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Abstract. Predictive spatial modelling is an important task in differed, on average, by 7 to 23 percentage points. In view of
natural hazard assessment and regionalisation of geomorphtbese results, we argue that researchers applying model se-
processes or landforms. Logistic regression is a multivariatdection should explore the behaviour of the model selection
statistical approach frequently used in predictive modelling;for different sample sizes, and that consensus models created
it can be conducted stepwise in order to select from a numfrom a number of random samples should be given prefer-
ber of candidate independent variables those that lead to thence over models relying on a single sample.

best model. In our case study on a debris flow susceptibil-

ity model, we investigate the sensitivity of model selection

and quality to different sample sizes in light of the following

problem: on the one hand, a sample has to be large enough fb  Introduction

cover the variability of geofactors within the study area, and

to yield stable and reproducible results; on the other hand, th&patial modelling, i.e. finding and applying a model of the
sample must not be too large, because a large sample is |ike|§,patial distribution of some phenomenon, can be used for two
to violate the assumption of independent observations due t§lightly different purposes: first for regionalisation, i.e. the
spatial autocorrelation. Using stepwise model selection withtransfer of findings from the surveyed area to some larger re-
1000 random samples for a number of sample sizes betwee@ion. In geomorphology, the methodological framework for
n =50 andn = 5000, we investigate the inclusion and exclu- regionalising the occurrence of a process or a landform (that
sion of geofactors and the diversity of the resulting models ads associated with the activity of geomorphic processes) is
a function of sample size; the multiplicity of different mod- termed “predictive geomorphological mappingupto and

els is assessed using numerical indices borrowed from inHjort, 2003. It can be helpful in reducing time, cost and,
formation theory and biodiversity research. Model diversity {0 some degree, subjectivity associated with area-wide ge-
decreases with increasing sample size and reaches eitheroforphological mappingvan Asselen and Seijmonsbergen
local minimum or a plateau; even larger sample sizes do no£008. Second, models are applied to identify areas where
further reduce it, and they approach the upper limit of samplehe phenomenon might occur in the future, even or espe-
size given, in this study, by the autocorrelation range of thecially where there is no evidence of recent activity. The (spa-
spatial data sets. In this way, an optimised sample size can biéal) probability of occurrence of an event forms an important
derived from an exploratory analysis. Model uncertainty duefactor of the hazard term in quantitative risk assessment, al-
to sampling and model selection, and its predictive ability, though for a complete formulation one also needs to consider
are explored statistically and spatially through the examplethe temporal probability and the magnitude—frequency rela-
of 100 models estimated in one study area and validated in §0nship of eventsGuzzetti et al.20063. However, spatial
neighbouring area: depending on the study area and on sani?0delling includes some temporal aspects as well. Specifi-

ple size, the predicted probabilities for debris flow releaseCally for landslides, the most important underlying assump-
tions (seePike et al, 2003 for more) are (i) that landslides

Published by Copernicus Publications on behalf of the European Geosciences Union.



260 T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model

can occur and/or have occurred in the larger area wherever The choice of predictor variables will understandably de-
the conditions are equal or similar to those in the surveyedpend on the sampleGuns and Vanackef012, and it is
area and (ii) that future events will take place under condi-also clear that the aim of every susceptibility model should
tions the same as or similar to those in the past (eapbri  be a reliable and reproducible prediction. This prediction
et al, 2003. should not depend too much on the sample that is taken in
In this study, we apply the method of multivariate logis- order to select the variables and estimate the model param-
tic regression to the identification of potential debris flow eters. Several previous studies do not involve sampling at
initiation sites in a high mountain catchment; the spatialall (e.g. Ohlmacher and Davj2003 Ruette et al.2011);
unit is the raster cell (as opposed to e.g. slope units; seee. they use all available data for estimating the model pa-
Van Den Eeckhaut et al2009. Together with discriminant rameters. The majority of studies use only one single sample
analysis (e.gBaeza and Coromina2001), soft comput-  (e.g.Atkinson et al, 1998 Van Den Eeckhaut et al2006
ing techniques — such as “weights of evidencBbifham-  Meusburger and Alewell2009, the size of which usually
Carter 1994 Neuhauser and Terhoy2006 or “certainty  depends on the number or size of landslide initiation zones
factor” (e.g.Binaghi et al, 1998 — and artificial neural (see Sectl.l). Recognising the dependence of model results
networks (e.glLee et al, 2003 Ermini et al, 2005 Liu on the sampleBrenning (2005 takes 50 samples to com-
et al, 2000, logistic regression belongs to the most fre- pare error rates across different sample sizes and statistical
quently chosen approaches to spatial modelling of land-methodsBeguerig2006 andGuns and Vanack€R012 ap-
slides @Atkinson et al, 1998 Ohlmacher and Davj2003 ply 50-fold replication in order to estimate the robustness of
Begueria and Lorent2003 Brenning 2005 Ayalew and  the modelling result with respect to sampling, arah Den
Yamagishj 2005 Begueria2006 Van Den Eeckhaut et al.  Eeckhaut et al(2010 calculate an ensemble of 25 mod-
2008 Meusburger and Alewell2009 Van Den Eeckhaut els from different samples of their datdjort and Marmion
et al, 201Q Atkinson and Massar2011 Ruette et al.201%; (2008 conduct repeat sampling to explore the influence of
Guns and Vanacke2012. Recently, some published studies sample size on the predictive power of (among others) multi-
dealt specifically with debris flow susceptibility models on ple logistic regression models for predictive geomorphologi-
the regional scale; for the identification of potential releasecal mapping.
areas, a range of different approaches has been used, includ-The present study has two main foci that will be devel-
ing heuristic Horton et al, 2008 Kappes et a]2011; Fischer  oped in detail in the following subsections. It is not the aim
et al, 2012 and statistical ones¥eckmann and Bech2009 of our study to find out the best performing method for a
Blahut et al, 20103 b). The so-delineated release areas candebris flow susceptibility model (comparative studies of pre-
be used as starting points for models that predict the pathdictive models were carried out, for example, Bsenning
ways, lateral extent, runout length and other relevant proper2005 Marmion et al, 2008 Carrara et aJ.2008 Vorpahl
ties of debris flows (e.gBlahut et al, 2010h Kappes et aJ. et al, 2012; we deliberately chose logistic regression for
2017, which is important for hazard assessment and hasts widespread use, and for the relevant assumption of sam-
also been used in geomorphological applications, for example independence which we found to be frequently neglected
ple research on sediment cascad&$chmann et al.2009 in previous studies. First, we explore the sensitivity of step-
Heckmann and Schwangha?013. wise model selection to sample size. Sectidnksand 1.2
In order to use a model for prediction, a sample has to bewill explain why the sample size must neither be too small
drawn, and the model parameters of the population are estiror too large. In this context, the main aim of the study is
mated based on that sample. Sampling is essential, because investigate if an “optimal” sampling size can be found
event and non-event units show spatial autocorrelation (seas a compromise between samples too small and too large.
Sect.1.2), and dependent data lead too easily to the rejectiorSecond, we quantify the uncertainty inherent in a stepwise
of null hypotheses and the incorrect declaration of paramemodelling approach, with respect to (i) the selection of ge-
ters as significant,egendrg(1993 explains this for ecolog- ofactors, (i) model parameters, and (iii) the spatial pattern
ical models (see alsdan Den Eeckhaut et a2006§. Using of uncertainty in the resulting susceptibility map. This study
a stepwise approach, the predictor variables for an effectivaim will be developed in Sect..3
yet parsimonious model are selected from a set of candidate
geofactors (SecB.2.9. Brenning(2005 found that logistic 1.1 Constraints on sample size 1: why the sample must
regression with stepwise variable selection yielded the low- not be too small
est error rates in his comparison of different statistical meth-
ods. Logistic regression was also the best single method ifn inferential statistics, confidence intervals are calculated
the comparative study biRossi et al(2010, and exhibited for population parameters based on a sample; the width of
the highest area under the curve (AUC) for “fine slope units” the former depends, besides the desired confidence level, on
(second rank in overall comparison)@arrara et al(2008), the sample size. Small samples result in large standard er-
a study specifically referring to debris flows. rors and wide confidence intervals for the population param-
eters. In the case of regression parameters, small samples
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cause the estimation to be uncertain, and there is a higheand Seijmonsberge006 Hjort and Marmion2008. How-

risk of coefficients being insignificant when the respective ever, in contrast to the examples from political and ecolog-
confidence interval includes zero. With respect to replicateical science, many if not most variables in predictive geo-
sampling and model selection, it is expected that the divermorphological mapping are easily derived from digital ele-
sity of models (and hence the dependence of the models owation models and remote sensing data; both are available
the sample) will be large in this case. globally, with ever-increasing accuracy and resolution. This

