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Abstract. In France, nuclear facilities were designed around
very low probabilities of failure. Nevertheless, some ex-
treme climatic events have given rise to exceptional observed
surges (outliers) much larger than other observations, and
have clearly illustrated the potential to underestimate the
extreme water levels calculated with the current statistical
methods. The objective of the present work is to conduct
a comparative study of three approaches to extreme value
analysis, including the annual maxima (AM), the peaks-over-
threshold (POT) and ther-largest order statistics (r-LOS).
These methods are illustrated in a real analysis case study.
All data sets were screened for outliers. Non-parametric tests
for randomness, homogeneity and stationarity of time series
were used. The shape and scale parameter stability plots, the
mean excess residual life plot and the stability of the standard
errors of return levels were used to select optimal thresh-
olds andr values for the POT andr-LOS method, respec-
tively. The comparison of methods was based on (i) the un-
certainty degrees, (ii) the adequacy criteria and tests, and
(iii) the visual inspection. It was found that ther-LOS and
POT methods have reduced the uncertainty on the distribu-
tion parameters and return level estimates and have system-
atically shown values of the 100 and 500-year return levels
smaller than those estimated with the AM method. Results
have also shown that none of the compared methods has al-
lowed a good fit at the right tail of the distribution in the
presence of outliers. As a perspective, the use of historical
information was proposed in order to increase the represen-
tativeness of outliers in data sets. Findings are of practical
relevance, not only to nuclear energy operators in France, for
applications in storm surge hazard analysis and flood man-
agement, but also for the optimal planning and design of fa-

cilities to withstand extreme environmental conditions, with
an appropriate level of risk.

1 Introduction

Nuclear power is the primary source of electricity in France
and it is operated by Electricité de France (EDF). Nuclear
power facilities have to be designed to withstand extreme
environmental conditions. The majority of nuclear facilities
in France are located away from the coasts and obtain their
cooling water from rivers. Five plants are located on the At-
lantic French coast: Blayais, Gravelines, Penly, Paluel, and
Flamanville. Generally, safety and design rules stipulate that
protection structures should be designed to exceed specific
levels of reliability. This requires specification of values of
design variables with very low probabilities of exceedance
(considering, for instance, a 1000-year return surge). The
storm surge is a random environmental component which is
fundamental input to conduct a statistical investigation for
the submersion hazard (e.g., Bernier and Thompson, 2006;
Von Storch et al., 2008; Bardet et al., 2011; Bernardara et al.,
2011; Irish et al., 2011; Northrop and Jonathan, 2011).

During the last two decades, France has experienced sev-
eral violent climatic events, such as the storm of 1987, Mar-
tin (1999), Klaus (2009), and Xynthia (2010) that induced
significantly high storm surges, appearing as outliers in the
series of observations. In addition, the extreme event that par-
tially flooded the Blayais nuclear power plant in 1999 (storm
Martin) was caused when a combination of a high tide, an
outlier surge and high waves induced by strong winds led
to the overflow of the dikes of the Blayais site, which were
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not designed for such a combination of events (Mattéi et al.,
2001). Therefore a guide of protection including fundamen-
tal changes to the evaluation of flood hazard at nuclear power
plants has been recently published by the Nuclear Safety
Authority (ASN, 2013). However, some issues like the fre-
quency estimation of extreme surges remain among the prior-
ities of the Institute for Radiological Protection and Nuclear
Safety (IRSN).

Statistical modeling is essential for the estimation of such
extreme events occurrence. Relating extreme events to their
frequency of occurrence using probability distributions has
been a common issue since the 1950s (e.g., Chow, 1953; Dal-
rymple, 1960; Gringorten, 1963; Cunnane, 1978; Cunnane
and Singh, 1987; Chow et al., 1988; Rao and Hamed, 2000).
The frequency estimation corresponding to long return peri-
ods is based on the extreme value theory (Coles, 2001).

The AM (annual maxima) method is a simple and straight-
forward approach, adopted by many national design codes
worldwide, in which a generalized extreme value (GEV) dis-
tribution is used to fit annual maximum observations. It uses
data separated into blocks of 1 year and from these blocks
only the maximum is used. However, the statistical extrapo-
lation, to estimate storm surges corresponding to high return
periods, is seriously contaminated by sampling and model
uncertainty if data are incomplete and/or available for a rela-
tively limited period. Another major disadvantage of the AM
is that if we only extract the annual maximum observation,
we will lose lots of high sea water levels occurring during
the whole year. This has motivated the development of ap-
proaches to enlarge the sample extreme values beyond the
annual maxima. A way around this is to use a point pro-
cess method (PPM) by setting an exceedance high threshold
above which observations are taken as extremes (POT ap-
proach) or by extracting a fixed number of high observations
in each year (r-LOS approach). This way will allow us to use
much more of the data collected during the year.

The POT (peaks-over-threshold) and ther-LOS (r-largest
order statistics) approaches are two particular cases of the
PPM. The PPM is commonly considered as an alternative to
the AM method. The POT approach models the peaks ex-
ceeding a sufficiently high threshold. The generalized Pareto
distribution (GPD) is the most adapted theoretical distribu-
tion to fit POT series. In addition, the threshold leads to a
sample with data which are more representative of extreme
events. However, it is difficult to choose a threshold level and
this makes for subjectivity in what should be taken as a rea-
sonable threshold. The use of a too-low threshold introduces
automatically a bias in the estimation by using observations
which may not be extreme data and this violates the principle
of the extreme value theory. On the other hand, the use of a
too-high threshold will reduce the sample of extreme data. It
was also shown in the literature that the POT approach cannot
easily be used in presence of temporal and spatial variability,
because a separate threshold must be selected for each year
and site (Butler et al., 2007). Ther-LOS model is similar

to the AM except that, instead of recording only maximum
observations for each block, ther largest ones are recorded
(the case withr = 1 is equivalent to the AM approach). The
function density for ther-LOS model is slightly different
from the AM density, but it can be approximated to the AM
model, considering that eachr value is the maximum obser-
vation of a fictitious year. Ther-LOS model is considered
by many authors as an alternative to the more usual AM and
POT methods (Smith, 1986; An and Pandey, 2007; Butler et
al., 2007). The advantage of using a PPM method is that we
can include more recorded observations into the estimation
of the distribution function parameters and thus with more
data we will decrease the estimation variance and be more
confident about our parameter estimates. The reader is re-
ferred to Coles (2001) for more details about AM and the
PPM methods presented above.

