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Abstract. Predictive spatial modelling is an important task in
natural hazard assessment and regionalisation of geomorphic
processes or landforms. Logistic regression is a multivariate
statistical approach frequently used in predictive modelling;
it can be conducted stepwise in order to select from a num-
ber of candidate independent variables those that lead to the
best model. In our case study on a debris flow susceptibil-
ity model, we investigate the sensitivity of model selection
and quality to different sample sizes in light of the following
problem: on the one hand, a sample has to be large enough to
cover the variability of geofactors within the study area, and
to yield stable and reproducible results; on the other hand, the
sample must not be too large, because a large sample is likely
to violate the assumption of independent observations due to
spatial autocorrelation. Using stepwise model selection with
1000 random samples for a number of sample sizes between
n = 50 andn = 5000, we investigate the inclusion and exclu-
sion of geofactors and the diversity of the resulting models as
a function of sample size; the multiplicity of different mod-
els is assessed using numerical indices borrowed from in-
formation theory and biodiversity research. Model diversity
decreases with increasing sample size and reaches either a
local minimum or a plateau; even larger sample sizes do not
further reduce it, and they approach the upper limit of sample
size given, in this study, by the autocorrelation range of the
spatial data sets. In this way, an optimised sample size can be
derived from an exploratory analysis. Model uncertainty due
to sampling and model selection, and its predictive ability,
are explored statistically and spatially through the example
of 100 models estimated in one study area and validated in a
neighbouring area: depending on the study area and on sam-
ple size, the predicted probabilities for debris flow release

differed, on average, by 7 to 23 percentage points. In view of
these results, we argue that researchers applying model se-
lection should explore the behaviour of the model selection
for different sample sizes, and that consensus models created
from a number of random samples should be given prefer-
ence over models relying on a single sample.

1 Introduction

Spatial modelling, i.e. finding and applying a model of the
spatial distribution of some phenomenon, can be used for two
slightly different purposes: first for regionalisation, i.e. the
transfer of findings from the surveyed area to some larger re-
gion. In geomorphology, the methodological framework for
regionalising the occurrence of a process or a landform (that
is associated with the activity of geomorphic processes) is
termed “predictive geomorphological mapping” (Luoto and
Hjort, 2005). It can be helpful in reducing time, cost and,
to some degree, subjectivity associated with area-wide ge-
omorphological mapping (van Asselen and Seijmonsbergen,
2006). Second, models are applied to identify areas where
the phenomenon might occur in the future, even or espe-
cially where there is no evidence of recent activity. The (spa-
tial) probability of occurrence of an event forms an important
factor of the hazard term in quantitative risk assessment, al-
though for a complete formulation one also needs to consider
the temporal probability and the magnitude–frequency rela-
tionship of events (Guzzetti et al., 2006a). However, spatial
modelling includes some temporal aspects as well. Specifi-
cally for landslides, the most important underlying assump-
tions (seePike et al., 2003, for more) are (i) that landslides
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can occur and/or have occurred in the larger area wherever
the conditions are equal or similar to those in the surveyed
area and (ii) that future events will take place under condi-
tions the same as or similar to those in the past (e.g.Fabbri
et al., 2003).

In this study, we apply the method of multivariate logis-
tic regression to the identification of potential debris flow
initiation sites in a high mountain catchment; the spatial
unit is the raster cell (as opposed to e.g. slope units; see
Van Den Eeckhaut et al., 2009). Together with discriminant
analysis (e.g.Baeza and Corominas, 2001), soft comput-
ing techniques – such as “weights of evidence” (Bonham-
Carter, 1994; Neuhäuser and Terhorst, 2006) or “certainty
factor” (e.g. Binaghi et al., 1998) – and artificial neural
networks (e.g.Lee et al., 2003; Ermini et al., 2005; Liu
et al., 2006), logistic regression belongs to the most fre-
quently chosen approaches to spatial modelling of land-
slides (Atkinson et al., 1998; Ohlmacher and Davis, 2003;
Beguería and Lorente, 2003; Brenning, 2005; Ayalew and
Yamagishi, 2005; Beguería, 2006; Van Den Eeckhaut et al.,
2006; Meusburger and Alewell, 2009; Van Den Eeckhaut
et al., 2010; Atkinson and Massari, 2011; Ruette et al., 2011;
Guns and Vanacker, 2012). Recently, some published studies
dealt specifically with debris flow susceptibility models on
the regional scale; for the identification of potential release
areas, a range of different approaches has been used, includ-
ing heuristic (Horton et al., 2008; Kappes et al., 2011; Fischer
et al., 2012) and statistical ones (Heckmann and Becht, 2009;
Blahut et al., 2010a, b). The so-delineated release areas can
be used as starting points for models that predict the path-
ways, lateral extent, runout length and other relevant proper-
ties of debris flows (e.g.Blahut et al., 2010b; Kappes et al.,
2011), which is important for hazard assessment and has
also been used in geomorphological applications, for exam-
ple research on sediment cascades (Wichmann et al., 2009;
Heckmann and Schwanghart, 2013).

In order to use a model for prediction, a sample has to be
drawn, and the model parameters of the population are esti-
mated based on that sample. Sampling is essential, because
event and non-event units show spatial autocorrelation (see
Sect.1.2), and dependent data lead too easily to the rejection
of null hypotheses and the incorrect declaration of parame-
ters as significant;Legendre(1993) explains this for ecolog-
ical models (see alsoVan Den Eeckhaut et al., 2006). Using
a stepwise approach, the predictor variables for an effective
yet parsimonious model are selected from a set of candidate
geofactors (Sect.3.2.2). Brenning(2005) found that logistic
regression with stepwise variable selection yielded the low-
est error rates in his comparison of different statistical meth-
ods. Logistic regression was also the best single method in
the comparative study byRossi et al.(2010), and exhibited
the highest area under the curve (AUC) for “fine slope units”
(second rank in overall comparison) inCarrara et al.(2008),
a study specifically referring to debris flows.

The choice of predictor variables will understandably de-
pend on the sample (Guns and Vanacker, 2012), and it is
also clear that the aim of every susceptibility model should
be a reliable and reproducible prediction. This prediction
should not depend too much on the sample that is taken in
order to select the variables and estimate the model param-
eters. Several previous studies do not involve sampling at
all (e.g. Ohlmacher and Davis, 2003; Ruette et al., 2011);
i.e. they use all available data for estimating the model pa-
rameters. The majority of studies use only one single sample
(e.g.Atkinson et al., 1998; Van Den Eeckhaut et al., 2006;
Meusburger and Alewell, 2009), the size of which usually
depends on the number or size of landslide initiation zones
(see Sect.1.1). Recognising the dependence of model results
on the sample,Brenning(2005) takes 50 samples to com-
pare error rates across different sample sizes and statistical
methods.Beguería(2006) andGuns and Vanacker(2012) ap-
ply 50-fold replication in order to estimate the robustness of
the modelling result with respect to sampling, andVan Den
Eeckhaut et al.(2010) calculate an ensemble of 25 mod-
els from different samples of their data.Hjort and Marmion
(2008) conduct repeat sampling to explore the influence of
sample size on the predictive power of (among others) multi-
ple logistic regression models for predictive geomorphologi-
cal mapping.

The present study has two main foci that will be devel-
oped in detail in the following subsections. It is not the aim
of our study to find out the best performing method for a
debris flow susceptibility model (comparative studies of pre-
dictive models were carried out, for example, byBrenning,
2005; Marmion et al., 2008; Carrara et al., 2008; Vorpahl
et al., 2012); we deliberately chose logistic regression for
its widespread use, and for the relevant assumption of sam-
ple independence which we found to be frequently neglected
in previous studies. First, we explore the sensitivity of step-
wise model selection to sample size. Sections1.1 and 1.2
will explain why the sample size must neither be too small
nor too large. In this context, the main aim of the study is
to investigate if an “optimal” sampling size can be found
as a compromise between samples too small and too large.
Second, we quantify the uncertainty inherent in a stepwise
modelling approach, with respect to (i) the selection of ge-
ofactors, (ii) model parameters, and (iii) the spatial pattern
of uncertainty in the resulting susceptibility map. This study
aim will be developed in Sect.1.3.

1.1 Constraints on sample size 1: why the sample must
not be too small

In inferential statistics, confidence intervals are calculated
for population parameters based on a sample; the width of
the former depends, besides the desired confidence level, on
the sample size. Small samples result in large standard er-
rors and wide confidence intervals for the population param-
eters. In the case of regression parameters, small samples

Nat. Hazards Earth Syst. Sci., 14, 259–278, 2014 www.nat-hazards-earth-syst-sci.net/14/259/2014/



T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model 261

cause the estimation to be uncertain, and there is a higher
risk of coefficients being insignificant when the respective
confidence interval includes zero. With respect to replicate
sampling and model selection, it is expected that the diver-
sity of models (and hence the dependence of the models on
the sample) will be large in this case.

