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Abstract. We propose an original approach to develop rain-
fall thresholds to be used in civil protection warning systems
for the occurrence of landslides at regional scale (i.e. tens of
thousands of kilometres), and we apply it to Tuscany, Italy
(23 000 km2).

Purpose-developed software is used to define statistical
intensity–duration rainfall thresholds by means of an auto-
mated and standardized analysis of rainfall data. The automa-
tion and standardization of the analysis brings several advan-
tages that in turn have a positive impact on the applicability
of the thresholds to operational warning systems. Moreover,
the possibility of defining a threshold in very short times
compared to traditional analyses allowed us to subdivide the
study area into several alert zones to be analysed indepen-
dently, with the aim of setting up a specific threshold for each
of them. As a consequence, a mosaic of several local rainfall
thresholds is set up in place of a single regional threshold.
Even if pertaining to the same region, the local thresholds
vary substantially and can have very different equations. We
subsequently analysed how the physical features of the test
area influence the parameters and the equations of the local
thresholds, and found that some threshold parameters can be
put in relation with the prevailing lithology. In addition, we
investigated the possible relations between effectiveness of
the threshold and number of landslides used for the calibra-
tion.

A validation procedure and a quantitative comparison with
some literature thresholds showed that the performance of a
threshold can be increased if the areal extent of its test area is
reduced, as long as a statistically significant landslide sample
is present. In particular, we demonstrated that the effective-
ness of a warning system can be significantly enhanced if a

mosaic of site-specific thresholds is used instead of a single
regional threshold.

1 Introduction

Rainfall-triggered landslides are one of the most common
natural hazards, responsible for casualties and economical
losses worldwide (Petley, 2012). To reduce this impact, the
scientific community is working on forecasting the occur-
rence of landslides and setting up warning systems. When
working over large areas (e.g. thousands of squared kilome-
tres), the computational load required and the difficulty in
assessing the spatial organization of geotechnical parameters
prevent the application of physically based models (Baum
et al., 2010; Agostini et al., 2014; Rossi et al., 2013). As
a consequence, when the area of study is a large district or
region, the approach used is frequently based on statistical
landslide models relying on rainfall exceedance (Larsen and
Simon, 1993; Farahmand and AghaKouchak, 2013; Hong
et al., 2006, 2007; Bovolo and Bathurst, 2012; Segoni et
al., 2014a). In particular, empirical rainfall thresholds are
frequently used in operational warning systems (Brunsden,
1973; Aleotti, 2004; Hong et al., 2005; Tiranti and Rabuf-
fetti, 2010; Cannon et al., 2011; Martelloni et al., 2012;
Lagomarsino et al., 2013). Among all rainfall thresholds
approaches, the one using intensity–duration (I–D) thresh-
olds (Caine, 1980) is perhaps the most popular: it has been
proved particularly valid for shallow landslides (Caine, 1980;
Crosta and Frattini, 2001; Ahmad, 2003; Jakob and Weath-
erly, 2003; Aleotti, 2004; Guzzetti et al., 2008; Giannecchini
et al., 2012), and it has also been successfully applied to
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landslides in general (Zimmermann et al., 1997; Hong et al.,
2005; Brunetti et al., 2010; Rosi et al., 2012).

Although widely used, this approach is currently affected
by some drawbacks that hinder a fully operational applica-
tion to early warning systems. One of the main problems is
a certain degree of subjectivity in some state-of-the-art pro-
cedures used to obtain theI–D relationship. The definition
of the threshold from theI–D points has long been visually
drawn with manual fitting (e.g. Caine, 1980; Giannecchini
et al., 2012), and only recently has this issue been solved
through proposing objective and robust statistical approaches
to identify a threshold with a chosen confidence level from
a given cloud ofI–D points (Guzzetti et al., 2007, 2008;
Brunetti et al., 2010; Rosi et al., 2012).

However, even the definition of theI–D points themselves
poses problems of subjectivity that can in turn affect the ap-
plicability of the thresholds to warning systems. In fact, espe-
cially when considering complex pluviometric rainfall paths
where subsequent bursts of rain of varying intensity and du-
ration alternate with short periods of absent or moderate rain,
the whole rainfall event has to be summarized in a singleI–
D point; this procedure is not straightforward, as the result
may vary depending on the choice of the reference rain gauge
and on the interpretation of the pluviometric path. In partic-
ular, the start and end point of the critical rainfall event (Ale-
otti, 2004) sometimes could not be clearly and univocally
identified (e.g. when the hour of occurrence of the landslide
is not known with sufficient precision). Most of the studies
resort to subjective interpretations, but while this can influ-
ence the results (Guzzetti et al., 2008), a subjective decision
in the analytical process cannot be consistently replicated by
an automated warning system.