As it has been outlined with the storms of 1987, 1999 or
2010, data sets may contain outliers. Traditionally, an out-
lier is defined as an observation point that departs signifi-
cantly from the trend of the remaining observations when
displayed as an experimental probability scatter plot. Con-
sequently, outliers interfere with the fitting of simple trend
curves to the data and, unless properly accounted for, are
likely to cause simple fitted trend curves to grossly misrep-
resent the data. It was shown in the literature that the meth-
ods outlined above (MA and PPM) are not always adapted
to data sets containing outliers (e.g., Stedinger, 1988). In an
earlier study to overcome the shortcoming of short data se-
ries and the outlier issue, Bardet et al. (2011) and Bernardara
et al. (2011) assessed POT series of storm surges in a re-
gional frequency analysis framework. In a regional context
and in comparison with local analyses, observed exceptional
surges become normal extreme values and do not appear to
be outliers any more. However, the regional frequency anal-
yses, in particular the inter-site dependency issue, need to be
improved (Bardet et al., 2011).

The basic reason for the work presented in this paper arises
from the fact that statistical characterization of high sea wa-
ter levels, in the French Atlantic coasts, using and compar-
ing several approaches, has been rarely addressed in the lit-
erature despite their significant impacts not only on nuclear
related facilities, but also on social and economic activities.
The treatment, in a local frequency analysis context, of out-
liers present in storm surge data sets is also very limited in
the literature. This work is a study of research for which some
hypotheses have been taken to allow a comparison of the dif-
ferent approaches. In particular, the MA, POT orr-LOS sam-
ples of data have been built considering the same years of
observations for one site, even if other POT data were avail-
able for instance. Therefore some of the hypotheses taken for
this work may be modified in the framework of specific de-
sign studies, depending on the aims which are required, as
the criteria for the selection of the POT threshold or for the
fitting adequacy.
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A brief review of the theoretical background of the ex-
treme value frequency analysis is presented in Sect. 2 of this
paper. The AM,r-LOS, and POT methods applied to storm
surges data collected at 21 sites in the French Atlantic coast
are presented in Sect. 3, with a verification of the frequency
analysis assumptions. Section 4 summarizes the discussion
as well as a comparison of the AM,r-LOS and POT ap-
proaches. Further discussions on using historical information
to improve the frequency estimation of extreme surges are
presented in Sect. 5, before the conclusion and perspectives
in Sect. 6.

2 Extreme value frequency estimation

Regardless of the analysis method, a standard frequency es-
timation procedure includes the following steps: (i) verifica-
tion of randomness, homogeneity and stationarity hypothe-
ses and detection of outliers; (ii) computation of empirical
probabilities of exceedance using sorted and ranked observa-
tions; (iii) fitting a curve to these observations with distribu-
tion functions, parameters estimation and applying adequacy
criteria and tests to select the more appropriate method and
the best distribution to represent the data; (iv) extrapolating
or interpolating so that the return periodT of the extreme
value of interest (say 100 years) is estimated.

2.1 Hypotheses and statistical tests

Randomness, homogeneity and stationarity of time series are
necessary conditions to conduct a frequency analysis (Rao
and Hamed, 2001). Three non-parametric tests were used:
the Wald–Wolfowitz test (WWT) for randomness (Wald and
Wolfowitz, 1943), the Wilcoxon test (WT) for homogene-
ity (Wilcoxon, 1945) and the Kendall test (KT) for stationar-
ity (Mann, 1945). Another important test but not required to
conduct a frequency analysis is the Grubbs–Beck test (GBT)
for the detection of outliers (Grubbs and Beck, 1972).

2.2 Frequency estimation

Several formulas exist to calculate the empirical probabil-
ity of an event. On the basis of different statistical criteria
it is found in several studies (e.g., Alam and Matin, 2005;
Makkonen, 2006) that the Weibull plotting position formula
pe = m/(N + 1) directly follows from the definition of the
return period (m is the rank order of the ordered surges mag-
nitudes andN is the record length). It was also shown that
this formula (Weibull, 1939) predicts much shorter return
periods of extreme events than the other commonly used
methods. The Weibull plotting position was then used in the
present work.

Of the many statistical distributions commonly used for
extremes, the GEV function was retained for the AM andr-
LOS methods and the GPD function was used to apply the
POT approach.

The GEV distribution introduced by Jenkinson (1955) is
the limiting distribution for the maximum (and the mini-
mum) of i.i.d. (independent and identically distributed) ran-
dom variables. It combines three asymptotic extreme value
distributions, identified by Fisher and Tippet (1928), into a
single form with the following cumulative distribution func-
tion F :

F (x) =

 e
−

(
1+ξ

x−µ
σ

)−1/ξ

ξ 6= 0

e−e−(x−µ)/σ ξ = 0
, (1)

whereµ, σ > 0, andξ are the location, scale, and shape pa-
rameters, respectively. The parameterization for the shape
parameterξ in Eq. (1) follows the notational convention
prevalent today in the statistics literature; for example, in the
hydrologic literature, it is still common to parameterize in
terms ofξ∗

= −ξ instead.
Depending on the value of the shape parameterξ , the

GEV can take the form of the Gumbel, Fréchet or Nega-
tive Weibull distributions. Whenξ = 0, it is the Type I GEV
(Gumbel) distribution which has an exponential tail. When
ξ > 0, the GEV becomes the Type II (Fréchet) distribution.
In the third case, whenξ < 0, it is the Type III GEV (the re-
verse Weibull function). The last one has a finite and short
theoretical upper tail(∞ < x < µ− σ/ξ) that may be use-
ful for estimates of specific cases of extreme values such as
surges, which may have an upper bound. The heavy upper
tail in the first case with the Fréchet distribution is unbounded
(µ − σ/ξ < x < ∞) and allows for relatively high probabil-
ity of extreme values. Generally when examining extreme
storm surge events we are interested in asking the question:
How often do we expect a region to be submerged by sea
water? And if it is submerged how high will the surge be? To
answer this question, we need to calculate theT years return
level. The 1/p return levelẑp (computed from the GEV dis-
tribution) is the quantile of probability(1− p) to exceed̂zp

and it is given by

ẑp =

{
µ̂ −

σ̂

ξ̂

{
1− y

−ξ̂
p

}
ξ 6= 0

µ̂ − σ̂ log
(
yp

)
ξ = 0

, (2)

whereyp = − log(1− p) andµ̂, σ̂ and ξ̂ are the GEV dis-
tribution parameters estimated with the maximum likelihood
method.