Moreover, in a large study area, a small sample is unlikely
to cover the variability of geofactors, especially if several of
them are part of the model. Here, a larger sample would in-
clude more information on the study area and would possibly
provide a better model. There are rules of thumb that estimate
the minimum sample size for a regression analysis on the ba-
sis of a constant (e.g.> 50), of the ratio of observations and
predictor variables, or of a combination of the latter; such
rules have been explored in light of significance, power and
effect size, e.g. byGreen(1991), who found “some support”
for the rule of thumbnmin ≥ 50+ 8m, wherenmin is the min-
imum sample size andm is the number of predictor variables.

In this study, when we speak of sample size, we always
address a sample of “non-events”, i.e. a sample of raster cells
without debris flow initiation. If a random sample referred to
all raster cells, including event and non-event cells, the num-
ber of event cells in the sample would certainly be smaller
than in the original inventory. This would cause a loss of in-
formation particularly for those cells that represent the target
of the modelling exercise; therefore, all initiation areas will
be represented in the models and only the size of the non-
event sample is varied in our investigation. Besides the non-
event sample size, the relative sample sizenrel (i.e. the areal
extent of the total sample divided by the size of the study
area) will be reported.

1.2 Constraints on sample size 2: why the sample must
not be too large

While it is intuitive that larger samples contain more infor-
mation that can be used by the model, and the model might
be better, there are several reasons why the sample size must
not be too large either.

King and Zeng(2001) argue that the non-event sample size
has to be kept as small as possible because of the dispro-
portionate cost and effort of acquiring data for many vari-
ables and observations that are not related to the target phe-
nomenon (event). Like in political science, the acquisition
of observations is costly in ecology (with the application of
regression models to the spatial prediction of species distri-
bution). In this context, the complexity of the investigated
systems is reflected in large numbers of predictors; more-
over, the logistic difficulty of mapping the presence or ab-
sence of a species in large and remote areas should not be
underestimated (see e.g.Stockwell and Townsend Peterson,
2002). An important justification for predictive geomorpho-
logical mapping (Luoto and Hjort, 2005) is that area-wide
field mapping is time-consuming, difficult in remote or inac-
cessible areas, and may suffer from subjectivity (van Asselen

and Seijmonsbergen, 2006; Hjort and Marmion, 2008). How-
ever, in contrast to the examples from political and ecolog-
ical science, many if not most variables in predictive geo-
morphological mapping are easily derived from digital ele-
vation models and remote sensing data; both are available
globally, with ever-increasing accuracy and resolution. This
does not change the effort required for mapping the target
phenomenon (“events”), but the motivation for limiting sam-
ple size of non-events appears to be quite different, as it does
not so much refer to the effort of data acquisition (quantity
and quality). In order to limit the sample size and to mitigate
the rare-events issue (see below), the literature suggests dif-
ferent ratios of event : non-event sample sizes, mostly with-
out justifying the particular choice of this ratio. Instead of
merely adopting one of these suggestions (which generally
range from 1 : 1 to 1 : 10), our paper aims at an empirical
analysis of sample dependence and performance of the sus-
ceptibility model as a function of sample size.

Other reasons for restricting sample size are overparame-
terisation and overfitting of the model (Hjort and Marmion,
2008, and references therein). Increasing sample sizes causes
standard errors and confidence intervals in parameter esti-
mation to decrease. In a significance-based stepwise model
selection, very large samples are expected to facilitate the
inclusion of more and more variables (risk of overparam-
eterisation). Such inclusion of more information does not
necessarily lead to better model performance;Stockwell and
Townsend Peterson(2002) describes “plateaus” wherein new
data add little to model performance. In some cases, inclu-
sion of more data even causes worse performance, because a
model fit to a very specific set of information may perform
poorly on new data (risk of overfitting; seeStockwell and
Townsend Peterson, 2002, and references therein).Brenning
(2005), however, states that overfitting is “not a serious prob-
lem for logistic regression”, contrary to machine-learning
methods (cf.Petschko et al., 2014, and references therein).

The most serious reason for limiting the sample size is
spatial autocorrelation. Logistic regression generally requires
few assumptions to be met; the most important are (i) the
independence of observations and (ii) uncorrelated indepen-
dent variables. While violations of the second assumption
can be avoided by testing for multicollinearity and exclud-
ing variables (see Sect.3.2.1), the first assumption proves to
be critical when dealing with spatial data. Geofactors tend to
have very similar values in a close neighbourhood, a property
called spatial autocorrelation. If several observations from
nearby sites are included in a model, the independence as-
sumption will not hold. In the case of the generalised lin-
ear modelling approach adopted in this study, the maximum
likelihood method that is used to estimate the model pa-
rameters strictly requires the observations to be independent
(e.g.Hosmer and Lemeshow, 2000). Atkinson and Massari
(2011) explain that (spatial) autocorrelation of the geofac-
tors causes the model residuals to be spatially autocorre-
lated (which is not acceptable as model residuals have to
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be uncorrelated), and that this may lead to “incoherent sig-
nificance estimates for the parameters” (see alsoBrenning,
2005). Consequently, such incoherent estimates compromise
both significance-based model selection and the assessment
of parameter importance that is based on the latter.

In previous studies applying logistic regression to land-
slide susceptibility analysis, the problem of stochastically
dependent samples has frequently been ignored (e.g. by us-
ing all available data instead of a sample; see above). In
some instances, the risk of autocorrelation is dealt with for
events only, as geofactors tend to be homogeneous (and
consequently strongly autocorrelated) on landslide terrain
(Atkinson and Massari, 2011). However, the independence
assumption refers to all observations of the dependent vari-
able (Hosmer and Lemeshow, 2000; Van Den Eeckhaut et al.,
2006), in our case to the occurrence and non-occurrence of
debris flow initiation. As the geofactors used as independent
variables are supposed to be associated with the dependent
variable, we argue that the degree of autocorrelation of these
geofactors should be accounted for in the sampling proce-
dure. In order to mitigate the issue of spatial autocorrela-
tion, some authors choose one raster cell for each landslide
source area on a systematic basis.Atkinson et al.(1998) and
Van Den Eeckhaut et al.(2006), for example, use the cen-
tre of each landslide source area. Similarly,Vanwalleghem
et al. (2008) use the centre of each topographic depression,
and the centre of each gully in their study predicting the
spatial distribution of closed depressions and gullies under
forest. Different authors draw samples of source areas on
different grounds; besides spatial autocorrelation,Atkinson
et al.(1998) explain their approach with the aim of prevent-
ing model bias towards larger landslides – in a full sample of
events, more data would enter the model from larger source
areas than from smaller ones.Beguería and Lorente(2003)
use one raster cell for each debris flow initiation zone be-
cause the raster size (10 m) of the data in their study cor-
responds to the size of a typical debris flow scar. All ap-
proaches have in common that they prevent a contiguous (and
hence potentially strongly spatially autocorrelated) sample
of hundreds of landslide initiation cells from entering the
model. Spatial autocorrelation has also been accounted for
in model validation (Brenning, 2005). However, asAtkinson
and Massari(2011) point out, autocorrelation in the geofac-
tors is frequently not adequately accounted for in the regres-
sion model. While the latter study proposes an autologistic
model (see alsoBrenning, 2005), we will try to warrant inde-
pendence of observations through the choice of an adequate
sampling size (see Sect.3.3.2): as the number of sampled
raster cells in a finite study area increases, the average dis-
tance between those cells will decrease, and finally the in-
dependence assumption will no longer hold given the spatial
autocorrelation of the geofactors.

Normally, a logistic regression model is fit to a sam-
ple where the ratio of event : non-event cases is approxi-
mately 1 : 1. Then, the so-called cutoff, i.e. the value of

the model result that discriminates between event and non-
event, equals 0.5.King and Zeng(2001) explain that the
number of non-events should be typically 2–5 times higher
than that of events. In this case, the cutoff needed to trans-
late the model result to a classification (event or non-event)
would need to be adjusted accordingly. Because the ratio
of event : non-event spatial units (not only raster cells but
also lumped spatial units;Beguería and Lorente, 2003) usu-
ally is by far smaller, a bias towards small probabilities
arises.1 This problem has been addressed by the develop-
ment of “rare events logistic regression” (King and Zeng,
2001). Besides endogenous stratified sampling (a sampling
strategy that includes all events plus a random sample of
non-events), these authors propose corrections for the inter-
cept and for the estimated probabilities. Rare-events logistic
regression was applied in landslide susceptibility modelling
by Van Den Eeckhaut et al.(2006) andGuns and Vanacker
(2012). In many studies, endogenous stratified sampling has
been adopted, and the authors chose event : non-event ratios
of 1 : 1 (e.g.Brenning, 2005; Meusburger and Alewell, 2009;
Van Den Eeckhaut et al., 2010), 1 : 2 (Wang and Sassa, 2005),
1 : 5 (Van Den Eeckhaut et al., 2006), or 1 : 10 (Beguería and
Lorente, 2003; Beguería, 2006; Guns and Vanacker, 2012).
Finally, Atkinson et al.(1998), who use only the central cell
of each landslide as the event sample, sample as many non-
event cells as required in order to attain the ratio of landslide
to non-landslide area.

