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Abstract. In this study, artificial neural networks, including
both multilayer perception and the radial basis function neu-
ral networks, are applied for modeling and forecasting the
maximum and time variation of storm surges at the Tanshui
estuary in Taiwan. The physical parameters, including both
the local atmospheric pressure and the wind field factors,
for finding the maximum storm surges, are first investigated
based on the training of neural networks. Then neural net-
work models for forecasting the time series of storm surges
are accordingly developed using the major meteorological
parameters with time variations. The time series of storm
surges for six typhoons were used for training and testing
the models, and data for three typhoons were used for model
forecasting. The results show that both neural network mod-
els perform very well for the forecasting of the time variation
of storm surges.

1 Introduction

A storm surge is a meteorological tide characterized by an
abnormal rise in level of sea water, primarily induced by the
low atmospheric pressures associated with a tropical storm,
usually typhoons in the case of Taiwan, which is located on
the western side of the Pacific Ocean. The height of a storm
surge at a particular location is expressed as the value ob-
tained by subtracting the predicted astronomical tide from
the actual recorded sea level (Horikawa, 1978). The risk of
flooding in low-lying coastal areas increased with the combi-
nation of higher spring tides along with serious storm surges.

The simplest method for forecasting the maximum storm
surge is to use an empirical formula (Conner et al., 1957;
Horikawa, 1978). Generally, storm surges have been pre-
dicted using numerical methods. For example, Kawahara
et al. (1980), Westerink et al. (1992), Blainetal (1994),
and Hsu et al. (1999) applied the finite element method
for this purpose, while Yen and Chou (1979), Walton and
Christensen (1980), Harper and Sobey (1983), and Hwang
and Yao (1987) applied the finite difference method with
nonlinear shallow water equations to simulate storm surges.
Coupled wave-surge models have been proposed to simulate
coastal flooding resulting from storm surges and waves gen-
erated by tropical cyclones (Cheung et al., 2003). Recently,
Doong et al. (2012) developed an operational coastal flood-
ing early warning system that considered both wave setup
and storm surge, in which the storm surge is predicted by the
Princeton Ocean Model (POM). Xu et al. (2014) integrated
Monte Carlo and hydrodynamic models for estimating ex-
treme water levels that occurred as a consequence of a storm
surge.

In recent years, with the maturing of neural network tech-
nology, it has been widely applied to the modeling of nonlin-
ear natural phenomena. For example, Grubert (1995) used
feed-forward back-propagation neural networks to predict
the flow rate at a river mouth. Deo and Sridhar Naidu (1999)
used neural networks to build a model for real-time wave
prediction. The results show that neural network models per-
form better than autoregressive models for wave prediction.
Tsai and Lee (1999) used a back-propagation neural network
for real-time tide prediction. Tsai et al. (2002) used the back-
propagation neural network for forecasting and supplement-
ing the time series of wave data using neighboring stations’
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wave records. Lee et al. (2002) used short term observation
data to predict long-term tidal levels with a back-propagation
neural network. Sztobryn (2003) used neural networks to
predict storm surges and compared the results obtained us-
ing different neural network topologies.

Tsai et al. (2005) used a back-propagation neural network
for the training of a sea level time series model using data
from previous typhoons as the training data from which to
predict later typhoons. However, the model was only used to
predict sea levels during storms, rather than the storm surge.
In practice, astronomical tides plus storm surges combine
to increase sea levels during storms. Currently, astronomical
tides can be accurately predicted using harmonic analysis or
numerical methods. Moreover, the combination of maximum
storm surge plus high spring tides should be considered in the
analysis of possible risk of coastal inundation. Thus, the first
part of this study is aimed at the development of neural net-
work models for estimating the maximum storm surge. The
results trained by the neural networks are compared with the
empirical formula proposed by Horikawa (1978).

Tseng et al. (2007) developed a back-propagation neural
network model for predicting the time variation of storm
surges. They suggested a total 18 factors as the inputs, in-
cluding the astronomical tidal level. However, this seems to
violate the physical definition of a storm surge as caused by
abnormal meteorological conditions and is not dependent on
the astronomical tide. A training process of a neural network
enables the neural system to capture the complex and non-
linear relationships between the known input data and the
desired output data (Lin and Chen, 2006). Thus the selec-
tion of the appropriate input parameters in the neural net-
work is necessary; especially the parameters between the in-
put and output should be taken into consideration with some
physical relationships. Accordingly, differing from Tseng et
al. (2007), the second part of this study proposed the neu-
ral network models, including both multilayer perception and
the radial basis function neural networks, for forecasting the
time variation of storm surges using a very few appropriate
major meteorological factors based on the first part of the
current study. The performance of the present model is as-
sessed by the agreement indices including the correlation co-
efficient and root-mean-square error between the observed
and forecasted results.