On the other hand, as mentioned earlier, a GP distribution
calculates probabilities of observing extreme events which
are above a sufficiently high threshold. Given a thresholdu,
the distribution of excess values ofx overu is defined by

Fu (y) = Pr {X − u ≤ x |X > u } =
F (x) − F (u)

1− F (u)
, (3)

which represents the probability thatX exceedsu by at most
an amounty, wherey = x − u. Several studies show that,
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when the selected thresholdu is sufficiently high, the asymp-
totic form of the distribution function of excessFu (y) con-
verges to a GP function (e.g., Pickands, 1975) which has the
following cumulative distribution function:

G(x) =

{
1− (1+ ξ x/σ)

−
1
ξ ξ 6= 0

1− e
−x/σ

ξ = 0
. (4)

The GP distribution corresponds to a (shifted) exponential
distribution with a medium-size tail whenξ = 0, and to a
long-tailed (and unbounded) ordinary Pareto distribution for
positive values ofξ and finally, whenξ < 0, it takes the
form of a Pareto Type II distribution with a short tail upper
bounded byµ + σ/ξ .

Several methods exist to estimate distribution parameters.
Although for most of the distribution functions, the maxi-
mum likelihood method is considered in many investigations
as an excellent option for parameter estimation, it has been
shown that the method of moments is more effective (Ashkar
and Ouarda, 1996) when using the GPD. For both the GEV
and the GP distributions, the parameters were estimated in
the present work with the maximum likelihood method.

2.3 Adequacy criteria and tests

Questions like the adequacy in the statistical analysis and
goodness-of-fit (GOF) tests should be addressed when com-
paring different distributions and methods. Many GOF tests
studies were conducted in the literature. Steele and Chaseling
(2006) have shown that no single test statistic can be recom-
mended as the “best” and we need to consider carefully the
choice of a test statistic to optimize the power of our test of
goodness of fit. Conventional measures of the adequacy of
a specified distribution and to compare and select the more
appropriate method is to compute the BIAS and RMSE (root
mean squared error). The RMSE, also known as the fit stan-
dard error, is the square root of the variance of the residuals.
It indicates the absolute fit of the model to the data and how
close the observed probabilities are to those of the model. As
the square root of a variance, RMSE can be interpreted as
the standard deviation of the unexplained variance, and has
the useful property of being in the same units as the response
variable. Lower values of RMSE indicate better fit. RMSE
is a good measure of how accurately the model predicts a
response. The Akaike and the Bayesian information criteria
are two other selection criteria based on the likelihood func-
tion and involving the number of parameters and the sample
size. Since the methods that we compare in the present pa-
per produce data sets of different lengths and use the same
distribution function, our comparative study will be biased if
we use these two last criteria (because they are based on the
sample size).

In addition to these criteria, many adequacy statistics and
goodness-of-fit tests, such as the Chi-2, the Kolmogorov–
Smirnov (KS) and the Anderson–Darling (AD), can also be

used to discriminate between distributions and/or methods.
The Chi-2 test can be used to verify the hypothesis about the
parent distribution of the sample. The advantage of this test
is that one can be certain that a fit is not adequate if this test
fails for a distribution. On the other hand, this test has the
shortcoming of being considered, by the scientific commu-
nity, not very powerful. Moreover, we strongly believe that
using the Chi-2 for continuous distributions is a bad idea (the
test result depends strongly on the choice of the classes far
more than the values of the sample). The AD test (Stephens,
1974) is used to test if a sample came from a population with
a specific distribution. It is an improved version of the KS test
and gives more weight to the distribution tails than do the KS
and the Chi-2 tests. Contrarily to the AD test, with the KS test
the critical values do not depend on the specific distribution
being tested. The AD test makes use of the specific distri-
bution in calculating critical values and it is not distribution
free. The AD test is then considered in the present paper as
an alternative to the KS and Chi-2 GOF tests.

3 Study area and extraction of extreme events

Data used in this study are taken from tide gauges located
on the French Atlantic coast. A sea water level database was
provided by the French Oceanographic Service SHOM (Ser-
vice Hydrographique et Océanographique de la Marine). It
was shown that the mean observed tide levels in the French
Atlantic coast increase with time and mean predicted ones
are constant (Bardet et al., 2012). To compare the observed
and predicted sea level data, observations at each site have
been corrected so that sea level rise did not affect the average
annual observed levels skew. Storm surge time series were
extracted from these predicted and observed tide levels. The
reader is referred here to Bardet et al. (2012). The selected
peaks for a particular year have to be selected from distinct
and statistically independent storm surge events. Several al-
gorithms that deal with the independence of events are pre-
sented in the literature (e.g., Tawn, 1988; Butler et al., 2007).
To reduce mutual dependence in data sets, and according to
the procedure described by Bardet at al. (2012), time series of
3-day independent observations of skew surges were created
for 21 sites located on the French Atlantic coast. Figure 1 dis-
plays the geographic distribution of the stations in the French
Atlantic coast. These tide gauges provide good spatial cov-
erage and represent different climate regions from the north-
eastern to southeastern coast. It should be noted here that in
this study we used the same sites analyzed by Bardet and Du-
luc (2012), but not the same periods of data. Indeed, Bardet
and Duluc (2012) used only the POT method and therefore
they were able to use all the data at their disposal. In our case,
our goal is to compare the methods and the same raw series
should be used for each method. The use of the POT method
in our case study is limited by this constraint (the complete
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time series have not been exploited) which may have a nega-
tive impact on the performance of the method.

