in HTD 95 and HTD20 with lati-

tude. It may be that the affected vegetative, social, and eco-

nomic systems at the lower-latitude sites have already expe-

rienced some of the pressures of adapting to, or mitigating,

www.nat-hazards-earth-syst-sci.net/14/3005/2014/ Nat. Hazards Earth Syst. Sci., 14, 3005–3014, 2014
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Figure 3. 95th percentile of maximum daily air temperature in degrees Celsius in the June–September period from 1978 to 2012. Circle

points mean a significant increase (p value < 0.05) in the annual number of days with an air temperature higher than the 95th percentile at

850 hPa in the June–September period from 1978 to 2012. Triangle points mean that there were no significant changes.

the repercussions of extreme temperatures. It is important to

consider the relative increase in extreme-temperature days at

these higher latitudes, as a greater degree of change usually

equates to a higher severity of challenge. Some authors sug-

gest that the consequences of heat waves is closely tied to

a culture’s prior conditioning and adaptation to climate, in-

cluding behavior (e.g., a siesta on hot afternoons), character-

istics of buildings (e.g., exterior sun shades) and communi-

ties (orientation of windows away from afternoon sunlight),

and even social attitudes about health risks (Poumadere et

al., 2005; deCastro et al., 2011). This suggests that, although

the absolute increase in extreme-temperature days is less se-

vere at the higher latitudes, the relevance of the effects of the

change may be greater in more northern populations lacking

prior conditioning and adaptation.

In all cases, where HTD 95 increased, additional syner-

gistic repercussions are likely to already be occurring. For

example, Diffenbaugh et al. (2007) use downscaled climate

model predictions of heat stress in the Mediterranean region

to show that increases in 95th percentile maximum temper-

atures are amplified by a reduction in soil moisture and 2 m

relative humidity levels. These changes are relevant to hu-

man health, wildfire risk, energy demand, and perpetuity of

existing ecological systems.

Implications and recommendations

Implications of these results are far-ranging and diverse.

Previous research shows that human mortality increases

when maximum daily temperatures exceed a given threshold

(García-Herrera et al., 2005; deCastro et al., 2011). In France

alone in 2003, 15 000 excess deaths were attributed to an ex-

treme heat wave (Poumadère et al., 2005). If the annual num-

ber of extreme-temperature days continues to increase, as

suggested by our data, mortality rates could respondsimilarly

in the future. It may be necessary to take preventive mea-

sures to reduce these impacts on populations, preventing heat

strokes and other heat-related illnesses. Such measures typ-

ically include increased cooling during these periods, which

can also result in peak demands for energy consumption.

Energy demand is closely linked to climatic conditions

(Giannakopoulos and Psiloglou, 2006). In the Mediterranean

region, from mid-May onwards and during the summer pe-

riod, an increase in air temperature aligns with a rise in en-

ergy consumption, mainly due to the wide use of air condi-

tioning elements. It is during these early summer months that

our data suggest that an increased number of HTDs will have

the greatest impact on energy demands, especially in coastal

Mediterranean areas. Higher temperatures in the summer are

likely to cause a larger peak energy demand and not only an

increase on net demand. This may require the development

of additional, or more efficient, energy generating capacity.

Frequent heat waves in the last decade or so (2000–2012)

have also triggered the occurrence of large wildland fires

(Mills, 2005; Trigo et al., 2006; Barriopedro et al., 2011;

Cardil et al., 2013) in the Euro-Mediterranean region. On hot

days, ignition probability is higher and wildland fire behavior

is typically more extreme. As a result, fires may be difficult to

contain as they exceed the firefighting capabilities (Riaño et

al., 2007; Salis et al., 2012; Cardil and Molina-Terren, 2013).

Recent analysis has shown that high-temperatures days ac-

count for the majority of area burned in wildfires in some

regions in Spain and Italy, where the average daily number

of large fires and daily area burned was higher during HTDs

than in non-HTDs (Cardil et al., 2013, 2014). Therefore, if

extreme conditions (i.e., HTDs) are becoming more frequent,

as our data suggest, forest fire risk and area burned will most

likely increase.

The resilience of forests to disturbance may also be in-

fluenced by extreme temperatures. Touchan et al. (2014)
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Figure 4. Linear regression showing the relationship between lati-

tude and the change in the number of days with an air temperature

at 850 hPa higher than (a) 20 ◦C (HTD20), (b) 22.5 ◦C (HTD22.5),

and (c) the 95th percentile at 850 hPa in the June–September period

from 1978 to 2012. The analysis included only sites where signifi-

cant temporal changes were identified.

analyzed long-term tree chronologies in the eastern Mediter-

ranean to find that growth rates were sensitive to, and neg-

atively related to, summer month temperatures. The trends

reported here suggest that, in certain areas, forests have

been increasingly stressed by extreme temperatures dur-

ing the summer months over the last 34 years. Evidence

of such stress has been documented in increased climate-

linked mortality of forests across Europe (Allen et al.,

2010). As summertemperatures continue to increase (Giorgi

and Lionello, 2008) and soil moisture contents decrease
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Figure 5. Linear regression testing relationship between latitude

and percent change (relative increase) in the number of days with

an air temperature at 850 hPa higher than (a) 20 ◦C (HTD20) and

(b) exceeding the 95th percentile at 850 hPa in the June–September

period from 1978 to 2012. Only sites where significant temporal

changes were identified were included in the analysis. HTD22.5 did

not change consistently with latitude.

(Diffenbaugh et al., 2007), the resilience of forests injured

by wildfire may be reduced (e.g., van Mantgem et al., 2013),

compounding wildfire impacts and costs to local economies.