Moreover, in a large study area, a small sample is unlikelydoes not change the effort required for mapping the target
to cover the variability of geofactors, especially if several of phenomenon (“events”), but the motivation for limiting sam-
them are part of the model. Here, a larger sample would inple size of non-events appears to be quite different, as it does
clude more information on the study area and would possiblynot so much refer to the effort of data acquisition (quantity
provide a better model. There are rules of thumb that estimatand quality). In order to limit the sample size and to mitigate
the minimum sample size for a regression analysis on the bathe rare-events issue (see below), the literature suggests dif-
sis of a constant (e.gx 50), of the ratio of observations and ferent ratios of event: non-event sample sizes, mostly with-
predictor variables, or of a combination of the latter; suchout justifying the particular choice of this ratio. Instead of
rules have been explored in light of significance, power andmerely adopting one of these suggestions (which generally
effect size, e.g. bsreen(1991), who found “some support” range from 1:1 to 1:10), our paper aims at an empirical
for the rule of thumbnmin > 50+ 8m, wherenmin is the min- analysis of sample dependence and performance of the sus-
imum sample size and is the number of predictor variables. ceptibility model as a function of sample size.

In this study, when we speak of sample size, we always Other reasons for restricting sample size are overparame-
address a sample of “non-events”, i.e. a sample of raster cellgerisation and overfitting of the modedHjort and Marmion
without debris flow initiation. If a random sample referred to 2008 and references therein). Increasing sample sizes causes
all raster cells, including event and non-event cells, the numstandard errors and confidence intervals in parameter esti-
ber of event cells in the sample would certainly be smallermation to decrease. In a significance-based stepwise model
than in the original inventory. This would cause a loss of in- selection, very large samples are expected to facilitate the
formation particularly for those cells that represent the targetinclusion of more and more variables (risk of overparam-
of the modelling exercise; therefore, all initiation areas will eterisation). Such inclusion of more information does not
be represented in the models and only the size of the nonnecessarily lead to better model performarg@eckwell and
event sample is varied in our investigation. Besides the nonTownsend Petersq2002 describes “plateaus” wherein new
event sample size, the relative sample sigzg(i.e. the areal data add little to model performance. In some cases, inclu-
extent of the total sample divided by the size of the studysion of more data even causes worse performance, because a
area) will be reported. model fit to a very specific set of information may perform

poorly on new data (risk of overfitting; se&tockwell and
1.2 Constraints on sample size 2: why the sample must Townsend Petersp2002 and references thereirgrenning
not be too large (2005, however, states that overfitting is “not a serious prob-
lem for logistic regression”, contrary to machine-learning
While it is intuitive that larger samples contain more infor- methods (cfPetschko et 812014 and references therein).
mation that can be used by the model, and the model might The most serious reason for limiting the sample size is
be better, there are several reasons why the sample size muspatial autocorrelation. Logistic regression generally requires
not be too large either. few assumptions to be met; the most important are (i) the

King and Zendg2001) argue that the non-event sample size independence of observations and (ii) uncorrelated indepen-
has to be kept as small as possible because of the dispralent variables. While violations of the second assumption
portionate cost and effort of acquiring data for many vari- can be avoided by testing for multicollinearity and exclud-
ables and observations that are not related to the target phéag variables (see Se@.2.1), the first assumption proves to
nomenon (event). Like in political science, the acquisition be critical when dealing with spatial data. Geofactors tend to
of observations is costly in ecology (with the application of have very similar values in a close neighbourhood, a property
regression models to the spatial prediction of species districalled spatial autocorrelation. If several observations from
bution). In this context, the complexity of the investigated nearby sites are included in a model, the independence as-
systems is reflected in large numbers of predictors; moresumption will not hold. In the case of the generalised lin-
over, the logistic difficulty of mapping the presence or ab- ear modelling approach adopted in this study, the maximum
sence of a species in large and remote areas should not bi&elihood method that is used to estimate the model pa-
underestimated (see e$tockwell and Townsend Peterson rameters strictly requires the observations to be independent
2002. An important justification for predictive geomorpho- (e.g.Hosmer and Lemeshqw2000. Atkinson and Massari
logical mapping lLuoto and Hjorf 2005 is that area-wide (2011) explain that (spatial) autocorrelation of the geofac-
field mapping is time-consuming, difficult in remote or inac- tors causes the model residuals to be spatially autocorre-
cessible areas, and may suffer from subjectivign(Asselen lated (which is not acceptable as model residuals have to
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be uncorrelated), and that this may lead to “incoherent sigthe model result that discriminates between event and non-
nificance estimates for the parameters” (see Blismning event, equals 0.5King and Zeng(2001) explain that the
2009. Consequently, such incoherent estimates compromiseumber of non-events should be typically 2-5 times higher
both significance-based model selection and the assessmetiian that of events. In this case, the cutoff needed to trans-
of parameter importance that is based on the latter. late the model result to a classification (event or non-event)
In previous studies applying logistic regression to land-would need to be adjusted accordingly. Because the ratio
slide susceptibility analysis, the problem of stochastically of event: non-event spatial units (not only raster cells but
dependent samples has frequently been ignored (e.g. by usdso lumped spatial unitdBegueria and Lorent@003 usu-
ing all available data instead of a sample; see above). Irally is by far smaller, a bias towards small probabilities
some instances, the risk of autocorrelation is dealt with forarisest This problem has been addressed by the develop-
events only, as geofactors tend to be homogeneous (anahent of “rare events logistic regressiorKiQg and Zeng
consequently strongly autocorrelated) on landslide terrairc001). Besides endogenous stratified sampling (a sampling
(Atkinson and Massari2011). However, the independence strategy that includes all events plus a random sample of
assumption refers to all observations of the dependent varinon-events), these authors propose corrections for the inter-
able Hosmer and Lemeshq®00Q Van Den Eeckhautetal. cept and for the estimated probabilities. Rare-events logistic
2006, in our case to the occurrence and non-occurrence ofegression was applied in landslide susceptibility modelling
debris flow initiation. As the geofactors used as independenby Van Den Eeckhaut et a{200§ and Guns and Vanacker
variables are supposed to be associated with the depende(®012. In many studies, endogenous stratified sampling has
variable, we argue that the degree of autocorrelation of thesbeen adopted, and the authors chose event: non-event ratios
geofactors should be accounted for in the sampling proceef 1:1 (e.g.Brenning 2005 Meusburger and Alewel2009
dure. In order to mitigate the issue of spatial autocorrela-Van Den Eeckhaut et aR010, 1: 2 Wang and Sassa005,
tion, some authors choose one raster cell for each landslidé : 5 (Van Den Eeckhaut et aR006), or 1: 10 Begueria and
source area on a systematic basigkinson et al.(1998 and Lorente 2003 Begueria2006 Guns and Vanacke012.
Van Den Eeckhaut et a(2006, for example, use the cen- Finally, Atkinson et al.(1998, who use only the central cell
tre of each landslide source area. Similakfgnwalleghem  of each landslide as the event sample, sample as many non-
et al. (2008 use the centre of each topographic depressiongvent cells as required in order to attain the ratio of landslide
and the centre of each gully in their study predicting theto non-landslide area.
spatial distribution of closed depressions and gullies under In our study, we adopt stratified random sampling by a ran-
forest. Different authors draw samples of source areas omlom sample of one cell for each debris flow initiation zone,
different grounds; besides spatial autocorrelatidtkinson  and a random sample of non-event cells. The size of the latter
et al. (1998 explain their approach with the aim of prevent- is then varied in order to explore the effect on stepwise model
ing model bias towards larger landslides — in a full sample ofselection; hence, we do not pre-select an event : non-event ra-
events, more data would enter the model from larger sourceio. Rare-event correction according€ong and Zeng2001)
areas than from smaller onéBegueria and Lorent2003 is not applied.
use one raster cell for each debris flow initiation zone be-
cause the raster size (10m) of the data in their study corl.3 Uncertainty: model selection, parameters, spatial
responds to the size of a typical debris flow scar. All ap- patterns
proaches have in common that they prevent a contiguous (and

hence potentially strongly spatially autocorrelated) sampIeThe result of the investigations motivated in the previous sub-

of hundreds of landslide initiation cells from entering the SECtioNs is a suitable sample size reaching a compromise be-
model. Spatial autocorrelation has also been accounted fdiWeen sample sizes too small and too large. The aims of this
in model validation Brenning 2005. However, asitkinson procedure can be summarised as follows: first, a stable model
and Massar{2011) point out, autocorrelation in the geofac- selection that is a low diversity of geofactors remaining in the

tors is frequently not adequately accounted for in the regres/€Peat stepwise selection; second, the independence of the
sion model. While the latter study proposes an autologisticc@MPple (i.e. avoiding spatial autocorrelation). Even with an
model (see alsBrenning 2005, we will try to warrant inde- optimised sample size in that respect, the selection of predic-

pendence of observations through the choice of an adequaf@r variables will still depend on the specific sample. As dif-
sampling size (see Se@®.3.2: as the number of sampled ferent predictor variables, with their distinct spatial structure,

raster cells in a finite study area increases, the average didvill & part of the model when the procedure is repeated with
tance between those cells will decrease, and finally the in@ different sample, the spatial pattern of the resulting suscep-

dependence assumption will no longer hold given the spatiapbi"ty map will also differ from_time to time; the predictive
autocorrelation of the geofactors. power of the model might be different as well.