In our study, we adopt stratified random sampling by a ran-
dom sample of one cell for each debris flow initiation zone,
and a random sample of non-event cells. The size of the latter
is then varied in order to explore the effect on stepwise model
selection; hence, we do not pre-select an event : non-event ra-
tio. Rare-event correction according toKing and Zeng(2001)
is not applied.

1.3 Uncertainty: model selection, parameters, spatial
patterns

The result of the investigations motivated in the previous sub-
sections is a suitable sample size reaching a compromise be-
tween sample sizes too small and too large. The aims of this
procedure can be summarised as follows: first, a stable model
selection that is a low diversity of geofactors remaining in the
repeat stepwise selection; second, the independence of the
sample (i.e. avoiding spatial autocorrelation). Even with an
optimised sample size in that respect, the selection of predic-
tor variables will still depend on the specific sample. As dif-
ferent predictor variables, with their distinct spatial structure,
will be part of the model when the procedure is repeated with
a different sample, the spatial pattern of the resulting suscep-
tibility map will also differ from time to time; the predictive
power of the model might be different as well.

1In our study areas, the ratio of release area cells to the total
study area is 1 : 200 and 1 : 500, respectively.
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Fig. 1.Overview of the study areas.

The second main goal of this study is to elucidate three
aspects of this uncertainty: (i) geofactors and how often they
are included after stepwise selection, (ii) the range of model
parameters estimated for the replications, and (iii) the spa-
tial distribution of differences in the estimated susceptibil-
ity. This is important because, in the majority of studies
employing sampling for model calculation, only one sam-
ple is taken, and no account is given of uncertainty beyond
the standard errors of the parameters. On the other hand,
most studies involving repeat sampling (e.g.Brenning et al.,
2005; Beguería, 2006; Van Den Eeckhaut et al., 2010; Guns
and Vanacker, 2012) concentrate on the set of geofactors,
the parameters and the predictive ability of the models, and
do not investigate how this affects the spatial distribution
of susceptibility. Only rarely has the spatial distribution of
model uncertainty been addressed using multiple replication
approaches (e.g.Guzzetti et al., 2006b; Luoto et al., 2010;
Petschko et al., 2014).

2 Study area

This study has been conducted in two adjacent subcatch-
ments of the Horlachtal, a tributary of the Oetztal, located
in the Austrian Central Alps (Stubai Alps). The two val-
leys, the Zwieselbachtal (ZBT, ca. 19 km2) and the Larstigtal
(LT, ca. 7 km2), strike approximately S–N and have a typical
trough cross-section. Due to their adjacency, they are simi-
lar in their natural characteristics. Figure1 shows the loca-
tion and an overview of the catchments. The most important
properties of the study areas are listed in Table1; the Hor-
lachtal and its subcatchments are described in more detail by
Rieger(1999) andGeitner(1999).

The lithology of both valleys is dominated by gneiss and
mica schist; metamorphic granites can also be found. Pleis-
tocene glaciations have shaped the valleys and are evidenced
by glacial landforms (e.g. moraines, cirques, roches mou-
tonnées). Glacial cirques are concentrated on the east-facing
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Table 1.Selected properties of the study areas.

Property LT ZBT

Area[km2
] 7.04 18.77

Elevation[m a.s.l.] 1770–3287 1903–3188
Slope, mean± std.dev.[◦] 35.6± 14.31 31.6± 13.78
Slope, range[◦] 0.01–82.05 0.01–83.12
Roughness, mean± std. dev. 0.13± 0.12 0.11± 0.11
Roughness, range 0–0.90 0–0.86

Inventory[no. of events] 64 81
Mapped release area[m2

] 33 400 37 875

Land cover[%]

Glacier 5.8 2.4
Bedrock 46.6 29.1
Unvegetated scree 25.6 38.3
Patchy vegetation 10.9 5.9
Alpine meadows 1.9 14.1
Dwarf shrub heath 5.6 9.9
Dwarf mountain pine (Pinus mugo) – 0.2
Woodland 3.6 0.1

valley sides, whereas the west-facing valley sides are marked
by extensive scree slopes. Currently, the two catchments are
formed primarily by fluvial and gravitational processes such
as rock falls and debris flows. Sediment transfer through
the catchments is limited as the valleys consist of largely
disconnected subsystems (at least with respect to the trans-
port of coarse sediment; seeHeckmann and Schwanghart,
2013) separated by alluvial reaches of the Zwieselbach and
Larstig creeks, respectively. These reaches are located im-
mediately upstream of the terminal moraines of the Little Ice
Age and of the particularly well-preserved terminal moraines
of the Egesen stadial (corresponding to the Younger Dryas,
ca. 11 to 12 ka BP, recent datings for the European Alps are
listed byIvy-Ochs et al., 2008).

Debris flows in both study areas can be termed slope-
type debris flows of type 2 according toZimmermann et al.
(1997). Events of this type initiate on scree slopes follow-
ing failure that is caused by positive pore water pressure in
the course of intense rainfall, and by progressive erosion.
This is often the case at the base of rock walls where debris
flow formation is triggered by the so-called “firehose effect”
(Johnson and Rodine, 1984) which describes concentrated
flux of water out of the rock face onto the talus. Slope-type
debris flows can be regarded as a transport-limited process;
thus their frequency is primarily controlled by hydroclimatic
events (Bovis and Jakob, 1999). In the study area, rain in-
tensities of around 20 mm within half an hour have been re-
ported to trigger debris flows (Becht, 1995; Rieger, 1999),
while Zimmermann et al.(1997) suggest regional intensity-
duration thresholds of about 11 mm per hour. The threshold is
comparatively low, which has been attributed to the low mean
annual precipitation (Hagg and Becht, 2000) of ca. 1000 mm
(Becht, 1995).

Vegetation primarily consists of dwarf shrub heath, alpine
meadows and pioneer vegetation. At elevations of> 2300–
2500 m, bedrock and scree are predominant. In general, more
than 60 % of the study area are completely lacking vegetation
cover.

3 Data and methods

3.1 Data and data preparation

3.1.1 Debris flow inventory

Like every statistical approach, logistic regression requires
an inventory of targets (here: a map of debris flow initiation
areas) for the dependent variable, and maps of (potentially)
influencing factors as independent variables, hereafter re-
ferred to as geofactors. The dependent variable (here: debris
flow initiation) is observed as a binary variable (1: presence;
0: absence). The debris flows inventory of the Zwieselbach-
tal and Larstigtal catchment was compiled using orthophoto
and field maps (Thiel, 2013), updating an earlier inventory
for which debris flows had been surveyed using a total sta-
tion (Rieger, 1999). It contains 81 events within the Zwiesel-
bachtal and 64 events within the Larstigtal. Debris flows ar-
eas are represented by polygon features (which had to be
converted to raster format for the pixel-based approach of
this study), and divided into three zones related to geomor-
phic activity: erosion (indicated by incision), transition (in-
dicated by a channelised reach accompanied by levées) and
the depositional lobe(s). Conceptually, as the susceptibility
map specifically aims at predicting potential initiation zones,
the event samples for the regression models should be taken
from the erosional zones, preferably from the uppermost part
as the latter represents the area where events typically started
(and probably will also initiate in the future). The strategy of
using only the detachment zone of a mass movement for sus-
ceptibility modelling has been advocated by several workers
(see for exampleVan Den Eeckhaut et al., 2006; Heckmann
and Becht, 2009); Magliulo et al.(2008), however, report that
this restriction does not automatically lead to better results.
The initial idea of manually setting one raster cell for each
debris flow initiation zone was discarded, because placing
this raster cell in the channelised part would introduce a bias
towards larger catchment areas and concave plan curvature.
Therefore, a GIS procedure was used to select, for each de-
bris flow erosional zone, the area that is higher than the P75
percentile of elevation, i.e. the uppermost 25 %. The raster
cells belonging to the initiation zone of each debris flows are
coded with an ID, allowing for a stratified random sampling
of one cell per debris flow event for each regression model.

Guzzetti et al.(2012) discuss the importance of landslide
inventory maps and report on advantages, limitations and
new methodological developments. With respect to suscep-
tibility mapping, the quality of the underlying inventory is a
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limiting factor for the reliability of predictive models (e.g.
Ardizzone et al., 2002). While fresh landslides are read-
ily detected, post-event modifications such as human impact
(e.g. ploughing), land cover change, erosion and landslide
reactivation etc. can hamper the identification of landslides
and thus jeopardise the completeness of the inventory (Bell
et al., 2012, e.g., analyse persistence and change of land-
slide morphology depending on age). For debris flows in our
study area, however, we argue that the risk of false nega-
tives, i.e. the risk of an incomplete inventory due to over-
looked debris flow scars, is small: the activity of debris flows
tends to persist once it has started, because an incision en-
hances and sustains the convergence of surface runoff. Due
to the transport-limited conditions of debris flow initiation in
our study area, this is supposed to hold for a long time, un-
til either sediment storage is depleted or slope gradient has
become too low. Conversely, debris flow deposits are fre-
quently modified by renewed activity, and less pronounced
depositional lobes can lose contrast on aerial photos due to
progressive weathering (see e.g.Heckmann et al., 2008). Hu-
man activities that could potentially modify the appearance
of debris flow scars are completely absent in the relevant re-
gions of our study area.

