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Abstract. This paper is the first part in a series of two articles assessed on synthetically generated simple configurations of

and presents a data-driven wildfire simulator for forecastingfire spread to provide valuable information and insight on the

wildfire spread scenarios, at a reduced computational codbenefits of the PC-EnKF approach, as well as on a controlled

that is consistent with operational systems. The prototypegrassland fire experiment. The results indicate that the pro-

simulator features the following components: an Eulerianposed PC-EnKF algorithm features similar performance to

front propagation solver FIREFLY that adopts a regional- the standard EnKF algorithm, but at a much reduced compu-

scale modeling viewpoint, treats wildfires as surface prop-tational cost. In particular, the re-analysis and forecast skills

agating fronts, and uses a description of the local rate obf DA strongly relate to the spatial and temporal variability

fire spread (ROS) as a function of environmental conditionsof the errors in the ROS model parameters.

based on Rothermel's model; a series of airborne-like ob-

servations of the fire front positions; and a data assimilation

(DA) algorithm based on an ensemble Kalman filter (EnKF)

for parameter estimation. This stochastic algorithm partly ac-1  Introduction

counts for the nonlinearities between the input parameters of

the semi-empirical ROS model and the fire front position, Real-time prediction of the direction and speed of a propa-

and is sequentially applied to provide a spatially uniform gating wildfire has been identified as a valuable research ob-

correction to wind and biomass fuel parameters as obserective with direct applications in both fire risk management

vations become available. A wildfire spread simulator com-and fire emergency respondgapnan-Wright et a).2011).

bined with an ensemble-based DA algorithm is therefore an addition, the perspective of climate change tends to fa-

promising approach to reduce uncertainties in the forecasyor extreme drought events and to alter precipitatididiy

position of the fire front and to introduce a paradigm-shift et al, 2002 Palmer and R&isane@002 Boé et al, 2009);

in the wildfire emergency response. In order to reduce thghese conditions dramatically increase the risk for the de-

computational cost of the EnKF algorithm, a surrogate modelvelopment of large highly destructive wildfires, commonly

based on a polynomial chaos (PC) expansion is used in placknown asmegafiregNijhuis, 2012). In this context, accurate

of the forward model FIREFLY in the resulting hybrid PC- predictions of the resulting change in fire regime and inten-

EnKF algorithm. The performance of EnKF and PC-EnKEF is sity cannot only rely on the analysis of past observed wildfire
events; the use of a data-driven wildfire spread simulator that
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takes full advantage of the recent technological advances foeters to the fire problendimenez et al.2007 Finney et al,
geo-referenced front-tracking becomes essential. 2011.

Despite our recent progress in computer-based wildfire In order to overcome some of the current limitations of
spread modeling, our ability to accurately simulate the be-regional-scale wildfire modeling and to build predictive sim-
havior of wildfires remains limited because the underlying ulations that are compatible with operational framework, the
dynamics feature complex multi-physics processes occurringincertainties in the input data of the ROS semi-empirical
at multiple scales\(iegas 2011). The dynamics of wildfires model need to be quantified and reduced. The uncertain-
are determined by interactions between pyrolysis, combusties inherent in wildfire spread modeling go beyond the lim-
tion and flow dynamics, radiation and convection heat transdtations of deterministic forecast abilities of the dynamical
fer, as well as atmospheric dynamics and chemistry. Thesenodel (also referred to as tfierward model) and thus, sug-
interactions occur at the following scales: vegetation scalegest the use of ensemble forecasts to stochastically character-
that characterize the biomass fuel; topographical scales thate the nonlinear response of the front-tracking simulator to
characterize the terrain and vegetation boundary layer; angariations in the input environmental parametd$ndrea
meteorological micro/meso-scales that characterize atmoet al, 201Q Finney et al. 2011). For instanceFinney et al.
spheric conditions. (2017 describes an ensemble-based forecasting capability,

Relevant insight into wildfire dynamics has been obtainedin which a large nhumber of fire spread scenarios (i.e., the
in recent years via detailed numerical simulations performedcensemble members) are generated based on a probabilistic
at flame scales (i.e., with a spatial resolution of the or-uncertainty in the weather conditions and in the moisture
der of 1 m). For instance, FIRETEQ.itn et al, 2002 or content of biomass fuels. Model uncertainties are a combi-
WFDS (Mell et al,, 2007 combine advanced physical mod- nation of epistemic errors that express an imperfect knowl-
eling and classical methods of computational fluid dynam-edge of the input parameters of the ROS model (that could
ics (CFD) to accurately describe the combustion-related proin theory be removed), and of aleatoric errors that result
cesses that control the fire behavior (e.g., thermal degradatiofiom natural and unpredictable stochastic variabilities of the
of biomass fuel, buoyancy-induced flow, combustion, radia-physical system (that can be addressed by stochastic models,
tion and convection heat transfer). Note that because of theee for instance Reference Bagnini and Mentrell{2014),
high computational cost, flame-scale CFD is currently re-whose model relies on a stochastic component to represent
stricted to research projectkin et al, 2002 Mell et al, the transport of firebrands). These uncertainties translate in-
2007 Rochoux 20149 and is not compatible with opera- evitably into errors in the output variables of interest (e.g.,
tional applications. In contrast, a regional-scale viewpointtime-evolving position of the front, burnt area, maximum
(i.e., a viewpoint that considers scales ranging from a fewvalue for the ROS). The most classical methodologies for un-
tens of meters up to several kilometers) is adopted in thecertainty quantification in these output variables are random
following: the fire is described as a two-dimensional front sample-based statistical methods derived from Monte Carlo
that self-propagates normal to itself into unburnt vegeta-methodologies. While these methodologies are generic and
tion; the local propagation speed is called the rate of spreadobust for the simulation of stochastic models, they are how-
(ROS). This viewpoint is the dominant approach used inever computationally expensive due to the required size of
current operational wildfire spread simulators, see for in-the sample (the computational cost of one realization may
stance FARSITEKinney, 1998, FOREFIRE Filippi et al, be already expensive itself, skacor et al, 2007 and each
2009 2013, PROMETHEUS Tymstra et al. 2010 and implementation typically requiresd-hocvariance reduction
PHOENIX RapidFire Chong et al. 2013. In particular, techniquesBoyaval 2012. More efficient sampling meth-
FARSITE uses a model due Rothermel(1972 that treats  ods have been developed to reach a comparable level of ac-
the ROS as a semi-empirical function of biomass fuel proper-curacy as Monte Carlo-based techniques but with fewer for-
ties associated with a pre-defined fuel category (i.e., the verward model integrations; these sampling methods take ad-
tical thickness of the fuel layer, the fuel moisture content, thevantage of the (possible) regularity of the model response
fuel particle surface-to-volume ratio, the fuel loading and theto varying input parameters in order to increase the con-
fuel particle mass density), topographical properties (i.e., thevergence rate compared to Monte Carlo-based methodolo-
terrain slope) and meteorological properties (i.e., the windgies. In particular, polynomial chaos (PC) non-intrusive tech-
velocity at mid-flame height). This approach is limited in niques issued from spectral-based representations and intro-
scope because of the large uncertainties associated with trauced byWiener (1938 are very often efficient in terms of
accuracy of computer models since they do not account foprecision and cost§hanem and Spandk991; Le Maitre and
the interaction between the fire and the atmosphere, and sindénio, 2010. The key idea is to build a polynomial represen-
they have a limited domain of validity resulting from a cali- tation of the forward model response (referred to asthim-
bration procedure based on experimeisrfy, 1998 Sulli- gatemodel) to varying input parameters. Once the surrogate
van 2009 Viegas 2011 Cruz and Alexandei2013 Finney = model is available, it is possible to benefit from a large sam-
et al, 2013. This approach is also limited because of the ple of realizations (at almost no cost) in order to accurately
large uncertainties associated with many of the input parameharacterize the model uncertainties. Still, the application
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of PC-based sampling techniques to problems of hyperboli@a series of observations of the fire front position; and a cost-
conservation laws remains a challenging td3kgprés et al.  effective EKF-based DA algorithm. This prototype was suc-
2013. cessfully evaluated when applied for estimating the input pa-
Recent progress made in airborne remote sensing providemmeters of the Rothermel-based ROS model (e.g., the fuel
new ways to monitor real-time fire front positiond/goster  moisture content, the fuel particle surface-to-volume ratio,
et al, 2005 2013 Riggan and Rober2009 Paugam et al.  and/or the wind direction and magnitude). However, the EKF
2013. Unfortunately, these thermal-infrared measurementsalgorithm relies on the assumption that the relation between
provide an incomplete description of the fire spread (in par-a perturbation in the ROS model parameters and the result-
ticular due to the opacity of the fire-induced thermal plumeing changes in the fire front position (i.e., the generalized
and/or due to a limited monitoring) and are subject to instru-observation operator) can locally be approximated by a lin-
mental errors as well as representativeness errors (i.e., incomar relation. While the EKF-based studies presentddan
sistency between what the sensor can measure and what tishoux et al.(2013a b) produced encouraging results and
computer model can describe). From this perspective, dataonfirmed the value of a DA strategy for improved wild-
assimilation (DA) offers a convenient framework for inte- fire spread predictions, the linearity assumption is no longer
grating fire sensor observations into a computer model invalid in regional-scale fires, especially when the wind direc-
order to provide optimal estimates of poorly known model tion and magnitude vary and the vegetation properties are po-
parameters and/or model state, and to improve in fine pretentially strongly heterogeneous. To better account for non-
dictions of the fire spread behavioMéndel et al. 2008 linearities in the generalized observation operator, an exten-
Cowlard et al. 2010 Lautenberger2013 Rochoux 2014). sion to an EnKF approach was preliminarily exploredRio
The key idea is that, when used alone, neither measurementhoux et al(2019. This ensemble-based DA approach was
nor computer models can provide a reliable and complete deeriginally developed for dynamic state estimati®@vénsen
scription of the real state of the physical system. In the fol- 1994 and has already been used in the field of wildfire mod-
lowing, the set of model state and/or model parameters to beling for correcting the temperature state varialidedzley
corrected through DA is gathered in the control vector. Theand Mandel 2008 Mandel et al. 2008 2011). It was also
DA algorithm is sequentially applied; each sequence (alsdargely extended to sequential parameter estimation, for in-
referred to as thassimilation cycleis decomposed into two  stance in the field of hydrologyurand et al.2008 Morad-
steps: (1) a prediction step, in which the control variables arekhani et al, 2005. Still, the large number of realizations
advanced in time given some uncertainty ranges; and (2) anequired by the EnKF algorithm to obtain satisfactory re-
update step based on the classical Bayes’ theorem, in whichults Rochoux 2014 may prove computationally burden-
new observations are considered and the probability densitgome within an operational framework. This behavior of the
function (PDF) of the control variables is modified consis- EnKF algorithm for parameter estimation is due to four main
tently with the observations in order to reduce the uncer-reasons: (1) the slow convergence rate of the Monte Carlo
tainties in the model output$selb, 1974 Tarantola 1987 sampling; (2) the nonlinear interrelation between the con-
Todling and Cohn1994 Ide et al, 1997 Kalnay, 2003 Re-  trol space and the observation space; (3) the complexity of
ichle, 2008. The Kalman filter (KF) is the most commonly retrieving the specific signature of each control parameter
used sequential DA technique. However, the KF assumes linen the resulting distribution of the simulated fire front; and
ear dynamics between the control variables and the model4) the accumulation of sampling errors along assimilation
outputs as well as a Gaussian statistical distribution for botlcycles that can only be addressed by increasing the size of
modeling and observation errors. Extensions of the KF thathe samplel(i and Xiu, 2008. The required size of the sam-
partly overcome these limitations have been proposed, for inple significantly increases with the complexity of the physics
stance the extended Kalman filter (EKF) that uses local lin-(multi-parameter estimation) and the model nonlinearities
earization technique$sglb, 1974 or the ensemble Kalman (complex physics), thus emphasizing the need for a reduced-
filter (EnKF) that relies on a stochastic description of the cost EnKF. Efforts have therefore been devoted to design-

model behaviorEvensen1994 2009. An insightful com-  ing more efficient EnKF schemes by reducing sampling er-
parison between EKF and EnKF is given within the frame- rors (Szunyogh et al.2008 Saad 2007 Li and Xiu, 2008
work of land DA inReichle et al(2002. 2009 Blanchard et a).201Q Xiu, 2010 Rost et al, 2013.

