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Abstract. Stochastic daily precipitation models are com-
monly used to generate scenarios of climate variability or
change on a daily timescale. The standard models consist
of two components describing the occurrence and intensity
series, respectively. Binary logistic regression is used to fit
the occurrence data, and the intensity series is modeled us-
ing a continuous-valued right-skewed distribution, such as
gamma, Weibull or lognormal. The precipitation series is
then modeled using the joint density, and standard software
for generalized linear models can be used to perform the
computations. A drawback of these precipitation models is
that they do not produce a sufficiently heavy upper tail for
the distribution of daily precipitation amounts; they tend to
underestimate the frequency of large storms. In this study,
we adapted the approach ofFurrer and Katz(2008) based
on hybrid distributions in order to correct for this short-
coming. In particular, we applied hybrid gamma–generalized
Pareto (GP) and hybrid Weibull–GP distributions to develop
a stochastic precipitation model for daily rainfall at Ihtiman
in western Bulgaria. We report the results of simulations de-
signed to compare the models based on the hybrid distribu-
tions and those based on the standard distributions. Some po-
tential difficulties are outlined.

1 Introduction

Stochastic precipitation models are important for forecasting
and simulation purposes in climate, hydrological and envi-
ronmental system studies in modeling runoff, soil water con-
tent, crop growth, droughts and floods. These models can
aid in understanding the performance of these systems un-
der specific precipitation regimes. Depending on the required

precipitation timescale, various models, such as hourly, daily,
weekly, monthly, seasonal or annual, have been developed to
quantify complex precipitation features; seeSrikanthan and
McMahon (2002) and Yang et al.(2005). Once the model
has been calibrated at a given site, one uses it to generate
long sequences of artificial precipitation at that site. These
sequences can be used to estimate statistics relating to pre-
cipitation events in exactly the way one would do if a long
sequence of real precipitation data were available. As a con-
sequence, better risk management strategies and decision-
making capabilities can be developed.

In the following, we shall consider precipitation models
on daily timescales only. From a statistical point of view,
daily precipitation totals are time series with mixed densities,
comprising a discrete component at zero (for dry days) and
a continuous positive real-valued component (for rain days).
A standard technique of analyzing the series is to decompose
it into two components, namely the occurrence and the inten-
sity processes (Stern and Coe, 1984), and then to model these
separately using standard generalized linear model (GLMs)
techniques. The occurrence series, consisting of dry and wet
states, is modeled by an autoregressive binary logistic regres-
sion, and the intensity series by a continuous-valued right-
skewed distribution such as gamma, Weibull, lognormal or a
mixture of exponential distributions. More precisely, model-
ing the occurrence series means modeling the transition prob-
abilities of the two-state first- or higher-order Markov chain
(Gabriel and Neumann, 1962; Katz, 1977). The daily pre-
cipitation amounts are then modeled using the joint density
of the two components. The seasonal behavior of precipita-
tion is accommodated by allowing the model parameters to
vary over the year using a finite Fourier representation (Coe
and Stern, 1982; Stern and Coe, 1984; Woolhiser, 1992). The
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parameters can also be modeled as functions of covariates,
e.g., atmospheric factors such as the North Atlantic Oscil-
lation, the El Nino–Southern Oscillation, pressure, humid-
ity, temperature, and wind speed, or as slowly varying trend
functions over the years. The occurrence (the state transition
probabilities) and intensity model components therefore be-
come non-stationary. The required computations can be car-
ried out using standard software procedures for GLMs and
generalized additive models (GAMs), e.g.,McCullagh and
Nelder (1989), Hastie and Tibshirani(1990) and Fahrmeir
and Tutz(2001). The properties and applicabilities of such
models on different timescales are discussed byBrandsma
and Buishand(1997), Katz and Parlange(1998), Grunwald
and Jones(2000), Hyndman and Grunwald(2000), Beckman
and Buishand(2002), Chandler and Wheater(2002), Chan-
dler (2005), Yang et al.(2005) andFurrer and Katz(2007),
to name a few. Reviews of stochastic precipitation modeling
can be found inWoolhiser(1992), Wilks and Wilby(1999),
Srikanthan and McMahon(2002) andMaraun et al.(2010).

It is well known that the above continuous distributions
tend to underestimate the heavy precipitation.Furrer and
Katz (2008) developed a flexible approach, based on gamma
and GP distributions, in order to model the whole spectrum
of precipitation intensities. A gamma distribution (with co-
variates) is fitted to the entire intensity data, and then a GP
distribution (again with covariates) is fitted to the observa-
tions above an appropriately chosen threshold,u. The two es-
timated density functions are spliced continuously atu by us-
ing the gamma density below the threshold and the GP den-
sity (with an estimated shape parameter and a modified scale
parameter estimate) above the threshold. The approach of
Furrer and Katz(2008) is general, and so other right-skewed
distributions, such as Weibull or inverse Gaussian, can be
used instead of the gamma one. These authors pointed out
some of the difficulties with the procedure, e.g., that thresh-
old selection for splicing the distributions is purely subjec-
tive. Carreau and Bengio (2009) proposed another hybrid dis-
tribution type that is built by splicing the GP distribution tail
to a Gaussian or a truncated Gaussian distribution. The usage
of the distribution for stochastic downscaling of precipitation
and river runoff purposes is discussed inCarreau et al.(2009)
andCarreau and Vrac(2011).