The maximum degree of objectivity, standardization and
replicability is obtained when the analysis to define the
threshold and the warning system is based on rainfall param-
eters calculated and measured in a given time span; this ap-
proach ensures that the rainfall analysis can be easily and
consistently replicated by automated warning systems. In-
deed, at present most operational warning systems are based
on rainfall parameters as measured over a given duration
(Wilson, 2000; Chleborad, 2003; Cardinali et al., 2006; Can-
non et al., 2008, 2011; Lagomarsino et al., 2013).

However,I–D approaches have proved very effective in
defining the minimum rainfall conditions that can potentially
trigger landslides (Guzzetti et al., 2008; Brunetti et al., 2010),
but this aim is slightly different from the objective of an oper-
ational early warning system, where a balance between false
alarms and missed alarms is usually required (Staley et al.,
2013).

This work proposes an original approach to overcome the
aforementioned issues: the threshold is drawn according to
rigorous statistical techniques; theI–D points are defined
according to an automated analysis (Segoni et al., 2014b)
that can be easily and consistently replicated by an auto-
mated warning system, and the proposed procedure is com-

pleted by a back analysis aimed at minimizing errors of
commission (i.e. false positives). The technique of Segoni
et al. (2014b) was applied to a large region (Tuscany, cen-
tral Italy, 23 000 km2), using the proposed approach of defin-
ing a mosaic of local thresholds instead of a single regional
threshold in order to strengthen, according to local physical
features, the empirical relationship between meteoric events
and landslide triggering.

The applicability of the mosaic of thresholds to early
warning systems for civil protection purposes (and thus the
effectiveness of the proposed approach) has been tested by
means of a validation procedure that provided satisfactory
results. The validation was also extended to some literature
thresholds, so as to perform a quantitative comparison for a
better evaluation of the effectiveness of our approach.

Finally, we investigated the extent to which the environ-
mental setting of a study area influences the rainfall ana-
lysis and the resulting threshold equation, with the aim of
finding some physical background in the empirical intensity–
duration relationship.

2 Material and methods

2.1 Test site

The proposed methodology was applied in the region of
Tuscany (23 000 km2), which is located in central Italy and
is characterized by mainly hilly (66.5 %) and mountainous
(25.1 %) terrain, with limited lowland areas (8.4 %) corre-
sponding to intermontane basins and to the southern coast-
line (Fig. 1a).

Tuscany is characterized by a variety of lithological units
with very different mechanical properties. The hilly territo-
ries are mainly constituted by granular or cohesive terrains or
by soft rocks. The north and the east contain the reliefs of the
Apennine folds and thrusts belt, made up of mainly flysches,
while a metamorphic unit outcrops in the north-western sec-
tors. Lastly, in smaller but still relevant portions of the ter-
ritory, evaporites, carbonatic rocks, effusive rocks and intru-
sive rocks are present.

Tuscany has a typical Mediterranean climatic regime with
mild and moist winters, hot and dry summers, and two
precipitation peaks (the main one in autumn and the sec-
ondary one in spring or winter), while summer is always
the driest period of the year. The wet season is charac-
terized by rainfalls that cover large sectors of the region,
while, during the warm season, convective thunderstorms
give way to precipitation events with shorter duration local-
ized in smaller spots. In both cases, the areal distribution of
rainfalls is markedly influenced by the relief: in the north-
western part of the region, in particular, mean annual precip-
itation (MAP) is about 2000 mm year−1 (with annual peaks
of 3000 mm year−1), while southern Tuscany is character-
ized by very lower rainfall amounts (about 600 mm year−1
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Figure 1. The Tuscany region, subdivided into 25 alert zones (AZ), with landslide inventory laid over the digital elevation model(a) and
the rain gauge distribution laid over the mean annual precipitation map, as averaged from the measures pertaining to the data set used in this
work (years 2000–2009)(b).

MAP), as shown in Fig. 1b and discussed by Rapetti and Vit-
torini (1994) and Fatichi and Caporali (2009).

To account for the high variability of meteorological and
physiographic settings encountered in the study area, and to
get more accurate rainfall thresholds, the test site was parti-
tioned into 25 alert zones (AZ) (Fig. 1).

The partition accounts for the main physical features of
the territory: the AZ boundaries follow the main regional di-
vides, thus defining catchments with homogeneous meteor-
ological conditions (Rapetti and Vittorini, 1994; Crisci et al.,
2002; Fatichi and Caporali, 2009). Furthermore, the parti-
tion discriminates AZs with different geological characteris-
tics ensuring each AZ has homogeneous geomorphological
features. Each AZ was independently analysed to devise a
site-specific rainfall threshold.