3.1.2 Digital terrain model

Before model selection (see Sect.3.2.2), geofactors concep-
tually related to debris flow initiation have been pre-selected.
Debris flow initiation is related to (i) the availability of mo-
bile debris, (ii) steep slopes, and (iii) large amounts of wa-
ter, typically provided by intense rainfall. Not all influenc-
ing factors in these three groups (material, relief, water) can
be directly measured or calculated; many of them, however,
can be derived from a DEM, either directly or as proxies.
Although geological and land cover maps were available,
we tried to use only geofactors that can be derived from
high-quality digital elevation models (DEMs) in order to test
the feasibility of DEM-based modelling. Such high-quality
DEMs are increasingly available for large parts of the world.

For the derivation of several topographical parameters
used as geofactors for the regression models, we used a raster
DEM with a resolution of 1 m that was interpolated from
an airborne lidar survey in the year 2006. For most applica-
tions, and for the modelling itself, the original DEM (DEM1)
was resampled to a raster resolution of 5 m (DEM5). Apart
from saving memory and computing time, the resampling
smoothes the DEM so that very fine scale topography is no
longer contained in the resulting DEM5. This effect is de-
sired, as debris flow initiation is not expected to result from
microscale topography.

Information onavailable sedimentis usually provided by
land cover and/or geological maps. The former mainly con-
tain information on vegetation that might in some cases sta-
bilise soils and sediments. The latter focus on different types
of bedrock. In this study, the “available sediment” group is

represented by one single geofactor (roughness class). This
geofactor is derived from a cluster analysis of slope (DEM5;
see below) and roughness. Roughness was calculated as the
“vector ruggedness measure” (Sappington et al., 2007) on
the DEM1 within a moving window of radius 5 m, and the
result was resampled to the same resolution and extent as
the DEM5 using the nearest-neighbour approach. The com-
paratively small radius was chosen to capture the rough-
ness of surfaces rather than the roughness induced by land-
forms, e.g. by gullies. The cluster analysis yields two clus-
ters closely representing (i) bedrock and (ii) areas covered by
sediments. For the Zwieselbachtal, this unsupervised classi-
fication could be validated with a very detailed land cover
map created from orthophoto imagery; theφ coefficient of
the mapped vs. the DEM-based classification was 0.78. The
reason for the satisfactory fit is the characteristic fine-scale
roughness2 of bedrock areas that can easily be discerned on
a shaded relief map, together with the existence of a sharp
threshold of slope (resembling the angle of internal friction)
above which an area cannot be covered by unconsolidated
scree. Leaving out the information on land cover/vegetation
is not expected to be decisive in our case study, because the
study areas are only sparsely covered with vegetation, mostly
grass, and forest is widely missing, at least in the areas rele-
vant for debris flow genesis.

Relief parameterswere derived from the DEM5 using the
algorithm ofZevenbergen and Thorne(1987) implemented
in SAGA GIS (www.saga-gis.org). As slope stability, espe-
cially for scree, is a function ofslope, this parameter is ex-
pected to be very important for debris flow initiation. As both
valley axes have a north to south orientation (resulting in
a strong bias towards east- and west-facing slopes), and as
the physical role ofaspectcannot be described unambigu-
ously, it was not included in the analysis.Plan and profile
curvatureswere derived with the same algorithm as slope,
but from a DEM5 smoothed with a moving window mean
filter with a radius of 10 m. This was deemed necessary be-
cause of the extremely noisy character of fine-scale curva-
ture. Medium-scale curvature based on a DEM that retains
details on the typical spatial scale of channels within the rock
faces and talus cones (that are both prone to and indicative of
debris flow activity) is expected to be a better proxy variable
for convergent flow of water (plan curvature) and changes in
flow velocity (profile curvature).

Relief parameters related to the local catchment area are
derived from the DEM5 as proxies for theavailability of
water for debris flow initiation. We calculated thespecific
catchment area(SCA) as the local flow accumulation per
unit contour length using a multiple-flow-direction algorithm
(Freeman, 1991). Heavy rainfall on steep bedrock slopes
is expected to be converted almost entirely to Hortonian

2as the roughness is derived from the DEM1, the cluster analysis
can make use of sub-grid-scale roughness for the classification of
DEM5 raster cells
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overland flow; on talus slopes bordering steep rock faces,
this runoff can cause the initiation of debris flows, especially
where it enters the talus in a channelised manner (“firehose
effect”; see e.g.Johnson and Rodine, 1984; Coe et al., 2008).
However, if the sediment is coarse grained, large amounts of
water are expected to infiltrate; this leads to a decrease of
hydrological connectivity, and at least to an attenuation of
the increase of runoff with increasing catchment size. There-
fore, we re-calculated the catchment area, accumulating only
bedrock cells in the roughness class map instead of every
DEM5 raster cell. The modified SCA map hence refers to
the size of the bedrock catchment draining into each raster
cell.

3.2 The susceptibility model

Multivariate logistic regression (Hosmer and Lemeshow,
2000) forms part of the family of generalised linear models
(GLMs); in contrast to ordinary linear models, a function of
the expected value of a response variable is modelled by a
linear combination of continuous or discrete predictor vari-
ables. In logistic regression, the response variable is binary
(Bernoulli distribution); here, it takes the values 0 (no debris
flow initiation) and 1 (debris flow initiation). The response
function is the logit transform of the probabilityp ∈ ]0, 1[

that the response variable takes the value 1:

f (p) = logit(p) = ln
p

(1 − p)
. (1)

Since the logit is within the interval] −∞, ∞[, it can
be modelled as a linear combination of predictor variables
X1 . . . Xn:

f (p) = β0 + β1x1 + β2x2 + . . . + βn xn, (2)

whereβ0 is the intercept andβ1 . . . βn are the model pa-
rameters. These are estimated using a maximum likelihood
approach.

The spatial data are generated and managed in SAGA GIS,
including the derivation of relief parameters (Sect.3.1.2);
for the statistical analysis, they can be directly read from
the SAGA native data format using the RSAGA package
(Brenning, 2013) for the statistical software R (R Devel-
opment Core Team, 2012). Logistic regression is then per-
formed using the glm and stepAIC functions of the MASS
package (Venables and Ripley, 2002). For reasons explained
in the Introduction, we estimate the model parameters for
a sample (the size of which we will try to optimise in this
study) of event (debris flow initiation) and non-event cells;
sampling is also performed in R. The resulting susceptibility
maps are written back to SAGA data format for visualisation
and further spatial analysis. They contain the probability that
the dependent variable takes the value 1, i.e. that debris flow
initiation will take or has taken place.

3.2.1 Multicollinearity analysis

Besides sample independence, an important prerequisite for
the application of GLM is the absence ofmulticollinearity,
i.e. that the predictor variables are not correlated with each
other. In order to test for multicollinearity, we applied the
vif function of the car package (Weisberg and Fox, 2010)
to a full model (i.e. including all geofactors described in
Sect.3.1), yielding the variance inflation factors (VIF) of
each geofactor. Although no binding rules exist for their in-
terpretation, several authors who conduct a multicollinearity
analysis apply a very strict threshold of 2, above which vari-
ables are considered multicollinear and are excluded from
the model (e.g.Van Den Eeckhaut et al., 2006, 2010; Guns
and Vanacker, 2012). However, the most common rule of
thumb is reported to be the “rule of 10” (using VIF = 10 as
a threshold for severe multicollinearity), and the use of strict
thresholds of VIF appears to be questionable (O’brien, 2007).
The analysis of VIFs yields values of 1.18 and 1.47 for the
two curvature variables, and 1.77 for SCA. Roughness and
slope have VIFs of 2.06 and 2.76, respectively, which is only
slightly above the threshold used in other studies, so we de-
cided to keep all candidate variables.

3.2.2 Stepwise selection of predictor variables

An important task in susceptibility modelling is model build-
ing, i.e. theselection of the independent variables(geofac-
tors). In Sect.3.1, several candidate variables are described
that conceptually explain the spatial distribution of debris
flow initiation. Model building is achieved in this study
through an automatic stepwise variable selection (function
stepAIC; Venables and Ripley, 2002). Starting from a full
model, i.e. a model including all variables, variables are re-
moved (or re-included) in order to minimise the Akaike in-
formation criterion (AIC;Akaike, 1973) which is calculated
from the likelihood function of the model and the number
of predictor variables. The AIC penalises for the number of
predictor variables; i.e. it increases with the number of vari-
ables, and it decreases with a larger likelihood function indi-
cating a better model. Hence, although there is no theoretical
justification of the AIC (Sachs and Hedderich, 2006), this
procedure is suitable in practice for selecting a parsimonious
model, i.e. a best-fit model using as few variables as possible
(Brenning, 2005). The results of stepwise logistic regression
have often been used to rank the controlling factors by im-
portance (e.g.Van Den Eeckhaut et al., 2006). While we as-
sume that the methodological framework of our study would
also be suitable for the assessment of sample size effects in
such investigations (Guns and Vanacker, 2012, e.g., suggest
a “robust detection of controlling factors” based on repeated
sampling and stepwise model selection), the latter are not the
aim of our present study.