2 Neural networks

The artificial neural network is an information-processing
system which mimics the biological neural networks of the
human brain by interconnecting many artificial neurons.
There are many types of the neural networks, but the mul-
tilayer perception (MLP) network and the radial basis func-
tion (RBF) network are adopted in this study. The theory of
neural networks is discussed in detail in Haykin (1999).

2.1 Multilayer perception network

An MLP network is a supervised learning technique with a
topology that contains one input layer, one or more hidden
layers, and one output layer. An MLP network with one hid-
den layer is adopted in this study. Data are sent to the output
layer from the input layer using the feed-forward method for-
mulated as follows:

yj = f (netj ) (1)

netj =

N∑
i=1

WijXi − Bj , (2)

whereyj is the output variable,Wij is the weight between
the j th neuron and theith neuron,Xi is the input variable
that acts as a biomimetic neuron input signal,f (netj ) is the
transformation function that acts as a biomimetic non-linear
function of the neurons,Bj is the threshold (bias) for the
j th neuron, and netj is the consolidation function for thej th
neuron.

An activation function – usually an S-curve called a sig-
moid function – is included, which increases stability and
can be written as

yj = f (netj ) = (1+ e−netj )−1. (3)

The main procedure in MLP network learning is the back-
ward propagation of the error estimated at the output layer
to the input layer through the hidden network layer to ob-
tain the final desired outputs. The gradient descent method is
utilized in this study to calculate the weight of the network
and to adjust the weight of the interconnections for minimiz-
ing the output error. The algorithm is discussed in detail in
Rumelhart et al. (1986).

2.2 Radial basis function network

The topology of the radial basis function (RBF) network is
similar to that of the MLP network. Basically, the most ad-
vantageous feature of the RBF network is its fast learning
speed, meaning it can be applied to real-time systems. Its
output can be written as follows:

F(x′) =

N∑
j=1

wjϕj (x
′) + Bj , (4)

wherex′ is the input vector,wj is the weight from thej th
neuron to the output neuron,Bj is the threshold (bias) for
the j th neuron,ϕj is the basis function of thej th layer,
andF(x′) is the output function of the network. The transfer
function for the neurons in the output layer is a linear func-
tion.
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Figure 1. Categories of typhoon tracks affecting Taiwan from 1897
to 2007 (Central Weather Bureau, Taiwan).

A common basis function used for the RBF network is the
Gaussian function, which can be written as follows:

ϕj (x
′) = exp

−

∥∥∥x′
− uj

∥∥2

2σ 2
j

 , j = 1,2,3. . .N, (5)

whereσj is the smoothing parameter of thej th neuron which
controls the radial basis function,uj is the center of the neu-
rons in thej th radial basis function in the hidden layer, and∥∥x′

− uj

∥∥ is the Euclidean distance betweenuj and the in-
put vector.

3 Data sources

According to Murty (1984), over the past century, an average
of 3.5 typhoons per year have struck Taiwan. Storm surges
as a consequence of these events are very likely to occur in
the northern areas of Taiwan such as the Tanshui estuary lo-
cated on the edge of the Taiwan Strait. Thus, this study col-
lected data from the station at the Tanshui estuary which was
then used in our exploration of forecasting models for storm
surges. Data on storm surges and weather during typhoons
that occurred between 1996 and 2001 and in 2005 were ac-
quired from this station. The Central Weather Bureau (CWB)
of Taiwan has categorized typhoons from 1897 to 2007 into
nine subgroups based on the tracks they follow across Tai-
wan; see Fig. 1. According to Tsai et al. (2000), the risk of

Table 1.Observed data of the maximum storm surges.