2.2 Input data

To define the rainfall thresholds, data from over 2000 land-
slides (Fig. 1a) that occurred between the year 2000 and the
beginning of 2009 were collected. These data were split into
two data sets: a calibration data set (2000–2007) and a val-
idation data set (2008–2009). Data were collected mainly
from the archives of Tuscany Civil Protection Agency, but
also from local authority archives, from national and local
newspapers, and from existing data sets of recent research
projects (Catani et al., 2013; Mercogliano et al., 2013; Rosi
et al., 2013).

Every landslide was filed in a geo-database with a unique
identification code, its spatial location, the main characteris-
tics (when known), the occurrence date, and any other avail-
able information. Almost all of the landslides did not have
the exact occurrence time, and instead only the day of occur-

rence was reported. More accurate timing (e.g. “during the
evening” or “in the night”) was available for about the 10 %
of the landslides. Considering that the exact timing of oc-
currence is unknown in many large-scale rainfall threshold
studies (Guzzetti et al., 2007), the landslide database could
be considered sufficiently accurate.

Rainfall data were collected from 332 rain gauges dis-
tributed throughout the region (Fig. 1b), with a spatial density
that allows for the rainstorms of interest in the region to be
properly accounted for: in particular, the network is denser in
those areas where convective thunderstorms of limited size
are frequent (Fig. 1b). The hourly rainfall time series of the
rain gauge were organized in a database and joined with other
information including coordinates and AZ. The dates (day
and, if available, hour) of occurrence of the landslides were
used to query the rainfall database and to extract, for each
landslide, the rainfall data of all the rain gauges of the corre-
sponding AZ.

2.3 Methodology

To define the regional mosaic of thresholds, a recently pro-
posed methodology (Segoni et al., 2014b) was applied sep-
arately to every AZ. This methodology is largely automated
and thus is useful to manage a large amount of data and to
carry out the large number of analyses needed to define 25
different thresholds in a single region. The methodology is
explained and discussed in detail in Segoni et al. (2014b);
the basic characteristics are summarized hereafter.

A software program named MaCumBA (Massive Cumu-
late Brisk Analyzer) (Segoni et al., 2014b) analyses the
recordings of each rain gauge located in the same AZ. The
software automatically carries out the following tasks, which
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are otherwise traditionally performed manually and in a sub-
jective way over a limited number of rainfall paths:

– identification, in the rainfall data, of the critical rainfall.

– Definition of the critical parameters used to describe the
rainfall event (namely critical intensityI and critical du-
rationD).

– Within all the rain gauges of the same AZ, selec-
tion of one most appropriate for the characterization of
each landslide event, adopting a criterion that combines
proximity to the landslide location and severity of the
recorded rainfall.

– The selectedI–D values are plotted in a graph, where
each point represents the rainfall conditions that re-
sulted in the triggering of a landslide in the past.

– Two thresholds are automatically defined using two dif-
ferent frequentist statistical approaches: the confidence
interval technique and the prediction interval technique
(Hahn and Meeker, 1991).

Thresholds are defined using the power law first proposed
by Caine (1980), and thus they are expressed by the general
equation

I = αDβ , (1)

whereI is the rainfall intensity,D is the rainfall duration,
andα (> 0) andβ (< 0) are empirical parameters defined by
means of the aforementioned statistical analysis.

The automated procedure is sensitive to some user-defined
parameters. Some of them can be properly defined using
GIS analyses (e.g. the maximum distance allowed between
a landslide and the rain gauges to be used for the charac-
terization of the triggering rainfall), some correspond to po-
litical decisions (e.g. the confidence level of the threshold,
which in this work, according to the Tuscany Civil Protec-
tion Agency, was set to 95 %), and some cannot be decided
in advance. This is the case of the parameter called “no rain
gap”, which accounts for the number of hours without rain
needed to consider two rainfall events as separate. The no
rain gap is of paramount importance for two reasons: first,
it allows for a standardized analysis of the rainfall series,
and second it allows for warning systems to analyse rain-
fall recordings/forecasts in a consistent and completely auto-
mated way. However, setting different no rain gaps produces
different clouds ofI–D points and different rainfall thresh-
olds; thus an objective criterion is needed to identify the con-
figuration that produces the most reliable results. Since the
use of MaCumBA allows for thresholds to be calculated in
short times, we performed several runs for each AZ using
different no rain gap values; then each obtained threshold un-
derwent a back analysis aimed at estimating its performance
over the entire testing period, so as to be able to identify and

select the threshold characterized by the lowest number of
false alarms, with confidence levels being equal. The details
of this part of the methodology can be found in Segoni et
al. (2014b), and a graphic example is shown in Fig. 2. A
similar approach for choosing the threshold that minimizes
errors among different possibilities can be found in Staley et
al. (2013).