Stepwise procedures can be applied as a backward selec-
tion, as in this study (and e.g. inBrenning, 2005; Ruette
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et al., 2011), but also as a forward selection (Beguería,
2006; Meusburger and Alewell, 2009; Atkinson and Massari,
2011). Menard(2002) explains that backward selection is in
some cases superior to the forward procedure. Note that the
stepwise procedure used here and inBrenning(2005) differs
from other studies where the decision of keeping or drop-
ping predictor variables is based on the significance of model
improvement (e.g.Beguería, 2006; Meusburger and Alewell,
2009; Guns and Vanacker, 2012), not on an information cri-
terion. Recently, alternative approaches for model selection
have been proposed (e.g.Calcagno and Mazancourt, 2010);
they will be tested in future research.

3.2.3 Model validation

It has been stressed that a modelling study without proper
validation is useless (Chung and Fabbri, 2003). Many stud-
ies in susceptibility modelling use spatial or temporal cross-
validation (space or time partition; cf.Chung and Fabbri,
2003) within the same study area; i.e. the data are split ei-
ther systematically or randomly into training and test data
sets according to their location or time of occurrence (Chung
and Fabbri, 2003; Beguería, 2006). Here, we estimate model
parameters based on samples drawn from the Zwieselbachtal
catchment, and apply the resulting models to the neighbour-
ing Larstigtal catchment. Hence, training and test areas are
completely independent. For each model run, the predictive
ability is evaluated using receiver operating curves (ROCs) or
prediction-rate curves sensuChung and Fabbri(2003), plot-
ting true-positive against false-positive rates. The advantage
of ROCs is that they yield a threshold-independent measure
of predictive ability; in our case, we do not have to define a
threshold of modelled landslide probability below which we
do not recognise susceptibility. Additionally, as a single mea-
sure of predictive ability, the AUC is calculated (Hosmer and
Lemeshow, 2000; Beguería, 2006); this parameter falls in the
range [0.5, 1], where 0.5 is equivalent to random prediction
and 1 to a perfect prediction.

3.3 Exploring the effect of sample size

In the Introduction, we have argued why the sample size
should be neither too small nor too large. Here, we describe
(i) how the effect of sample size on the diversity of models is
explored, and (ii) how we constrain the upper limit of sample
size.

3.3.1 Sample size and model diversity

For small sample sizes, the geofactor composition of the
resulting model depends extremely on the random sample,
because small samples cannot sufficiently cover the diver-
sity of geofactors within the study area. We hypothesise that
with increasing sample size the diversity of relevant models
(selected by the stepwise procedure) first decreases towards
a plateau that can be explained with the overall variability

of geofactors in the study area; when the sample size ap-
proaches the size of the study area, the variability of models
will eventually decrease to zero. Such a behaviour is similar
to the dependence on sample size of the predictive power of
predictive geomorphological models that has been explored
by Hjort and Marmion(2008).

We analyse model diversity by repeating the stepwise
model selection with 1000 independent samples of a given
sample size. Such a high number of replications is novel
compared to existing studies that employ multiple sam-
ples; we chose the number of 1000 because we noticed in
first experiments that the model diversity assessment was
too unstable with a lower number of replications (e.g. be-
tween 25 and 50 in the studies ofBrenning, 2005; Beguería,
2006; Guns and Vanacker, 2012). Sample size varies between
n = 50 andn = 5000 non-event raster cells; together with the
sample ofn = 81 initiation areas in the ZBT area, the sam-
ples cover between 0.02 and 0.68 % of the study area (ZBT).
Specifically, a stratified sampling scheme has been adopted;
one single raster cell is randomly selected from each debris
flow initiation zone, and the sample size of non-event cells
(from the area outside of the mapped initiation zones) is var-
ied. The choice of non-event sample sizes in relation to event
sample size ranges from ca. 1 : 1.6 to ca. 60 : 1, thus including
the recommendations ofKing and Zeng(2001) and the al-
ternatives chosen in landslide susceptibility studies, e.g. 5 : 1
(Van Den Eeckhaut et al., 2006) or 10 : 1 (Beguería, 2006;
Guns and Vanacker, 2012).

For each of the 1000 samples, the geofactors that remain
in the “best” model (with respect to the AIC) after stepwise
selection are saved in a table. Each geofactor is evaluated by
the percentage of models which it was part of (cf.Guns and
Vanacker, 2012). The set of selected geofactors for one sam-
ple defines a “model species” (if, for example, the geofac-
torsA, B andD are selected from the candidate geofactorsA,
B, . . . E, the species of the resulting model is ABD). The
term model species was used in order to highlight the simi-
larity of the proposed method for model diversity assessment
with investigations of biodiversity in ecology. Theoretically,
kmax= 2g

− 1 different model species can exist ifg candidate
geofactors are available for model selection, and if the result-
ing model has to contain at least one geofactor. The diversity
of the 1000 replicate models calculated for each sample size
is evaluated using three measures: (i) the numberk of dif-
ferent model species (“species richness”); (ii) the Shannon
diversity indexH , also known as Shannon information en-
tropy; and (iii) the Simpson indexD.

The Shannon index was developed in information theory
(Shannon, 1948) and has been widely applied in ecology as
an index measure of biodiversity (e.g.Magurran, 2004). In
geomorphology, it has been used to assess the uncertainty
of drainage routing and watershed delineation (Schwanghart
and Heckmann, 2012). In our study, it is calculated as
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H = −

k∑
i=1

pi · ln(pi) , (3)

where i = 1 . . . k represents theith of k different model
species, andpi is the probability of occurrence of theith
species, estimated byni/N , the proportion of theith model
species found inN individual stepwise modelling runs.

The log-transformed Simpson index (Simpson, 1949) has
been developed for measuring biodiversity; it is consid-
ered superior to theH as it is independent of sample size
(Magurran, 2004). It is calculated as

D = − ln
k∑

i=1

ni · (ni − 1)

N · (N − 1)
, (4)

whereni is the absolute frequency of theith model species
andN is the number of individual models (here: 1000).

H andD combine the number of different model species
(species richness) and their relative frequency (relative
“abundance”) in one single number: a large diversity asso-
ciated with a high species richness (k different terms have
to be summed up forH andD, respectively) and/or an even
distribution of model species across the 1000 samples. Con-
versely, diversity is low when there is only a small number
of different species, and/or one or few species strongly dom-
inate. Shannon’s entropy has been interpreted in terms of the
“average surprise a probability distribution will evoke” (see
e.g.Thomas, 1981, p. 7). The result of a stepwise selection
with a sample size for which low diversity (lowH ) has been
measured is not expected to be surprising, because one or
few species have a very high probability of occurrence. We
hypothesise that the diversity of model species, and the de-
gree of surprise with which we see one particular outcome
of the selection given the results of 1000 models, will re-
flect the sample dependence of the stepwise selection. There-
fore, we propose the “model diversity” as a measure of model
quality in terms of reproducibility; similarly,Petschko et al.
(2014) recently proposed a “thematic consistency” index that
assesses variable-selection frequencies in model replications
and is based on the Gini impurity index.

3.3.2 Sample size and spatial autocorrelation

In our study, the spatial autocorrelation of a data set is ex-
plored with the empirical semivariogram, which is typically
used for geostatistical interpolation techniques such as Krig-
ing (Webster and Oliver, 2007). It is derived from point mea-
surements by evaluating the semivariance of values of a vari-
able (geofactor) for pairs of points separated by a specific
distance. One important property of the semivariogram is the
range; points separated by a distance below this range are au-
tocorrelated.Brenning(2005) uses the range of the empirical
correlogram of the residuals of a logistic regression model
(180 m in his study) to constrain the minimum distance be-
tween training and test data points in spatial cross-validation.

Similarly, we estimate the range parameter of the variogram
of each geofactor to constrain the sample size: we argue that
the average distance between raster cells in the (non-event)
sample should not fall within the autocorrelation range(s) of
the geofactors included in the model in order to keep the non-
event sample as uncorrelated or independent as possible. As
the average distance implies that some points in the sample
will be closer neighbours, we concede that this strategy min-
imises spatial autocorrelation rather than preventing it.