In this study, an ensemble-based DA methodology is con+or this purpose, and following work frolr and Xiu (2009,
sidered in order to reduce the uncertainties in the ROS modedn EnKF strategy based on a PC approximation (PC-EnKF)
parameters using measurements of the time-evolving locais proposed in this paper; the polynomial surrogate model be-
tion of the fire front. This study is an extension of our previ- ing used during the EnKF prediction step to generate a large
ous works presented Rochoux et al(2013ab), inwhicha  number of model simulation trajectories at almost no cost
prototype data-driven wildfire simulator was developed. Theand without loss of accuracBirolleau et al, 2014).
initial prototype featured the following main components: an In this paper, we present a hybrid PC-EnKF DA algo-
Eulerian front-tracking solver combined with a model de- rithm that improves wildfire spread modeling by reduc-
scription of the local ROS proposed Rothermel(1972; ing uncertainty in the vegetation properties used as inputs
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of the Rothermel-based ROS model. The objective of thisthe mid-infrared (MIR) region. Thus, current spaceborne and
study is to show the feasibility of this approach for wildfire airborne systems observe wildfires within a narrow wave-
spread forecasting under several assumptions, i.e., a minband centered on the 3.9-micron wavelend@t(er et al,
malist treatment of the fire front (idealized as an interface and2004 Wooster et al.2005 2013 Paugam et 812013 Ro-
consistent with the limited knowledge on the environmen-choux 2014, which is both sensitive to flaming and smolder-
tal conditions); a semi-empirical formulation of the ROS; ing combustion modes. Beyond fire detection, remote sens-
Gaussianity of the errors on the input parameters of the RO$hg is regarded as a promising approach to provide a quan-
model and on the observations; prior values for the controtitative description of the fire radiation release to charac-
parameters specified based on user-defined mean and err@rize sub-pixel fires (occupying a limited area of the sen-
standard deviation (STD). In this first part, both the EnKF sor pixel down to 0.1 to 1% of the pixel area) and to esti-
and PC-EnKF algorithms are limited to the estimation of spa-mate fuel consumption as well as smoke emissidvisaster
tially uniform parameters of the ROS model due to compu-et al, 2013. Using spaceborne or airborne platforms, the fire
tational cost constraints and a lack of high-resolution dataradiative power (FRP) emissions are detected in the burn-
on the environmental conditions. Although it seems appro-ing area, while non-active areas remain blank. This infor-
priate to translate the inability of a fire spread model to gen-mation is crucial to retrieve the brightness temperature and
erate accurate fire front positions into parameter uncertaintythus, to track the time-evolving location of the fire front. For
other sources of uncertainties such as model structural eiinstance,Paugam et al(2013 showed that spatiotemporal
rors or boundaryl/initial condition errors also need to be ac-variations of the flame front ROS can be accurately retrieved
counted for. For this purpose, in the second part of this seusing FRP analysis on a reduced-scale controlled fire experi-
ries of two articlesiRochoux et al.2014), a state estimation ment (the final burnt area of the reduced-scale study is about
strategy is designed to address anisotropic uncertainties if000 nf); ongoing research aims at extending this FRP anal-
wildfire spread as well as to provide observation-informedysis to regional-scale wildfire spread.
initial condition for model integration at future lead times.  Currently, most spaceborne instruments, including the pi-
Thus, parameter estimation and state estimation are compl@neer generation such as the AVHRR (Advanced Very High
mentary approaches that are valuable for wildfire behavioResolution Radiometer) and the MODIS (MOderate resolu-
forecasting; it is therefore important to discuss their benefitstion Imaging Spectroradiometer), offer neither a sufficiently
and drawbacks for experiments with increasing complexity. short revisit period nor a high enough spatial resolution im-
The outline of the paper is as follows. Sect@presents agery for efficient front-tracking at regional scales. While
the available observations of the fire behavior and the wild-these objectives no longer seem out of reach for the dual
fire spread model named FIREFLY (i.e., the forward model). SPOT-Pléiades constellatidrairborne platforms still seem
The hybrid PC-EnKF algorithm developed for the wildfire the most suitable solution for real-time geo-location of ac-
application is presented in Se8t.in this section, the sequen- tive fire contours. Typical examples are the LIVEFIRE sys-
tial implementation of the ensemble-based algorithms is alsdem (Merlet, 2008 Crombette 2010 and its US counterpart
described. Sectio4 illustrates how the classical EnKF and FIREMAPPER system deployed since 2004 by the US Forest
the hybrid PC-EnKF allow to properly estimate model pa- Service and the US Department of Interior Bureau of Land
rameters on simple test cases, in which the observations afdanagementRiggan and Rober2009. As a complement,
synthetically generated. The performance of the data-driverspaceborne data could be used for validation as well as cali-
wildfire spread capability using the reduced-cost approachbration of models and DA procedures.
is demonstrated in a validation test corresponding to a con-
trolled grassland fire experiment. 2.1.2 Choice of observations for data assimilation

In the present study, we assume that observations of the

2 Information on wildfires at regional scales: fire front position are available and that these observations

observations and forward model can be made at different relevant times with a low mea-
surement error (typically, 0-30m for the LIVEFIRE sys-

2.1 Observations of the fire front location tem). In the following, the observed fire front is represented

as a segmented line using a pre-defined number of equally
2.1.1 Overview of available observations of fire spread ~ spaced markers (i.e., th? observation markers); the obser-
vation vector noted? contains the two-dimensional coordi-
In practice, continental surfaces and vegetation are mainlynates(x?, y?) of the fire front markers (the subscripis the
observed within the mid- and near-infrared regions of the
electromagnetic spectrum of wavelengths (0.75 to 15um). It Inttp://wildfire.geog.kcl.ac.uk/
is known that for high temperatures as encountered in wild-  2nttp://gofc-fire.umd.edu/
fires (varying from 600K for smoldering to 1200 K in the Shttps://directory.eoportal.org/web/eoportal/satellite-missions/
flaming zone), the maximum radiant intensity occurs within p/pleiades
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2.2.1 The Rothermel-based rate of spread sub-model

Unburned (a) Original one-dimensional formulation

region
(cg: 0) The ROS sub-model is based on the widely used semi-
empirical model due tRothermel1972 that describe§ as

a function of the local environmental conditions (e.g., veg-
"""""F;:'dﬁ[‘mglllgg;""' etation and weather properties). The ROS is derived from
location (x;, ;) the one-dimensional formulation of the energy balance equa-

tion per unit volume of the unburnt biomass fuel located

Figure 1. Eulerian front-tracking simulator FIREFLY. Left: the fire  ahead of the flame; the physical quantities involved in this
front is thecgy = 0.5 contour line;T" measures the local ROS of - energy palance are then parameterized using wind-tunnel ex-
the fire along the normal direction to the front (defined by the periments. In this formulatior; [m s‘l] is expressed as the

d'recﬂon *angle.' of f_'re prOPagat'an) given the W'nd velocity vec- ratio between the heat flux received by the unburnt vegeta-
tor (uy, ayy). Right: profile of the spatial variations of the progress . o 1 dth ired to ignite the fuel
variablec across the fire frontx{, y;) representing the location of tion /o [Jm™*s~"] and the energy required to ignite the fue

Fire front Burned region
(cg=0.5) (c=1)

: —3 .
theith fire front marker. Hig [Jm™]. T reads as follows:
1 I
. . . . r= o (14,), (1)
index of a particular marker in the observation vector, with Hg  pox Qig

i=1,---,Ng) observed at the analysis timeThe size of . .
the observation vector? is 2N¢. The coordinates of the fire Ip is @ function of the energy release rate of the combus-
front markers are assumed to have independent Gaussian-lil&fm Ir, of the d|men_S|0nIess propagat!ng flux raigthat de-
random errors® with zero mean and with STB°. Note scribes the proportion of energy th{it is released b)_/ the flame
that this classical assumption of uncorrelated observation et‘?nd trgnsferred tp the ve_ggtatlon " t_he non-ﬂammgl zone).
rors could be questionable. However, this aspect is out of th he wind c.orrectfon coefficiendu, Whlch was determmed
scope of this study and is still under active research in the DAf_Or a OPe'd'me‘?S'O”a' case correspondlng toa he_ad fire con-
field (Brankart et al.2009 Gorin and Tsyrulnikoy2013). |gurat|0n_, nonllnearly depends on the wind velocity magni-
Two types of experiments are presented in the follow—tude atmid-flame heighty such that
ing: observation system simulation experiments (OSSE), in B —Ew
which observations are synthetically generated using a referd,, = @ (uy) = Cw u\,f’,w (—V) ,
ence solution of the FIREFLY fire spread model (called the
true evolution) that is modified by random observation er-iin Cw, Bw and E,, calibrated parameters depending on
rorse®; and a controlled grassland fire experiment, in which the piomass fuel surface-to-volume rafi, [m—1], with
the observations are reconstructed from measured tempera ihe piomass fuel packing ratio ang opt = Bu, opt(Ev)
ture maps and using a definition of the fire front as the 600 Kits optimum value gptimummeaning thélﬁv,opt character-
temperature contour line. izes the optimum arrangement of the biomass fuel parti-
cles that produces the most effective mixing between air and
fuel gas reactants for the occurrence of combustion). The
ignition energy Hig is formulated asHig = pp x Qig, With
Qig I kg~1] the heat of ignition,x the dimensionless ef-
|fective heating number (i.e., amount of fuel effectively in-
volved in the ignition process) ang [kg m—3] the biomass
fuel bulk mass density that satisfigg = Sy pp for a porous

@)

Bv, opt

2.2 The fire spread model (the forward model)

The front-tracking solver, called FIREFLY and formally
noted M in the following, simulates the propagation of sur-
face wildfires within the biomass fuel bed and at regiona
scales, as illustrated in Fid. Note that the present study is
limited to flat terrains and problems with complex topogra- ) o . .
phy are outside its scope. FIREFLY tracks the time-evolvingmed'_um"op [kgm™] being the biomass fuel particle mass
location of the fire front using the following three compo- density. )

nents: (1) a sub-model for the ROS noted(2) an Eulerian Thg expression for the local RGSdue to Rothermel'may
front-tracking solver for the fire front propagation equation; be written in the following compact form that is equivalent
and (3) an isocontour algorithm for the reconstruction of the'© Eq. @

fire front. .
= F((SVH My, My, ext, Zv, My, Pps Ahe, MW>, 3

where the nomenclature for the input parameters are sum-
marized in Tablel. Note that the fuel loading:, [kg m—2]
satisfiesny, = ppdy/(1+st) = (Bvpp) Sv/(1+s), st being the

fuel particle total mineral content.

www.nat-hazards-earth-syst-sci.net/14/2951/2014/ Nat. Hazards Earth Syst. Sci., 14, 298473 2014
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Table 1.Input parameters of the Rothermel-based ROS sub-model.