This paper describes a practical implementation and adap-
tation of theFurrer and Katz(2008) approach, and offers an
improved daily precipitation model with a heavier tail to de-
scribe rainfall series in Bulgaria, conditional on atmospheric
data. We also study the reliability of the procedure, and report
our experience in a concrete example for daily precipitation
data at Ihtiman.

2 Case study – Ihtiman data set

We analyzed the daily precipitation series at Ihtiman, Bul-
garia, for the time period 1 January 1960–31 December 2007.
This series is of particular interest, because 234 mm of rain-
fall were recorded for a 24 h period on 5 August 2005. Each
observed value represents the total precipitation over a 24 h
period ending at 06:00 GMT (08:00 LT), measured using
Wild’s standard rain gauge mounted 1 m above the ground.
The North Atlantic Oscillation (NAO) daily anomaly time
series was used in order to study its relationship to daily pre-
cipitation at Ihtiman.

3 Stochastic daily precipitation models

Let Yt be the precipitation on dayt , andZt = (Z1t , . . . ,Zkt )
′

is a vector of associated atmospheric variables or their deriva-
tives fort = 1, . . . ,T . Dayt is defined as dry ifYt < c, where
c is a prespecified cutoff constant – we used the standard
choicec = 0.1 mm – and as wet ifYt ≥ c. Observed values
of the above quantities are denoted by lower-case letters.

The sequence of wet and dry days is represented by the
indicator functionIt = I[yt≥c], which takes on a value of 1
if day t is wet, and zero if dayt is dry. Letpt (xt ) represent
the probability that dayt is wet, conditional on the vector of
covariatesxt = (it−1, . . . , it−p,yt−1, . . . ,yt−p,z1t , . . . ,zkt )

′

.
Interaction terms between the covariates can be considered as
well. We define the daily precipitation intensity asRt = Yt if
Yt ≥ c, asRt is missing otherwise, and denote its probability
density function, conditional on the atmospheric predictors,
by q(rt |xt ). This distribution is positively skewed because
smaller intensities occur more frequently than larger intensi-
ties.

The daily precipitation series is modeled using a mixed
distribution comprising a discrete component at zero (for dry
days) and a continuous-valued right-skewed density (for wet
days). As the wet and dry states are exclusive and exhaustive,
the resulting transition density distribution is given by

ft (yt |xt ) = (1− pt (xt ))I[yt<c] + pt (xt )qt (rt |xt )I[yt≥c]

= (1− pt (xt ))
(
1− I[yt≥c]

)
+ pt (xt )qt (rt |xt )I[yt≥c]

= (1− pt (xt ))
(1−I[yt ≥c]) (pt (xt )qt (rt |xt ))

I[yt ≥c] .

In practice,qt (rt |xt ) is taken to be gamma (Stern and Coe,
1984), Weibull (Zucchini et al., 1992), log normal or some
other continuous right-skewed distribution. If the interest is
in extremes intensities, then the GP density can be used.

Assuming pt (xt ) has no parameters in common with
qt (rt |xt ), the likelihood for(yt−p−1, . . . ,yn) can be factor-
ized as follows:
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Fig. 1. Box-plots of daily precipitation totals (left) shown by months and monthly (wright) precipitation totals.

The extreme daily value 234 mm recorded on 5 August 2005 is dropped out from the data.
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Figure 1. Boxplots of daily precipitation totals (left) shown by months, and monthly (right) precipitation totals. The extreme daily value
234 mm recorded on 5 August 2005 is dropped from the data.
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Fig. 1. Box-plots of daily precipitation totals (left) shown by months and monthly (wright) precipitation totals.

The extreme daily value 234 mm recorded on 5 August 2005 is dropped out from the data.
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Figure 2. Portion of daily precipitation intensity data with a time-varying threshold (solid line) based on the 87 % quantile (left plot);
exceedances based on declustered daily intensity data (right plot).

L =

T∏
t=p+1

ft (yt |xt )

=

T∏
t=p+1

(1− pt (xt ))
(1−I[yt ≥c]) (pt (xt )qt (rt |xt ))

I[yt ≥c] (1)

=

T∏
t=p+1

(1− pt (xt ))
(1−I[yt ≥c]) (pt (xt ))

I[yt ≥c]

∏
t=p+1,yt>c

qt (rt |xt ). (2)

Standard GLMs software can be used to estimate the un-
known parameters due to this factorization of the likelihood;
the first product is the likelihood of the binary time series and
the second product is the likelihood of the intensity time se-
ries. Thevglmprocedure from R packageVGAMcan fit such
models (Yee and Stephenson, 2007). This general likelihood
maximization procedure, based on an iterative reweighted
least squares procedure, is applicable not only to standard
GLMs, but also to generalized additive models (GAMs); see
Hastie and Tibshirani(1990). Moreover, by this procedure,
one can model extreme values easily using generalized ex-
treme value (GEV, block maxima) and peaks over threshold
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Table 1.Monthly thresholds in mm based on the time-varying threshold.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

7.99 8.45 9.37 10.55 11.65 12.38 12.53 12.05 11.10 9.91 8.82 8.12

(GP) distributions, just like GLMs and GAMs; seeGreen
(1984) andColes(2001).