Nos. Typhoons ζmax Vmax 1P cosθ
(m) (m s−1) (mb)

1 Longwang 0.135 8.1 16.55 −0.00175
2 Talim 0.369 8.9 39.25 −0.64279
3 Haitane 0.294 8.1 38.55 −0.00175
4 Matsa 0.561 8.6 26.55 −0.98481
5 Lekima 0.305 5.3 20.65 0.50000
6 Nari 0.220 7.1 16.15 0.76604
7 Toraji 0.165 5.1 20.15 −0.34202
8 Chebi 0.227 7.1 19.35 −0.76604
9 Xangsane 0.881 9.1 14.55 0.98481

10 Bilis 0.290 8.8 24.75 −0.64279
11 Prapiroon 0.588 5.2 22.95 0.50000
12 Kaitai 0.425 6.7 28.25 0.34202
13 Dan 0.435 7.1 12.65 −0.34202
14 Babs 0.247 3.6 7.15 0.92388
15 Zeb 0.799 11.7 30.75 0.70711
16 Yanni 0.183 5.4 15.25 1.00000
17 Otto 0.191 6.3 18.65 −0.70711
18 Ivan 0.523 2.8 8.75 0.70711
19 Amber 0.240 7.6 24.65 −0.70711
20 Winnie 0.925 11.7 32.85 0.00000
21 Herb 0.953 9.9 47.75 1.00000
22 Gloria 0.201 7.6 25.65 −0.70711

storm surge at the Tanshui estuary is most likely for typhoons
following the first, second and sixth tracking paths. A total of
22 storm events that impacted the Tanshui estuary were se-
lected, and the observed data of the maximum storm surges
were summarized in Table 1. Data on the flow rate were also
collected from Xiulang station, about 25 km upstream station
from the Tanshui estuary.

Before training a neural network, pre-processing of input
data is necessary to fit the range of the activation function
used in the network. The input data are normalized using the
following equation:

xinew =

[
Dmin +

xiold − xmin

xmax− xmin
(Dmax− Dmin)

]
, (6)

whereDmin andDmax represent the range to be mapped,xmax
andxmin are the maximum and minimum values of all data,
andxiold andxinew are the values before and after transforma-
tion.

Generally, network performances can be efficiently evalu-
ated by two agreement indices – the root-mean-square errors
(RMSEs) and correlation coefficients (C.C.) – which are de-
fined as follows:

RMSE=

√√√√√ n∑
k=1

(yk − ŷk)2

n
, (7)
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Table 2.Comparison of the agreement indices of the maximum storm surges obtained with different models.

Models IxHyOz Agreement indices Input variables

Empirical formula –
RMSE 0.267

1P,U

C.C. 0.565

Model A MLP I1H7O1
RMSE 0.156

1P

C.C. 0.801

Model A RBF I1H8O1
RMSE 0.172

1P

C.C. 0.752

Model B MLP I2H7O1
RMSE 0.048

1P,U

C.C. 0.983

Model B RBF I2H11O1
RMSE 0.094

1P,U

C.C. 0.935

Model C MLP I3H6O1
RMSE 0.038

1P,U,Q

C.C. 0.985

Model C RBF I3H10O1
RMSE 0.110

1P,U,Q

C.C. 0.906

in which n is the number of samples,ŷk is the value of the
observations andyk denotes the value of the predictions.

C.C.=

n∑
k=1

(yk − ȳ)
(

¯̂y − ȳ
)

√
n∑

k=1
(yk − ȳ)2

n∑
k=1

(
¯̂y − ȳ

)2
, (8)

where ¯̂y is the average value of the observations, andȳ is the
average of value of the predictions.

4 Models for maximum storm surge

4.1 Empirical formula

Studies of storm surges at specific spots are more meaningful
with higher practical values. Thus the maximum storm surge
plus the highest spring tide is used for analysis of the poten-
tial of coastal inundation. Conner et al. (1957) proposed that
a larger center of low pressure would lead to the recording
of a higher wind speed at a station and thus derived an em-
pirical formula in terms of a single parameter, the pressure at
the center of the storm, to forecast the value of the extreme
storm surge.

Horikawa (1978) proposed that, in addition to pressure, the
wind speed and wind direction should also be taken into con-
sideration in the estimation of storm surges. Based upon ob-
served data from Japan, they derived an empirical formula for

forecasting the maximum storm surge which is given using

ζmax = A1P + BV 2
maxcosθ, (9)

whereζmax is the maximum storm surge,1P is the maxi-
mum pressure difference between the spatial mean pressure
and the lowest atmospheric pressure on the sea surface dur-
ing the storm,Vmax is the maximum wind speed during the
typhoon,θ is the angle between the direction of the wind with
the maximum wind speed and the tide-gauge station normal
line, andA andB are constants determined empirically from
the observed data. Based on the 22 selected storm surges
listed in Table 1, the empirical constants for the Tanshui es-
tuary, obtained through regression analysis, areA = 0.00952
andB = 0.0031.