3 Results

Using the procedure summarized in the previous section, a
rainfall threshold was defined for each AZ of the region; the
equations are presented in Table 1.

In some AZs the database presented a limited number of
landslides; therefore it was not possible to perform a signif-
icant statistical analysis. In such cases, we chose to group
together some adjacent AZs on the basis of their characteris-
tics (geological setting, topography, rainfall regime).

This procedure was necessary for the central coast and the
archipelago (AZs C1,2,3,4), the almost flat AZ B2 (which
was grouped with the landslide-rich AZ B3), the inland D1
and D3 AZs, and the southern F1,F4 and F2,F3 AZs.

Alongside the threshold equation, the automated analysis
allowed for an important parameter (namely no rain gap) to
be defined for each AZ that corresponds to the consecutive
number of hours without rain that are needed to consider two
rainfall events as separate. The no rain gap parameter is of
paramount importance for the implementation of the thresh-
old for civil protection purposes, as it provides automated
early warning systems with a consistent criterion to analyse
rainfall data.

3.1 Validation

To evaluate the proposed approach and the effectiveness of
the thresholds’ mosaic for civil protection purposes, a valid-
ation procedure was carried out using an independent data
set (landslides and rainfall data from January 2008 to January
2009).

The validation procedure was performed by simulating an
operational use in a civil protection warning system: if the
threshold were in use, when would an alarm have been is-
sued, and when not? And, comparing these dates with the
landslide data set, how many correct predictions, false alarms
and missed alarms would have been reported?

According to this approach, for each AZ, every rainfall
event was classified as true positive (TP or correct predic-
tion: some landslides were triggered in relation to a threshold
being exceeded), true negative (TN: the threshold was not ex-
ceeded and no landslide was triggered), false positive (FP, or
false alarm, i.e. threshold exceeded without landslides trig-
gering), or false negative (FN, or missed alarm: the threshold
was not exceeded, but some landslides were triggered).
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Figure 2. The rainfall threshold defined for alert zone A1, compared with two alternative thresholds that were discarded because of a larger
number of false alarms (blue dots above the threshold).

Table 1.Equations and main parameters of the thresholds defined for each alert zone.

Alert zone Threshold No rain gap (hours) Number of landslides Number of rainfall events
that triggered landslides

A1 I = 61.4D−0.78 18 246 27
A2 I = 34.0D−0.86 18 196 32
A3 I = 52.4D−0.73 24 719 79
A4 I = 101.5D−0.99 18 90 13
B1 I = 33.8D−0.81 20 27 12
B2, B3 I = 22.5D−0.65 24 61 34
B4 I = 49.9D−0.73 24 208 34
B5 I = 405.9D−1.29 24 44 17
C1, C2, C3, C4 I = 49.2D−0.77 24 69 28
D1, D3 I = 40.5D−0.90 24 39 22
D2 I = 31.6D−0.76 12 60 23
D4 I = 33.5D−0.74 15 12 11
E1 I = 20.0D−0.66 12 26 8
E2 I = 29.6D−0.75 12 40 8
E3 I = 20.9D−0.78 10 51 13
E4 I = 15.0D−0.69 32 166 11
F1, F4 I = 37.2D−0.88 24 39 25
F2, F3 I = 50.7D−0.78 36 44 20

The validation results are shown in Table 2 and are aggre-
gated at the regional level in a contingency table (Table 3).

4 Discussion

4.1 From a single regional threshold to a regional
mosaic of thresholds

The mosaic of thresholds defined for the Tuscany region was
compared with two literature thresholds involving, either as

a whole or in part, the same area (Fig. 3): the threshold pro-
posed by Brunetti et al. (2010) for the whole of Italy and the
threshold proposed by Rosi et al. (2012) for the whole of Tus-
cany. Other literature thresholds were not considered since,
at local or regional scale, thresholds perform reasonably well
only in the area where they were developed and cannot be
easily transferred to other areas (Crosta, 1989).

The first outcome of this comparison is that the national
threshold proposed by Brunetti et al. (2010) is significantly
lower than any other threshold; thus it is likely to commit
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Figure 3. Comparison between the rainfall thresholds defined in this study for each Tuscany alert zone and two literature thresholds defined
by Rosi et al. (2012) for the whole of Tuscany and by Brunetti et al. (2010) for Italy.

a relevant number of false-positive errors if applied to the
Tuscany warning system. However, it should be stressed that
the threshold proposed by Brunetti et al. (2010) is not ex-
pected to provide a balance between false positives and false
negatives, because it was conceived with a different aim, i.e
defining the minimum rainfall condition that can potentially
lead to landsliding. In this light, the threshold performs very
well, as it low-bounds the other thresholds used in this com-
parison.