Assuming a set of randomly distributed points (here: raster
cells), the average distanced̂ to the nearest neighbour can be
estimated by Eq. (5):

d̂ =
1

2 ·
√

ρ
, (5)

(Clark and Evans, 1954) whereρ is the density of the sam-
ple, i.e. the sample sizen divided by the study area (here:
the number of raster cells within the study area multiplied
by 25 m2, the area of each cell). For each study area,d̂ is
calculated as a function ofn and used to estimate the upper
boundary for the “suitable sample size”. Instead of using the
highest autocorrelation range (i.e. that of the geofactor with
the most far-reaching spatial autocorrelation) as a crisp, ab-
solute upper limit of sample size, we take into accountd̂(n)

as it progressively falls below the autocorrelation range of
more and more geofactors, and we regard the corresponding
n as progressively less acceptable. An upper limit is finally
reached when the smallest autocorrelation range from the set
of geofactors is undercut.

Figure 2 shows the empirical geofactor semivariograms
and the practical range parameter (i.e. the range where 95 %
of the sill is reached) of the fitted variogram models. Depend-
ing on the geofactor, spherical and exponential models were
used. It is obvious that some geofactors, e.g. slope, are auto-
correlated on multiple scales. In these cases, the lower range
is used; however, it appears that a sample which is indepen-
dent with respect to all geofactors is not possible.

3.4 Variability of model results

The investigations described in the previous sections have the
aim of quantifying and reducing the dependence of the re-
sults on the sample while maintaining sample independence.
Once a suitable sample size is estimated, we investigate the
variability of model results – both quantitatively and with re-
spect to its spatial distribution. In order to do so, we repeat
100 times the sampling, model selection, fitting and applica-
tion for the Zwieselbachtal area, creating a stack of 100 grid-
ded susceptibility maps of the whole study area. The median
of 100 probabilities in each raster cell is taken as a consen-
sus model (Marmion et al., 2009) and the final susceptibility
map. The interquantile range IQR90 =p0.95− p0.05, which
encompasses 90 % of the modelled susceptibility values as
a non-parametric measure of dispersion, quantifies the un-
certainty caused by sampling and stepwise model selection.
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Fig. 2. Empirical variograms of geofactors used in this study. Note
that slope is autocorrelated at different spatial scales.

As this measure is calculated for each raster cell, the respec-
tive map can be used to visualise the spatial distribution of
model uncertainty (not with respect to the true probability,
but with respect to model variability). In addition, the distri-
bution of the parameter coefficients of the 100 models, and
their predictive power (ROCs and AUC; see Sect.3.2.3) can
be displayed and analysed.

4 Results and discussion

4.1 Investigation of sample size effects

Before we approach the question of an optimal range of
sample sizes, we take a look at the results of model se-
lection as a function of sample size. Specifically, Fig.3
shows, for each geofactor, the number of models that retained
this geofactor after the AIC-based selection procedure. The
six geofactors that were eligible for model selection were
slope, SCA, the interaction of the previous two factors (de-
noted “slope*SCA” in Fig.3), the roughness category which
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Fig. 3. Overview of the six geofactors and their contribution to 1000 models of different sam-
ple sizes. The y axis denotes the number of models for which the respective geofactor was
selected. ”slope*SCA” signifies the interaction term of the two variables slope and specific
catchment area.

51

Fig. 3. Overview of the six geofactors and their contribution to
1000 models of different sample sizes. They axis denotes the
number of models for which the respective geofactor was selected.
“slope*SCA” signifies the interaction term of the two variables
slope and specific catchment area.

distinguishes bedrock from debris-mantled slopes, and the
two curvature variables. While roughness and profile curva-
ture gradually increase their membership with larger sample
sizes (roughness starting from only ca. 15 % of the replica-
tions), the interaction term slope*SCA quickly attains 100 %
(i.e. all of the 1000 samples lead to models containing this
variable) even with small samples. Here, it is important to
mention that interaction terms may only be part of a model
if their marginals (here: slope and SCA) are also contained.
This is the case, as the given variables are contained in all
models, irrespective of sample size. The proportion of mod-
els containing the geofactor plan curvature is very low, start-
ing with about 20 % and only slightly increasing in larger
samples.

If the “success” of a geofactor in the model selection pro-
cedure is a measure of its importance, then the most impor-
tant variables are slope, SCA, the interaction of slope and
SCA, and profile curvature. The importance of roughness and
plan curvature is low, but the number of models containing
roughness surpasses that of models containing plan curvature
even at sample sizes below 1000. These findings are consis-
tent with previous work on (slope-type) debris flow suscep-
tibility: Heckmann and Becht(2009) and Wichmann et al.
(2009), for example, use slope, land cover, and a variable
called the CIT index (Montgomery and Foufoula-Georgiou,
1993). The latter is calculated as the specific catchment area
times the squared tangent of slope. The interaction term
slope*SCA used in our study can be interpreted physically
(mathematically, it is the product of the two geofactors) as
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the compound topographic index indicating stream power
(Moore et al., 1991); in this index, catchment area and slope
serve as proxies for the abundance and energy of surface
runoff. In comparing several models (discriminant analy-
sis and logistic regression)Carrara et al.(2008) observed
that factors relating to slope gradient, land cover, availabil-
ity of detrital material, and active erosional processes best
described debris flow initiation. The most frequent model
species in our study include geofactors that represent these
categories.

Figure4 evaluates the diversity of models selected by the
AIC-based procedure as a function of sample size. The diver-
sity is expressed as the number of model species (i.e. models
defined by a given combination of geofactors) in 1000 sam-
ples (centre panel), and is quantified using the Shannon and
Simpson diversity measures (bottom panel). The number of
model species declines exponentially to reach a stable min-
imum of 8 species at a sample size ofn = 1000. Even for
the largest sample size in our analysis (n = 5000), differences
between the 1000 samples result in as many as 8 different
model species. The diversity measures show a local mini-
mum atn = 300 andn = 350, respectively; for these sample
sizes (nrel = 0.05 %), the number of model species is higher,
but the distribution of the 1000 models across this number of
species is more uneven – i.e. few species make up the lion’s
share of the selections – and the rest is represented only by
a few cases. For larger sample sizes, model diversity slightly
increases again and reaches a more or less stable value. Sam-
ple sizes much larger than 5000 (nrel > 0.68 %, not shown)
lead to a decrease of the diversity indices; when the sample
size approaches the size of the population (i.e. the complete
study area), the stepwise procedure of course yields only one
model species, and the diversity indices attain their absolute
minimum (0). The plateau of the diversity measures is also
reflected in the model composition shown in Fig.3 where
all geofactors (except roughness) exhibit only slight changes
with sample sizes larger than ca. 1000 (nrel = 0.15 %).

We interpret the minimum of the diversity indices as a
minimum of the dependence of model selection on the sam-
ple and therefore the corresponding sample size (300–350)
as a data-based recommendation for our case study. Such a
strategy is, in our opinion, better than the adoption of arbi-
trary recommendations with respect to event : non-event ra-
tios, absolute, or relative sample sizes. The sample size of
300–350 non-event cells corresponds to a ratio of event : non-
event of 1 : 3.7 to 1 : 4.3, which is approximately consistent
with the 1 : 5 ratio used byVan Den Eeckhaut et al.(2006)
and with the recommendation (1 : 2–1 : 5) given byKing and
Zeng (2001). It is also in the range of the ratio of event
to non-event cells in our study areas (about 1 : 500 in ZBT,
1 : 200 in LT), a ratio that has been used byAtkinson et al.
(1998). Considering Green’s rule of thumb (Green, 1991) re-
ported in the Introduction (Sect.1.1), the six candidate geo-
factors in our case study would require a minimum sample
size of ca. 100.Hjort and Marmion(2008), who investigate
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Fig. 4. Mean distance between neighbouring sample points (top), number of model species
in 1000 samples (center), and two model diversity measures (bottom) as a function of sample
size. Shades of grey denote the degree to which the raster cells in a sample of size n lie, on
average, within the autocorrelation range of geofactors. Red arrows indicate the sample sizes
for which the Shannon and Simpson indices reach a local minimum, respectively.
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Fig. 4. Mean distance between neighbouring sample points (top
panel), number of model species in 1000 samples (center panel),
and two model diversity measures (bottom panel) as a function of
sample size. Shades of grey denote the degree to which the raster
cells in a sample of size n lie, on average, within the autocorrela-
tion range of geofactors. Red arrows indicate the sample sizes for
which the Shannon and Simpson indices reach a local minimum,
respectively.

the predictive power of different models estimated with dif-
ferent sample sizes, state that a “level of robust predictions”
is attained, with all statistical techniques, at a sample size of
n = 200.