The record length was the main criterion to select the sta-
tions. The AM approach was applied to sufficiently long data
sets (e.g., Dunkerque, Le Conquet, Brest). We also included
sites with 14 to 25-year data sets (St-Nazaire, Olonne, La
Rochelle, Port Bloc) to examine the contribution of PP ap-
proaches (POT andr-LOS) expanding relatively short series.
Within this selected subset, some stations were lacking data
for relatively long periods. In some cases, these missing peri-
ods can reach several months and may occur during the sea-
son of high surges (autumn and winter). This may limit the
performance of AM andr-LOS frequency analysis methods.
Using these criteria, a first selection was done on the annual
maximum data sets. Saint-Malo, Concarneau, Le Crouesty,
and Arcachon stations were removed because they have very
small record lengths. Within the selected subset of AM ob-
servations, the minimum length of record is 14 years (La
Rochelle) and the maximum is 56 years for Brest tide gauge.
Figure 1 shows record lengths of the retained sites.

3.1 Extraction of extreme events using ther-LOS and
POT models

Similarly to the AM data sets, POT, andr-LOS observations
were extracted from the same time series. The extraction
of these data sets requires caution regarding base surges or
thresholdsu (for the POT approach) andr (for the r-LOS
approach) values to be used. There is a bias–variance trade-
off associated with these parameters. A large value ofu or
a small value ofr can result in large variance, but the op-
posite is likely to cause a bias and violate the assumption of
the Poisson process generating the extreme values (Smith,
1986). One of the criteria used to selectu or r is that they
minimize the variance associated with a required quantile es-
timate. Coles (2001) has shown that stability plots constitute
a graphical tool for selecting optimal value ofu or r. The sta-
bility plots are the estimates of the GPD parameters and the
mean residual life-plot as function ofu when using the POT
approach, and the standard errors of the GEV shape parame-
ter and theT years return levels as function ofr in ther-LOS
case. The value should be extracted from the linear part of
the curve. To avoid violating the assumption of the Poisson
process generating the extreme values, the required thresh-
old should be as high as possible and the required value ofr

should be as low as possible (without considerably increas-
ing the variance). This is why in seeking the stability zones
we begin exploring the POT diagnostic plots from the right
(u should be as high as possible) and ther-LOS ones from
the left (r should be as low as possible). At the same time,
to minimize the variance, the smallest value of the identified
stable part is commonly considered by the scientific commu-
nity as an optimal choice ofu or r. It is important to note
that depending on the objectives of the study, another value
can be selected as long as it remains in the stable part of the

curve. The table presented in Fig. 1 shows the optimal values
of r andu for each considered site.

In ther-LOS model, a data set was extracted for each site
from the raw data and the analysis was repeated forr = 1–10
(if r = 1 then this simplifies to the AM method). The three
GEV parameters and associated standard errors were calcu-
lated. As an example, the standard errors corresponding to
the shape parameter and associated with 100 and 500-year
surges for the Brest (56-year data set) and Boulogne (20-
year data set) sites are shown in Fig. 2. We can clearly see
a decrease of the variability with an increase inr up to 3 for
Brest and up to 5 for Boulogne, but there is no appreciable
change in the standard error forr greater than these values.
Therefore, an optimum choice ofr is expected to be close
to 3 for Brest and 5 for Boulogne. As it will be presented
later, the values ofr presented in Fig. 1 are sufficient to pro-
vide minimum variance quantile estimates. These values are
similar to those recommended by several authors (e.g., Tawn,
1988; Guedes Soares and Scotto, 2004), who concluded that
results of ther-LOS method forr = 3–7 are very stable and
consistent.

In the POT model, a data set was also extracted for each
site from the raw data and the analysis was repeated for
u = 20–80 cm. To determine the required threshold, diagnos-
tic plots which plot the GPD shape and modified scale pa-
rameters and also the mean residual life plot over a range of
threshold values were used. Figure 3 shows the mean resid-
ual life plot for the Calais and Dieppe surge data sets. In-
terpretation of a mean residual life plot is not always simple
in practice. The idea is to find the lowest threshold where
the plot is nearly linear and appears as a straight line for
higher values, taking into account the 95 % confidence lim-
its. For the Calais site, the graph appears to curve from
u = 20 cm tou = 46 cm, beyond which it is nearly linear
until u = 80 cm. It is tempting to conclude that there is no
stability until u = 46 cm, after which there is approximate
linearity. This suggests we takeu = 46 cm. There are 84 ex-
ceedances of this threshold, enough to make meaningful in-
ferences. By the same reasoning for the Dieppe data set,
we can see that the plot appears roughly linear from about
u ≈ 52 cm tou ≈ 65 cm and is erratic above 65 cm, so we
selected 52 cm as a plausible choice of threshold and there
are 75 exceedances of this threshold.

The second procedure for threshold selection is to estimate
the model at a range of thresholds. Above a levelu at which
the asymptotic motivation for the GPD is valid, estimates of
the shape parameter should be approximately constant, while
estimates of the modified scale parameter should be linear in
u. The reader is referred to Coles (2001) for more details
about modeling threshold excesses and threshold selection.
We can draw the same conclusions with respect to the thresh-
old value (for Calais and Dieppe sites) by inspecting the
GPD modified scale and shape parameters plots presented in
Fig. 3. The number of surge eventsNu is, as expected, greater
than the number of years of recordsN (Fig. 1). The American
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Figure 1. To the left: location of sites. In the middle: a table containing the site names and periods of records, the record lengths and the
Grubbs–Beck statistic (GBT) of each site and for the annual maxima (AM), the peaks-over-threshold (POT) and ther-largest order statistics
(r-LOS) methods. Ther (ther-largest observations) andu (threshold – cm) values are also presented in this table. To the right: distribution
of record lengths.