The standard approach is to model the probabilitiespt (xt )

within GLMs with a logit-link function:

logit(pt (xt )) = log(pt (xt )/(1− pt (xt )))

= u(xt ) = α0 +

p∑
l=1

(αlit−l + gl(yt−l))

+

k∑
l=1

gp+l(zlt ) + gp+k+1(t).

The functionu(xt ) should be periodic and approximately
sinusoidal in shape, in order to reflect the seasonal behavior
of rainfall occurrence, and a remainder term accounts for de-
viations from this pattern; i.e., thegl for l = 1, . . . ,p + k + 1
should be smooth functions. A simple logit link function,
consisting of a seasonal cycle and lagged occurrence and
NAO effects, is

logit(pt (xt )) = α0 + α1it−1 + α2Ct + α3St + α4NAOt−1

+ [β2Ct + β3St + β4NAOt−1]it−1,

where Ct = cos(2πt/365.25) and St = sin(2πt/365.25).
The covariate vector for this model isxt =

(1, it−1,Ct ,St ,NAOt−1,Ct it−1,St it−1,NAOt−1it−1)
′

.
Due to the lagged occurrence and the related interactions
included in this logit link function, the conditional two-state
non-stationary transition probabilities of a wet day following
a dry day, p01(t) = pt (xt ) for it−1 = 0, and a wet day
following a wet day, p11(t) = pt (xt ) for it−1 = 1, are
allowed different cyclic behaviors in the model. In this
way, the parameter estimates of these probabilities can be
computed frompt (xt ) in one run instead of formulating
two separate models and the respective data set according
to Furrer and Katz(2007). Moreover, based on the total
probability formula, one can get the following relationship
between the unconditional of previous state probability
π(t) = Pr(It = 1|zt ) and the two transition probabilities
π(t) = π(t − 1)p11(t) + (1− π(t − 1))p01(t). This rep-
resentation is very useful in the simulation of artificial
rainfall sequences because of the recurrence relationship.
Indeed, under the plausibleπ(t) ≈ π(t − 1) for any t , we
getπ(t) ≈ p01(t)/(p01(t) + 1− p11(t)); seeZucchini et al.
(1992) andFurrer and Katz(2007).

The intensities can be modeled by gamma, Weibull or
other right-skewed continuous distributions, and the extreme
intensities by the GP distribution. There exist various param-
eterisations for these distributions; those used here are listed

below. The density function of the gamma distribution is de-
fined by

f (x) =

{
ba x(a−1) exp(−bx)

0(a)
x > 0

0 x = 0,

where0(a) is the gamma function, anda > 0 andb > 0 are
the shape and rate parameters. The mean, the variance and
the scale parameters of the gamma distributions are given by
µ = a/b, σ 2

= µ2/a and 1/b.
The density function of the Weibull distribution is given

by

f (x) =

{
a x(a−1) exp(−(x/b)a)

ba x > 0

0 x = 0,

wherea > 0 andb > 0 are the shape and scale parameters.
The density function of the generalized Pareto distribution

with thresholdu is given by

g(x) =
1

σ

[
1+

ξ(x − u)

σ

]−
1
ξ
−1

+

,

whereσ > 0 andξ are the scale and shape parameters, and
[A]+ = max(A,0). The shape parameterξ determines the
tail behavior of the GP distribution: a heavy tail ifξ is posi-
tive, a bounded tail ifξ is negative, and a light (exponential
type) tail if ξ = 0.

A standard approach in GLMs and extreme value model-
ing is to link the parameters of these distributions to covari-
ates as follows:

log(a) = θT
1 x1t , log(b) = θT

2 x2t ,

log(σ ) = θT
3 x3t , ξ = θT

4 x4t ,

whereθi is a vector of unknown parameters, and the covari-
ate vectorx it is a subset ofxt for i = 1, . . . ,4. The log-link
function is used to ensure positiveness of the scale (σ ) and
rate (a) parameters in maximization of the intensity likeli-
hood. Details can be found inYee and Stephenson(2007).
An example of such a log-link function is

logv(xt ) = u1(xt ) = θ0 +

p∑
l=1

(
θpit−l + hl(yt−l)

)
+

k∑
l=1

hp+l(zlt ) + hp+k+1(t),
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Table 2.Estimated parameters and BIC values (minimum in bold) for candidate point process models for daily precipitation extremes over
the entire year, with a time-varying threshold at Ihtiman.