Name Symbol Unit
Fuel depth (vertical thickness of the vegetation layer) Sy m

Fuel moisture (mass of water divided by mass of dry vegetation) My %

Fuel moisture at extinction My, ext %

Fuel particle surface-to-volume ratio Sy m—1

Fuel loading ml] kg m—2
Fuel particle mass density op kg m—3
Fuel heat of combustion Ahe  Jkgl
Wind velocity magnitude at mid-flame height (projected onto horizontal plane)uwy ms1

(b) Extension to two-dimensional surface wildfire spread In the following, u;;, and e, are treated as spatially uni-

form and time-independent. The projected wind velocity
The original Rothermel’'s one-dimensional model is extendedat mid-flame heightuw = uw(x, y,7) is a time-dependent
to two-dimensional configurations, in order to account for theand spatially varying quantity along the propagating fire-
wind effects on the shape of the fireline, while still maintain- |ine. It is worth noting that the wind contributiom,, is
ing a simple parameterization of the ROS with respect to lo-forced to a zero-value in FIREFLY when the scalar prod-
cal environmental conditions. Accounting for wind-induced uctu?, - ny(x,y,1) is negative (see E®) to ensure that the
wildfire spread in FIREFLY is such that when the wind blows ROST remains positive. This is consistent with the common
in the direction of the fire spread (i.e., a head fire configura-assumption in the field of fire spread modeling that the fire
tion), the wind contribution to the ROS is maximum. On the propagates at least at the no-wind ROS. As for biomass fuel
contrary, the wind contribution to the ROS is zero when thepropertiesl the fuel depm = dy(x, y) is treated as a time-
wind blows in the direction opposite to the direction of the independent, spatially varying quantity; all other ROS model

fire spread (i.e., a rear fire configuration), meaning that theparameters are treated as constant and uniform.
fire propagates at the value of no-wind ROS on this section

of the fire front (i.e., &y = 0). On the flanks, the fire front (c) Sensitivity study of the rate of spread

advances faster than in the absence of wind (@g;,> 0).

This |mp||es that the ROS can drastica”y Change a|ong theThe identification of which parameters are important to in-
fireline at a given time. For this purpose, characteristic an-clude in the control vector (denoted by is an essential step
gles in the horizontal plang:, y) are defined to represent the towards the application of DA to FIREFLY. The key idea
direction angle of the wind notegf;, and the direction angle when dealing with parameter estimation is to focus the cor-
of the fire propagation notes, (the index fr referring to the ~ rection on a reduced set of parameters that have significant
front); g indicates the outward-pointing normal direction to uncertainties and to which FIREFLY is the most sensitive.
the fire front notedss, (see Figl). These angles are defined ~ In order to identify to which input parameters the ROS
from the northern direction, namely from the positiveo- ~ I' is the most sensitive among biomass fuel properties and
ordinates and increasing in the clockwise direction. Since thaveather conditions, a sensitivity study is carried out with
propagation of wildfires is anisotropic, the normal veatpr ~ the classical one-dimensional Rothermel's model for short

is not uniform along the fireline and is modified over time, grass. Nominal environmental conditions are as follows:

with the head fire propagates in presence of a moderate wind
. ui, = 1mst, and the vegetation is characterized by the
ni = ng (x, y,1) = <S'na” (x, 7, ”) , (4)  moisture contend, = 20%, the particle surface-to-volume
cosar (x, y, 1) ratio £y = 11485n1?, the layer thickness, = 0.5m, and

Thus, the wind velocity magnitude at mid-flame heigyt ~ the layer packing ratigg, = 0.106%. These four parame-
(see Tablel) corresponds to the projection of the wind ve- ters are perturbed around these nominal conditions. Note that

locity vectoru, along the normal direction to the fronj: the moisture at extinction,, ext=30%, the fuel particle
. mass densityp = 5126 kg m3, the effective fuel mineral
uw = uw(x, y,t) =uy -ne(x, y,1), () contentse = 1% (s; = 5.55%), and the heat of combustion

Ahc = 1.861x 10" Jkg™! remain constant and correspond to

with uy, defined by its magnitudey, [ms™], and direction the standard values of the Rothermel’s fuel datab@séher-

angleay, [°]:

mel, 1972.
« [ upSiney, ©) Figure2 compares the variability in the ROSwhen un-
Uw = uy, CoSayy, ) certainties are assumed in four parametefs,My, Xy and

Bv. Itis found that the ROS values are the most sensitive to

Nat. Hazards Earth Syst. Sci., 14, 29512973 2014 www.nat-hazards-earth-syst-sci.net/14/2951/2014/
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3 T 0.5 9c

o5 0 Frie —y - Ve=T|Vc¢|, ©)
7 2 2 . . .
E § 03 with T = y - ng the projected ROS given by E@)(and de-
g 15 2 0p fined along the normal direction to the fire front that satisfies
T T ny = —Ve/|Vel.

os 0.1 Equation {) is solved using a second-order Runge—Kutta

scheme for time-integration and an advection algorithm for

o

% 1 2 PR 0 5 10M1E50/]20 25 30 spatial discretization based on a second-order total varia-
u_[m/s v o, . . .. . . .

(a) Wind velocity magnitude u} [ms™']. (b) Fuel moisture content M, [%]. E%r;)sl?rlr::ltse?Irgeﬁalgzchﬂig(;rﬁor?gggg \I(VAI;Tlea‘: i::jpaelrbee

2009. Note that FIREFLY requires a two-dimensional field

02 ; 014 c(x,y,t—1) as initial condition of any time period - 1, ¢].
' 0_12’ This initial condition is constructed such that the transition
0 _ betweenc =0 andc =1 is smooth; a tangent hyperbolic
E £ 01 function is used to represent this transition.
g % 0.0l The validation of the FIREFLY Eulerian front-tracking
£ 005 o solver was presented in prior workRgchoux et al.2013a
' 0.06f; Rochoux 2014. Model diagnostics were developed to en-
g : oodl sure the correct numerical behavior of FIREFLY. These di-
1 05 21[1/m] 15 m; ot A 5 agnostics were derived from the Kolmogorov—Petrovsky—
(¢) Fuel particle su fasetorolume (d) Fuel packing raﬂOVB[%L Piskounov (KPP) analysis valid for uniform fuel condi-
ratio ¥, [m-"]. ! tions (Poinsot and Veynante2005 and extended to het-

_ o _ erogeneous biomass fuel for application to wildfire spread.
Figure 2. Sensitivity of the Rothermel-based RDSo environmen-  They verify that the rate of change of the progress variable
tal parameters; nominal conditions are indicated by vertical lines. matches the average ROS along the fireline and also that the
ROS at the head of the fire is consistent with the Rothermel’s
0-D formulation (see EB). In addition, they also verify that

* H . . :
. AS for biomass fqel pr.opertles, th_ey featurg a'W|d.e scat the front thickness, estimated as the average inverse of the
ter for My and Xy, while I is less sensitive t@y, indicating

) . . . maximum gradient of, remains small (i.e., a few mesh step-
that a lack of information i, My andXy results in a sig- . . .
o . . - sizes) and relatively constant over time. In all tests performed
nificant uncertainty range in the ROS model predictions. It . . e
. : to date, these diagnostics have showed the non-diffusive be-
is also shown that the ROB depends nonlinearly on the

. . . . havior of the numerical scheme underlying FIREFLY, con-
pair of parametera/, andXy; in particular, there is a ROS . . . i
: . . sistently with the physics of the fire spread problem. Further
acceleration when the biomass fuel becomes drier or Wher(1jetails are provided iRochoux(2014)
the biomass fuel particles become thinner. Note that these P '
nonlinearities are more important when the wind magnitude,, , 3 Reconstruction of the simulated fire front and
fluctuates over time or when the fire active area is covered

by heterogeneous biomass fuels. This highlights the impor-

tance of applying a DA methodology able to handle multiple once the spatiotemporal variations of the progress reaction
sources of nonlinearities in the fire spread model. ¢ are known, the position of the fire front is extracted using
a simple isocontour algorithm such that, formally, the outputs
of the FIREFLY model are as follows:

comparison with the observed fire front

2.2.2 The Eulerian front-tracking solver

An Eulerian front-tracking solver is used to propagate the
fire front at the Rothermel-based ROS. FIREFLY adopts a
classical approach taken from the premixed combustion lit- . . .
erature Poinsot and Veynant€005, in which a reaction where f;, y;) represents the two-dimensional coordinates of

progress variable noted= c(x, y, 1) is used as the prognos- the N front markers obtained at time(the indexi indi-

tic variable of the solver and is introduced as a flame marker.Catlng the marker), where,_; designates the initial con-

¢ = 0in the unburmt vegetation,= 1 in the burnt vegetation, dition.(i.e., the spatial distribution Qf the progress variable
and the flame front is identified as the contour lige= 0.5 c at time ¢— 1)), fnﬁ ngrsek de;lgljnates thed“.St (')I'f |r|1-
as illustrated in Figl. In the Eulerian front propagation tech- put parameters of the model presented in Table

— "
nique, the progress variahtés calculated as a solution of the )‘ _TrEBV’ My, Mt‘_" ext Zv, f’év’dp%’ At};f’ ”BV; laorith i
following propagation equation: e correction provided by the algorithm relies on

the comparison between the FIREFLY simulated fire front

[(xi, vi), 1<i< Nfr] = Mi—11(cr=1, A), (8)
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Simulated front 3 Data assimilation algorithm: the polynomial
(¢ =0.5) chaos-based ensemble Kalman filter

3.1 The standard ensemble Kalman filter

We present here the ensemble Kalman filter (EnKF) algo-
rithm applied, in the context of parameter estimation, for one
assimilation cycle between time< 1) and timer.