Figure 2. Estimation ofr (ther-largest observations): the GEV shape parameter and 100 and 500-year storm surges (cm) with 95 % confi-
dence intervals (Brest and Boulogne sites).

Society of Civil Engineers ASCE (1949) recommended that
the base surge should be selected so thatNu is greater than
N , but that there should not be more than three or four events
above the threshold in any one year. The CETMEF (2013) in

France recommended a range of two to eight events per year.
As it can be concluded from the table presented in Fig. 1,
this criterion was respected for the majority of sites except
Boulogne, Port Tudy, St-Nazaire, and St-Gildas. The base
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Figure 3. Estimation ofu (threshold – cm): the GPD modified scale and shape parameters and mean excess life plot with 95 % confidence
intervals (Calais and Dieppe sites).

surges used in the present study are similar to those recom-
mended by the UK Flood Studies Report (Natural Environ-
ment Research Council, 1975). This range of values ofNu

was recommended by the US Geological Survey (Dalrym-
ple, 1960), Tavares and da Silva (1983) and Jayasuriya and
Mein (1985) as well.

3.2 Screening for outliers

Working with events in an extreme environmental conditions
context requires caution about the input data. The French At-
lantic sea level data sets were never screened for the numer-
ical detection of outliers. The GBT was applied on series of
log-transformed extreme storm surges for all stations within
the selected subset. The GBT is based on the difference of
the mean of the sample and the most extreme data consid-
ering the standard deviation (Grubbs and Beck, 1972). Un-
der the hypothesis that the logarithm of the sample is nor-
mally distributed, the GBT, with a significance level equal
to 5 %, highlights the extreme events with very low proba-
bilities of occurrence. The table presented in Fig. 1 shows,
for each site, the GBT statistic for the MA,r-LOS, and POT
data sets. Sites for which the GB-statistic exceeded the one-
sided critical point for GBT have experienced outliers (writ-
ten with bold characters). Seven potential outliers at seven
different sites (Boulogne, Dieppe, Le Havre, Cherbourg, Le
Conquet, Brest, and La Rochelle) were identified in the case
of AM data sets. Three additional outliers at three differ-
ent sites (Roscoff, St-Nazaire, and Bayonne) were detected
when ther-LOS approach is used. Four other potential out-
liers at four additional sites (Dunkerque, Olonne, Port Bloc,
and St-Jean) were detected by the GBT applied on the POT
series. The analysis of climatic conditions on the day the out-

lier took place shows that there is no evidence of unrealistic
storm surges (storms of 1953, 1969, 1979, 1987, 1999, and
2010), all the detected outliers have been considered as cred-
ible and as a result, we kept all of them in the present study.

3.3 Randomness, stationarity and homogeneity tests

The record length was the first criterion to select the stations.
As a second prerequisite for frequency analysis, all the time
series of extreme storm surges (AM, POT, andr-LOS) must
be homogeneous, stationary and independent. Table 1 shows
the KT (for stationarity), the WWT (for independency) and
the Wilcoxen (for homogeneity) statistics for AM,r-LOS,
and POT data sets. Stations that failed these tests at signifi-
cance levels of 5 % are highlighted in the Table 1 (the corre-
spondingp values are italicised). Bayonne station failed the
KT with a p value equal to 0.029, showing a possible trend
in the AM data set. Dunkerque, Boulogne, and Bayonne sta-
tions failed the KT and WT with ther-LOS peaks. For the
same type of data (r-LOS), the Cherbourg station failed the
KT (p value= 0.024). On the other hand, Bayonne station
failed the KT and the WT with the POT data set. For all the
approaches, only Port-Bloc station failed the WWT (for in-
dependency) when using ther-LOS data.

Another widely used non-parametric method of non-
stationarity detection, the Spearman’s rho test, has been also
carried out on ther-LOS series that failed the Kendall test.
The results (not presented in the present paper) confirm the
presence of a statistically significant trend or cycle at the 5 %
significance level for Dunkerque, Cherbourg, and Bayonne
sites. The consistency and stationarity of the stochastic char-
acteristics of the surge time series at one or more stations may
be influenced by many factors, from different observation
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Table 1.Stationarity, independence and homogeneity tests (p value).

Sites KT (stationarity) WWT (independence) WT (homogeneity)

MA r-LOS POT MA r-LOS POT MA r-LOS POT

1. Dunkerque 0.541 0.029 0.279 0.176 0.195 0.372 0.443 0.030 0.551
2. Calais 0.820 0.851 0.887 0.766 0.121 0.319 0.517 0.593 0.726
3. Boulogne 0.127 0.009 0.520 0.920 0.124 0.094 0.105 0.001 0.499
4. Dieppe 0.151 0.154 0.552 0.790 0.078 0.818 0.369 0.679 0.929
5. Le Havre 0.913 0.609 0.612 0.847 0.062 0.284 0.380 0.217 0.580
6. Cherbourg 0.079 0.024 0.171 0.612 0.808 0.081 0.443 0.126 0.229
7. St-Malo∗ – – – – – – – – –
8. Roscoff 0.791 0.666 0.488 0.984 0.709 0.529 0.954 0.772 0.422
9. Le Conquet 0.788 0.604 0.857 0.186 0.639 0.693 0.583 0.950 0.459
10. Brest 0.909 0.242 0.347 0.476 0.200 0.124 0.726 0.613 0.222
11. Concarneau∗ – – – – – – – – –
12. Port Tudy 0.797 0.091 0.288 0.549 0.588 0.846 0.982 0.221 0.23
13. Le Crouesty∗ – – – – – – – – –
14. St-Nazaire 0.766 0.397 0.722 0.209 0.938 0.134 0.242 0.281 0.719
15. St-Gildas 0.950 0.984 0.868 0.274 0.249 0.424 0.302 0.132 0.908
16. Olonne 0.461 0.444 0.522 0.864 0.155 0.698 0.898 0.749 0.163
17. La Rochelle 0.826 0.182 0.932 0.174 0.834 0.835 0.902 0.132 0.801
18. Port Bloc 0.599 0.513 0.204 0.511 0.025 0.397 0.549 0.686 0.200
19. Arcachon∗ – – – – – – – – –
20. Bayonne 0.029 0.001 0.005 0.702 0.079 0.823 0.079 0.035 0.002
21. St-Jean 0.975 0.710 0.490 0.678 0.481 0.863 0.845 0.693 0.381