The work of Rosi et al. (2012) and the one presented here
involve the same study area (Tuscany) and have the same
goal (a threshold balanced as much as possible in order to
be used in a civil protection warning system); thus, a com-
parison between them is fully appropriate and allows for the
two methodologies to be compared. In particular, we are in-
terested in discovering whether the splitting of the region in a
mosaic of local thresholds, defined using the automated rou-
tines of the MaCumBA software, could lead to a relevant im-
provement in the predicting capabilities of the regional warn-
ing system.

To this end, the four elements of the contingency table (Ta-
ble 3) were combined to calculate some indexes that are tra-
ditionally used to quantitatively assess the performances of a
model (Martelloni et al., 2012). The same statistics were cal-
culated for the validation of the methodology proposed in this
work and for the validation of a hypothetical application, in
the whole Tuscany region, of the regional threshold proposed

by Rosi et al. (2012) and the national threshold (Brunetti et
al., 2010) (Table 4).

The comparison between the validation statistics of Ta-
ble 4 clearly shows that the effectiveness of thresholds can be
increased when focusing the analysis on a smaller area. Con-
sequently, a site-specific threshold is more precise than a gen-
eral threshold applied to a single subdivision (shift from the
national to the regional threshold) and a set of local thresh-
olds is more effective than a single threshold. This proves
the validity of our approach of devising a mosaic of thresh-
olds instead of a single regional rainfall threshold. This ap-
proach is not new (see, for example, Martelloni et al., 2012)
but is rarely used, as there is a preference in many studies to
gather a large number of landslides for larger areas. This is
partially conditioned by the necessity of increasing the land-
slide population to be used for statistical analyses: the larger
the landslide population, the more robust the statistical anal-
ysis and the more reliable the threshold. The pros and cons
of the splitting up of the study area into smaller subdivisions
to be analysed independently should be carefully evaluated
and counterbalanced.

On the one hand, the splitting-up of the territory brings
the advantage of considering a uniform and homogeneous set
of landslides, lithology and meteorological condition, thus
strengthening the empirical correlation betweenI–D values
and landslide triggering. Moreover, if a threshold pertains to
a limited area, its operational use in civil protection proce-
dures is advantaged, since a warning issued for a restricted
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Table 2. Results of the validation procedure for each AZ. FP: false positives; FN: false negatives; TP: true positives; TN: true neg-
atives; Se= TP/(TP+FN); Sp= TN/(TN+ FP); Lr=Se/(1-Sp); Ef= (TP+ TN)/(FP+ FN+ TP+ TN); Or= (TP+ TN)/(FP+ FN); Pp=
(TP)/(FP+ TP); Np= (TN)/(FN+ TN).

Alert zone FP FN TP TN Se Sp Lr Ef Or Pp Np

A1 1 0 5 165 1.00 0.99 166.00 0.99 170.00 0.83 1.00
A2 2 0 21 115 1.00 0.98 58.50 0.99 68.00 0.91 1.00
A3 1 3 18 184 0.86 0.99 158.57 0.98 50.50 0.95 0.98
A4 1 1 4 91 0.80 0.99 73.60 0.98 47.50 0.80 0.99
B1 1 0 5 114 1.00 0.99 115.00 0.99 119.00 0.83 1.00
B2,3 0 2 7 95 0.78 1.00 777.78 0.98 51.00 1.00 0.98
B4 0 1 7 60 0.88 1.00 875.00 0.99 67.00 1.00 0.98
B5 0 1 5 171 0.83 1.00 833.33 0.99 176.00 1.00 0.99
C1,2,3,4 0 1 8 134 0.89 1.00 888.89 0.99 142.00 1.00 0.99
D1,3 6 0 5 108 1.00 0.95 19.00 0.95 18.83 0.45 1.00
D2 0 1 3 109 0.75 1.00 750.00 0.99 112.00 1.00 0.99
D4 0 3 6 97 0.67 1.00 666.67 0.97 34.33 1.00 0.97
E1 7 0 2 106 1.00 0.94 16.14 0.94 15.43 0.22 1.00
E2 0 0 2 134 1.00 1.00 1000.00 1.00 #DIV/0! 1.00 1.00
E3 2 0 4 238 1.00 0.99 120.00 0.99 121.00 0.67 1.00
E4 3 0 4 76 1.00 0.96 26.33 0.96 26.67 0.57 1.00
F1,4 5 1 7 120 0.88 0.96 21.88 0.95 21.17 0.58 0.99
F2,3 1 0 5 127 1.00 0.99 128.00 0.99 132.00 0.83 1.00

Table 3. Contingency table summarizing the validation procedure
at regional level; clockwise from the upper left corner, the num-
bers represent true positives, false alarms, true negatives and missed
alarms.