Sy, Observed \‘\
T 90 40) front 3.1.1 Definition of the control space
Figure 3. Construction of the differences between simulated The vectorx; € R” corresponds to the control vector that in-
fire front (SFF) and observed fire front (OFF) notell =  cludes then uncertain parameters to be estimated over the
[dy 1.+ .d; nol- In this illustration,r = Nfr/Ng = 4. assimilation cyclds — 1, ¢]. This implies that the location of
the fire front is not estimated by the EnKF but is indirectly
modified by integrating again the fire spread model over the
(SFF) described by th&s markers (corresponding to a fine- time window | — 1, 1] with the newly estimated control pa-
grained discretization of the front) and the observed fire frontrameters. Note that a parameter estimation approach can be
(OFF) at timer. Since observations of the fire front position considered by itself as an estimation problem and does not
are likely to be provided with a much coarser resolution andpeed to be combined with a state estimation approach to ob-
since they may cover only a fraction of the fire front perime- tajin an optimal EnKFRétron et al.2002 Peters et al2005
ter, the OFF is discretized with a set®f markers such that 2007 Moradkhani et al. 2005 Durand et al. 2008 Ruiz

the observation vector? reads: etal, 20133.
In the present study, the control parameligrare assumed
¥ = [(xi’,yf), (xg,yg),...,(x,%f?,ygﬁ)], 9) global (i.e., spatially uniform) and constant over the time

window [r — 1,¢]; they are only modified when moving to
with N2 much lower thanNy. In order to compare SFF the next time windowd], ¢ + 1].
with OFF, a selection operat@t is introduced. This oper-
ator pairs a subset af? markers along SFF with tha/?  3.1.2  Generalized observation operator
markers along OFF, associating each marker of OFF with its . ]
closest neighbor along SFF (see Ry.Preliminary tests re-  1he generalized observation operagyrmaps the control
ported inRochoux(2014 have shown that a simple treat- SPace ofx; onto the observation space f. Within the
ment (taking 1 out of every points) provides reasonable re- framework of parameter estimatiog; is a composition
sults. Thus N2 = (N¢/r), wherer is an integer taking val-  Of the fire spread modeM;,_y,,y (providing the Ny front
ues much larger than 1 that represents the difference in resgnarker Ioca}tlons assomgted with a reallzqtlon of the control
lution between SFF and OFF. One of the advantages of thi¥©Cctorx;) with the selection operatdt, (taking 1 out of ev-
representation of the fire fronts is that it provides a local in-€Y ¥ = Nir/Ng markers along SFF at timg. Formally,G;
formation on the discrepancies between SFF and OFF, anfpads:
not only a global information such as the difference in the ,
burnt area or in the fireline perimeter. This local information »* = Gi(x0) =Hro My—1.n(cr-1, 4, %1), (10)

is efficient at representing the anisotropy in wildfire spread. with y, the location of theV? fire front markers associated

b Itis th)rth. notmlg thigth(_eldt?pology Odf the fire frc()jr;t canl with a set of control parametets at timer (corresponding to
€ complex in real-world wildfire spread cases, and/or ON'yine model counterparts of the observed quantities), and with

a section of the fire front can be observed due to the opacity, / 4 input parameters of the Rothermel-based model that
of the fire-induced thermal plume or due to a limited moni- are not included in the control vectas. In the following,

toring. Thus, the pairing between simulated markers and Obbothx andy® are considered as random variables
served markers becomes more challenging for complex fire Thet obsertvation operat@; defined in Eq. 10) is 'time-
t .

front Fopology. The ger_lerahzatlon of this treatment to com- dependent since OFF is dynamically evolving: the selection

pIex.f|re front topology is out of the scope of this study. procedureH, depends on the location and on the topology of
Itis also wo.rth ”.”en“c’”'”g 'that the EnKF .and .PC-EnKF the fire front at a given time, implying that the observation

par_ameter espmanon strategies presented in this paper a@perator is not the same for all members of the ensemble.

valid for any fire spread model; '_:IREFLY_ could read!ly b€ This formulation is an unusual application of the EnKF algo-

replaced by any other front-tracking wildfire spread simula- rithm.

tor, for instance FARSITE, FOREFIRE, PROMETHEUS or

PHOENIX RapidFire.
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FORECAST ANALYSIS Bayes’ theorem:
Prior Prior Posterior Posterior
parameters fire fronts e parameters fire fronts pa(xt) x p(y?|xt) pf (x;), (11)
xf,(l) yf (1 "y xa,(l) ya ()
t t () 0, t t H
o) G yf(z) Ik @ . G ya @) where the symbodx meansproportional toand where
X, t X, N p(y%|x,) represents the data likelihood, i.e., the condi-
: : tional PDF of having the observatiom$ given the con-
EnKF EnKF : EnKF ; t | t
prediction update prediction rol vectorx;.
o f'(N) o 4 goN a('N) aH.) Based on Bayesian theory, the EnKF algorithm assumes
B J Y * X, " i that the errors on the control parametersand the errors on
Covariance matrices T the observationg? are random variables defined by Gaus-
o K sian PDFs with a zero mean value and an error covariance
C,=PG, O =xV+C(C, +R)'(3+& -y *)  model. Under these assumptions, the forecast PDF may be
C,=GPG
» =t t

written as follows:

Figure 4. Flowchart of the EnKF algorithm during the+ 1, 7] as- 1 AT -1 .
similation cycle for a parameter estimation approach. Data random10 (%) exp{ > (x, ;) P) (x, - x;) } ) (12)
ization Burgers et al.1999 is used in the EnKF witl§® -(6) fol-

lowing observation error statistics for each member1l, .-, Ne.
9 € wherex! is the forecast estimate of the control vector, and

WhereP{ € R"*" s the forecast error covariance matrix rep-
resenting errors in the ROS model parameters. The data like-
lihood may be similarly expressed as follows:

The EnKF algorithm is sequentially applied over an assimi-
lation window([z — 1, ¢]; each assimilation cycle decomposes p(y°|x;) exp{—— d'R 1d,} , (13)
into two successive steps for each member of the ensemble

indexed by the exponehtas illustrated in Fig4:

3.1.3 Sequential estimation

with R € R2Vi*2Ni the observation error covariance matrix

1. a prediction step (forecastin which the system is representing observation errors (assumed constant over time
evolved from time {(— 1) to time (+ being the next in this study), and withi; the innovation vector of sizeN%)
observation time) through an integration of FIREFLY corresponding to the differences between SFF and OFF:
to forecast the fire front positiop, given some uncer- o o ‘
tainty ranges in the control vectas,. We note p(x,) 41 =Y =¥ =Y; — G (x)). (14)
this PDF of the control vector (also called tfurecast

PDF) at timer. We also noteFy,_1, the operator de- psing the selection procedure (seg RBYy.d, i_s simply de-
scribing the temporal evolution of the control parame- fined as the vector formed by the directed distances between

ters from time (—1) to timer, with x; = Fj;_1.11(x;1). the paired SFF-OFF markers. Note t.hat the stati;tical mo-
A temporal evolution of the control vector is introduced ments 0id, (€.9., mean and STD) provide a convenient mea-
here to fit with the classical description of the EnKF al- sure of the deviations of model predictions from observa-
gorithm: since there is no dynamic model available to 1ONS- _ _
describe the evolution of the control parameters, persis-  Vithin this framework, the analysis PDF from EQ1f is
tence forecasting is used to relate the forecast controf!SC Gaussian and is written as follows:

parameters to the analysis control parameteetdrs 1

et al, 2005. For this purpose, two techniques are re- P(x;) o exp{—§<xt —-x ) PH” (x, —xﬁ)

ported in the literature, inflation on the one hand, a ran-

dom walk model on the other hand/ést 1993 Morad- _} drT R‘ldt} , (15)
khani et al, 2005 Ruiz et a] 2013h. In this study, the 2

parameter evolution modéf;_1 4 is artificially set up 1o AT pa-1f,  .a
using a random walk model (see E&§). o exp 2<x’ x’) ®0) (x, x,) ’ (16)

2. an update step (analysish which new observations are wherex? is the analysis estimate of the control vector, and
considered at the analysis timeand the forecast PDF where Pae R™" js the analysis error covariance matrix.
of the control parameters is modified consistently with Conditional mode estimation searches for the mode of the
the observations?, in order to reduce the uncertainties PDF f(x,), i.e., the value of the control vectwy that max-
in the computer model outpuss. The new PDF, called imizes the probability to estimate its true valmg Under
the analysisand noted f(x,), is given by the classical Gaussian assumption, this maximum likelihood estimation is
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equivalent to a minimization problem: results for next assimilation cycles. The temporal evolution
a ) a ) of the control parameters is artificially set up using a random
maxp(x;) <= min {=InpP@nl} = min J(x:), (A7) walk model so that thé-th ensemble member reads:
t t t

with 7 the cost function of the estimation problem defined x-* = F;_1.1 (x;;‘;(]i)) =x%  +e), (23)
as follows:

wherex? , is the mean of the posterior estimates obtained at

the previous analysis time { 1), and where?fk_)l is a ran-
domly generated white noise following a Gaussian distribu-
tion of zero mean and given STD (taken equal to the forecast
error STDo in the following). Thus, the generation of the
ensemble of forecast parameters at tirregperformed in two
steps as ifPeters et al2009: (1) the mean forecast estimate
gver the time windowz, ¢ + 1] is specified using the mean of
Fne analysis estimates obtained over the previous assimilation
cycle[t—1,¢]; and (2) the ensemble of forecast parameters is
obtained by applying a STD to this mean forecast estimate.
xf =Fp_1x2 4, pj =Fp_1 p;_l FE;—L;]’ (19) Addit@onally, the error STD use_d _in t_he random walk model
remains constant over all assimilation cycl&eters et aJ.
assuming there is no error in the formulation of the param-2005 Ruiz et al 20138). A series ofNg independent forward
eter evolution model. In this context, the analysis update inmodel integrations up to the analysis timbased on these

1 T 1
J(xt)zé(xt—x';) (PI)—l(xt—x§)+§d[T(R)—ldt. (18)

The direct minimization of/ leads to the classical KF equa-
tions when the generalized observation opergtas linear
(denoted byG;). In the present case, this implies that the fire
spread modeM;_1  is linear and that the parameter evo-
lution model Fj;_1,4 is linear (denoted byF;_1 ). Using
these assumptions, it could be shown that the forecast in th
prediction step is obtained via the integration of the follow-
ing equations:

Eq. (16) leads to the following equations: Ne realizations of the control parameters is performed (start-
ing from the same initial condition at timg — 1) that cor-
xd=xl 4K, (y? — G,xI), (20)  responds to the mean of the posterior estimafes); this
1 forecast step provided, fire front positions at time cor-
K,=PlG] (GtPI Gl + R) , (21)  responding to the model counterparts of the observed quan-
pa_ (| K.G)p 29 tities and designated E{ty';‘(l),--- ,y];’(k),--- ,y';’(Ne)], with
e ( meo t) £ (22) y® = g, (x"®) for thekth ensemble member.