Normally, a logistic regression model is fit to a sam-
ple where the ratio of event:non-event cases is approxi- lin our study areas, the ratio of release area cells to the total
mately 1:1. Then, the so-called cutoff, i.e. the value of study areais 1:200 and 1:500, respectively.
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Fig. 1. Overview of the study areas.

The second main goal of this study is to elucidate three2 Study area
aspects of this uncertainty: (i) geofactors and how often they
are included after stepwise selection, (ii) the range of model
parameters estimated for the replications, and (iii) the spaThis study has been conducted in two adjacent subcatch-
tial distribution of differences in the estimated susceptibil- ments of the Horlachtal, a tributary of the Oetztal, located
ity. This is important because, in the majority of studies in the Austrian Central Alps (Stubai Alps). The two val-
employing sampling for model calculation, only one sam- leys, the Zwieselbachtal (ZBT, ca. 19 kjand the Larstigtal
ple is taken, and no account is given of uncertainty beyondLT, ca. 7 knf), strike approximately S-N and have a typical
the standard errors of the parameters. On the other handfough cross-section. Due to their adjacency, they are simi-
most studies involving repeat sampling (Bgenning et al.  lar in their natural characteristics. Figuteshows the loca-
2005 Begueria200§ Van Den Eeckhaut et a01Q Guns  tion and an overview of the catchments. The most important
and Vanacker2012 concentrate on the set of geofactors, Properties of the study areas are listed in Tabléhe Hor-
the parameters and the predictive ability of the models, andachtal and its subcatchments are described in more detail by
do not investigate how this affects the spatial distribution Rieger(1999 andGeitner(1999.
of susceptibility. Only rarely has the spatial distribution of ~ The lithology of both valleys is dominated by gneiss and
model uncertainty been addressed using multiple replicatiorlica schist; metamorphic granites can also be found. Pleis-

approaches (e.g5uzzetti et al. 2006k Luoto et al, 201Q tocene glaciations have shaped the valleys and are evidenced
Petschko et al2014. by glacial landforms (e.g. moraines, cirques, roches mou-

tonnées). Glacial cirques are concentrated on the east-facing

www.nat-hazards-earth-syst-sci.net/14/259/2014/ Nat. Hazards Earth Syst. Sci., 14, 2588, 2014



264 T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model

Table 1.Selected properties of the study areas. Vegetation primarily consists of dwarf shrub heath, alpine
meadows and pioneer vegetation. At elevations-@300—

Property LT ZBT 2500 m, bedrock and scree are predominant. In general, more
Arealkm?] 704 18.77 than 60 % of the study area are completely lacking vegetation
Elevation[m a.s.] 1770-3287  1903-3188 cover.
Slope, meatt- std.dev[°] 35.6+14.31 31.6-13.78
Slope, rangé¢®] 0.01-82.05 0.01-83.12
Roughness, meahstd. dev. 0.130.12 0.114+-0.11
Roughness, range 0-0.90 0-0.86 3 Data and methods
Inventory[no. of eventp 64 81 3.1 Dataand data preparation
Mapped release ar¢m2] 33400 37875
Land cover%] 3.1.1 Debris flow inventory
Glacier 5.8 2.4
Bedrock 46.6 29.1 Like every statistical approach, logistic regression requires
Unvegetated scree 256 383 aninventory of targets (here: a map of debris flow initiation
Patchy vegetation 10.9 59 areas) for the dependent variable, and maps of (potentially)
Alpine meadows 1.9 141 . . P . ’ . p P y
Dwarf shrub heath 56 9.9 Influencing factors as independent variables, hereafter re-
Dwarf mountain pineRinus mugd - 0.2 ferred to as geofactors. The dependent variable (here: debris
Woodland 3.6 0.1 flow initiation) is observed as a binary variable (1: presence;

0: absence). The debris flows inventory of the Zwieselbach-
tal and Larstigtal catchment was compiled using orthophoto
valley sides, whereas the west-facing valley sides are marke#@nd field mapsThiel, 2013, updating an earlier inventory
by extensive scree slopes. Currently, the two catchments ar@r which debris flows had been surveyed using a total sta-
formed primarily by fluvial and gravitational processes suchtion (Rieger 1999. It contains 81 events within the Zwiesel-
as rock falls and debris flows. Sediment transfer throughbachtal and 64 events within the Larstigtal. Debris flows ar-
the catchments is limited as the valleys consist of largelyeas are represented by polygon features (which had to be
disconnected subsystems (at least with respect to the transonverted to raster format for the pixel-based approach of
port of coarse sediment; séteckmann and Schwanghart this study), and divided into three zones related to geomor-
2013 separated by alluvial reaches of the Zwieselbach anddhic activity: erosion (indicated by incision), transition (in-
Larstig creeks, respectively. These reaches are located intlicated by a channelised reach accompanied by levées) and
mediately upstream of the terminal moraines of the Little Icethe depositional lobe(s). Conceptually, as the susceptibility
Age and of the particularly well-preserved terminal morainesmap specifically aims at predicting potential initiation zones,
of the Egesen stadial (corresponding to the Younger Dryasthe event samples for the regression models should be taken
ca. 11 to 12 ka BP, recent datings for the European Alps ardrom the erosional zones, preferably from the uppermost part
listed bylvy-Ochs et al.2008. as the latter represents the area where events typically started
Debris flows in both study areas can be termed slope{and probably will also initiate in the future). The strategy of
type debris flows of type 2 according mmermann et al.  using only the detachment zone of a mass movement for sus-
(1997). Events of this type initiate on scree slopes follow- ceptibility modelling has been advocated by several workers
ing failure that is caused by positive pore water pressure ir(see for exampl&an Den Eeckhaut et a006 Heckmann
the course of intense rainfall, and by progressive erosionand Becht2009; Magliulo et al.(2008, however, report that
This is often the case at the base of rock walls where debrighis restriction does not automatically lead to better results.
flow formation is triggered by the so-called “firehose effect” The initial idea of manually setting one raster cell for each
(Johnson and Rodind 984 which describes concentrated debris flow initiation zone was discarded, because placing
flux of water out of the rock face onto the talus. Slope-typethis raster cell in the channelised part would introduce a bias
debris flows can be regarded as a transport-limited procesgpwards larger catchment areas and concave plan curvature.
thus their frequency is primarily controlled by hydroclimatic Therefore, a GIS procedure was used to select, for each de-
events Bovis and Jakop1999. In the study area, rain in- bris flow erosional zone, the area that is higher than the P75
tensities of around 20 mm within half an hour have been re-percentile of elevation, i.e. the uppermost 25%. The raster
ported to trigger debris flowBecht 1995 Rieger 1999, cells belonging to the initiation zone of each debris flows are
while Zimmermann et al(1997 suggest regional intensity- coded with an ID, allowing for a stratified random sampling
duration thresholds of about 11 mm per hour. The threshold i®f one cell per debris flow event for each regression model.
comparatively low, which has been attributed to the low mean Guzzetti et al(2012 discuss the importance of landslide

annual precipitationagg and Bech2000) of ca. 1000mm  inventory maps and report on advantages, limitations and
(Becht 1995. new methodological developments. With respect to suscep-