Locationµ Scale logσ
Intercept Ct St NAO intercept Ct St NAO Shapeξ BIC

34.447 2.469 0.131 2018.098
33.680 −1.222 −2.361 2.455 0.159 2012.348
34.458 2.513 0.033 0.076 0.183 2009.993
33.828 −5.481 −5.951 2.412 −0.176 −0.149 0.126 2003.701
33.834 −5.477 −5.962 −0.062 2.413 −0.176 −0.149 0.127 2002.516
33.966 −5.236 −5.237 −0.041 2.388 −0.171 −0.121 −0.111 0.116 2010.117

Table 3.Return levels in mm based on point process model fit: (i) homogeneous model; (ii) seasonal cycle in the location and scale parame-
ters, and the NAO index as location parameter.

Years 10 20 50 100 500 1000 5000 10 000

(i) Return levels 65.73 78.01 95.92 110.99 152.11 172.90 229.78 258.57
(ii) Return levels 65.44 77.46 94.82 109.29 148.17 167.52 219.65 245.61

where the functionu1(xt ) has to be similar tou(xt ), and
hp+1, . . . ,hp+k+1 have to be smooth functions. A simple log-
link function, consisting of a seasonal cycle and lagged oc-
currence and NAO effects, is

logv(xt ) = θ0 + θ1it−1 + θ2Ct + θ3St + θ4NAOt−1.

4 Modeling daily precipitation totals

In this section, we consider a number of daily precipita-
tion models for the Ihtiman series. We start with a brief ex-
ploratory data analysis to get an overall impression of the
behavior of the series, and then proceed to the development
of daily precipitation models using gamma and Weibull re-
gressions, and the GP distribution for the extreme intensities.

4.1 Exploratory data analysis

Figure 1 shows boxplots of daily precipitation totals by
month (left) and monthly precipitation totals at Ihtiman
(right). In order to get an impression of the precipitation at
this location, the extreme daily value 234 mm recorded on
5 August 2005 is excluded from this figure. The second high-
est daily precipitation total is 120 mm, which is about half of
the above value. Moreover, the highest monthly precipitation
total (right panel plot) is less than this extreme value. Sea-
sonality is evident from these plots. A time-varying threshold
based on the 87 % intensity quantile is displayed in the left
panel of Fig.2. The smooth curve is estimated using a quan-
tile regression model with inter-annual and seasonal periodic
(sine–cosine) components of the daily intensities. Theqr pro-
cedure from R packagequantregis used for this purpose.
Details about quantile regression can be found inKoenker
(2005). Threshold selection is based on a range (80–95 %)
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Figure 3. Probability and quantile plots of the declustered precip-
itation data (in mm) based on a point process with homogeneous
parameters (top panels), and with a seasonal cycle in the location
parameters (bottom panels).
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Table 4. Estimated parameters and BIC values for candidate gamma (left) and Weibull (right) models for daily precipitation intensity over
the entire year at Ihtiman.

Gamma rate log(a) Weibull scale log(σ )

Intercept Ct St NAO Shape b BIC Intercept Ct St NAO Shape a BIC

−1.857 28 616.93 1.409 0.798 28 410.37
−1.834 0.169 0.219 0.751 28 483.62 1.418 −0.162 −0.214 0.808 28 305.52
−1.832 0.174 0.215 −0.057 0.752 28 312.39 1.416 −0.167 −0.211 −0.053 0.808 28 135.98
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Fig. 4. Q-Q plots of observed versus fitted gamma (g) and Weibull (w) quantiles of daily precipitation intensities

(standard threshold of 0.1 mm) based on homogeneous model in August (left plot) and for the entire year (right

plot).
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Fig. 5. Top panels: log-density functions fitted to daily precipitation intensity with threshold values 5 mm, 10

mm and 20 mm. Gamma (solid and dashed lines), GP (dotted lines) and hybrid gamma–GP (solid blue and

red lines) models are shown. The data are indicated by horizontal ticks and the threshold u by a vertical line.

Bottom line: The same as the top row but based on the Weibull and hybrid Weibull–GP distributions.
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Figure 4. Q–Q plots of observed versus fitted gamma (g) and Weibull (w) quantiles of daily precipitation intensities (standard threshold of
0.1 mm), based on a homogeneous model in August (left plot) and for the entire year (right plot).

of thresholds for which the resulting GP distribution param-
eter estimates do not change considerably, and at the same
time, the fit provides a reasonable model approximation; see
the next paragraph for details. We note that the time-varying
threshold is a continuous analog of the widely used proce-
dure of splitting the data into seasons and allowing for differ-
ent thresholds in each season. The monthly threshold values
based on this model are given in Table1.