4.2 Estimations by neural networks

Based on the physical parameters used in previous empir-
ical formulas, three models with different combined input
variables for both MLP and RBF neural networks are in-
vestigated. In the first model, denoted Model A, as in Con-
ner (1957) the maximum pressure difference is the only in-
put variable considered in the estimation of the maximum
storm surge. Subsequently, another input variable, the wind
field factor, including the maximum wind speed and the cor-
responding wind direction, is added to produce Model B. Fi-
nally, in addition to the maximum pressure difference and the
corresponding wind factor, the upstream flow rate is also in-
put to produce Model C. The three models are expressed as

Nat. Hazards Earth Syst. Sci., 14, 2313–2320, 2014 www.nat-hazards-earth-syst-sci.net/14/2313/2014/
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Figure 2. Comparison between the observed and estimated max-
imum storm surges obtained using MLP, RBF and the empirical
formula.

follows:

Model A : ζmax = f (1P) (10)

Model B : ζmax = f (1P,U) (11)

Model C: ζmax = f (1P,U,Q), (12)

where 1P is the maximum pressure difference,U =

V 2
maxcosθ is the wind field factor, andQ is the upstream flow

rate.
The topologies of the neural networks are presented in the

form of “IxHyOz”, whereIx represents the number of neu-
rons in the input layer,Hy represents the number of neurons
in the hidden layer, andOz represents the number of neurons
in the output layer. Thus, they areI1, I2, andI3 of Models
A, B and C, respectively, and the outputs of all models are
O1. The optimum number of neurons in the hidden layer is
dependent on the complexities and nonlinearities of the prob-
lems and is generally obtained by trial and error. Note that 16
of the total 22 observed data shown in Table 1 are used for
training the neural networks, and the other data are used for
testing.

Table 2 shows the performance of Models A, B and C for
both MLP and RBF neural networks, as well as the empirical
formula by Horikawa (1978). It can be seen that the results
from Model B are more precise than those from Model A.
This implies that for accurate estimation of the storm surge
one should not be too dependent on one single pressure vari-
able, even though the wind speed depends on the pressure
deficiency. It can also be seen that the performance of the
neural networks is much better than that of the empirical for-
mula, although the input variables used in Model B are the
same as those used in Horikawa’s formula (1978). This out-
come shows that neural networks are suitable for modeling
the nonlinear interrelationships among the physical parame-
ters.
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Figure 3. Sketch of the architecture of the neural network for fore-
casting the time variation of storm surges.

Table 3.Nine typhoon events used for training, test and forecasting
the neural network models for the time variation of storm surges.

Typhoon tracks Names Intensity
grades

Used for

First track Herb (1996)
Haitane (2005)
Matsa (2005)

Severe
Severe
Severe

Training
Test
Forecast

Second track Bilis (2000)
Lekima (2001)
Talim (2005)

Severe
Middle
Severe

Test
Training
Forecast

Sixth track Zeb (1998)
Kaitai (2000)
Xangsane
(2000)

Severe
Middle
Middle

Training
Test
Forecast

The object discussed in this study is the storm surge at
an estuary, so the influence of the upstream flow is also in-
vestigated. According to the values of the agreement indices
shown in Table 2, the performance of Model C is as good as
Model B. This likely demonstrates that the influence of the
upstream flow on the storm surge at the Tanshui estuary is far
smaller than the influence of the wind field or atmospheric
pressure.

Figure 2 shows a comparison of the observed and esti-
mated maximum storm surges obtained for the MLP and
RBF neural networks with Model B, as well as with the em-
pirical formula by Horikawa (1978). The results of both the
MLP and RBF neural networks are precise, especially for the
larger storm surges; however, the estimations obtained using
the empirical formula are mostly lower than the observed val-
ues.
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Figure 4. The scatterplot between observed data and trained/tested
results from MLP and RBF neural networks.