tibility mapping, the quality of the underlying inventory is a
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limiting factor for the reliability of predictive models (e.g. represented by one single geofactor (roughness class). This
Ardizzone et al. 2002. While fresh landslides are read- geofactor is derived from a cluster analysis of slope (DEM5;
ily detected, post-event modifications such as human impacsee below) and roughness. Roughness was calculated as the
(e.g. ploughing), land cover change, erosion and landslidévector ruggedness measureSgppington et al.2007) on
reactivation etc. can hamper the identification of landslidesthe DEM21 within a moving window of radius 5m, and the
and thus jeopardise the completeness of the inven®ell (  result was resampled to the same resolution and extent as
et al, 2012 e.g., analyse persistence and change of landthe DEMS5 using the nearest-neighbour approach. The com-
slide morphology depending on age). For debris flows in ourparatively small radius was chosen to capture the rough-
study area, however, we argue that the risk of false neganess of surfaces rather than the roughness induced by land-
tives, i.e. the risk of an incomplete inventory due to over- forms, e.g. by gullies. The cluster analysis yields two clus-
looked debris flow scars, is small: the activity of debris flows ters closely representing (i) bedrock and (ii) areas covered by
tends to persist once it has started, because an incision esediments. For the Zwieselbachtal, this unsupervised classi-
hances and sustains the convergence of surface runoff. Duication could be validated with a very detailed land cover
to the transport-limited conditions of debris flow initiation in map created from orthophoto imagery; thecoefficient of

our study area, this is supposed to hold for a long time, unthe mapped vs. the DEM-based classification was 0.78. The
til either sediment storage is depleted or slope gradient haseason for the satisfactory fit is the characteristic fine-scale
become too low. Conversely, debris flow deposits are fre-roughness$ of bedrock areas that can easily be discerned on
quently modified by renewed activity, and less pronounceda shaded relief map, together with the existence of a sharp
depositional lobes can lose contrast on aerial photos due tthreshold of slope (resembling the angle of internal friction)
progressive weathering (see ddgckmann et al2008. Hu- above which an area cannot be covered by unconsolidated
man activities that could potentially modify the appearancescree. Leaving out the information on land cover/vegetation
of debris flow scars are completely absent in the relevant reis not expected to be decisive in our case study, because the

gions of our study area. study areas are only sparsely covered with vegetation, mostly
grass, and forest is widely missing, at least in the areas rele-
3.1.2 Digital terrain model vant for debris flow genesis.

Relief parametersvere derived from the DEMS5 using the

Before model selection (see SeB12.2), geofactors concep- algorithm of Zevenbergen and Thorr(@987 implemented
tually related to debris flow initiation have been pre-selected.in SAGA GIS (vww.saga-gis.org As slope stability, espe-
Debris flow initiation is related to (i) the availability of mo- cially for scree, is a function ddlope this parameter is ex-
bile debris, (ii) steep slopes, and (iii) large amounts of wa-pected to be very important for debris flow initiation. As both
ter, typically provided by intense rainfall. Not all influenc- valley axes have a north to south orientation (resulting in
ing factors in these three groups (material, relief, water) cara strong bias towards east- and west-facing slopes), and as
be directly measured or calculated; many of them, howeverthe physical role ofspectcannot be described unambigu-
can be derived from a DEM, either directly or as proxies. ously, it was not included in the analysBlan and profile
Although geological and land cover maps were available,curvatureswere derived with the same algorithm as slope,
we tried to use only geofactors that can be derived frombut from a DEM5 smoothed with a moving window mean
high-quality digital elevation models (DEMS) in order to test filter with a radius of 10 m. This was deemed necessary be-
the feasibility of DEM-based modelling. Such high-quality cause of the extremely noisy character of fine-scale curva-
DEMs are increasingly available for large parts of the world. ture. Medium-scale curvature based on a DEM that retains

For the derivation of several topographical parametersdetails on the typical spatial scale of channels within the rock
used as geofactors for the regression models, we used a rasfaces and talus cones (that are both prone to and indicative of
DEM with a resolution of 1 m that was interpolated from debris flow activity) is expected to be a better proxy variable
an airborne lidar survey in the year 2006. For most applicafor convergent flow of water (plan curvature) and changes in
tions, and for the modelling itself, the original DEM (DEM1) flow velocity (profile curvature).
was resampled to a raster resolution of 5m (DEM5). Apart Relief parameters related to the local catchment area are
from saving memory and computing time, the resamplingderived from the DEM5 as proxies for trevailability of
smoothes the DEM so that very fine scale topography is navater for debris flow initiation. We calculated thepecific
longer contained in the resulting DEM5. This effect is de- catchment aregSCA) as the local flow accumulation per
sired, as debris flow initiation is not expected to result from unit contour length using a multiple-flow-direction algorithm
microscale topography. (Freeman 1991). Heavy rainfall on steep bedrock slopes

Information onavailable sedimenis usually provided by is expected to be converted almost entirely to Hortonian
land cover and/or geological maps. The former mainly con-
tain information on vegetation that might in some cases sta-  2as the roughness is derived from the DEM1, the cluster analysis
bilise soils and sediments. The latter focus on different typesan make use of sub-grid-scale roughness for the classification of
of bedrock. In this study, the “available sediment” group is DEMS5 raster cells
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overland flow; on talus slopes bordering steep rock faces3.2.1 Multicollinearity analysis

this runoff can cause the initiation of debris flows, especially

where it enters the talus in a channelised manner (“firehos®esides sample independence, an important prerequisite for
effect”; see e.gJohnson and Rodin&984 Coe et al.2008. the application of GLM is the absence wiulticollinearity,
However, if the sediment is coarse grained, large amounts of.e. that the predictor variables are not correlated with each
water are expected to infiltrate; this leads to a decrease ofther. In order to test for multicollinearity, we applied the
hydrological connectivity, and at least to an attenuation ofvif function of the car packageéNeisberg and Fgx2010

the increase of runoff with increasing catchment size. Thereto a full model (i.e. including all geofactors described in
fore, we re-calculated the catchment area, accumulating onlgect. 3.1), yielding the variance inflation factors (VIF) of
bedrock cells in the roughness class map instead of evergach geofactor. Although no binding rules exist for their in-
DEMS5 raster cell. The modified SCA map hence refers toterpretation, several authors who conduct a multicollinearity
the size of the bedrock catchment draining into each rasteanalysis apply a very strict threshold of 2, above which vari-

cell. ables are considered multicollinear and are excluded from
o the model (e.gVan Den Eeckhaut et al2006 2010 Guns
3.2 The susceptibility model and Vanacker2012. However, the most common rule of

o o . thumb is reported to be the “rule of 10” (using VIF=10 as
Multivariate logistic regres_s|onl—(osmer _and _Lemeshow a threshold for severe multicollinearity), and the use of strict
2000 forms part of the family of generalised linear models rasholds of VIF appears to be questionablivfien, 2007).
(GLMs); in contrast to ordinary linear models, a function of the analysis of VIFs yields values of 1.18 and 1.47 for the
the expected value of a response variable is modelled by &y curvature variables, and 1.77 for SCA. Roughness and
linear combination of continuous or discrete predictor vari- slope have VIFs of 2.06 and 2.76, respectively, which is only

ables. In logistic regression, the response variable is binarsé"ghﬂy above the threshold used in other studies, so we de-
(Bernoulli distribution); here, it takes the values 0 (no debris ¢jqeqd to keep all candidate variables.

flow initiation) and 1 (debris flow initiation). The response
function is the logit transform of the probability € 10, 1[

. 3.2.2 Stepwise selection of predictor variables
that the response variable takes the value 1:

p An important task in susceptibility modelling is model build-
f(p) = logit(p) = In Q) ing . : .
p gip 1-p) ing, i.e. theselection of the independent variabl@gofac-
tors). In Sect3.1, several candidate variables are described
Since the logit is within the interval — oo, oo[, it can  that conceptually explain the spatial distribution of debris
be modelled as a linear combination of predictor variablesflow initiation. Model building is achieved in this study

X1... Xn: through an automatic stepwise variable selection (function
stepAlC; Venables and Ripley2002. Starting from a full
f(p) = pPo+ Prx1+ Bax2+ ... + Bpxn, (2)  model, i.e. a model including all variables, variables are re-

. ) moved (or re-included) in order to minimise the Akaike in-
where fo is the mtercept_ ang "'_/3” are th_e mode_l P~ formation criterion (AIC;Akaike, 1973 which is calculated
rameters. These are estimated using a maximum IIkeIIhOOq‘rom the likelihood function of the model and the number

approach. , ) of predictor variables. The AIC penalises for the number of
. The.spat|al data} are generatgd and managed in SAG’.A‘ GI%)redictor variables; i.e. it increases with the number of vari-
including the derivation of relief parameters (Sesfl.2); ables, and it decreases with a larger likelihood function indi-

for the statistical analysis, they can be directly read fromanq 4 petter model. Hence, although there is no theoretical
the SAGA native data format using the RSAGA IOackagejus;tiﬁcation of the AIC Gachs and Heddericl2006), this