Observed truth

Landslide No landslide

Prediction
Landslide 118 30
No landslide 14 2244

area can be managed more easily than an alarm issued for a
whole region involving dozens of cities and millions of in-
habitants.

On the other hand, the splitting-up cannot be pushed too
much further as a statistically significant number of land-
slides is needed to obtain reliable thresholds. It is not easy to
establish the minimum number of landslides needed: in this
work, the smallest data sets are used in the AZs D2 (12 land-
slides) and E1 and E2 (8 rainfall events) (Table 1). Indeed,
case studies have been reported in the international litera-
ture in which significant thresholds were defined even with
smaller data sets (Chen and Wang, 2014). An unexpected
outcome of this research is that, although it is evident that
a large landslide sample would contribute to the finding of a
stronger statistical and empirical relationship between rain-
fall and landslides, in our case of study the dimension of the
data set and the quality of the results are not closely related.
It can be verified that none of the validation statistics (as re-
ported in Table 2) can be put in close relation with the num-

ber of landslides or with the number of events (Table 1): the
relationship between number of rainfall events and positive
predictive power produced the highest coefficient of deter-
mination of linear regression (R2

= 0.1), which, however, is
rather low and supports the conclusion that acceptable results
can also be obtained with limited data sets.

4.2 Relationships between thresholds and
physical variables

Recently, various studies have compared rainfall thresholds
with either results of physical modelling (Alvioli et al., 2014)
or with geospatial analyses of the environmental variables
(Rosi et al., 2012; Lagomarsino et al., 2013) with the aim
of finding a physical background in the empirical intensity–
duration relationship.

The definition of 18 thresholds, obtained with the same
methodology in a restricted area, is a unique opportunity to
make significant comparisons and to investigate what lies be-
yond the empirical relationship between cause (rainfall) and
effect (landslide) and how different physical settings can in-
fluence threshold equations. Since the spatial distribution of
the landslides in the study area is not homogeneous and de-
pends on the physical setting (geology, geomorphology, rain-
fall regime, human influence), and since the main parameters
of the thresholds exhibit a relevant degree of variability (Ta-
ble 1), it is worth investigating whether the physical features
of the various AZs can be put in relation with the parameters
of their thresholds.

For this analysis, each threshold was characterized by
means of the following parameters:α, β, the area under the
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Table 4. Validation statistics of the mosaic of thresholds defined in this work, compared with literature thresholds proposed by Rosi et
al. (2012) and Brunetti et al. (2010); as explained in the text, TP stands for true positives, TN for true negatives, FP for false positives, and
FN for false negatives.

This work Regional threshold National threshold

Sensitivity TP/(TP+FN) 0.894 0.896 0.958
Specificity TN(FP+TN) 0.987 0.732 0.692
Positive predictive power TP/(TP+FP) 0.797 0.448 0.430
Negative predictive power TN/(TN+FN) 0.994 0.967 0.986
Efficiency (TP+TN)/(TP+TN+FP+FN) 0.982 0.764 0.744
Likelihood ratio Sensitivity/(1–specificity) 67.761 3.347 3.111

threshold (AUT), and the no rain gap (NRG). The first two
parameters are directly derived by the threshold equation and
describe the power law relationship between intensity and
duration. In a log–log plot,α represents the intercept in they

axis and defines how “high” a threshold is at low durations,
while β represents the steepness of the threshold; therefore
with low β values, even a threshold with highα values can
become “low” for high durations. AUT defines the area un-
der the threshold and thus quantifies how “high” or “low” a
threshold is with respect to bothα andβ. NRG represents
the minimum time gap with the absence of rainfall required
to consider two rainfall events as separate, and it is a very
important parameter for both the threshold analysis and its
application to operational warning systems.

First, we checked the degree of correlation between the
threshold parameters and found thatα andβ are quite cor-
related with each other (R2

= 0.71), while NRG does not
result in correlation with any of the other parameters (α, β

and AUT). This last outcome can be interpreted as an in-
dicator of the robustness of the proposed methodology: the
optimal no rain gap value cannot be subjectively established
in advance, it is very site-specific, and a trial and error pro-
cedure is needed to define an efficient value for the use in
civil protection warning systems. The correlation between
α andβ means that, in general, the higher the intercept of
a threshold, the higher its steepness. We can therefore infer
that if an AZ has “high”α andβ parameters, it is not likely
to be subjected to landslides triggered by short and intense
rainstorm, while prolonged rainfall events may exceed the
threshold even with relatively low values of average intensity.
Conversely, ifα andβ are relatively low, short rainstorms can
trigger landslides even at relatively low intensities, while pro-
longed rainfall events need to reach relevant rainfall amounts
before triggering landslides. This can be put in relation with
the geomechanical and hydrological properties of the terrains
and rock characterizing each AZ and thus suggests that the
approach of sectioning the study area into independent AZs
helps in finding a stronger correlation between rainfall and
landslides: even if many different lithologies outcrop in Tus-
cany, only a limited number are present in each AZ, and thus

the response in the territory to the rainfall triggers is more
homogeneous.