The local minima do not appear to be always present, de-
pending on the choice of geofactors and the study area used
for model selection (not shown). However, there is always
at least a conspicuous knickpoint in the empirical diversity
diagram where an increase in sample size does not lead to
a significant reduction of model diversity. The analysis of
the LT data, for example, shows a plateau, not a local min-
imum, of model diversity, and this is only reached between
n = 1000 andn = 2000 (nrel = 0.38 and 0.74 %), a sample size
which is already becoming problematic with respect to spa-
tial autocorrelation (see next paragraph). The LT is smaller
than the ZBT and has a smaller number of debris flows but
a higher debris flow density (events per square kilometre);
hence there does not appear any conspicuous relationship of
the existence and location of plateaus or local minima, ab-
solute or relative sample size, and the aforementioned study
area properties. The investigation of these problems is left

Nat. Hazards Earth Syst. Sci., 14, 259–278, 2014 www.nat-hazards-earth-syst-sci.net/14/259/2014/



T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model 271

D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|
D
iscu

ssio
n
P
a
p
er

|

Fig. 5. Distributions of model coefficients estimated from 100 random samples (n=350 non-
event cells) in the ZBT area. The percentages below the parameter name refer to the proportion
of the 100 models that contain the respective geofactor.
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Fig. 5. Distributions of model coefficients estimated from 100 random samples (n = 350 non-event cells) in the ZBT area. The percentages
below the parameter name refer to the proportion of the 100 models that contain the respective geofactor.

open to future research, employing a systematic analysis of
multiple study areas with different sizes, characteristics, and
debris flow densities.

In Sect.3.3.2, we proposed the mean distance between
sampled locations in relation to ranges of spatial autocorre-
lation as an upper constraint of sample size. Figure4 (top
panel) shows the expected mean distance between nearest
neighbours as a function of sample size (see Sect.3.3.2). Ad-
ditionally, the horizontal dashed lines indicate the autocorre-
lation ranges of the geofactors mentioned above (cf. Fig.2).
As the red curve intersects the autocorrelation ranges of more
and more geofactors, the sample of the corresponding size is
more and more likely to violate the independence assump-
tion. The decreasing suitability of larger samples to this end
is visualised across the whole Fig.4 through darker shades of
grey. The optimal sample sizes indicated by the red arrows in
the bottom part of the diagram belong to a range of sample
sizes that are within the autocorrelation range of one single
geofactor only. In this case, it is the “large-scale” range of
slope (ca. 800 m, slope is autocorrelated also at smaller spa-
tial scales with a range of ca. 200 m; see Fig.2). We consider
this only a minor violation of the independence assumption,
so that the sample size recommended above remains optimal
also with respect to the spatial autocorrelation issue that has
been raised in Sect.1.2.

While the typical scale of application of landslide suscep-
tibility models is in the order of (many) tens to thousands of
square kilometres, our study took place in a comparatively
small study area. Considering the small size and the associ-
ated homogeneity of our study area with respect to the sta-
tistical and spatial distribution of geofactors, we add a note
of caution to the interpretation of our findings. First, we ex-
pect the necessary sample size to be larger in more hetero-
geneous areas, and we expect a larger variability of model
selection and model coefficients. One possibility of dealing
with large, heterogeneous study areas has recently been pro-
posed byPetschko et al.(2014), who partition their study
area in sub-areas based on lithological properties that are

related to landslide activity. Second, the assessment of spatial
autocorrelation from variograms of the geofactors is much
less straightforward in larger, heterogeneous areas. For ex-
ample, different ranges of autocorrelation could exist for the
same geofactor in different (sub-)regions of the study area,
which calls into question the existence of a single sample size
(and the associated average distance between sample points)
below which the autocorrelation issue is mitigated. However,
we are confident that our observation of a local minimum
or plateau in model diversity will apply also at larger spa-
tial scales (see, for example,Hjort and Marmion, 2008; Guns
and Vanacker, 2012). Moreover, we uphold the general rec-
ommendation to investigate, through repeated sampling with
different sample sizes, the behaviour of parameter selection
in order to explore a suitable (small) sample size that both
minimises sample dependence and facilitates a robust param-
eter selection.

4.2 Model results

4.2.1 Model parameters

In this section, the results of the procedure described in
Sect.3.4 are evaluated. Figure5 shows the distribution of
the estimated coefficients for each of the geofactors. Addi-
tionally, the percentage below the parameter name gives the
proportion of models that contained the respective geofac-
tor after stepwise selection. The coefficients were estimated
using 100 independent random samples ofn = 81+ 350
(event+ non-event sample) in the ZBT area. The geofactors
slope, SCA, and their interaction are part of every model,
followed in decreasing order by profile curvature, plan cur-
vature, and roughness class. The spread of the coefficients is
low for most of the geofactors, with the exception of the two
curvature parameters. The coefficient for plan curvature has
the largest range, and it takes positive and negative values,
which makes the interpretation very difficult; this is proba-
bly caused by the fact that the random sampling of event cells
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from the upper erosional zones in the debris flow inventory
will select locations not only in the centre of channelised de-
bris flow paths (with highly concave plan curvature) but also
at the boundary of these areas, which are highly (plan) con-
vex. Conversely, the profile curvature coefficient is strictly
negative, which means that a concavity in the long profile
increases the probability of debris flow initiation. The ex-
planation for this finding is a morphological one: the typi-
cal locations of debris flow initiation (facilitated by the fire-
hose effect; see Fig.1) at the contact of steep rock faces and
the corresponding talus cones are marked by large negative
(i.e. concave) profile curvatures.

The mostly negative coefficients for slope and SCA are
difficult to interpret, as one would expect that the proba-
bility of debris flow initiation would increase with steeper
slopes and with larger catchment areas. However, this prob-
lem appears to be only a mathematical one, as the interac-
tion term of slope and SCA is present in the model. There-
fore, the coefficient of slope (alone) models the effect of
slope where SCA is zero (and vice versa); the coefficient
for the interaction term is positive, indicating higher proba-
bilities with steep slopes and large catchment areas, which
is conceptually correct. The interaction term plays an im-
portant role in the model: without it, the positive relation-
ship of SCA with debris flow release causes the modelled
susceptibility to increase even in the comparatively flat val-
ley bottoms. Under these conditions, slope-type debris flows
cannot occur;Rickenmann and Zimmermann(1993) report
starting zone slopes for type 2 debris flows (that type which
occurs in our study areas) between 26.5 and 38◦, with catch-
ment sizes of up to 1 km2; Takahashi(1981) gives a lower
threshold for debris flow initiation of 15◦. Generally, there
appears to be a trend that the minimum slope angle required
for debris flow release decreases with larger catchment ar-
eas (Rickenmann and Zimmermann, 1993; Heinimann et al.,
1998; Horton et al., 2008), so there is, besides the stream
power index (cf. Sect.4.1), one more theoretical justification
for including the interaction of slope and SCA.

4.2.2 Susceptibility maps

The previous analyses have shown the dependence of mod-
els found through AIC-based model selection on the respec-
tive sample and its size. The spatial pattern of a model re-
sult (here: the susceptibility map containing the debris flow
initiation probability) depends on the spatial pattern of the
geofactors that form part of the model. Figure6 shows a sec-
tion of the susceptibility map that can be seen as a consensus
model (seeMarmion et al., 2009) as every raster cell con-
tains the median of 100 model predictions, the coefficients of
which have been summarised in the previous section (Fig.5).
Susceptibility in both valleys has been predicted using the
model estimated with ZBT data only. The whole map is part
of the supplementary material of this paper. On the map, de-
bris cones are highlighted by yellowish to reddish colours

Fig. 6. Part of the susceptibility map (for full extent, see Supple-
ment) of the ZBT and LT areas. The susceptibility values represent
a model ensemble, specifically the median value of 100 models es-
timated from 100 random samples (n = 350 non-event cells) in the
ZBT area. Insets A and B refer to map sections in Fig.7.

indicating medium to high probability of debris flow release.
The distal parts of the cones are characterised by lower (if
any) susceptibility, while their apices and channel-like por-
tions of the upslope area show the highest values. Most of
the valley floor and most steep parts of the rockwalls have
very low to zero susceptibility. This can be seen in detail in
the upper row of Fig.7; virtually all mapped debris flows (in-
cluding not only the depositional lobes, but the whole process
area) have high to very high susceptibility values in their up-
per part, and it can be stated that the spatial pattern of debris
flow occurrence appears to be reproduced well by the model.

This visual validation also reveals problems. The zones
of highest susceptibility, indicated by violet colours, ex-
tend very far upslope along very steep channel-like features
within the rockwalls. Many of these locations appear to be
too steep for debris to accumulate (one of the preconditions
for debris flow generation); for this problem, we offer two
explanations: first, an analysis of slope values within the
mapped starting zones (see Sect.3.1.1) reveals that ca. 75 %
of slope values within the initiation areas are within a physi-
cally meaningful range (below ca. 40◦), while the remaining
values clearly speak against the accumulation of debris in
these locations. This can be attributed in part to mapping er-
rors (Ardizzone et al., 2002) where the upper portion of a de-
bris flow area is spuriously extended into very steep bedrock
channels that are in part poorly identifiable on aerial imagery.
Another source of this error, probably to a lesser degree, is
a mismatch in the exact location of the rockwall–talus con-
tact between the DEM (which is decisive for the model) and
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Fig. 7.Map sections (for full extent, see Supplement) from the ZBT(B) and LT(A) areas. The maps show the susceptibility map (see Fig.6)
and a map of the IQR90 calculated from the model ensemble. The latter map represents the uncertainty of the susceptibility map that is due
to the sampling process.

the aerial photo. Second, a linear modelling approach is not
capable of modelling complex non-linear relationships such
as the one of slope and debris flow release: conceptually,
susceptibility should increase, starting from some minimum
slope, up to a maximum and then decrease again. The sus-
ceptibility then reaches zero at slope gradients that are pro-
hibitive for the formation and persistence of sediment stor-
age that is needed for debris flow generation. The GLM ap-
proach, however, only handles monotonic relationships be-
tween independent and dependent variables, e.g. an increase
of susceptibility with slope. Problems of this kind could be
solved by using other approaches, for example the weights
of evidence, certainty factor, or generalised additive models
(GAM; see e.g.Hjort and Luoto, 2011).