(Brenning 2013 for the statigtigal software R,R( Devel- procedure is suitable in practice for selecting a parsimonious
opment Core TearR012). Logistic regression is then per- ,,qe| j e a best-fit model using as few variables as possible
formed using the glm and stepAIC functions of the MASS g anning 2005. The results of stepwise logistic regression
package Venables and Ripley2003). For reasons explained a6 often been used to rank the controlling factors by im-
in the Introduction, we estimate the model parameters forportance (e.gvan Den Eeckhaut et a200§. While we as-

a sample (the size Of, Wh'Ch,V‘_’e, V‘,”” try to optimise in this g, 6 that the methodological framework of our study would
study) of event (debris flow initiation) and non-event cells; 55, pe suitable for the assessment of sample size effects in

sampling is glso performed in R. The resulting sgsceptibillitysuch investigationsGuns and VanackeR012 e.g., suggest
maps are written back to SAGA data format for visualisation , «op st detection of controlling factors” based on repeated
and further spatial analysis. They contain the probability thatsampling and stepwise model selection), the latter are not the
the dependent variable takes the value 1, i.e. that debris flow; - o¢ our present study.

initiation will take or has taken place. Stepwise procedures can be applied as a backward selec-

tion, as in this study (and e.g. iBrenning 2005 Ruette
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et al, 2011, but also as a forward selectioBdgueria  of geofactors in the study area; when the sample size ap-
2008 Meusburger and AlewelR009 Atkinson and Massari  proaches the size of the study area, the variability of models
2011). Menard(2002 explains that backward selection is in will eventually decrease to zero. Such a behaviour is similar
some cases superior to the forward procedure. Note that the the dependence on sample size of the predictive power of
stepwise procedure used here an8ianning(2005 differs predictive geomorphological models that has been explored
from other studies where the decision of keeping or drop-by Hjort and Marmion(2008.

ping predictor variables is based on the significance of model We analyse model diversity by repeating the stepwise

improvement (e.gBegueria2006 Meusburger and Alewell  model selection with 1000 independent samples of a given
2009 Guns and Vanackef012, not on an information cri- sample size. Such a high number of replications is novel

terion. Recently, alternative approaches for model selectiortompared to existing studies that employ multiple sam-

have been proposed (e@alcagno and Mazancou010); ples; we chose the number of 1000 because we noticed in

they will be tested in future research. first experiments that the model diversity assessment was
too unstable with a lower number of replications (e.g. be-

3.2.3 Model validation tween 25 and 50 in the studiesBfenning 2005 Begueria

. , 2006 Guns and Vanacke?012. Sample size varies between
It has been stressed that a modelling study without propey, — 54 and; = 5000 non-event raster cells; together with the

validation is uselessdhung and Fabbr2003. Many stud-  gample ofs — 81 initiation areas in the ZBT area, the sam-

ies in susceptibility modelling use spatial or temporal Cross-pjeg cover between 0.02 and 0.68 % of the study area (ZBT).
validation (space or time partition; cChung and Fabbri  gpecifically, a stratified sampling scheme has been adopted:
2003 within the same study area; i.e. the data are split éi-ong gingle raster cell is randomly selected from each debris
ther systematically or randomly into training and test datagq,y initiation zone, and the sample size of non-event cells
sets according to their location or time of occurrer€eung (from the area outside of the mapped initiation zones) is var-
and Fabbri2003 Begueria2009. Here, we estimate model joq The choice of non-event sample sizes in relation to event
parameters based on samples drawn from the Zwieselbachtal, 1,56 size ranges from ca. 1: 1.6 to ca. 60 : 1, thus including
patchmept, and apply the resulting rr_10.dels to the neighboury, recommendations dfing and Zeng(2001) and the al-

ing Larstigtal catchment. Hence, training and test areas argmatives chosen in landslide susceptibility studies, e.g. 5: 1
completely independent. For each model run, the predlctlvetVan Den Eeckhaut et al200§ or 10: 1 Begueria 2006
ability is evaluated using receiver operating curves (ROCs) Ol ,ns and Vanacke2012.

prediction-rate curves sen&thung and Fabbi2003, plot- For each of the 1000 samples, the geofactors that remain
ting true-posmve agam_st false-posmve_rates. The advantagg, the “pest” model (with respect to the AIC) after stepwise
of ROCs is that they yield a threshold-independent measurggection are saved in a table. Each geofactor is evaluated by
of predictive ability; in our case, we do not have to define a,, percentage of models which it was part of @fins and
threshold of modelled landslide probability below which we Vanacker 2019. The set of selected geofactors for one sam-
do not recog_ni_se sus_qeptibility. Ad_ditionally, asasingle Mea-ple defines a “model species” (if, for example, the geofac-
sure of predictive ability, the AUC is calculatedgsmer and  or54. g andD are selected from the candidate geofactars
Lemeshow200Q Begueria2009; this parameter fallsinthe 5 " £ the species of the resulting model is ABD). The
range [0.5, 1], where 0.5 is equivalent to random predictionierm model species was used in order to highlight the simi-

and 1 to a perfect prediction. larity of the proposed method for model diversity assessment
with investigations of biodiversity in ecology. Theoretically,
kmax= 2% — 1 different model species can exisgitandidate
cgeofactors are available for model selection, and if the result-
dng model has to contain at least one geofactor. The diversity
of the 1000 replicate models calculated for each sample size
is evaluated using three measures: (i) the nuntbef dif-

3.3 Exploring the effect of sample size

In the Introduction, we have argued why the sample siz
should be neither too small nor too large. Here, we describ
(i) how the effect of sample size on the diversity of models is
explored, and (ii) how we constrain the upper limit of sample

size. ferent model species (“species richness”); (ii) the Shannon
diversity indexH, also known as Shannon information en-
3.3.1 Sample size and model diversity tropy; and (iii) the Simpson indek.

The Shannon index was developed in information theory
For small sample sizes, the geofactor composition of the(Shannon1948 and has been widely applied in ecology as
resulting model depends extremely on the random samplean index measure of biodiversity (eagurran 2004). In
because small samples cannot sufficiently cover the divergeomorphology, it has been used to assess the uncertainty
sity of geofactors within the study area. We hypothesise thabf drainage routing and watershed delineatiSohwanghart
with increasing sample size the diversity of relevant modelsand Heckman2012. In our study, it is calculated as
(selected by the stepwise procedure) first decreases towards
a plateau that can be explained with the overall variability
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k Similarly, we estimate the range parameter of the variogram
H= - Z pi -In(pi), 3) of each geofactor to constrain the sample size: we argue that
i=1 the average distance between raster cells in the (non-event)

sample should not fall within the autocorrelation range(s) of
the geofactors included in the model in order to keep the non-
event sample as uncorrelated or independent as possible. As
the average distance implies that some points in the sample
will be closer neighbours, we concede that this strategy min-
imises spatial autocorrelation rather than preventing it.

Assuming a set of randomly distributed points (here: raster
cells), the average distanddo the nearest neighbour can be
estimated by Eq.5):

kn,-~(nl~—1) 1
D=-In) — 4 4= ’ 5
;N-(N—l) 2 /5 (5)

wherei=1 ... k represents théth of k different model
species, ang; is the probability of occurrence of thih
species, estimated by /N, the proportion of théth model
species found iV individual stepwise modelling runs.