We note C,, e R"™2N; the matrix that represents the
stochastically based relation between the control space (of
sizen) and the observation space (of siz&¥f); C, is ex-
pressed as follows:

whereK is called the gain matrix. Starting from a prior value
of the control parameters (i.e., the foreca%)tand using the
observationy? available at time, the analysis estimate?

is a feedback information for the fire spread modet;is

optimal when the variance of its distance to the true value~ _ T
t . : : - Coy =PiG; (24)
x; gets to a minimum, meaning, for Gaussian cases, that its . T
PDF is dense around its mean. The expressions in E@s. ( Ne (xf»(k) _x§> (g,(va(k)) _ g,(xl;)>
22) are the basis of the EKF algorithm usedRochoux et al. = Z ,
(20133 b), Fj;—1,,) and G, being the tangent linear opera- k=1 Ne—1

tors (Jacobian) ofj;_1,, and M{;_1 ] in the vicinity of the _
control vectory,, respectively. Thus, in the EKF, a linearized where the overline denotes the mean value over the en-
and approximate equation is used for the prediction of error$S€MPIe. Similarly, the symmetric error covariance matrix on

, 2NOx2N? ¢
statistics as well as for the relation between the control spact€ Predicted measurements denotedcy € R is
and the observation space. stochastically formulated as follows:

In contrast, the EnKF algorithm used in this study does not

_ fT
require the explicit use of the linear operatbfs_1 ;; andG; Coy =GPG, (25)

in the prediction step. As shown in Figy.the forecast control Ne (Qz (xt,uc)) —G, (x5)> (Qf (xl;,(k)) _ —Qr (xb)T
parametersﬁ are stochastically represented at timeased =

on Ne realizations called the ensemble members =1 Ne—1

[x}(l), cx® ’xj’(Ne)]’ This means that the EnKF algorithm approximates the mean

and the covariance of the forecast by the mean and the covari-
with k varying between 1 aniie. These realizations are ran- ance of an ensemble, while still making the assumption that
domly generated based on mean and error STD according tall PDFs are Gaussian. Additionally, the distance between the
the user-defined confidence interval for each control paramkth prediction yf’(k) =G (x‘;’(k)) and the observation vector

eter over the first assimilation cycle and to previous analysisy? is computed according tBurgers et al(1998, meaning
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that an additional noisg> * is added to the observation vec-

. : H i ds orward model Simulated fire fronts
tor to avoid ensemble collapse. Thus, for tile member, the 4 (mfﬁ'”f“:j)qua e | Forvad s (;?&a)te e frons |
. . i P )i=1 (Ngwad)" g =1, (Nyuad)"| :
innovation vectodfk) reads: 0} : - ;
// Hermite polynomials Sufrrogate modelf
k) _ .o 0, (k) f, (k) Forecast ,/' : (Wq)l =1, Ny Y = gpc,t<93t)
dt =J: + ‘S =Y . (26) distribution ’\ : !
_ | _ p'(@) [ .
During the analysis, each ensemble member is updated based @ Monte-Carlo sampling | surogate modet [ Predicted fire front
. . . : RA) - iti :
on the classical KF formulation presented in EQ){(22), : @ )y, | e predicion (yf_'fffj“"“s :
with the difference than the generalized observation operator : ERPLESRIRL
G is nonlinear and that the gain mati is now stochasti- D EnKE updare]
Ca”y Calculated using Eq524)—(25) Thekth member al’lal- @ Posterior estimate of Surrogate model Updated fire front
ysis satisfies: : parameters EnKE prediction Poons
: <I/ k=1, .N. (y‘ k=1 N
sl of 0. o ( f’(k)» ..........................................................................
X, =x 4K (yl +é G\ x: ’ (@7 Figure 5. Flowchart of the PC-EnKF algorithm during the assimila-

Kze =Cyy(Cyy + R)fl' (28) tion cycle[r — 1,_ t] decomposed i_nto three step_s: (1) construction of
the PC expansion of the generalized observation operator; (2) EnKF
prediction and update for the assimilation cyfele 1, ¢]; and (3) pa-

One of the advantages of the EnKF formulation in Egg) rameter evolution to the next assimilation cyple + 1].

(28) is that the explicit estimation of the tangent-linear of the
observation operatdg; (including the tangent-linear of the
fire spread model for parameter estimation) is avoided. This 4 re-integrate the model EcB)with the analysis parame-
ensemble-based method allows the nonlinearity in the obser-  ar5 gver the time period [ 1, 7] to obtain the corrected
vation operatog; to be better taken into account than a local locations of the fire front and the updated progress vari-
estimationG, achieved for instance through a finite differ- able field at time.

ence scheme as in the EKRds and Borgal997 Rochoux

et al, 2013a b). The use of Egs.27)—(28) provides an en- To move to the next assimilation cycle, f+ 1], step (1)

semble of posterior estimates at time can be performed again. The integration of the FIREFLY fire
spread model starts again from the location of the fire front
[x?(l)’ Lx2® ’xfl(Ne)], associated with the mean analysis estimate at timssing

the modified control parameters following the random walk

which is easily used to simulate over the time windpw- ~ Model (see E@3).

1,1] an ensemble of retrospective posterior estimates of the 11€ Proposed parameter estimation algorithm can be re-
a() a, (k) garded as a three-dimensional variational technique with a

fire front position . ., y2 Mo a5 well as . L i
an ensen‘rl)ble of fiﬁ E as';s of’ t)r,{e fir,e erryeta d b]e onddime stochastically based estimation of the error covariance ma-
Y trices; the three-dimensional variational technique also lacks

Note that in the present study, we assume that ob:servatio”1 . . )
. : : e dynamic interrelation between analysis and forecast error
errors are uncorrelated, i.e., the observation error covariance

matrix R is treated as a diagonal matrix, in which each diag_covanancesl‘{eters et a] 2005 Ruiz et a) 20130).
onal term is the error variance °)2 associated with the error
in the x- or y-coordinate of the markers along OFF.

As a summary, the main steps of the proposed EnKF alin the classical EnKF algorithm, a Monte Carlo sampling
gorithm for parameter estimation over the assimilation cyclejs used to generate the forecast memberand their as-
[t —1,1], are as follows: sociated fire front trajectoryf. While this provides accu-
. rate access to the full statistics of the modeling uncertainties
1. build an ensemple of forecast control pa'ramet.ers baseflprovided the ensembld, is sufficiently large), it involves
on Eq. Q3), starting from the progress vanabl'e field cor large number of forward model integrations (as illustrated
respor?dlng to the mean analysis field obtained at time;, Fig. 4) that becomes time-consuming for regional-scale
(1) fire spread problems. To maintain the computational cost of
the EnKF algorithm compatible with the objective of wildfire
spread forecasting, a numerical strategy based on a polyno-
mial chaos (PC) expansion is introduced; this PC expansion
is used in the prediction step of the EnKF algorithm as out-
lined in Fig.5. This hybrid EnKF algorithm is denoted by
PC-EnKF in the following.

3.2 Polynomial chaos-based ensemble Kalman filter

2. compute the observation operator through ED),(
which includes the FIREFLY fire spread model integra-
tion from time ¢ — 1) to time¢, in order to obtain the
model counterparts of the observations at time

3. apply the Kalman filter update equation at timéor
each member of the ensemble based on E4§—-(28);
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3.2.1 General formulation of the surrogate model model outputgﬂ; with a high-order convergence rate. Theo-
retically, Qpo = 1 (i.e., only two terms fon = 1 correspond-
The PC-based surrogate model approximates the generahg to the mean and STD of the control variable) is enough
ized observation operat@; at timer and is therefore de- to approximate exactly a Gaussian random variable. Note
noted byGpc;. It is parameterized with respect to the multi- glso thatNp rapidly grows withn and Qpo, implying that
dimensional control vector! € R" following the forecast  a balance between accuracy and computational cost must be
PDF ﬁ(x,). This random vector may be regarded as a set offound. For instance, if = 2 andeo =2, there aréVpc = 6
second-order random variables (i.e., with finite variance) exterms retained in the PC expansion. Using this formalism, the

pressed in terms of a random eversuch that| = x{(w). It surrogate mode., can be formulated as follows:
can be projected onto a stochastic space spanned by orthogo-

nal PC functions of independent Gaussian random variables Npc
¢ (@) as follows: ¥ 2 Gpe (%1©) = D 340940, (32)
o q=0
fo _[.f8 & f]_ -
x (@) = [xl»”xz»” ’x”’f] - Zox‘f q (C (w))' (29) where the unknowns are the following time-dependent vec-
= tors:
The simulated positions of the fire fropf = G, (xf(¢z)) can o o
also be viewed as a random variable and therefore, they cafle = Ya(®) = [(xl’ Ygs---» (Xng. ny?)q],’ (33)
be projected onto a stochastic space spanned by orthogonal
PC functions as follows: g varying between 1 antipc, with Ng the number of markers
along OFF at time. Note that the size of thgth vectory, is
yf —g (xf(;)> _ i 0 (1) 00 (0) (30) 2Ny (each marker location being represented with both the
! per\r = 1 >0 x- andy-coordinate on the horizontal plane) and thereby, the

computation ot2Nf?NpC) coefficients (also referred to as the
where y,=3,(t) are time-dependent coefficients, and PC modepis necessary to build the surrogate mo@gl; .
where(g, )40, o designate the multi-dimensional approx- ) _
imating polynomial functions forming an orthogonal basis 3-2.2 Calculation of the polynomial chaos modes
with respect to the joint PDF px;) = p (x1.1, x2.1, -+, Xn.s)- _ o
The choice for the basis functions may depend on the typd?U€ to the orthogonality of the PC basis, it can be shown that
of random variable functions{u and Karniadakis2009. ~ thegqth PC coefficienty, are given by the following:
Since the control vector! is assumed to follow a Gaussian

PDF g (x;) within the framework of the EnKF, the surrogate ]E[gpw(xﬁ)goq(c)]
model of the observation operat@gc, is built upon the ba- ¥4 = . (34)
sis of the Hermite polynomialsghanem and Spanak991). E[(Pq@) ]

Stated differently, the Hermite polynomials form the optimal
basis for random variables following multi-variate Gaussianwhere
PDF. Note that the model outptyz’,s are represented in terms
of the same random event as the model inputs!, since — E[] refers to the expectation operator satisfying
the uncertainty in the model outputs is assumed to be mainly ~ Elgg(£) ¢:(£)1 =0 if ¢ # 1, with the following defini-
due to the uncertainty in the ROS model parameters within  tion for the inner product:
the framework of parameter estimation.
In practice, a truncated version of EG| is used; there E[(pq(é:)w(l;)] _ / 0a(©) (&) p(&) bt = 5 [(ﬂ(ﬂ,
are several ways of constructing the approximation space.