5 Forecasting models for time series of storm surges

The major factors used in Model B with time variations can
be applied to build the forecast models to estimate the time
series of storm surges. The present neural networks are aimed
at forecasting the storm surge at timet + 1, that is,ζ(t +

1). This is done by using the inputs including the pressure
difference and wind factor at timet+1,1P(t +1) andU(t +

1), and the storm surge at the previous timet , ζ(t). This can
be expressed as

ζ(t + 1) = f [1P(t + 1),U(t + 1),ζ(t)]. (13)

The reason whyζ(t) is used as an input variable for the
neural network models is because the storm surge at timet

acts a reference value for the next timet+1. The architecture
of the neural network is depicted in Fig. 3. Note that informa-
tion about the pressure difference and wind field at timet +1
for a typhoon can be taken from the warning reports issued
by the CWB; thus the time series of the storm surge can be
consecutively forecast.

The time series of storm surges for nine typhoon events
are selected, in which six of events are used for the model’s
training and testing, and the other three are used for fore-
casting, as shown in Table 3. The scatterplot for the corre-
lation coefficients between observed data and trained/tested
results of both MLP and RBF neural networks is depicted in
Fig. 4, from which the high correlations are obtained. This in-
dicates that both MLP and RBF neural networks are capable
of forecasting the time variation of storm surges. It should be
noted that the best topologies of the MLP and RBF models
areI3H8O1 andI3H10O1, respectively.

Figures 5–7 show the forecast results by the trained neu-
ral networks for the time series of storm surges caused by
Typhoon Matsa, Typhoon Xangsane, and Typhoon Talim, re-
spectively. Two of these were categorized as severe typhoons,
and one was a mid-strength typhoon. Table 4 lists the values
of the agreement indices for the forecast results. It can be

  377 

0 5 10 15 20 25 30 35 40 45
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (hr)

S
ur

ge
 H

ei
gh

t (
m

)

 

 

Observed
MLP
RBF

Typhoon Matsa
02:00, Aug. 4 ~ 21:00, Aug. 5, 2005

 378 

Fig. 5 Comparison of the observed data and results forecast by the MLP and RBF 379 

neural networks for Typhoon Matsa 380 

0 10 20 30 40 50

0

0.2

0.4

0.6

0.8

1

1.2

Time (hr)

S
ur

ge
 H

ei
gh

t (
m

)

 

 

Observed
MLP
RBF

Typhoon Xangsane
02:00, Aug. 4 ~ 21:00, Aug. 5, 2005

 381 

Fig. 6 Comparison of the observed data and results forecast by the MLP and RBF 382 

neural networks for Typhoon Xangsane 383 

 384 

20 
 

Figure 5. Comparison of the observed data and results forecast by
the MLP and RBF neural networks for Typhoon Matsa.
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Figure 6. Comparison of the observed data and results forecast by
the MLP and RBF neural networks for Typhoon Xangsane.
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Figure 7. Comparison of the observed data and results forecast by
the MLP and RBF neural networks for Typhoon Talim.
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Table 4.The values of agreement indices of the forecast time series
of storm surges.

Typhoon
names Models Agreement indices

Matsa

MLP
RMSE 0.074

C.C. 0.886

RBF
RMSE 0.077

C.C. 0.866

Talim

MLP
RMSE 0.032

C.C. 0.984

RBF
RMSE 0.070

C.C. 0.881

Xangsane

MLP
RMSE 0.118

C.C. 0.924

RBF
RMSE 0.090

C.C. 0.919

seen that high correlation coefficients and low RMSEs be-
tween the forecast and observed data are obtained. Accord-
ingly, the storm surges could be well forecast by the present
neural network models using 3 major physical factors – lo-
cal pressure, wind speed and direction – rather than using the
complicated 18 input factors presented in Tseng et al. (2007).

6 Conclusions

Storm surges caused by meteorological factors are not easy
to precisely forecast using empirical formulas. This study
adopted the technology of MLP and RBF neural networks
to build models for forecasting the variation of storm surges
based on historic data. First, the optimum neural network
models were trained and tested to estimate the maximum
storm surges based on the major meteorological factors in-
cluding the atmospheric pressure difference, wind speed and
wind direction. Then these major factors with time variations
were applied to build the forecast models to estimate the time
series of storm surges. The estimation results for the maxi-
mum storm surges show that both the MLP and RBF neural
network models are precise, especially for the larger storm
surges. For the time variation of storm surges, the storm surge
at timet +1 could be forecast well by neural networks based
upon three major meteorological factors, including the local
pressure, wind speed and direction at timet +1 and the surge
height at previous timet .
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