The log-transformed Simpson indeRinpson 1949 has
been developed for measuring biodiversity; it is consid-
ered superior to théf as it is independent of sample size
(Magurran 2004. It is calculated as

wheren; is the absolute frequency of tlith model species (Clark and Evansl954) wherep is the density of the sam-
andN is the number of individual models (here: 1000). ple, i.e. the sample size divided by the study area (here:

H and D combine the number of different model species the number of raster cells within the study area multiplied
(species richness) and their relative frequency (relativeby 25n?, the area of each cell). For each study artas
“abundance”) in one single number: a large diversity asso-calculated as a function af and used to estimate the upper
ciated with a high species richnegsdifferent terms have boundary for the “suitable sample size”. Instead of using the
to be summed up foH and D, respectively) and/or an even highest autocorrelation range (i.e. that of the geofactor with
distribution of model species across the 1000 samples. Corthe most far-reaching spatial autocorrelation) as a crisp, ab-
versely, diversity is low when there is only a small number solute upper limit of sample size, we take into accaiit)
of different species, and/or one or few species strongly domas it progressively falls below the autocorrelation range of
inate. Shannon’s entropy has been interpreted in terms of thmore and more geofactors, and we regard the corresponding
“average surprise a probability distribution will evoke” (see n as progressively less acceptable. An upper limit is finally
e.g.Thomas 1981 p. 7). The result of a stepwise selection reached when the smallest autocorrelation range from the set
with a sample size for which low diversity (loW) has been  of geofactors is undercut.
measured is not expected to be surprising, because one or Figure 2 shows the empirical geofactor semivariograms
few species have a very high probability of occurrence. Weand the practical range parameter (i.e. the range where 95 %
hypothesise that the diversity of model species, and the deef the sill is reached) of the fitted variogram models. Depend-
gree of surprise with which we see one particular outcomeing on the geofactor, spherical and exponential models were
of the selection given the results of 1000 models, will re- used. It is obvious that some geofactors, e.g. slope, are auto-
flect the sample dependence of the stepwise selection. Thereorrelated on multiple scales. In these cases, the lower range
fore, we propose the “model diversity” as a measure of models used; however, it appears that a sample which is indepen-
quality in terms of reproducibility; similarlyPetschko et al.  dent with respect to all geofactors is not possible.

(2014 recently proposed a “thematic consistency” index that
assesses variable-selection frequencies in model replications4 Variability of model results

and is based on the Gini impurity index. i o , ) ) )
The investigations described in the previous sections have the

3.3.2 Sample size and spatial autocorrelation aim of quantifying and reducing the dependence of the re-
sults on the sample while maintaining sample independence.
In our study, the spatial autocorrelation of a data set is ex-Once a suitable sample size is estimated, we investigate the
plored with the empirical semivariogram, which is typically variability of model results — both quantitatively and with re-
used for geostatistical interpolation techniques such as Krigspect to its spatial distribution. In order to do so, we repeat
ing (Webster and Oliver2007). It is derived from point mea- 100 times the sampling, model selection, fitting and applica-
surements by evaluating the semivariance of values of a varition for the Zwieselbachtal area, creating a stack of 100 grid-
able (geofactor) for pairs of points separated by a specifided susceptibility maps of the whole study area. The median
distance. One important property of the semivariogram is theof 100 probabilities in each raster cell is taken as a consen-
range; points separated by a distance below this range are agus modelfarmion et al, 2009 and the final susceptibility
tocorrelatedBrenning(2005 uses the range of the empirical map. The interquantile range IQR9®&95 — po.os, Which
correlogram of the residuals of a logistic regression modelencompasses 90 % of the modelled susceptibility values as
(180m in his study) to constrain the minimum distance be-a non-parametric measure of dispersion, quantifies the un-
tween training and test data points in spatial cross-validationcertainty caused by sampling and stepwise model selection.
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Sistance [rll?o sizes (roughness starting from only ca. 15 % of the replica-
tions), the interaction term slope*SCA quickly attains 100 %
(i.e. all of the 1000 samples lead to models containing this
variable) even with small samples. Here, it is important to

mention that interaction terms may only be part of a model
As this measure is calculated for each raster cell, the respe f their marginals (here: slope and SCA) are also contained.

tive map can be used to visualise the spatial distribution of h|3 IIS the case,t'as ﬂ;e g|ve|n vgrlab_ll_(;s are cort1.ta|nefd m(?ll
model uncertainty (not with respect to the true probability, MOCEIS, Irespective of sample size. The proportion of mod-

but with respect to model variability). In addition, the distri- els containing the geofactor plan curvature is very low, start-
' jng with about 20% and only slightly increasing in larger

bution of the parameter coefficients of the 100 models, and

thei icti R AUC: _ samples. _ .
b eegigg?;;z(ljvzn?;v: ;l}(lsgdcs and AUC; see S&2.3 can If the “success” of a geofactor in the model selection pro-

cedure is a measure of its importance, then the most impor-
tant variables are slope, SCA, the interaction of slope and
SCA, and profile curvature. The importance of roughness and
plan curvature is low, but the number of models containing
4.1 Investigation of sample size effects roughness surpasses that of models containing plan curvature
even at sample sizes below 1000. These findings are consis-
Before we approach the question of an optimal range oftent with previous work on (slope-type) debris flow suscep-
sample sizes, we take a look at the results of model setibility: Heckmann and Bech2009 and Wichmann et al.
lection as a function of sample size. Specifically, F&g. (2009, for example, use slope, land cover, and a variable
shows, for each geofactor, the number of models that retainedalled the CIT indexNlontgomery and Foufoula-Georgipu
this geofactor after the AIC-based selection procedure. Thel993. The latter is calculated as the specific catchment area
six geofactors that were eligible for model selection weretimes the squared tangent of slope. The interaction term
slope, SCA, the interaction of the previous two factors (de-slope*SCA used in our study can be interpreted physically
noted “slope*SCA’ in Fig.3), the roughness category which (mathematically, it is the product of the two geofactors) as

50 100
distance [m]

Fig. 2. Empirical variograms of geofactors used in this study. Note
that slope is autocorrelated at different spatial scales.

4 Results and discussion
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the compound topographic index indicating stream power

(Moore et al, 1991); in this index, catchment area and slope o% é . |

serve as proxies for the abundance and energy of surfacey 8 - \

runoff. In comparing several models (discriminant analy- %%’ g Number of geofactors within |
sis and logistic regressiorQarrara et al(2008 observed ~ Z: © G thg"‘afolwgelr t';’" e |
that factors relating to slope gradient, land cover, availabil- § £ g _ \\
ity of detrital material, and active erosional processes best2 2

described debris flow initiation. The most frequent model
species in our study include geofactors that represent these
categories.

Figure4 evaluates the diversity of models selected by the
AIC-based procedure as a function of sample size. The diver-
sity is expressed as the number of model species (i.e. models
defined by a given combination of geofactors) in 1000 sam-
ples (centre panel), and is quantified using the Shannon anc . . . . . .
Simpson diversity measures (bottom panel). The number of = = 1 | o 200
model species declines exponentially to reach a stable min-=— l, (min S
imum of 8 species at a sample size/of 1000. Even for
the largest sample size in our analysiss6000), differences
between the 1000 samples result in as many as 8 different
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sizes firel = 0.05 %), the number of model species is higher, 0 1000 2000 3000 4000 5000
but the distribution of the 1000 models across this number of Sample size ]

species is more uneven — i.e. few species make up the lion's ) _ _ )
share of the selections — and the rest is represented only bfy9- 4- Mean distance between neighbouring sample points (top
a few cases. For larger sample sizes, model diversity slightlfanel)‘ number of model species in 1000 samples (center panel),
increases again and reaches a more or less stable value. Sa%?—d two r.nOdel diversity measures (bottom panel) as a function of

. sample size. Shades of grey denote the degree to which the raster
ple sizes much larger than.SOOG.)reﬁ > 0_'68 %, not shown) cells in a sample of size n lie, on average, within the autocorrela-
lead to a decrease of the diversity indices; when the samplgqn, range of geofactors. Red arrows indicate the sample sizes for

size approaches the size of the population (i.e. the complet@hich the Shannon and Simpson indices reach a local minimum,
study area), the stepwise procedure of course yields only ongespectively.

model species, and the diversity indices attain their absolute
minimum (0). The plateau of the diversity measures is also
reflected in the model composition shown in Fgywhere  the predictive power of different models estimated with dif-
all geofactors (except roughness) exhibit only slight changederent sample sizes, state that a “level of robust predictions”
with sample sizes larger than ca. 10@@(=0.15 %). is attained, with all statistical techniques, at a sample size of
We interpret the minimum of the diversity indices as a n =200.
minimum of the dependence of model selection on the sam- The local minima do not appear to be always present, de-
ple and therefore the corresponding sample size (300-35Q)ending on the choice of geofactors and the study area used
as a data-based recommendation for our case study. Suchfar model selection (not shown). However, there is always
strategy is, in our opinion, better than the adoption of arbi-at least a conspicuous knickpoint in the empirical diversity
trary recommendations with respect to event: non-event radiagram where an increase in sample size does not lead to
tios, absolute, or relative sample sizes. The sample size od significant reduction of model diversity. The analysis of
300-350 non-event cells corresponds to a ratio of event : nonthe LT data, for example, shows a plateau, not a local min-
event of 1:3.7 to 1:4.3, which is approximately consistentimum, of model diversity, and this is only reached between
with the 1:5 ratio used byan Den Eeckhaut et a{2006 n=1000 and: = 2000 ¢ =0.38 and 0.74 %), a sample size
and with the recommendation (1:2-1:5) givenking and  which is already becoming problematic with respect to spa-
Zeng (200)). It is also in the range of the ratio of event tial autocorrelation (see next paragraph). The LT is smaller
to non-event cells in our study areas (about 1:500 in ZBT,than the ZBT and has a smaller number of debris flows but
1:200 in LT), a ratio that has been usedMtkinson et al.  a higher debris flow density (events per square kilometre);
(1998. Considering Green’s rule of thumifeen 1997 re- hence there does not appear any conspicuous relationship of
ported in the Introduction (Sect.1), the six candidate geo- the existence and location of plateaus or local minima, ab-
factors in our case study would require a minimum samplesolute or relative sample size, and the aforementioned study
size of ca. 100Hjort and Marmion(2008, who investigate  area properties. The investigation of these problems is left
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Fig. 5. Distributions of model coefficients estimated from 100 random sample8%0 non-event cells) in the ZBT area. The percentages
below the parameter name refer to the proportion of the 100 models that contain the respective geofactor.