. . . ]Rn
The most common choice is to constrain the number of terms

\ ; 35
Npc in the PC expansion by the number of control parame- (35)
tersn and by the maximum order of the polynomial basis with 8 the Kronecker delta-function;

Opo such that
' - E[goq(;)z] is a normalization factor equal to 1 if the ba-

(n+ Qpo)! T .
Npe= ——F——. (31) sis is constructed orthonormal,

(n! on!)

f fy7 i i i

This choice ofNy ensures that the PC approximation is of ~ ~ E[Gpc: (x;) ¢q(x;)] is computed using a Gz?us;-Henrmne
highest orderQ 0. Note thatQy, is a user-defined quantity quadrature rule, Wit[lxI’(l),n- ,xI’(j), e ,x,’(( quad”)

that must be chosen carefully according to the model non- the quadrature roots vector of sig¥quad” constrained
linearity, in order to obtain an accurate representation of the by the maximum order of the polynomial basi%,
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such that Dpo < 2(Nquad— 1). Thus, this term is com- ONERAZ# OpenPALM allows for the coupling of indepen-

puted as follows: dent code components with a high-level of modularity in the
data exchanges and treatment, while providing a straightfor-
E[gpm(xg)wq(;)] = / g,(xﬁ)goq(;)dp(g) (36) ward parallelization environmenE@uilloux and Piacentini
Re 1999 Buis et al, 2006. In this study, it is used as a task-
(Nquad” parallelism manager to handle communications and data ex-
~ Z G (xf,(j))(p (;(A/))w(,/) changes between FIREFLY and the mathematical units re-
t\ Ay q s

quired to sequentially apply the EnKF and PC-EnKF algo-
_ _ rithms. The PALM-PARASOL functionality in OpenPALM

where yI’(f) = g(x}(f)) corresponds to the FIREFLY was used to efficiently and independently run the FIREFLY
forward model integration evaluated at tj#n quadra- time-integrations in parallel, on the available processors.

ture root x}(i) with its associated weight’, and ~ The master processor of PALM-PARASOL spawns multiple

where g, is the gth multi-dimensional basis function Copies of the same computer program (i.e., the slaves), each
formulated as tensor products of one-dimensional po|y_0n one or several processors with a different set of Input pa-

j=1

nomial functions: rameters of the ROS model. Each slave integrates FIREFLY
" using one realization of the control vecter to provide the

0g=9g(8) = 1‘[ (pil(g (§1>, (37) associated fire front positiop,, subsequently used for the
=1 computation of the covariance matricg, andC,,. As il-

) 1D ) . ) . _lustrated in Figs4 and5, this integration is performed for
with ¢;;) the one-dimensional polynomial basis and its {he n,, ensemble members using the forward model FIRE-
multi-index i () varying between 0 andyo to deter- ¢ v or the classical EnKF. In contrast, for the PC-EnKF al-
mine the proper term in the multi-variable space. gorithm, a limited number of FIREFLY model integrations

Based on this formulation, the construction of the surro- (Nquad” is used to build the surrogate model and subse-
gate modelpc, over the assimilation window — 1,7] re- quently, a large number of evaluations of the surrogate model
quires a limited number afNguad” forward model integra-  (Ne) are computed using the PALM-PARASOL functional-
tions (see the first step in Fif). The polynomial approxima- ity

tion Gpc, calculated in Eq.32) is then used in the prediction

step of the EnKF algorithm (instead of the observation op-

eratorG;) to compute the predictions of the time-evolving
fire front IocationSy{)C), for a large number of memberég,

(see the second step in Fig). This ensemble of forecasts

is used to accurately estimate the covariance matfgs

4 Data assimilation experiments
4.1 Convergence of the ensemble-based algorithms

The EnKF and PC-EnKF algorithms are compared on

an_dny that are required in the formulation of the Kalma!’l an OSSE experiment, in which the Rothermel-based ROS
gain matrix. Thus, the EnKF update can be performed with., 4e| of Eq. 8) is reformulated a8 (x, y) = P 8y (x, y) with
reliable covariance matrices at a reduced computational cosp (-1 5 proportionality coefficient angj, = 8y (x, y) a spa-

compared to the standard EnKF algorithm based on a Monig 1y, yarying function that is assumed to be perfectly known.

Carlo sampling. This appkroach leads to analysis estimates Q{jgte that this formulation takes advantage of the proportion-
the control parametersf* and to accurate PDF of the fire ity between the RO and the fuel layer thickness in the
front IocationSy,a(k) (k=1,---, Ne) using the same surro- Rothermel’s formulation. Thus, the control vector is limited
gate model as for the forecast estimates. to a single parametex, = P, which encompasses different
In order to reduce the computational cost of the EnKF al-uncertainties that are not distinguished here.
gorithm, a surrogate model based on a PC expansion is used The fire is ignited atxign, yign) = (100m 100m) as a cir-
in place of the forward model (i.e., the FIREFLY regional- cular front with a radius of 5 m; it spreads upon a random fuel
scale wildfire spread model) in the DA procedure. The per-distributionsy (x, y) over a 200 mx 200 m domain. Observa-
formance of the resulting PC-EnKF algorithm is assessed onions (represented using® = 20 front markers) are synthet-
synthetically generated fire spread cases based on prelimiecally generated at 50s intervals with FIREFLY and a chosen
nary work presented iRochoux et al(2012 as well as on  true valuex! = P! = 0.4s™1. An observation error character-

the controlled grassland fire experiment. ized by the error ST ° is also introduced. The ensemble of
o ) prior values is drawn from a Gaussian distribution centered in
3.3 Numerical implementation xf =0.2s" 1 with an error STDxf = 0.055 (assumed con-

In practice, the EnKF and PC-EnKF ensemble-based DAstant along the a35|m|lat|pn cycles): Note that the_true value
) . . , . of the control parameted is at the tail of the Gaussian PDF
algorithms were implemented with the fire spread simula-

tor FIREFLY using the OpenPALM dynamic coupling soft- associated with the forecast estimates. This case is chosen on

ware (agarde et a).2001), co-developed at CERFACS and 4http://www.cerfacs.fr/globc/PALM_WEB/
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0.405 ‘ ‘ ‘ ‘ 48 fire front trajectories associated with each realization of
the control parameter). In particular, below this threshold,

the error bars corresponding to the error STD of the analy-
sis parameter estimates are narrower for both EnKF and PC-
EnKF algorithms. The error STD computed with a low num-

ber of members is therefore not reliable and the ensemble-
Q_=4 1 based algorithms require a larger sample to accurately repre-
ﬁﬁﬁ - / sent the tails of the Gaussian PDF related to the control pa-

0.4f
0.3951
0.39F

"""""" B rameterP. It is shown that the PC-EnKF algorithm provides
b a comparable result as the EnKF (in terms of mean and STD)
1 above Ne = 40 members for a polynomial ordedp, = 4.
However, the results achieved with PC-EnKF are obtained
0.375} 1 for a lower number of FIREFLY time-integrations (i.e., 5
FIREFLY model integrations only sinc¥yuad= 5 quadra-
0.37f 1 ture points are used to build the model surface respgpge
than the standard EnKF, while considering the same number
0.365) 20 n " o0 100 of membersNe to generate the forecast/analysis estimates.
Number of members N, [-] Thus, the PC-EnKF algorithm provides a solution that re-
produces the converged solution of the EnKF for a compu-
Figure 6. Convergence of the mean analysis estimates of the protational cost that is reduced by a factor of at least 8. This
portionality coefficientP [s~1] with respect to the number of en-  jmplies that for more complex fire spread cases where more
semble membeSe for afixed observation error ST&P =2mand  members are required to track spatial variations in wind and
a single assimilation cycle: comparison of the performance betweer\‘/egetation conditions, the PC-EnKF algorithm appears as
the EnKF and PC-EnKF algorithms. The orange triangled-dashed, 1, iging alternative to obtain accurate simulations of fire
line corresponds t@po = 2; and the red circled-dashed line corre- . "
spread at a reasonable computational cost. Additionally, the

sponds taQpo = 4 for the PC-EnKF algorithm. Black squares cor- . . . .
respond to the analysis estimates obtained using the standard EnKE.C'EnKF algorithm provides a mean estimate that is less

Vertical error bars correspond to the associated error STD. fluctuating than the EnKF algorithm, with a slightly reduced
scatter for low values ofVe, indicating that the PC-EnKF

strategy requires less ensemble memb&to reach conver-

purpose, in order to evaluate the ability of the parameter estigence.

mation approaches (EnKF and PC-EnKF) to retrieve accurate Figure 6 also illustrates the sensitivity of the PC-EnKF-

values of the control parameter, even though the prior valudased analysis to the choice of the PC polynomial order

is far from the true control parameter and its uncertainty is @po for a varying number of ensemble membets While

high (compared to the observation error STD). Qpo = 2 (i.e., Nquad= 3) provides a reasonable approxima-
A PC approximation (with a polynomial orde®po = 4 tion of the mean analysis estimatg when considering the

and subsequently a quadrature oriigiag= 5, see Sec8.2)  Standard EnKF as referena@po = 4 (i.e., Nquad= 5) leads

is used to build the model response surfdgeto the control {0 & more accurate estimate without loss of accuracy. Even

0.3851

0.38F

Mean of the analysis estimates [1/s]

parameterx = P corresponding to the forecaat!, o). though the fire front marker locations exhibit approximate
Gaussian PDF and in theony= 1 is sufficient to character-
4.1.1 Sensitivity to sampling errors ize their distributions, a high polynomial order is required

in this case. The true value’{ = 0.4s71) is indeed not in

Convergence properties of the EnKF-based analysis estithe zone of high probability occurrence of the forecast esti-
mates are studied in Fig with respect to the number of mates ' =0.2s71 with o' = 0.05s1); the true fire front
ensemble memberd, for a fixed observation error STD locations are at the tail of the forecast PDF, which makes the
o°=2m and for one assimilation cycle. Since there is noestimation of the fire front locations more difficult. This diffi-
analytical solution to the problem, the convergence of theculty shows the ability of the PC-EnKF procedure to retrieve
EnKF is assumed to be achieved if the mean value of the conaccurate estimates of the fire spread at a low computational
trol parameter and its STD remain constant when increasingost and without loss of accuracy, even though the prior in-
Ne. The performance of the PC-EnKF algorithm is comparedformation is very uncertain.
to that of the standard EnKF algorithm (black squares) for
different PC polynomial ordergppo = 2 (orange triangled- 4.1.2 Example of polynomial chaos-based surface
dashed line) an@po = 4 (red circled-dashed line). response