4.2 Fitting of extreme precipitation

Having estimated the time-varying threshold model, clus-
ters of exceedances separated from each other by 3-day run
length are identified, and each cluster maximum is selected.
This is done to avoid dependence in the likelihood specifi-
cation. In this way, 557 peaks out of 17 532 observations
were extracted, resulting in a rate of 11.60 in excesses per
year. The cluster peaks are displayed in the right panel of
Fig. 2. The tiny black bullets and circles correspond to cold-
and warm-month intensities, respectively. This plot exhibits
higher precipitation intensities during the warmer months.
These extreme intensities are fitted using a point process
model, as inColes(2001). The advantage of the point process
approach is that it unifies the classical block maxima (GEV)

and peaks over threshold (GP distribution) approaches, and
allows modeling of the location, scale and shape parame-
ters of the GEV distributions as functions of time-dependent
covariates in order to account for non-stationarity effects.
The parameter estimates and Bayesian information criterion
(BIC) values for several model fits are presented in Table2.
The main message from the results of this table is that the
distribution of the extreme precipitation intensity at station
Ihtiman has a heavy tail. This is supported by the likeli-
hood ratio test (LRT) concerning the hypothesisξ = 0 (ex-
ponential distribution) versusξ > 0 (GP distribution); for all
models, the corresponding tail probability is quite small. We
note that not all precipitation data series over the territory of
Bulgaria exhibit heavy upper tails, especially for sites with
relatively short records. This is in agreement with the main
conclusions ofPapalexiou et al.(2013). The non-stationary
model that minimizes the BIC includes a seasonal cycle and
a lagged NAO effect in the location parameter, and a sea-
sonal cycle in the (logarithm of the) scale parameter, and
has a constant shape parameter. The estimated parameters
of this model support the notion that higher location val-
ues are associated with higher precipitation intensities syn-
chronized with negative NAO index anomalies. On the other
hand, higher scale parameter estimates are associated with

Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014 www.nat-hazards-earth-syst-sci.net/14/2321/2014/
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Table 5.Estimated parameters and BIC values for daily precipitation occurrence models over the entire year at Ihtiman.

logit(pt (xt ))

intercept Ct St It−1 NAO Ct It−1 St It−1 NAOIt−1 BIC

−0.736 22 091.27
−1.186 −0.025 0.239 1.216 20 678.49
−1.186 −0.022 0.240 1.213 −0.036 20 607.01
−1.186 −0.124 0.296 1.218 −0.113 0.260 −0.127 0.207 20 579.20
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Figure 5. Top panels: log-density functions fitted to daily precipitation intensity with threshold values 5, 10 and 20 mm. Gamma (solid and
dashed lines), GP (dotted lines) and hybrid gamma–GP (solid blue and red lines) models are shown. The data are indicated by horizontal ticks,
and the thresholdu by a vertical line. Bottom line: the same as the top row, but based on the Weibull and hybrid Weibull–GP distributions.

higher variability in precipitation extremes. The scale in-
tercept estimate of this model equals exp(2.413) = 11.167.
Residual probability plots for the homogeneous model (with
no covariates), and the best among these 6 fits (according to
the BIC), are shown in Fig.3. The plots indicate reasonable
but by no means perfect fits, and that the non-stationary fits
are better than the homogeneous model. The corresponding
return levels are given in Table3. It is seen that the non-
stationary model gives reasonable return-level estimates for
the historical data. All the computations in this section were

done by thepp.fit andpp.diagprocedures from R package
ismev.

4.3 Gamma and Weibull intensity models

In this section, we compare a number of simple gamma and
Weibull models with and without covariates (seasonal cycle
and NAO effect), in order to assess their ability to fit the
entire intensity series. Each model can be identified by its
unique abbreviation code “xxx yyy zz” at the top of the in-
dividual panel of the corresponding figure. The strings xxx,
yyy and zz indicate the occurrence, intensity and threshold

www.nat-hazards-earth-syst-sci.net/14/2321/2014/ Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014
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Fig. 6. Top row: High quantiles (95% and 99%) of fitted gamma (solid lines) and hybrid gamma–GP (dashed

lines) distributions as functions of the day of the year for Ihtiman precipitation intensity with thresholds 5mm

(left) and 15 mm (right). Lower line plots: The same as the top row but based on Weibull and hybrid Weibull–

GP distributions.
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Figure 6.Top row: high quantiles (95 and 99 %) of fitted gamma (solid lines) and hybrid gamma–GP (dashed lines) distributions as functions
of the day of the year for Ihtiman precipitation intensity with thresholds 5 mm (left) and 15 mm (right). Lower-line plots: the same as the top
row, but based on Weibull and hybrid Weibull–GP distributions.

value model components, respectively. The coding depends
on the types of covariates in the model components. For
instance, (i) the model without covariates (homogeneous
model) is coded as 000 000, (ii) the model with sine and co-
sine waves and previous day occurrence is coded as 100 100,
and (iii) the model (ii) with additional lag of the NAO effect
is coded as 110 110. This way, we get various gamma and
Weibull precipitation models.