∗ Data series are very short.

techniques to climate change. Because storm surges can ex-
hibit marked periodic behavior on both annual and diurnal
timescales, naturally their extremes do as well. However,
such cycles in extremes have not received much attention, as
the AM technique does not require their explicit modeling.
The annual periodicity (seasonality) in extreme storm surges
is more present and visible in ther-LOS data sets than in
the POT ones, especially for large values ofr. However, as
the Kendall and Spearman tests applied to the POT series
did not show any statistically significant non-stationarity for
all the stations, more intensive and comprehensive study is
needed to foresee why these tests exhibited evidence of auto-
correlations, trends or cycles in somer-LOS time series. The
Dunkerque, Boulogne, Cherbourg, and Bayonne sites were
then removed from the analysis.

4 Results and discussion

In this section we report the results of the AM,r-LOS and
POT methods of extreme storm surge analysis applied to the
French Atlantic storm surges data extracted, treated and pre-
sented in the last section. There are different ways to compare
these statistical approaches: (i) examination of each method’s
uncertainty degree; (ii) comparative study based on return
levels; (iii) comparative study based on adequacy criteria and
tests; and (iv) visual examination based on diagnostic plots.

4.1 Uncertainty degree

It is possible to examine the uncertainty degrees of each
method. As stated earlier, optimum values ofr andu were
estimated for each site. It is interesting to note that a model
predicts the future return values well only if it produces re-
turn level estimates that fit inside the confidence interval. The
1/p return levelŝzp were calculated using Eq. (2). A degree
of uncertainty in the estimates of a return level is closely re-
lated to that of the model parameters. The variance of our
return level estimates was calculated using the delta method
and an asymptotic approximation to the normal distribution
as follows:

var
(
ẑp

)
= ∇zt

pV∇zp, (5)

where∇zp is the vector of first derivatives ofzp andV is
the variance-covariance matrix of the estimated parameters
(µ,σ,ξ).
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〈
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∂µ
,
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,
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〉
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(
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)
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The variance-covariance matrixV was used to calculate
standard errors and confidence intervals associated with the
distribution parameters. Standard errors (and their corre-
sponding 95 % confidence intervals) of the GEV and GPD
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Table 2.MLEs and return levels with associated standard errors for GEV distribution using AM andr-LOS data (with optimum choice ofr)
and for GPD using POT data (with optimum choice ofu).

Stations µ̂ σ̂ ξ̂ S100(SE) S500(SE)

MLE(95% CI) SE MLE (95% CI) SE MLE (95% CI) SE

AM 75.40(69.49 : 81.32) 3.02 16.18(12.07 : 20.28) 2.10 –0.175(–0.380 : 0.030) 0.105 126.51(52.18) 136.67(80.06)
Dunkerque POT – – 13.53(9.26 : 17.80) 2.18 –0.033(–0.272 : 0.207) 0.122 121.83(6.15) 140.07(10.75)

r-LOS Dunkerque station failed the KT (p value = 0.029) and the WT (p value = 0.030)

AM 61.85(56.38 : 67.33) 2.79 16.53(12.57 : 20.49) 2.02 –0.425(–0.623 : –0.226) 0.101 95.25(22.82) 97.98(29.06)
Calais POT – – 17.55(13.81 : 21.30) 1.91 –0.277(–0.424 : –0.130) 0.075 91.67(5.40) 98.03(7.61)

r-LOS 55.94(52.22 : 59.66) 1.90 15.72(13.11 : 18.32) 1.33 –0.323(–0.453 : –0.193) 0.070 93.57(13.79) 98.04(18.79)

AM 61.63(55.40 : 67.85) 3.17 12.80(8.11 : 17.50) 2.40 0.136(–0.162 : 0.434) 0.152 143.51(149.24) 186.74(316.90)
Boulogne POT – – 10.90(7.98 : 13.83) 1.49 0.104(–0.090 : 0.299) 0.099 106.43(11.02) 137.31(22.58)

r-LOS Boulogne station failed the KT (p value = 0.009) and the WT (p value = 0.001)

AM 58.42(53.61 : 63.23) 2.45 13.00(9.27 : 16.72) 1.90 0.168(–0.073 : 0.409) 0.123 148.70(98.35) 200.95(217.07)
Dieppe POT – – 10.26(6.84 : 13.67) 1.74 0.186(–0.062 : 0.433) 0.126 126.64(10.40) 171.86(23.49)

r-LOS 50.22(47.64 : 52.79) 1.31 12.43(10.64 : 14.22) 0.91 0.018(–0.070 : 0.106) 0.045 109.85(17.97) 131.97(33.35)

AM 66.11(59.34 : 72.88) 3.45 19.94(15.45 : 24.44) 2.29 –0.089(–0.238 : 0.059) 0.076 141.35(89.44) 161.23(148.72)
Le Havre POT – – 13.72(10.18 : 17.26) 1.81 0.090(–0.098 : 0.278) 0.096 128.31(11.82) 164.3(23.8)

r-LOS 53.66(50.35 : 56.97) 1.69 16.81(14.58 : 19.03) 1.13 –0.064(–0.147 : 0.019) 0.042 120.59(23.06) 139.76(39.30)

AM 47.25(43.19 : 51.31) 2.07 11.66(9.00 : 14.33) 1.36 –0.152(–0.286 : –0.019) 0.068 85.80(26.77) 94.06(41.90)
Cherbourg POT – – 7.60(5.15 : 10.04) 1.25 0.046(–0.186 : 0.277) 0.118 80.94(4.91) 96.6(9.4)

r-LOS Cherbourg station failed the KT (p value = 0.024)