Figure6 shows that in the present configuration, the EnKF
algorithm converges for a minimum dfe =48 members  Figure 7 provides a comparison in the observation space
(meaning that FIREFLY is integrated 48 times to producebetween the observed fire front and the forecast/analysis
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Figure 7. Comparison of fire front locations using the PC-EnKF

approach with an EnKF update at 50 s &t = 2m, Opo=4 and %1157 ‘ ‘ ‘

Ne = 1000; estimation of the proportionality coefficieAt s 1: 2105’ X X X X

all fronts correspond to time 50's. Black crosses correspond to ob- § :

servations; the blue circled-dashed line corresponds to the mean A T T a"g"gisi o:“e e

forecast estimate of the fire front and the red squared-solid line P [1/s]

corresponds to the analysis counterpart. Horizontal and vertical er- (b) Analysis estimates.

ror bars correspond to the associated error STD along tland

y-directions, respectively. The location of the fire front marker in- Figure 8. Model surface response (or surrogate model) ofithed

dexed by the character m is indicated. y coordinates of the front marker indexed by m on the fireline (see
Fig. 7), with respect to the control parametefs—1]. Black crosses
correspond to quadrature roots (i.e., FIREFLY forward model inte-
grations); blue circles correspond (@) forecast estimates, and red

estimates obtained through the PC-EnKF algorithm for ansquares tgb) analysis estimates obtained through the PC-EnKF al-

observation error STy° =2m, a PC polynomial order gorithm at time 50s. The vertical solid line indicates the true value

Opo=4 and a number of ensemble membafs= 1000 Pt =0.4571; the vertical dashed lines indicate the mean forecast

(a single assimilation cycle is considered). As expected, thénd analysis estimates of the proportionality coefficieris 1.

analysis estimates (red squared-solid line) provide a more

accurate approximation of the observed fire front location

(black crosses) than the forecast estimates (blue circledspond to the analysis estimates relatedfo= 0.38s™* and

dashed line). 02=0.01s"1. The scatter of the ensemble is significantly

To offer insight into the main ideas underlying the PC- reduced in the analysis, around the true vaiie= 0.40s™?,

EnKF algorithm, Fig8 illustrates the mapping between the highlighting the uncertainty reduction achieved through the

control space and the observation space for one marker aggnsemble-based DA.

the fireline (its position on the forecast/analysis fireline is in-

dicated in Fig.7 by the character m). The variations in the 4.1.3 Sensitivity to observation errors

x andy coordinates of this marker are represented with re-

spect to variations in the control paramererblack crosses  For verification purposes on the behavior of the PC-EnKF

indicate the simulated marker positions associated with thelgorithm, Fig.9 examines the influence of the observation

Nquad= 5 quadrature roots (i.e., FIREFLY model integra- error on the performance of the EnKF and PC-EnKF algo-

tions) corresponding to the first step of the PC-EnKF algo-rithms (the EnKF algorithm is used as reference). Statistics

rithm; and blue circles indicate the forecast estimates ob<{in terms of mean value and STD) of the analysis obtained

tained through the surrogate model evaluation combined witfor Ne = 48 members over one assimilation cycle at time

a Monte Carlo samplingNe = 1000) corresponding to the r=50s are presented as a function of the magnitude of the

second step of the PC-EnKF algorithm (see Bg.These  observation errors measured &% (up to o® = 30m); ver-

fire front estimates are associated with the forecast controtical bars give a graphical representation of the magnitude

paramete’ = 0.20s1 and its error ST»' = 0.05s°L. In of the STD within the analysis ensemble. The results show

contrast, red squares are produced by the EnKF update aphe consistency of the PC-EnKF algorithm with the EnKF

plied for any of the 1000 ensemble members, they corredin retrieving realistic values for the control parameter, even
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tionality coefficientP [s~1] as a function of the observation error = 14 B
STDo° for a fixed number of memberé = 48 and for one assim- @ N *
ilation cycle (with an EnKF update at 50s): comparison between % 13} ; “v
EnKF and PC-EnKF. The black solid line corresponds to the true g %
value 04s~1; the blue dashed line corresponds to the mean fore- 2 .l ) 4
cast estimate.@s~1; and the red circled-dashed line corresponds to 2 .
the mean analysis estimate obtained using the PC-EnKF algorithm. 2 0 ; %
Black squares correspond to the mean analysis estimates obtained é’ o
by the standard EnKF. Vertical error bars correspond to the associ- B 1ol ) 4 Y v ..
ated error STD. 2 s PN
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though the observation error is significant. When the obser-
vation error STDo? is small, the PC-EnKF algorithm suc- 83 P 3 P 5 5 7
cessfully drives the analysis ensemble towards the true value Assimilation cycle [-]
of the parameteP! = 0.4s1; the resulting analysis exhibits (b) Observation space.

a much reduced scatter by at least a factor 4 in comparison to

the forecast STB' = 0.05s1. In contrast, wher is large, Figure 10. Sequential EnKF estimation of the coefficiePit{s™1]

the PC-EnKF algorithm has reduced effects and the analysigver seven assimilation cycles witkle = 48 members and° =

ensemble remains close to the forecast ensemble (the analym; time-varying true control parameter. The green triangled-

sis STD is similar to the forecast ST& = 0‘053—1)_ For dashet_j-dotted curve corresponds to the free run (without DA); the_

intermediate values af°, the PC-EnKF algorithm produces blue circled-dashed curve corresponds to the mean forecast estl_-
mate; the red squared-solid curve corresponds to the mean analysis

optimized analyses lying between forecast and Observatlonéstimate; and the black solid line corresponds to the true control pa-

as expected, the more accurate the observations, the mOFgmeter.(a) Parameter estimates (vertical error bars correspond to

certain the analysis for a given forecast error. the associated error STD(b) Mean distance to the observed fire

front.
4.2 Temporal variability of the parameter error

Sequential application of the EnKF allows for a temporal

correction of the parametdt for a case in which the time-

varying profile of the true paramet@ was artificially setup  similation cycles. Since there is no explicit dynamic model
between B and 06s 1 over seven assimilation cycles (the for the control parameteP, it is of primary importance to
true profile is shown in FiglQa in black solid line). While  track the temporal variability of the error in the parame-
the mean value of the forecast estimates is seta2g@ for ter through a sequential estimation combined with a random
the first assimilation cycle, it is set to the mean analysis estiwalk model in the EnKF prediction step (see B§). Note
mate from the previous assimilation cycle for all further as- that for this experimentye = 48 members are considered in
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the ensemble and a constant observation error 8T8 5m
is assumed.

Figurel10a shows the temporal variations of the EnKF esti-
mates along the assimilation cycles. The EnKF solution (red
squared-solid curve) provides an optimal mean value of the
control parameter, resulting in an ensemble of fire fronts that
is coherent with the observation error statistics (seel€ig).

In contrast, the model without DA (green triangled-dashed- e T S
dotted curve) significantly underestimates the ROS. While M, 9] 0 00 000 B
being not as accurate as the analysis at the assimilation time,
the forecast (blue circled-dashed curve) provides a signifi-
cant improvement in the prediction of wildfire spread at fu-
ture lead times compared to the model without DA (i.e., free
run). Note that there is a temporal shift between the forecast
and analysis estimates in FitPa. The analysis estimates are ~ *
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obtained at the current observation time and thereby, provide g, —
the most recently updated information. In contrast, the fore- § 2 —— < X X x
cast estimates only contain information up to the previous £°%] X8 X™=x=o N X

e ti O Q- ABB e e . T s
analysis time: $U T » N s g oo W00 1000

(b) Analysis estimates.

— if the error in the control parameter does not change,
the correction obtained at the previous analysis time isFigure 11. Model surface response (or surrogate model) ofithe
still valid and adapted to track the actual fire front posi- and y coordinates of the front marker indexed by m on the fire-
tion: the forecast estimates provide reliable scenarios ofine (see Fig.12) with respect to the control vectar=[My, Zv]
wildfire spread at future lead times; (n = 2). Black crosses correspond to quadrature roots (FIREFLY

integrations)(a) Forecast estimates (blue circles) gbdl analysis

— if this error significantly varies in-between two succes- estimates (red squares) of thétop panel) and> coordinates (bot-
sive analysis times (this is the case of the present DA extom panel) of the fire front positions are mapped onto the PC-based
periment), the correction is no longer suitable to predictmodel surface response.
wildfire spread at long lead times. For instance, over the
assimilation cycle indexed by 5, the analysis estimates

provide a good approximation of the actual fire front lo- measure) andy, = 11485nT (values related to short grass

cation at timer; however, the forecast obtained at time taken from the Rothermel’s fuel database). The observed

s when starting from the anaIyS|Statover_e stimates _the fire front locations are extracted from thermal-infrared imag-
true ROS, meaning that a new observation is required tolng at 28s intervals; they are discretized wili} = 40 front
gain information on the wildfire behavior. !

markers with a measurement error estimated%e= 0.05m

In the present case, Fid0b shows that the error in the (based on the spatial resolution of the camera).
forecast is systematically higher than that of the error in the The performance of both algorithms is studied over one
analysis in the observation space. This means that the assir@SSimilation cyclefS0,789 with an EnKF update at time
ilation needs to be renewed according to the temporal vari/1 = 78S (analysis mode) as well as over a forecast time
ability of the error in the control parameter to ensure a high-Period[78,1069 with an EnKF forecast at time = 106s

level performance of the data-driven simulated forecast.  (forecast mode); the initial condition af= 50s is taken as
the observed fire front ap. The control parameters are the

4.3 Application to a controlled grassland fire fuel moistureM,, and the fuel particle surface-to-volume ra-
tio Xy such thate = [My, Xy] with n = 2. A PC approxima-

The EnKF and PC-EnKF algorithms are applied to a real-tion (with a polynomial ordeQpo = 4 and a quadrature order

world case study, corresponding to a reduced-scale conAquad= 5) is used to build the model response surface to the

trolled grassland fire (4 m 4 m), propagating over a flat ter- two control parameteraf, and Xy; this response surface is

rain and occurring under moderate wind conditidhaygam  shown for one particular simulated front marker in Figa

et al, 2013. These wind conditions are assumed to be uni-(black crosses). A forecast ensembleMgf= 1000 members

form and constanty, = 1.0ms™1, blowing into a western  (blue circles) is generated at no cost using the PC-based sur-

direction,a,, = 307. The grass is assumed to exhibit a uni- rogate model assuming uncertaintiedfp andX; the fore-

form layer thicknessjy, = 0.08 m, and controlled properties, cast estimates of these control parameters are described in

for instance the moisture content and the grass surface-tofFable2 along with the associated STD. Note that the blue cir-

volume ratio are (approximately) known, = 22% (field  cles are contained within the surface response described by
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\S]

Table 2. PC-EnKF-based experiment for the controlled grassland
fire experiment: error statistics (in the parameter space) of the fore-
cast and analysis ensemble estimatesfer[ My, Xy] (n = 2). The
number of FIREFLY integrations is also presented as indicator of
the computational cost.