The corresponding parameter estimates and BIC values
are given in Table4. The homogeneous models are presented
for completeness only. It is seen that the inclusion of a peri-
odic component significantly reduces the BIC values of both
the gamma and Weibull models. According to the LRT, the
models with seasonal components lead to improvements in
comparison with homogeneous models, and the inclusion of
NAO effects leads to further improvements. (The LRT and

its tail probability values are not presented.) Both models
preserve the physical interpretation that heavier intensities
are associated with negative NAO anomalies. The left plot of
Fig. 4 shows a quantile–quantile (Q–Q) plot for the model,
with a seasonal cycle based on the GLMs with gamma and
Weibull fits. The left panel of the figure is based on data for
a single month (August), whereas the right panel is for the
entire period. The Weibull distribution leads to a slightly bet-
ter fit, but the fits are poor with respect to extreme intensities.

For validation purposes, the parameter estimates of some
simple daily precipitation occurrence models are presented in
Table5. Obviously, the homogeneous model is completely
inadequate, but one can see the BIC value reduction, with
the remaining models conditional on seasonal cycle, previous
day precipitation occurrence and NAO effect with lag one.

Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014 www.nat-hazards-earth-syst-sci.net/14/2321/2014/
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Figure 7. Q–Q plots of simulated versus observed gamma (g) and hybrid gamma–GP (h) quantiles of intensity seasonal models with the
NAO effect for the entire year at Ihtiman, with 5 mm (top row), 10 mm (middle row) and 15 mm (bottom row) thresholds.

www.nat-hazards-earth-syst-sci.net/14/2321/2014/ Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014
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Figure 8.Monthly boxplots of daily observed and simulated precipitation totals in log scale. The simulated data are generated using a seasonal
model with a lagged NAO covariate; the intensity component is based on (i) hybrid gamma–GP (top-left and middle plots) and Weibull–GP
(bottom-left and middle plots) distributions with threshold values 5 and 15 mm, and (ii) standard gamma and Weibull distributions (right-
column plots).

As expected, the seasonal model with lagged occurrence and
NAO effects minimizes the BIC.

5 Hybrid gamma–GP density

Furrer and Katz(2008) define the density function of the hy-
brid gamma–GP distribution as

h(x) =

{
f (x) x ≤ u

(1− F(u))g(x) x > u,

whereF(x) is the gamma distribution function,f (x) and
g(x) are the gamma and GP densities, and the factor(1−

F(u)) ensuresh(x) normalization.
In order to attain continuity at the thresholdu, these au-

thors impose the condition

f (u) = [1− F(u)]g(u) = [1− F(u)]/σ.

The resulting GP distribution scale parameter is equal to
σ = (1−F(u))/f (u), which is the inverse of the hazard func-
tion of the gamma distribution taken atu. The GP distribution

scale parameter can thus be written in terms of the parame-
ters of the gamma distribution that accommodates the ob-
servations below the threshold. The authors recommend the
following estimation procedure: (i) fit a GLMs with a gamma
link function with covariates to the entire intensity data set;
(ii) fit a GP distribution with covariates to the observations
above the prespecified thresholdu, just as in the conven-
tional extreme value methodology; and (iii) replace the GP
distribution scale parameter with the estimated gamma haz-
ard function. Clearly, an analogous procedure is applicable
for other hybrid distributions, such as Weibull–GP or inverse
Gaussian–GP.

5.1 Experiments with hybrid GP distributions

As in the previous section, the models discussed hereafter
can be identified by their unique code. However, gamma and
Weibull intensity model components are combined with the
GP distribution at the prespecified threshold values, e.g., 5,
10 and 15 mm. This way, we consider several hybrid gamma–
GP and Weibull–GP distribution models. We now compare

Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014 www.nat-hazards-earth-syst-sci.net/14/2321/2014/
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the fit of these models to Ihtiman daily precipitation inten-
sity data. We explore the threshold selection and its effect on
generation of artificial daily precipitation data. The method-
ology of Furrer and Katz(2008) previously described is fol-
lowed closely.

Figure5 shows the fitted gamma, GP, and hybrid gamma–
GP (upper-line plots), and Weibull, GP and Weibull–GP
(lower-line plots) log densities, with three threshold values 5,
10 and 20 mm for precipitation intensity for the entire year.
The homogeneous fits (no covariates in the model) are shown
only in order to get a better perception. The hybrid density
is indeed continuous, and possesses a heavier tail than the
gamma and Weibull densities. One can see the effect of the
threshold choice in GP distribution tail estimation. A lower
threshold choiceu gives a larger weight, 1− F(u), of the
GP distribution. One can thus expect that the hybrid distri-
bution quantiles corresponding to these lower-threshold GP
fits would be larger. The plots of Fig.6 show the 95 % (blue)
and 99 % (black) quantiles of the fitted gamma (solid lines)
and hybrid gamma–GP (dashed lines) distributions (upper-
line plots), as well as the fitted Weibull and hybrid Weibull–
GP (lower-line plots) distributions as functions of the day of
the year. The tiny black bullets in the plots correspond to ob-
served precipitation totals exceeding the prespecified thresh-
old. Indeed, the hybrid quantiles (dashed lines) in the left-
column plots are higher than those in the right-column plots.
The effect due to hybridization is most visible in the high-
est quantiles. Therefore, threshold determination is of crucial
importance to calibration daily precipitation hybrid models,
conditional on atmospheric covariates.