As a second step, we investigated the correlation between
the above-mentioned threshold parameters (α, β, AUT and
NRG) and the main characteristics of the physical setting of
each AZ. We analysed the mean annual precipitation to ac-
count for the main triggering factor of landslides and to ver-
ify the observations of Govi and Sorzana (1980), according
to which the amount of rainfall needed to trigger landslides
rises with the mean annual precipitation. Slope gradient and
lithology were considered in order to account for the land-
slide susceptibility of each area: according to recent stud-
ies on the landslide susceptibility of Tuscany (Catani et al.,
2013), slope gradient and lithology are the most important
predisposing factors.

Table 5 shows the degree of correlation (expressed in terms
of R2) between rainfall parameters and some basic statistics
of the numerical variables that were used to characterize the
physical setting (mean annual precipitation and slope gradi-
ent). Table 5 clearly shows that noR2 reaches values higher
than 0.2; therefore no significant correlation was found.

This outcome is not completely unexpected: a simple em-
pirical correlation between cause and effect can be strength-
ened by the AZ subdivision, as it reduces the variability of
the physical setting, but not to the point of making it possible
to relate the characteristics of the rainfall threshold to just
a couple of predisposing or triggering factors. This is con-
firmed by recent landslide susceptibility studies in the same
study area: Catani et al. (2013) demonstrated that optimal
susceptibility assessments can take up to 21 different param-
eters into account.

The influence of lithology on the threshold parameters was
investigated through comparison of the prevailing lithology
of each AZ with the parameters of the corresponding thresh-
old. The 12 AZs characterized by layered rocks (e.g. flysch)
exhibit a marked variability of the values of the main thresh-
old parameters:α values range from 15.0 to 405.9, whileβ
values range from−0.651 to−1.29. In the six AZs where
terrains or soft rocks are the prevailing lithology, the same
parameters have a smaller variability:α ranges from 29.6 to
50.7, whileβ ranges from−0.900 to−0.856. The prevailing
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Table 5. R2 values expressing the correlation between rainfall threshold parameters (α, β, combinations ofα andβ, area under threshold
(AUT), and no rain gap (NRG)) and main numerical variables that characterize the physical setting.

α β α/β α · β AUT NRG

Mean annual precipitation

Max (a) 0.097 0.021 0.109 0.091 0.098 0.031
Mean (b) 0.082 0.019 0.095 0.075 0.083 0.036

SD (c) 0.067 0.008 0.062 0.071 0 0
Min 0.140 0.074 0.162 0.127 0.141 0.084

Slope gradient
Mean (d) 0.154 0.056 0.158 0.151 0.15 0.010
Max (e) 0.052 0.004 0.073 0.042 0.053 0.039

SD (f) 0.020 0.007 0.022 0.019 0 0.024

Rainfall and morphology combinations

a· d 0.167 0.056 0.099 0.071 0.081 0.031
a· e 0.095 0.021 0.112 0.087 0.096 0.030
b · d 0.139 0.043 0.154 0.131 0.140 0.024
b · e 0.080 0.017 0.181 0.160 0.168 0.025

Table 6. Variation of no rain gap values in Tuscany alert zones in
relation to the prevailing lithology.

Prevailing lithology
No rain gap (hours)

Mean Minimum Maximum

Intrusive rocks 10 10 10
Gneiss 12 12 12
Effusive rocks 12 12 12
Terrains of mixed typology 20.3 18 24
(cohesive and granular)
Flyschs 21.9 12 24
Marls 24 24 24
Granular terrains 30.4 24 36

lithology of each AZ seems to influence the no rain gap of
its rainfall threshold as well: on average, the more permeable
the lithology, the higher the no rain gap value (Table 6).

A possible interpretation of this outcome is that the most
permeable lithologies (granular terrains characterized by
conglomerates and sands) are mainly affected by deep-seated
landslides, which in turn are usually triggered by longer rain-
falls, even without particularly extreme intensities. With a
high no rain gap (up to 36 h), the automated algorithm used
to identify triggering rainfalls is helped to focus on events
with medium intensities averaged over long durations. Con-
versely, relatively impermeable bedrocks (e.g. tuffs, gneisses
and intrusive rocks) exhibit a marked contrast of hydraulic
properties with the overlying terrain: this condition predis-
poses to shallow landslides and debris flows, which are typi-
cally triggered by short and intense rainfalls. A short no rain
gap (10 or 12 h) therefore helps the algorithm to prevalently
recognize rainfall events characterized by short peaks with
extreme intensity values. In those AZs where intermediate
situations are present (e.g. terrains of mixed typology and
flysches), intermediate values of no rain gap (e.g. 24 h) are

more frequently found. This outcome, similar to other recent
studies (Alvioli et al., 2014), proves that the empirical rela-
tionship between rainfall and landslides implicitly takes the
physical background of the problem into account.