Extreme-temperature events will also have impacts on in-

dustrial sectors with close links to climate, such as agricul-

ture and food security. A diversity of research publications

since 2010 shows that increased probability of extreme tem-

peratures during the growing period has had deleterious im-

pacts on agriculture (Gobin et al., 2013). Our data provide

quantification of these extreme temperatures, which can be

informative for agricultural planning and decision-making,

specifically in each location analyzed.

Risk management should be active in anticipating poten-

tial problems and planning to mitigate their consequences,

rather than reacting to unfavorable events after they hap-

pen. Both structural and non-structural measures are vital

to reducing the impact of climate unevenness, including ex-

treme weather events (Lobell et al., 2011). Structural ac-

tions include strategies, such as irrigation, water harvest-

ing, creation of fuel breaks, and improved wildfire suppres-

sion, while the non-structural measures include the practice

of medium range weather forecasting and developing new

protective infrastructure, such as wildfire risk and crop in-

surance. We hope that the data presented here can be useful
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Table 2. Increase from 1978–1987 to 2002–2012 decades in both number of days and relative increase in number of days of HTD20,

HTD22.5, and the 95th percentile (June–September period).

Point Latitude/ Country Increase of Increase of Increase of

longitude days/relative days/relative days/relative

increase (%) increase (%) increase (%)

HTD20 HTD22.5 HTD 95th

percentile

1 37.5◦/352.5◦ Portugal 5.3/19.1 6.4/85.3 3.5/85.4

2 37.5◦/355◦ Spain 9.2/25.5 7.1/61.7 1.9/40.4

3 37.5◦/357.5◦ Spain 14.2/31.4 9.7/58.1 3.1/68.9

4 37.5◦/0◦ Spain 13.0/25.6 13.3/58.6 2.9/58

5 40◦/352.5◦ Portugal 4.8/35.8 3.4/178.9 12.8/108.8

6 40◦/355◦ Spain 4.9/32.5 0.9/30.0 2.2/55

7 40◦/357.5◦ Spain 7.5/42.9 1.1/22.5 1/18.9

8 40◦/0◦ Spain 12.7/62.0 2.8/41.8 1.7/29.8

9 40◦/2.5◦ Spain 14.9/68.7 5.1/68.9 1.7/30.9

10 42.5◦/352.5◦ Spain 2.1/31.8 0.9/75.0 1.9/45.2

11 42.5◦/355◦ Spain 1.9/27.5 1.0/71.4 1.8/40.9

12 42.5◦/357.5◦ Spain 2.9/45.3 0.7/41.2 2.5/54.3

13 42.5◦/0◦ Spain 4.0/53.3 0.7/33.3 3.8/84.4

14 42.5◦/2.5◦ Spain 6.5/94.2 0.4/16.7 3.1/63.3

15 45◦/0◦ France 1.6/51.6 0.8/88.9 2.4/47.1

16 45◦/2.5◦ France 2.3/74.2 0.7/77.8 3.8/82.6

17 45◦/5◦ France 2.9/93.5 0.5/83.3 3.7/74

18 45◦/7.5◦ France 2.4/88.9 2.4/12.4 4.3/91.5

19 37.5◦/12.5◦ Italy 4.3/10.9 3.0/19.6 0.6/9.8

20 37.5◦/15◦ Italy 3.9/11.7 4.4/53.0 1.3/22.4

21 40◦/10◦ Italy 8.3/36.7 4.1/66.1 2.9/53.7

22 40◦/15◦ Italy 8.2/46.3 4.1/107.9 4.6/95.8

23 40◦/17.5◦ Italy 8.2/59.0 −0.2/−9.5 4.1/85.4

24 42.5◦/10◦ Italy 7.6/97.4 0.5/22.7 5.5/107.8

25 42.5◦/12.5◦ Italy 9.0/111.1 1.9/111.8 5.3/106

26 42.5◦/15◦ Italy 8.9/127.1 −0.3/−60 5.4/125.6

27 45◦/10◦ Italy 1.8/66.7 −0.3/−60 6.4/148.8

28 45◦/12.5◦ Italy 2.2/95.6 −0.3/−75 5.2 / 108.3

29 37.5◦/20◦ Greece 6.8/34.0 2.9/40.3 1.6/27.1

30 37.5◦/22.5◦ Greece 9.3/54.4 2.2/34.9 2.2/39.3

31 37.5◦/25◦ Greece 12.8/75.3 3.3/61.1 3.3/68.8

32 40◦/20◦ Greece 9.4/94.9 3.0/107.1 4.6/102.2

33 40◦/22.5◦ Greece 10.3/143.1 1.8/75.0 4.3/91.5

34 40◦/25◦ Greece 9.1/128.2 1.5/75.0 4.6/97.9

for planning for risk reduction across the multiple sectors af-

fected by increases in high-temperature days in Europe.

5 Conclusions

Even though we did not find significant increases in the south

of France, interior Spain and the northwestern Iberian Penin-

sula, the annual number of HTDs increased significantly

in many areas across southern Europe, including the Span-

ish Mediterranean Coast, Italy, and Greece. The highest in-

creases in terms of annual number of HTDs were found in

both Greece and along the Spanish Mediterranean Coast. In

these areas, extreme-temperature conditions are becoming

more frequent now and could become more common in

the future. In addition, in areas where temporal increases

were detected, relative increases in 95th percentile temper-

atures were larger at higher latitudes. Where social, infras-

tructure, and economic systems are not preconditioned to

high-temperature days and heat waves, the severity of in-

creased temperature effects may be elevated. Heat-wave days

have been linked to negative impacts in terms of forest fire

risk, human health, agriculture, energy demands, and eco-

nomic repercussions. Adaptive measures should be taken for

reducing the negative consequences for human populations

and the environment.
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