Figure7 shows Q–Q plots of observed versus simulated
gamma (g) and hybrid gamma–GP (h) quantiles of the sea-
sonal intensity model with a lagged NAO effect over a year
at Ihtiman, with 5 mm (top row), 10 mm (middle row) and
15 mm (bottom row) thresholds. The simulated time series
consist of 300 samples of 47 yr of daily precipitation totals
from GLMs, with the gamma distribution (g) and with the
gamma–GP (h) hybrid distributions for each threshold. The
majority of the simulated data look like those displayed in the
left and middle column plots, but a small percentage look like
those displayed in the right column plots. Results of a similar
standard are obtained for the Weibull and Weibull–GP dis-
tributions. The hybrid models are a significant improvement
over the gamma and Weibull models.

The monthly boxplots of daily observed (white) and sim-
ulated (gray) precipitation totals given on logarithmic scales
are presented in the plots of Fig.8 in order to get an impres-
sion of their distributions: the left and middle column panels
are based on the hybrid intensity distributions, with 5 and
15 mm thresholds where the right column panels are based
on classical GLMs with the gamma and Weibull distribu-
tions. The classical GLMs with gamma and Weibull intensity
components represent the historical data, except for the ex-
treme intensities, which is a well known deficiency. The hy-
brid models are capable of generating series with extremes as

large as the observed extremes, or (though unlikely to occur)
even larger, depending on the threshold choice. The distri-
butions of the monthly observed and simulated precipitation
totals are presented in the plots of Fig.9. From the right-
column plots of this figure, one can see that the standard-
intensity GLMs with the gamma and Weibull distributions
are not capable of generating monthly precipitation totals
with similar magnitudes as the historical ones, whereas the
hybrid gamma and Weibull–GP distributions are capable of
doing so. The distribution functions of the wet spells and the
number of wet days within a season are important in applica-
tions in various studies. The left plot of Fig.10shows the dis-
tribution of wet spells for the historical and simulated data.
As usual, wet spells are defined as the number of consecu-
tive days with precipitation. It is seen that the model cap-
tures well the temporal correlation in the data. The middle
and right plots of this figure show the monthly number of
wet days distribution of historical versus simulated data. Re-
sults of a similar standard are obtained for the Weibull and
Weibull–GP distributions.

The distributions of the observed (solid lines) and simu-
lated (dotted lines) precipitation totals over periods of 10 and
60 days are shown in the plots of Fig.11. The simulated data
are generated using intensity GLMs with hybrid Weibull–GP
distributions and a threshold of 15 mm (left-column plots),
and standard Weibull (right-column plots) distributions. It is
seen that the hybrid Weibull–GP distribution-simulated data
possess a heavier tail than the standard Weibull distribution.
Similar results are obtained for the gamma–GP hybrid distri-
bution.

The left-plot dots of Fig.12 show the different seasonal
cycles as well as the different magnitudes of the estimated
precipitation probabilitiesp11(t) andp01(t), and the uncon-
ditional precipitation probabilityp(t) := π(t) (red).

The dashed and smoothed lines are based on the R locally
weighted scatterplot smoothing procedureloessthrough the
corresponding dots and observed frequencies (not plotted). In
the right plot of this figure are given the historical and sim-
ulated probabilities (smoothed byloess) of having not less
than 40, 80, 120, 160 and 200 mm total precipitation for a run
of 60 consecutive days, starting on any given day of the year
for Ihtiman station. The order of the lines corresponds to their
order in the legend. The empirical and model probabilities
match each other closely.

All model fitting and generation of precipitation series was
done with the free software environment for statistical com-
puting and graphics: the R Project for Statistical Computing.
The vglm procedure from theVGAM package with gamma,
Weibull and GP distribution link functions was used to carry
out the estimation (Yee and Stephenson, 2007).

www.nat-hazards-earth-syst-sci.net/14/2321/2014/ Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014
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Fig. 9. Box-plots of monthly observed and simulated precipitation totals. The simulated data are generated

using seasonal model with a lagged NAO covariate; the intensity component is based on: (i) hybrid gamma–GP

(top left and middle plots) and Weibull–GP (bottom left and middle plots) distributions with threshold values 5

mm and 15 mm; (ii) standard gamma and Weibull distributions (right column plots).
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Fig. 10. Left plot: observed (solid lines) and simulated (dotted lines) wet spells distribution. Box-plots of

monthly observed (white) versus simulated (gray) number of wet days: the simulated data are based on the

hybrid gamma–GP distribution with threshold 15 mm and standard gamma (right plot) distribution.