A novel output of our model replication exercise is the
quantification of the variation in model results and the as-
sessment of its spatial distribution. The model uncertainty
addressed here is due to the sampling and model selection
procedure only. For each raster cell of the susceptibility map,
we computed not only the median but also the interquan-
tile range (IQR90) between thep0.95 andp0.05 quantiles; the
corresponding map can be seen in the supplementary ma-
terial and in Fig.7, bottom row. In the whole study area,
the IQR90 has a highly positively skewed distribution that
ranges from 0.0 to 0.98. It has a mean of 0.081; i.e. debris
flow release probability predicted by the 100 models varies
by 8 percentage points, on average. In the ZBT area (that

was used to estimate the models) this value equals 0.073,
while in the LT area it is slightly higher (0.103). For sam-
ples taken according to the “1 : 1 event to non-event” rule
(n = 81 non-event cells,nrel = 0.022 %), the average IQR90
is 0.190 (ZBT), 0.230 (LT) and 0.200 (total study area). The
expected variability is consistently higher for smaller sam-
ples, and when a model is applied to a different area. The lat-
ter can be explained with the effect of extrapolation beyond
the range of geofactors in the respective training area.

Generally, the lowest uncertainty is found for both the low-
est and the highest susceptibility values, an observation also
reported byGuzzetti et al.(2006b). On the uncertainty maps,
the largest standard deviations occupy spatially coherent ar-
eas along the zones of high susceptibility, and additionally in
considerable portions of the valley bottom where the slope
gradient is low. In some places, the spatial pattern of un-
certainty is consistent with the fact that profile curvature is
included in only about 60 % of the models; here, zones of
high curvature (both concave and convex) are characterised
by high IQR90 values. Such zones of high uncertainty may
generally occur where a high (or low) predicted susceptibil-
ity relies on one parameter only that is not part of all models.
In our opinion, the map adds information to the susceptibility
map that can be useful for its interpretation.
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4.2.3 Validation

The variability of model parameters and predictions is also
reflected in the validation. A first qualitative validation is
done by visually inspecting the susceptibility map (here: the
median of 100 models, Figs.6 and7). Each model is quan-
titatively validated by means of a ROC (see Sect.3.2.3) us-
ing data from the Larstigtal (LT) only; hence, the data used
to estimate the model parameters (from the ZBT area) and
the validation data are completely independent, and the cor-
responding diagram represents a “prediction curve” (Chung
and Fabbri, 2003). Split-sample validation approaches such
as cross-validation, spatial and temporal partitions (Chung
and Fabbri, 2003) do not warrant such independence when,
for example, subsets of the same inventory are used to esti-
mate model parameters and to validate the resulting model in
one study area.

Figure8 (top panels) shows the prediction curves for the
100 models, and the distribution of the corresponding area
under the curve (AUC). The 100 curves are located quite
close to each other, and there are no conspicuous extreme
outliers. The AUC reaches 0.83, on average; the predictive
ability of a model calculated in the LT area and applied to
the ZBT (not shown) is even higher, with AUC = 0.9. In total,
the observed AUCs are within the range of many published
studies (e.g. 0.69–0.8:Ruette et al., 2011; 0.84:Ayalew and
Yamagishi, 2005; 0.89–0.93:Van Den Eeckhaut et al., 2010)
and can be regarded as satisfying. The different performance
of the ZBT model in the LT area and vice versa is an interest-
ing fact. This could be caused by different characteristics of
the study areas, related to a different range, and different spa-
tial and statistical distributions of the geofactor values. The
two neighbouring areas, however, are regarded as very sim-
ilar and homogeneous.Heckmann and Becht(2009) investi-
gated the transferability of a debris flow susceptibility model
among different study areas and reported that the predictive
power of models is largely independent of the degree of sim-
ilarity of training and test area; their model approach (cer-
tainty factor), however, strongly differs from logistic regres-
sion. Besides computational and conceptual differences, con-
tinuous geofactors such as slope are classified using the same
scheme in all study areas. Conversely, in our study, a differ-
ent range of geofactors in training and test areas could lead to
different coefficients and different model performance due to
extrapolation. Another reason for the different performance
could be the different debris flow density. In order to deter-
mine the controls of model performance, future research will
have to use a larger number of different study areas with dif-
ferent debris flow densities. The methodological framework
for the assessment of model variability and performance pro-
posed here is considered useful for such investigations.

Interestingly, the sample size did not influence the predic-
tive ability of the model ensemble – bothn = 81 andn = 350
have very similar mean AUC values. However, the smaller
sample size leads to a much larger spread of the different
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Fig. 8. Evaluation of the predictive ability of 100 models (top: n=350 non-event cells, bottom:
n=81 non-event cells) by means of the area under the curve. As the model training (ZBT)
and validation area (LT) are independent, the diagrams on the left represent prediction curves
(Chung and Fabbri, 2003).
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Fig. 8. Evaluation of the predictive ability of 100 models (top pan-
els:n = 350 non-event cells, bottom panels:n = 81 non-event cells)
by means of the area under the curve. As the model training (ZBT)
and validation area (LT) are independent, the diagrams on the left
represent prediction curves (Chung and Fabbri, 2003).

prediction curves and consequently also of the AUC values.
In our case, a single sample of events and non-events at a ra-
tio of 1 : 1 (see, for example,Brenning, 2005; Meusburger
and Alewell, 2009) could have resulted in a good model
(AUC 0.84) but also in a comparatively poor one (AUC 0.75),
although the expected AUC is approximately the same. We
deduce from our results a recommendation to create sus-
ceptibility maps from model ensembles, because they are
supposed to yield a more reliable result on the one hand
and give an estimation of (sample-induced) uncertainty on
the other. Similarly,Marmion et al.(2009) propose “con-
sensus models”; in their study, results from different predic-
tive modelling approaches are combined using several meth-
ods, among them the median that was used in our study to
combine the results of 100 models generated with the same
method, but from independent random samples.

5 Conclusions

In this paper, we investigated the effect of sample size on
a logistic regression model with a parameter selection proce-
dure that is based on an information criterion (AIC). The case
study aims at predicting the spatial distribution of slope-type
debris flow release zones in the Larstigtal (LT) and Zwiesel-
bachtal (ZBT) catchments in the Austrian Central Alps.

The procedure of random sampling and model selection
was replicated 1000 times for different samples between
n = 50 andn = 5000 non-event raster cells. For each candi-
date geofactor, the number of models it was part of after step-
wise model selection was recorded. The diversity of models
as a function of sample size was determined using the num-
ber of different models and two diversity indices (Shannon
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Entropy and Simpson diversity index). In our case study,
model diversity decreased with increasing sample size and
reached a local minimum atn = 300–350, before it slightly
increased again to a stable level. In some cases, no local
minima were detected, but model diversity always reached
a plateau on which even much larger samples could not im-
prove (= decrease) model diversity. While we were unable to
discern a dependence of local minima or plateaus on proper-
ties of the debris flow inventories and/or study areas, we rec-
ommend exploring the behaviour of model selection and di-
versity dependent on sample size in order to determine an op-
timised sample size. The latter is constrained by the range of
spatial autocorrelation found in variogram analyses for each
geofactor.

Most importantly, our results show that, even with large
sample sizes (that will progressively violate the indepen-
dence assumption), there will still be a variety of differ-
ent models and, hence, also diverse model results depend-
ing on the sample. We argue that single-sample studies run
the risk of accidentally yielding a poor model, and therefore
strongly advocate the calculation of multiple models based
on independent random samples; the results of these models
are used (i) to construct a consensus susceptibility map (in
our case study, we used the median of 100 models on each
raster cell) and (ii) to investigate, both statistically and spa-
tially, the variation in model results caused by the sampling
and model selection procedure. In our study, the median of
100 models was used as the consensus model, and variation
was quantified using the IQR90 interquantile range as a non-
parametric dispersion measure. The latter was clearly influ-
enced by sample size (less variation for larger samples) and
study area (more variation in LT if the ZBT model was ap-
plied). Predictive power of the models was measured using
receiver operating curves (area under the curve); all models
yielded satisfying results that are in the range of other pub-
lished landslide susceptibility models. Sample size did ap-
parently not influence the average predictive power of the
model ensemble, but smaller samples increased the range of
AUC and hence also the proportion of comparatively poor
models.

Supplementary material related to this article is
available online at
http://www.nat-hazards-earth-syst-sci.net/14/259/2014/
nhess-14-259-2014-supplement.pdf.
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