AM 48.01(44.58 : 51.44) 1.75 9.84(7.50 : 12.18) 1.20 –0.162(–0.343 : 0.018) 0.092 79.90(18.37) 86.52(28.49)
Roscoff POT – – 9.88(7.58 : 12.18) 1.17 –0.099(–0.258 : 0.060) 0.081 73.53(3.77) 82.85(6.20)

r-LOS 38.63(37.16 : 40.10) 0.75 8.32(7.28 : 9.37) 0.53 –0.057(–0.162 : 0.047) 0.053 72.29(4.56) 82.14(7.81)

AM 48.58(45.32 : 51.83) 1.66 9.62(7.25 : 11.99) 1.21 0.091(—0.084 : 0.265) 0.089 103.46(35.92) 128.81(72.26)
Le Conquet POT – – 8.17(6.33 : 10.00) 0.94 0.097(–0.062 : 0.255) 0.081 85.37(4.21) 107.57(8.55)

r-LOS 38.13(36.93 : 39.33) 0.61 7.88(7.02 : 8.74) 0.44 0.045(—0.033 : 0.123) 0.040 78.43(4.21) 94.68(8.03)

AM 51.88(48.23 : 55.53) 1.86 12.61(9.97 : 15.24) 1.34 0.047(–0.113 : 0.206) 0.081 116.57(38.70) 142.75(74.12)
Brest POT – – 9.79(7.90 : 11.68) 0.97 0.070(–0.062 : 0.202) 0.067 95.25 (3.82) 118.32(7.53)

r-LOS 43.17(41.74 : 44.59) 0.73 10.03(9.02 : 11.03) 0.51 0.004(–0.060 : 0.069) 0.033 94.56(7.64) 113.19(14.30)

AM 53.95(49.30 : 58.61) 2.37 10.93(7.31 : 14.54) 1.84 –0.412(–0.775 : –0.048) 0.186 76.50(16.33) 78.44(20.95)
Port Tudy POT – – 13.43(10.23 : 16.63) 1.63 –0.218(–0.388 : –0.048) 0.087 74.04(5.76) 80.73(8.52)

r-LOS 40.95(38.92 : 42.97) 1.03 9.77(8.34 : 11.19) 0.73 –0.113(–0.244 : 0.018) 0.067 75.96(7.25) 84.52(11.76)

AM 68.49(63.07 : 73.91) 2.76 11.63(7.60 : 15.66) 2.06 –0.078(–0.443 : 0.288) 0.186 113.46(55.48) 125.78(93.13)
St-Nazaire POT – – 17.20(13.69 : 20.71) 1.79 –0.156(–0.294 : –0.019) 0.070 96.46(8.85) 108.37(13.81)

r-LOS 46.97(44.93 : 49.02) 1.04 11.68(10.18 : 13.18) 0.76 –0.011(–0.134 : 0.112) 0.063 99.43(9.92) 117.23(17.85)

AM 56.67(51.60 : 61.73) 2.59 11.75(8.09 : 15.41) 1.87 –0.144(–0.461 : 0.172) 0.161 96.16(40.55) 104.86(63.89)
St-Gildas POT – – 13.47(10.26 : 16.67) 1.63 –0.087(–0.265 : 0.091) 0.091 86.07(8.57) 99.59(14.27)

r-LOS 47.15(44.07 : 50.23) 1.57 12.81(10.66 : 14.95) 1.09 –0.176(–0.312 : –0.039) 0.070 87.55(14.14) 95.57(21.67)

AM 56.12(50.18 : 62.06) 3.03 11.92(7.43 : 16.42) 2.29 –0.179(–0.624 : 0.267) 0.227 93.52(48.50) 100.86(74.06)
Olonne POT – – 11.90(7.77 : 16.03) 2.11 –0.13(–0.38 : 0.12) 0.127 86.26(9.34) 95.77(14.93)

r-LOS 42.67(39.89 : 45.45) 1.42 11.94(9.99 : 13.89) 1.00 –0.125(–0.267 : 0.017) 0.072 84.45(13.24) 94.27(21.26)

AM 48.75(37.77 : 59.73) 5.60 20.28(12.41 : 28.15) 4.01 0.048(–0.252 : 0.348) 0.153 153.20(350.90) 195.67(673.90)
La Rochelle POT – – 9.18(5.51 : 12.85) 1.87 0.238(–0.070 : 0.546) 0.157 116.86(26.04) 170.76(62.80)

r-LOS 44.40(39.86 : 48.93) 2.31 13.75(10.54 : 16.95) 1.63 0.045(–0.108 : 0.199) 0.078 114.67(60.20) 142.99(115.15)

AM 50.99(43.69 : 58.29) 3.72 14.59(9.38 : 19.80) 2.66 –0.299(–0.623 : 0.025) 0.165 87.43(55.71) 92.14(77.21)
Port Bloc POT – – 11.48(7.13 : 15.83) 2.22 –0.098(–0.386 : 0.191) 0.147 84.56(11.89) 95.46(19.60)

r-LOS Port Bloc station failed the WWT (p value = 0.025)

AM Bayonne station failed the KT (p value = 0.029)
Bayonne POT Bayonne station failed the KT (p value = 0.005) and the WT (p value = 0.002)

r-LOS Bayonne station failed the KT (p value = 0.001) and the WT (p value = 0.035)

AM 35.98(33.14 : 38.82) 1.45 7.42(5.37 : 9.47) 1.05 –0.226(–0.477 : 0.026) 0.128 57.21(10.29) 60.76(15.11)
St-Jean POT – – 9.02(7.12 : 10.92) 0.97 –0.233(–0.362 : –0.105) 0.066 52.45(2.57) 56.58(3.76)

r-LOS 33.42(31.67 : 35.18) 0.90 6.53(5.29 : 7.77) 0.63 –0.150(–0.315 : 0.015) 0.084 55.10(4.93) 59.79(7.72)

distribution parameters and of 100, 500, and 1000-year re-
turn levels were estimated and examined for each method
and each site (Table 2). Stations that failed one or several

tests at levels up to 5 % were eliminated for the present anal-
ysis (5 stations in total). The standard errors ofµ̂ and σ̂

parameters are relatively small compared to their maximum
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Figure 4. The standard error associated with 100-year (left) and 500-year (right) surges versus the value ofr (ther-largest observations) and
u (threshold).T is the return period.