21

Figure 9. Boxplots of monthly observed and simulated precipitation totals. The simulated data are generated using a seasonal model with a
lagged NAO covariate; the intensity component is based on (i) hybrid gamma–GP (top-left and middle plots) and Weibull–GP (bottom-left
and middle plots) distributions with threshold values of 5 and 15 mm, and (ii) standard gamma and Weibull distributions (right-column plots).
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Fig. 9. Box-plots of monthly observed and simulated precipitation totals. The simulated data are generated

using seasonal model with a lagged NAO covariate; the intensity component is based on: (i) hybrid gamma–GP

(top left and middle plots) and Weibull–GP (bottom left and middle plots) distributions with threshold values 5

mm and 15 mm; (ii) standard gamma and Weibull distributions (right column plots).
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Fig. 10. Left plot: observed (solid lines) and simulated (dotted lines) wet spells distribution. Box-plots of

monthly observed (white) versus simulated (gray) number of wet days: the simulated data are based on the

hybrid gamma–GP distribution with threshold 15 mm and standard gamma (right plot) distribution.

21

Figure 10.Left plot: observed (solid lines) and simulated (dotted lines) wet spell distribution. Box-plots of monthly observed (white) versus
simulated (gray) number of wet days: the simulated data are based on the hybrid gamma–GP distribution with threshold 15 mm and standard
gamma (right plot) distribution.

Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014 www.nat-hazards-earth-syst-sci.net/14/2321/2014/



N. M. Neykovet al.: Stochastic daily precipitation model with a heavy-tailed component 2333

total precipitation [mm]

de
ns

ity

0 100 200 300

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

observed
simulated

Total precipitation over a 10-days period
Weibull/GP distribution

model:110 110 15 / location:Ihtiman

total precipitation [mm]

de
ns

ity

0 100 200 300

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

observed
simulated

Total precipitation over a 10-days period
Weibull distribution

model:110 110 15 / location:Ihtiman

total precipitation [mm]

de
ns

ity

0 100 200 300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0 observed

simulated

Total precipitation over a 60-days period
Weibull/GP distribution

model:110 110 15 / location:Ihtiman

total precipitation [mm]

de
ns

ity

0 100 200 300 400 500 600

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

observed
simulated

Total precipitation over a 60-days period
Weibull distribution

model:110 110 15 / location:Ihtiman

Fig. 11. The distributions of the observed (solid lines) and simulated (dotted lines) precipitation totals over

period of 10 and 60 days. The simulated data are generated using intensity GLMs with hybrid Weibull–GP

distribution and threshold 15 mm (left column) and standard Weibull (rigth column) distributions.
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Figure 11.The distributions of the observed (solid lines) and simulated (dotted lines) precipitation totals over periods of 10 and 60 days. The
simulated data are generated using intensity GLMs with hybrid Weibull–GP distributions and threshold 15 mm (left column) and standard
Weibull (right column) distributions.

6 Conclusions

Several daily precipitation models with different models for
the intensity component were examined. We are able to
confirm that, on the whole, the simulated precipitation se-
ries based on the hybrid distributions ofFurrer and Katz
(2008) preserve the properties of the observed series. Al-
though each of the precipitation model components can be
estimated using standard software procedures that are widely
available, the subjectivity in the threshold selection in splic-
ing the distributions is an awkward task. The development
of a daily precipitation model with such distributions, condi-
tional on a large number of atmospheric predictors for down-
scaling purposes, is thus still in its early stages. Once this
problem has been solved satisfactorily, then an extension

of the improved at-site daily precipitation amount model to
a multi-site daily precipitation model would be straightfor-
ward on the basis of the conditional independence precip-
itation amount model within the non-homogeneous hidden
Markov model framework; seeVrac and Naveau(2007) and
Neykov et al.(2012).

The hybrid distribution daily precipitation model we dis-
cussed so far can be extended to model hourly precipi-
tation data. In order to account for various dependencies,
the precipitation model occurrence and intensity link func-
tions have to incorporate some additional finite Fourier se-
ries, with harmonics and appropriate autoregressive covari-
ates varying over the daily hours. Also, threshold selection
must be performed on an hourly timescale. Essentially, this
would be an adaptation of the methodology proposed by

www.nat-hazards-earth-syst-sci.net/14/2321/2014/ Nat. Hazards Earth Syst. Sci., 14, 2321–2335, 2014
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Figure 12.Left plot: (i) the dots represent the estimated probabilitiesp11 (blue),p(t) := π(t) (red) andp01 (blue); the dashed and smoothed
lines are based on theloessprocedure through the corresponding dots and observed frequencies (not plotted). Right plot: the observed and
simulated probabilities (smoothed byloess) of having not less than 40, 80, 120, 160 and 200 mm total precipitation for a run of 60 consecutive
days, starting on any given day of the year.

Katz and Parlange(1995) andChappell et al.(2009). How-
ever, estimation problems might arise when hourly precipi-
tation data series are short. Finally, in order to achieve finer
temporal resolution, the at-site hybrid GLMs on a daily pre-
cipitation scale can be combined with a single-site disag-
gregation model based on Poisson cluster processes. For in-
stance, simulations of long sequences of sub-daily precipita-
tion data can be obtained from hybrid GLMs-simulated daily
precipitation totals using the HYETOS software; seeKout-
soyiannis and Onof(2001).
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