The use of a peculiar no rain gap value for each of the
AZs allows the regional threshold mosaic to better account
for both precipitation typologies encountered in Tuscany (lo-
calized convective thunderstorms and wider rainfall events):
the two kinds of rainstorms are characterized by different du-
rations, but this is indirectly taken into account by the model
since, during the calibration procedure, the number of land-
slides triggered by one kind of thunderstorm or another in
each AZ influences the determination of the optimal no rain
gap value.

5 Conclusions

In this work, we propose an original approach to set up a
mosaic of 18 local rainfall thresholds, in place of a single re-
gional threshold, to be used in civil protection warning sys-
tems for the occurrence of landslides at regional scale (i.e.
tens of thousands of kilometres).

The proposed approach is based on the use of a soft-
ware program named MaCumBA (explained and discussed
in detail in Segoni et al., 2014b), which allows for statisti-
cal intensity–duration rainfall thresholds to be identified by
means of an automated and standardized analysis of rain-
fall data. The automation and standardization of the analysis
brings several advantages that in turn have a positive impact
on the applicability of the thresholds to operational warning
systems.

The possibility of defining a threshold in very short times
compared to traditional analyses allowed us to subdivide the
study area into several AZs to be analysed independently,
with the aim of setting up a specific threshold for each of
them. Even if pertaining to the same region, the AZs can have
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very different threshold equations; in particular, the highest
variability was observed where layered rocks (i.e. flysch) are
the main lithology. The subdivision into small AZs fosters
the definition of robust rainfall thresholds as it circumscribes
the statistical analysis to a limited and homogeneous area,
thus allowing for a strong empirical relationship between
cause (rainfall) and effect (landslides). Nonetheless, from a
physical point of view, this linkage still remains very com-
plex as it depends on many interplaying factors, and every
attempt to relate the threshold parameters to the main numer-
ical variables characterizing the physical setting has failed.
However, results suggest that the prevailing lithology of each
AZ influence the no rain gap (lapse of time without rainfall
needed to consider two rainfall events as separate) of the cor-
responding threshold: in general, the more permeable the ter-
rains/rocks of the AZ, the higher the no rain gap of the thresh-
old. This outcome provides a physical background to empir-
ical rainfall thresholds and brings us to two conclusions: on
the one hand, it demonstrates the necessity of devising warn-
ing systems based on a mosaic of thresholds rather than on a
single regional threshold, as the optimal criterion to be used
by the warning system to analyse rainfall data and identify
critical rainstorms may differ from one area to another de-
pending of the encountered physical features; on the other
hand, it stresses the necessity of using the same criterion for
the rainfall analysis during both the research stage of rainfall
definition and during the operational phase when the warning
system performs automated computations in near-real time.

However, we come to the conclusion that the subdivision
into AZs cannot be pushed too much further as it is limited
by the necessity of having a statistically significant landslide
sample in each AZ. Our methodology provided satisfactory
results with data sets of minimum 12 and maximum 719
landslides, and we observed that the dimension of the data
set was not directly related to the quality of the results. We
therefore believe to have found a robust methodology and an
effective compromise between AZ dimension and robustness
of the landslide sample, counterbalancing the pros and cons
of having small or large AZs.

Another important outcome of this work is the necessity
for thresholds aimed at being employed in civil protection
warning systems to be analytically validated. The proposed
mosaic of thresholds was validated with an independent data
set: all the rainfall events recorded from 2008 to 2009 were
analysed and compared with the corresponding landslide
data set. In this way, we were able to count correct predic-
tions and errors of commission (false alarms) and omission
(missed alarms); subsequently we calculated some quantita-
tive indexes commonly used to express the effectiveness of
models. This procedure allowed for the conclusion that our
methodology had obtained an acceptable balance between
missed alarms and false alarms that encouraged the imple-
mentation of the mosaic of thresholds in a regional civil
protection warning system. Furthermore, the validation pro-
cedure was repeated for some literature thresholds, and the

quantitative comparison of the results demonstrated that the
performance of a warning system can be enhanced if a spe-
cific threshold is defined for a given region rather than ap-
plying a general threshold. Moreover, this enhancement can
be increased if a mosaic of site-specific thresholds is used
instead of a single regional threshold.
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