open to future research, employing a systematic analysis ofelated to landslide activity. Second, the assessment of spatial
multiple study areas with different sizes, characteristics, andautocorrelation from variograms of the geofactors is much
debris flow densities. less straightforward in larger, heterogeneous areas. For ex-
In Sect.3.3.2 we proposed the mean distance betweenample, different ranges of autocorrelation could exist for the
sampled locations in relation to ranges of spatial autocorresame geofactor in different (sub-)regions of the study area,
lation as an upper constraint of sample size. Figueop which calls into question the existence of a single sample size
panel) shows the expected mean distance between neargsind the associated average distance between sample points)
neighbours as a function of sample size (see S&cp). Ad- below which the autocorrelation issue is mitigated. However,
ditionally, the horizontal dashed lines indicate the autocorre-we are confident that our observation of a local minimum
lation ranges of the geofactors mentioned above (cf. Big. or plateau in model diversity will apply also at larger spa-
As the red curve intersects the autocorrelation ranges of moréal scales (see, for exampldjort and Marmion2008 Guns
and more geofactors, the sample of the corresponding size ignd Vanacker2012. Moreover, we uphold the general rec-
more and more likely to violate the independence assumpemmendation to investigate, through repeated sampling with
tion. The decreasing suitability of larger samples to this enddifferent sample sizes, the behaviour of parameter selection
is visualised across the whole Fithrough darker shades of in order to explore a suitable (small) sample size that both
grey. The optimal sample sizes indicated by the red arrows iiminimises sample dependence and facilitates a robust param-
the bottom part of the diagram belong to a range of samplester selection.
sizes that are within the autocorrelation range of one single
geofactor only. In this case, it is the “large-scale” range of4.2 Model results
slope (ca. 800 m, slope is autocorrelated also at smaller spa-
tial scales with a range of ca. 200 m; see RigWe consider  4.2.1 Model parameters
this only a minor violation of the independence assumption,
so that the sample size recommended above remains optim@d this section, the results of the procedure described in
also with respect to the spatial autocorrelation issue that hagect.3.4 are evaluated. Figuré shows the distribution of
been raised in Sect.2 the estimated coefficients for each of the geofactors. Addi-
While the typical scale of application of landslide suscep-tionally, the percentage below the parameter name gives the
tibility models is in the order of (many) tens to thousands of proportion of models that contained the respective geofac-
square kilometres, our study took place in a comparativelytor after stepwise selection. The coefficients were estimated
small study area. Considering the small size and the assocjising 100 independent random samples nof81+ 350
ated homogeneity of our study area with respect to the stateventt non-event sample) in the ZBT area. The geofactors
tistical and Spatial distribution of geofactors, we add a notesk)pe’ SCA’ and their interaction are part of every modeL
of caution to the interpretation of our flndlngs First, we ex- followed in decreasing order by prof”e curvature, p|an cur-
pect the necessary sample size to be larger in more heterQatyre, and roughness class. The spread of the coefficients is
geneous areas, and we expect a larger variability of modejow for most of the geofactors, with the exception of the two
selection and model coefficients. One possibility of dealingcurvature parameters. The coefficient for plan curvature has
with large, heterogeneous study areas has recently been prene |argest range, and it takes positive and negative values,
posed byPetschko et al(2014, who partition their study  which makes the interpretation very difficult; this is proba-
area in sub-areas based on lithological properties that argjy caused by the fact that the random sampling of event cells
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from the upper erosional zones in the debris flow inventory
will select locations not only in the centre of channelised de-
bris flow paths (with highly concave plan curvature) but also
at the boundary of these areas, which are highly (plan) con-
vex. Conversely, the profile curvature coefficient is strictly
negative, which means that a concavity in the long profile
increases the probability of debris flow initiation. The ex-
planation for this finding is a morphological one: the typi-
cal locations of debris flow initiation (facilitated by the fire-
hose effect; see Fid) at the contact of steep rock faces and
the corresponding talus cones are marked by large negative
(i.e. concave) profile curvatures. .
The mostly negative coefficients for slope and SCA are §
difficult to interpret, as one would expect that the proba-
bility of debris flow initiation would increase with steeper |\ /°f f . A ;
slopes and with larger catchment areas. However, this prob- *"® 52000 53000 54000 86000

222000

221000

lem appears to be only a mathematical one, as the interac &t oz os oc oers oy ————
H H B ebris flow susceptibili (complete 0 250 500 1,000 m
tion term of slope and SCA is present in the model. There-  (ren o 100 moders) process area)

fore, the coefficient of slope (alone) models the effect of o
slope where SCA is zero (and vice versa); the coefficientF'g' 6. Part of the susceptibility map (for fuII_ e_>_<tent, see Supple-
for the interaction term is positive, indicating higher proba- ment) of the ZBT and LT areas. The susceptibility values represent

- . . _a model ensemble, specifically the median value of 100 models es-
bilities with steep slopes and large catchment areas, Wh'dﬁmated from 100 random samples= 350 non-event cells) in the

is conceptually correct. The interaction term plays an im-7pT area. Insets A and B refer to map sections in Rig.
portant role in the model: without it, the positive relation-

ship of SCA with debris flow release causes the modelled

susceptibility to increase even in the comparatively flat val-

ley bottoms. Under these conditions, slope-type debris flowsndicating medium to high probability of debris flow release.
cannot occurRickenmann and Zimmermar({@993 report  The distal parts of the cones are characterised by lower (if
starting zone slopes for type 2 debris flows (that type whichany) susceptibility, while their apices and channel-like por-
occurs in our study areas) between 26.5 arf @@h catch-  tions of the upslope area show the highest values. Most of
ment sizes of up to 1k Takahashi(1981) gives a lower  the valley floor and most steep parts of the rockwalls have
threshold for debris flow initiation of 5 Generally, there  very low to zero susceptibility. This can be seen in detail in
appears to be a trend that the minimum slope angle requirethe upper row of Fig7; virtually all mapped debris flows (in-
for debris flow release decreases with larger catchment areluding not only the depositional lobes, but the whole process
eas Rickenmann and Zimmermanb993 Heinimann etal.  area) have high to very high susceptibility values in their up-
1998 Horton et al, 2008, so there is, besides the stream per part, and it can be stated that the spatial pattern of debris
power index (cf. Sectt.1), one more theoretical justification flow occurrence appears to be reproduced well by the model.

for including the interaction of slope and SCA. This visual validation also reveals problems. The zones
of highest susceptibility, indicated by violet colours, ex-
4.2.2 Susceptibility maps tend very far upslope along very steep channel-like features

within the rockwalls. Many of these locations appear to be
The previous analyses have shown the dependence of modso steep for debris to accumulate (one of the preconditions
els found through AIC-based model selection on the respecfor debris flow generation); for this problem, we offer two
tive sample and its size. The spatial pattern of a model reexplanations: first, an analysis of slope values within the
sult (here: the susceptibility map containing the debris flowmapped starting zones (see S&cl.]) reveals that ca. 75 %
initiation probability) depends on the spatial pattern of the of slope values within the initiation areas are within a physi-
geofactors that form part of the model. Figérshows a sec-  cally meaningful range (below ca. #Qwhile the remaining
tion of the susceptibility map that can be seen as a consensuglues clearly speak against the accumulation of debris in
model (seeMarmion et al, 2009 as every raster cell con- these locations. This can be attributed in part to mapping er-
tains the median of 100 model predictions, the coefficients ofrors (Ardizzone et al.2002 where the upper portion of a de-
which have been summarised in the previous section §ig. bris flow area is spuriously extended into very steep bedrock
Susceptibility in both valleys has been predicted using thechannels that are in part poorly identifiable on aerial imagery.
model estimated with ZBT data only. The whole map is partAnother source of this error, probably to a lesser degree, is
of the supplementary material of this paper. On the map, dea mismatch in the exact location of the rockwall-talus con-
bris cones are highlighted by yellowish to reddish colourstact between the DEM (which is decisive for the model) and
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Fig. 7.Map sections (for full extent, see Supplement) from the ZB)rand LT (A) areas. The maps show the susceptibility map (seedfig.
and a map of the IQR90 calculated from the model ensemble. The latter map represents the uncertainty of the susceptibility map that is due
to the sampling process.