E 4 ]
>
FORECAST Cost Ens. mean Ens. STD
0.5 1 15.0% 4.0%
PC-EnkF 25 11s00mrl  3000mTl
Ok . L
15.0% 4.0%
0 04 08 12 1.6 2 24 28 32
EnKF 1000
(a) Analysis time, t, =78s. x{m] : 11500 n‘Tl 3000 m‘l
ANALYSIS Cost Ens. mean Ens. STD
13.8% 1.4%
PC-EnkF 25 oosg3m!  1157mt
0, 0,
EnKF 1000 135% 1.4%

22345nT1! 1170m!

§ It is found that the PC-EnKF strategy allows to signifi-

s cantly decrease the distance between the observations and the
‘ - ] simulated fronts with a comparable level of accuracy as the
o o4 08 12 16 m2 24 28 32 standard EnKF algorithm (the PC-EnKF algorithm provides
(b) Forecast time, t,=106:s. similar analysis mean and STD, see Tad)leAs illustrated in

) ) ) ) Fig. 11b, the uncertainty in the fire front positions is signif-
Figure 12. Comparison between simulated and measured fire fromicantly reduced in comparison to the forecast since the STD

positions for the Comro.”ed,gra55|and fire experimerfapanalysis related to the analysis estimates is much smaller than that of
time and(b) forecast time: black crosses correspond to observa-

tions, the blue circled-dashed line corresponds to the mean forecagpe forecast estllmates. Th's, |nd|F:ates th"?‘t the PC-EnKF algo-
estimate constructed through the PC-based surrogate model; the r&hm allows reliable statistical information to be retrieved

squared-solid line corresponds to the mean analysis estimate offOr only 25 FIREFLY model integrations (in contrast, the
tained by the PC-EnKF procedure applied at time- 78s. Black ~ standard EnKF algorithm requires 1000 members to correct
squares correspond to the standard EnKF used as reference. The= 2 control parameters and thereby, correlf2= 80 fire
location of the fire front marker indexed by m is indicated. front marker coordinates).
Consistently, Fig13 shows that the support of the anal-

ysis PDF (see Figl3b) is significantly reduced compared
the black crosses that represent Mguad?® = 25 FIREFLY g the forecast PDF (see Figi3a) for thex andy coordi-
forward model integrations performed to bw!q the PC-basedhates of theN? = 40 observed front markers. The topology
surface response. Thus, the PC decomposition properly agsf the PDF along the observed fire front is found to be over-
proximates the observation operator. all preserved through the EnKF update, implying that the
assumption of Gaussian error statistics for the modeling er-
ror statistics seems not to deteriorate the performance of the

ensemble-based DA algorithms. Some regions of the PDF

In the analysis mode, the forecast ensemble is corrected by lated to th dinat f the front ker locati
assimilating the fire front at timg = 78s. The comparison clated 1o thex coordinates of the front marker locations
nearbyx = 2m) are not sensitive to variations M, and

between the observations (black crosses), the forecast e§:- Th . d to the flank of the fi
timates (blue circled-dashed line) and the PC-EnKF-based™V" ese regions correspond to the fianx ot the firé, mean-
ng that thex coordinates of the surrounding front markers

analysis estimates (red squared-solid line) obtained at timé& . .
t1 = 78s are presented in Fid2a. The forecast trajectory do .no.t vary and the grqwth of the burning area only induces
represents the ensemble mean of the surrogate model Simgg;l‘atlg.ns n thedy fcootrﬁlngtgsé.E test th i

lations obtained without DA (i.e., using the forecast estimates S discussea for the est cases, the nonlinear re-
of the control parameters), while the analysis trajectory de-SPonse of the observation operator to the control parameters

rives from an EnKF update at using the analysis estimates induces a slightly non-Gaussian PDF for the forecast esti-
in the surrogate model integrations mates: it is indeed found that the mode of the PDF does not

exactly coincide with the mean value. Note that the PDF ex-
hibits a relatively flat tail for decreasingand increasing

4.3.1 Analysis mode
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40 2 1 observation times (i.e., a = 78s andr = 106s), meaning
8 16 08 that an observation time period of 28 s seems appropriate
5 30 o o for applying DA (relatively to the temporal variability of the
5 % £ ‘ errors in the control vector).
3 >0.8 0.4 While the improved accuracy of EnKF-based data-driven
810 04 02 simulations is obtained at the expense of heavy computa-
S tional cost (in the context of multi-parameter estimation for
% o8 16 24 32 0 10 20 a0 40 ° instance), the PC-EnKF strategy appears as a promising strat-
x [m] Observed front markers . . . h
(a) PDF related to the ensemble of forecast estimates. egy for SOlVIng BayESIan fllterlng prObIemS at a IOW CompU'
‘0 » . tational cost that is a requirement of operational frameworks.
§ 1.6 0.8
5 30 .
€ i 06 5 Conclusions
S20 £
3 ~o08 04 A data assimilation (DA) strategy based on the ensemble
g 10 0.4 0.2 Kalman filter (EnKF) with parameter estimation is demon-
© o o o strated to account for both experimental and modeling uncer-
0 08 16 24 32 o 10 20 30 40 tainties in wildfire spread modeling and thereby, to provide
x [m] Observed front markers

optimized forecast of wildfire behavior.

The proposed filtering strategy relies on a stand-alone se-
Figure 13. Colormap of the PDF of the fire front marker locations quential parameter estimation approach (the model state is
(in terms ofx andy coordinates) for the controlled grassland fire not included in the control space), in which the control pa-
experiment at the analysis time = 78s. (a) Forecast PDF with  rameters are assumed spatially uniform and constant over the
respect to ther (left panel) andy (right panel) coordinates of the  time window over which optimal values are sought for, and
observed fire front marker) Analysis PDF with respecttothe j, which the observation operator is dynamically evolving to
(left panel) andy (right panel) coordinates of the observed fire front .o - the actual location of the fire front over time. This strat-
markers. - . . .

egy was found efficient at reducing uncertainty in the numer-
ical predictions of fire spread for synthetic measurements as

coordinates of the observed fire front markers: this is due towe" as for a (reduced-scale) controlled grassland fire exper-

i . . Iment. It was also found that the nonlinear interrelation be-
a sharp ROS acceleration when decreasing the fuel moistur, . : .
) . : . ween the environmental parameters and the fire front posi-

contentM,, or alternatively, when increasing the fuel particle

surface-to-volume ratia, (see Fig2b and c) tions ind_uced by the_ nonlinearities of wildfire spread can _be

' stochastically described over the ensemble members. Since
there is no suitable dynamical model for the evolution of the
control parameters, a random walk model based on the idea
of persistence forecasting and on the assumption of constant
error standard deviation is used to relate the forecast to the
analysis parameter estimates. Thus, the parameter estimation
approach can be regarded as a three-dimensional variational
technique with stochastically based estimation of the error

grly represent the forecast trajt.ectorygeﬁ:' 1065 in compar- I:covariance matrices. In this context, it was highlighted that
ison to the standard EnKF. This result illustrates that a PD : - : ) .
the duration of the assimilation cycle is of primary impor-

sampling based on PC (instead of Monte Carlo in the stan- : .
N . tance in the success of the proposed DA approaches: the as-
dard EnKF) can significantly reduce the computational cost . .~ . . .
L2 . similation must be renewed according to the temporal vari-
of the EnKF prediction/update steps (in terms of number of”, .. : .
. ! . : ability of the parameter errors, in order to track the actual fire
FIREFLY model integrations that constitute the most time- .
. . . behavior.
consuming task in the PC-EnKF algorithm) and thereby, pro- .
) L X In order to reduce computational cost and balance sam-
vide accurate error statistics on the inputs and outputs of the

wildfire spread model. For instance, 1000 FIREFLY model E::g?icesr;c:]zs lg]uebgigaeg#egtl iii’:q?;:?;}%l;{:éii’i ?Jepsr?lg?:-
integrations were used in the EnKF algorithm to accurately, ping poly d

represent the error statistics; in contrast, only 25 FIREFLYEgg?thVﬁeS EEOKV'!Tbt;)SSelgn'gf:ggéfg‘;g?ﬂg;Eognplrgztézn&:
model integrations were performed in the PC-EnKF algo- P bp y

rithm. Thus, the number of FIREFLY model integrations is a factor of at I_east 10 in the present conﬂgur_am_ons), and
. thereby to provide access to accurate error statistics on both
here divided by a factor of 40.

Additionally, Fig. 12b shows that the errors in the control model inputs and outputs for the formulation of the Kalman

parameters do not significantly change in-between the 2" matrix.

(b) PDF related to the ensemble of analysis estimates.

4.3.2 Forecast mode

In the forecast mode, Fid.2b compares the fire front posi-

tion atr, = 106 s obtained using the forecast estimates (with-
out DA) and the analysis estimates derived from a DA up-
date atry = 78s. The PC-EnKF algorithm appears to prop-
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In both EnKF and PC-EnKF DA approaches, the formula-there is a need to design a strategy to address spatially dis-
tion of the observation operator can be regarded as the contributed error correlations along the fireline in order to be
putation of a front-to-front distance, in which the location able to correct the shape of the time-evolving fire front. There
and topology of each front is evolving over time. The under-is also a need to address all possible sources of uncertainty
lying selection operator that pairs the simulated front markerdn the fire spread model, not only in the input parameters of
with the observed front markers differs between the membershe ROS model but also in the parameterization of the ROS
of the ensemble. This is an unusual application of the EnKRthat is limited in scope due to a lack of physical modeling
algorithm that has demonstrated very good results to tracKe.g., steady-state assumption, spotting). The second part of
coherent features but that still needs more extensive verifithis series of two articledRochoux et a].2014) is dedicated
cation to ensure that the optimality of the filter is preserved.to the evaluation of a state estimation approach that is able
Indeed, the computation of the distance between simulatetib account for both anisotropic uncertainties and modeling
and observed markers becomes more challenging for comdncertainties. While out of the scope of this series of two ar-
plex fire front topology. The generalization of this treatment ticles, a proper representation of the model errors could be
in the EnKF algorithm to complex fire front topology will be performed in the EnKF by introducing a model error covari-
revisited in future work and needs to be extended to the operance matrix {rémolet 2007), which could be modeled using
ational context, where wildfires propagate in a highly hetero-a stochastic model such that proposed¥agnini and Men-
geneous environment and where in-situ, airborne or spacetrelli (2014 for the transport of firebrands.
borne monitoring is currently limited. Projection schemes re-
ported inRochoux(2014) are expected to provide a valuable

answer to this issue and could be integrated to the proposegcknowledgementsThe financial support provided by the
DA algorithms. Agence Nationale de la Recherche under the IBEgoject
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