the aerial photo. Second, a linear modelling approach is notvas used to estimate the models) this value equals 0.073,
capable of modelling complex non-linear relationships suchwhile in the LT area it is slightly higher (0.103). For sam-
as the one of slope and debris flow release: conceptuallyples taken according to the “1:1 event to non-event” rule
susceptibility should increase, starting from some minimum(z =81 non-event cellsze| =0.022 %), the average IQR90
slope, up to a maximum and then decrease again. The sugs 0.190 (ZBT), 0.230 (LT) and 0.200 (total study area). The
ceptibility then reaches zero at slope gradients that are proexpected variability is consistently higher for smaller sam-
hibitive for the formation and persistence of sediment stor-ples, and when a model is applied to a different area. The lat-
age that is needed for debris flow generation. The GLM ap-er can be explained with the effect of extrapolation beyond
proach, however, only handles monotonic relationships bethe range of geofactors in the respective training area.
tween independent and dependent variables, e.g. an increaseGenerally, the lowest uncertainty is found for both the low-
of susceptibility with slope. Problems of this kind could be est and the highest susceptibility values, an observation also
solved by using other approaches, for example the weightseported byGuzzetti et al(2006. On the uncertainty maps,
of evidence, certainty factor, or generalised additive modelghe largest standard deviations occupy spatially coherent ar-
(GAM; see e.gHjort and Luotq 2017). eas along the zones of high susceptibility, and additionally in
A novel output of our model replication exercise is the considerable portions of the valley bottom where the slope
quantification of the variation in model results and the as-gradient is low. In some places, the spatial pattern of un-
sessment of its spatial distribution. The model uncertaintycertainty is consistent with the fact that profile curvature is
addressed here is due to the sampling and model selectioncluded in only about 60 % of the models; here, zones of
procedure only. For each raster cell of the susceptibility maphigh curvature (both concave and convex) are characterised
we computed not only the median but also the interquan-by high IQR90 values. Such zones of high uncertainty may
tile range (IQR90) between th® g5 and po o5 quantiles; the  generally occur where a high (or low) predicted susceptibil-
corresponding map can be seen in the supplementary maty relies on one parameter only that is not part of all models.
terial and in Fig.7, bottom row. In the whole study area, Inour opinion, the map adds information to the susceptibility
the IQR90 has a highly positively skewed distribution that map that can be useful for its interpretation.
ranges from 0.0 to 0.98. It has a mean of 0.081; i.e. debris
flow release probability predicted by the 100 models varies
by 8 percentage points, on average. In the ZBT area (that

www.nat-hazards-earth-syst-sci.net/14/259/2014/ Nat. Hazards Earth Syst. Sci., 14, 2588, 2014



274 T. Heckmann et al.: The effect of sample size on a debris flow susceptibility model

4.2.3 \Validation 17700 models

5 1" =(811 Tsf_%
The variability of model parameters and predictions is also § 0.9
reflected in the validation. A first qualitative validation is g . 2083
done by visually inspecting the susceptibility map (here: the o 0.8 -
median of 100 models, Fig6.and7). Each model is quan- =
titatively validated by means of a ROC (see S&c2.3 us- 0.7+
ing data from the Larstigtal (LT) only; hence, the data used o 1 100 mogels
to estimate the model parameters (from the ZBT area) and ® 1o
the validation data are completely independent, and the cor- £ 0.9 20,82
responding diagram represents a “prediction curéiyng g o 8: —_—
and Fabbri2003. Split-sample validation approaches such ) : T
as cross-validation, spatial and temporal partitioBhung =
and Fabbri2003 do not warrant such independence when, 0 02040608 1 0.7 Area under the curve
for example, subsets of the same inventory are used to esti- False positive rate (AUC) [0.5:1]
mate model parameters and to validate the resulting model in
one study area. Fig. 8. Evaluation of the predictive ability of 100 models (top pan-

Figure8 (top panels) shows the prediction curves for the els:n =350 non-event cells, bottom panels: 81 non-evept.cells)
100 models, and the distribution of the corresponding aredy means of the area under the curve. As the model training (ZBT)
under the curve (AUC). The 100 curves are located quiteand validation area (LT) are independent, the diagrams on the left
close to each other, and there are no conspicuous extrenjgPresent prediction curvesijung and Fabbrb003.

outliers. The AUC reaches 0.83, on average; the predictive

tahb'“;yB_?_f a rtnor(]j el ca_lculatedh!nhthe L'.I;ha:aaca_ng :plp“te(tj fo prediction curves and consequently also of the AUC values.
€ (not shown) is even higher, wi =09 Intotal, 1, r case, a single sample of events and non-events at a ra-

the observed AUCs are within the range of many publishedtiO of 1:1 (see, for exampleBrenning 2005 Meusburger

studies (e.g. 0.69-0.Ruette et al.2011; 0.84: Ayalew and and Alewel| 2009 could have resulted in a good model

Yamagishj 2005 0.89—0.93.\_/an_Den Eeck_haut etak019 AUC 0.84) but also in a comparatively poor one (AUC 0.75),
and can be regarded as satisfying. The different performanc Ithough the expected AUC is approximately the same. We

.Of the ZBT '.“Ode' inthe LT area and_wce versais an '.nt(.areSt'deduce from our results a recommendation to create sus-
ing fact. This could be caused by different characteristics of

, . ceptibility maps from model ensembles, because they are
the study areas, related to a different range, and different Spas'upposed to yield a more reliable result on the one hand

tial and statistical distributions of the geofactor values. Theand give an estimation of (sample-induced) uncertainty on

Mo neighbouring areas, however, are regarded as very Sin}he other. Similarly,Marmion et al.(2009 propose “con-
llar and homogeneousieckmann and Becl{2009 investi- sensus models”; in their study, results from different predic-

gated the transferability of a debris flow susceptibility model tive modelling approaches are combined using several meth-

among different study areas and reported that the predictiv%ds among them the median that was used in our study to
power of models is largely independent of the degree of sim-__

o . . combine the results of 100 models generated with the same

|Ia_r|ty of training and test area; thelr model ap_pr(_)ach (Cer'method, but from independent random samples.

tainty factor), however, strongly differs from logistic regres-

sion. Besides computational and conceptual differences, con-

tinuous geofactors such as slope are classified using the sanse  Conclusions

scheme in all study areas. Conversely, in our study, a differ-

ent range of geofactors in training and test areas could lead tin this paper, we investigated the effect of sample size on

different coefficients and different model performance due toa logistic regression model with a parameter selection proce-

extrapolation. Another reason for the different performancedure that is based on an information criterion (AIC). The case

could be the different debris flow density. In order to deter- study aims at predicting the spatial distribution of slope-type

mine the controls of model performance, future research willdebris flow release zones in the Larstigtal (LT) and Zwiesel-

have to use a larger number of different study areas with dif-bachtal (ZBT) catchments in the Austrian Central Alps.

ferent debris flow densities. The methodological framework The procedure of random sampling and model selection

for the assessment of model variability and performance prowas replicated 1000 times for different samples between

posed here is considered useful for such investigations. n =50 andn =5000 non-event raster cells. For each candi-
Interestingly, the sample size did not influence the predic-date geofactor, the number of models it was part of after step-

tive ability of the model ensemble — both=81 andz =350  wise model selection was recorded. The diversity of models

have very similar mean AUC values. However, the smalleras a function of sample size was determined using the num-

sample size leads to a much larger spread of the differenber of different models and two diversity indices (Shannon
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model diversity decreased with increasing sample size an@nd to Alexander Brenning for developing the RSAGA package

reached a local minimum at=300-350, before it slightly ~(Brenning 2008 that made data exchange between SAGA GIS
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minima were detected, but model diversity always reachedunded by a DFG grant to Tobias Heckmann and Michael Becht
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