likelihood estimates (MLE). The results given in Table 2 in-
dicate that a systematic reduction, compared to the AM and
POT methods, in the uncertainty on the parameters estima-
tion when usingr-LOS approach (more confidence to param-
eters estimates). Indeed, compared to its MLE, the standard
errors of theµ̂ parameter estimated withr-LOS time series
are systematically smaller than those estimated with AM data
sets. It can also be seen that the standard error of theσ̂ pa-
rameter is systematically smaller than those estimated with
POT and AM ones. Although the parameter uncertainty is
often reduced when additional data is used, several stations
show otherwise. This is the case for the Calais, Le Havre,
Brest, Port Tudy, St-Nazaire, St-Gildas, and St-Jean stations
where the POT approach results in more data than ther-
LOS method without reducing the standard error. It can be
concluded that additional information is a necessary condi-
tion for lowering the uncertainty and providing an improved
model fit to the data. However, this does not imply that hav-
ing more data will improve the model fit as more data will
invalidate the asymptotic assumption. Also, contrarily to the
POT method, when using ther-LOS approach, a relatively
large number (depending on the value ofr) of additional ob-
servations become available and it is subjective to say which
of the available data is in fact extreme and which is not. In
other words, the statistical gain will be better if we use fewer
additional values which are really extreme (the case of the
POT method with a fairly high threshold for example) instead
of many more values that contain multiple observations that
are not really extreme, as in the case ofr-LOS time series for
high values ofr.

It can also be seen that standard errors of 50, 100, and 500-
year return levels decrease significantly, compared to the AM
approach, for all the sites when using ther-LOS and the POT
methods. This decrease in return levels is more noticeable
with the POT method than for ther-LOS method. The use of
the POT and ther-LOS methods leads to tighter confidence
intervals as we are more certain about the theoretical return
level and habitually the decrease in return levels is caused
by lighter tails of distributions and smaller shape parameter
given for ther-LOS and POT data sets. This allows us to con-
clude that there is a decreased probability of extreme events
in the right tail of the distribution when compared to the fit
given by the AM model.

The effect of considering more than a single value per year
is also illustrated by Fig. 4, in which the standard errors cor-
responding to both ther-LOS and POT estimates of 100 and
500-year storm surges are displayed. It can be seen that the
standard errors are reduced by 3–11 times asr increases from
1 to 5, and by 1–8 times as the thresholdu decreases from 55
to 35 cm. It is also noteworthy that these differences in stan-
dard errors (whenr increases and/oru decreases), become
increasingly important as the size of the data sets decreases.
It is undoubtedly an advantage of using ther-LOS and POT
approaches instead of the AM method only when the data set
size is relatively small.

4.2 Return levels

Table 2 exhibits the evidence that the GEV and GP distribu-
tions are heavy tailed (positive shape parameterξ ) when the
data set is characterized by the presence of an outlier (e.g.,
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Figure 5. Visual inspection – example of a distribution fit (and Q–Q plot) for Brest station (with outlier) using AM (annual maxima),r-
LOS (r-largest order statistics) and POT (peaks over threshold) methods. The 95 % lines correspond to confidence intervals. TheT100 is the
100-years return period.

Dieppe, Brest, La Rochelle). However, theξ settings are not
high enough for the theoretical curves to achieve these out-
liers. None of the three approaches has allowed an acceptable
closeness of fit in the upper tail of the distribution function
in the presence of outliers (Fig. 5). It can be seen that the
AM method has given the largest return levels and that the
point process (POT andr-LOS) methods result in lower re-
turn values. This increase is more noticeable when ther-LOS
approach is used, especially in the presence of an outlier.
On the other hand, empirical probabilities of observations
without outliers (Calais, Roscoff, Port Tudy, St-Nazaire, St-
Gildas, Olonne, St-Jean) are well fitted by the distribution
functions. Return levels at 100 and 500 years are generally
higher when the AM method is used but they are of the same
order of magnitude when POT andr-LOS approaches are

used. Finally, the negative shape parameter values (bounded
distributions) should be used with caution because the 95 %
confidence interval often extends well above zero, so that the
strength of evidence from the data for a bounded distribution
is not strong.

4.3 Adequacy criteria and tests

As was mentioned in Sect. 2.3, a variety of adequacy criteria
and tests were applied to decide which model best represents
the extreme surge data sets. The results of these criteria and
tests are presented in Table 3. The results of the Anderson–
Darling statistics indicated with bold letters (r-LOS and POT
approaches applied to Roscoff station) are the ones that are
rejected with a 5 % of confidence level. The Kolmogorov–
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Table 3.Adequacy criteria and test using AM,r-LOS and POT data
sets (with optimum choice ofr andu).

Stations Bias RMSE χ2 KS AD
(D) (A2)

AM 0.998 22.588 0.07 0.896 0.610
Dunkerque r-LOS Dunkerque station failed the KT

and the WT at the level 5 %
POT 0.996 17.39 1.00 0.837 0.668

AM 1.004 21.609 0.90 0.785 0.725
Calais r-LOS 1.001 21.855 1.00 0.971 0.596

POT 0.999 15.229 1.00 0.990 0.791

AM 0.980 23.349 0.85 0.955 0.587
Boulogne r-LOS Boulogne station failed the KT and the WT

POT 0.993 18.349 0.99 0.912 0.258

AM 0.983 24.789 0.46 0.996 0.156
Dieppe r-LOS 0.999 21.876 0.47 0.622 0.962

POT 0.989 16.956 0.77 0.976 0.841

AM 0.999 30.228 0.89 0.366 0.996
Le Havre r-LOS 1.002 28.608 0.99 0.269 1.000

POT 0.994 22.067 1.00 0.774 0.936

AM 1.002 14.848 0.86 0.819 0.962
Cherbourg r-LOS Cherbourg station failed the KT

POT 0.995 10.652 1.00 0.905 0.383

AM 0.999 14.379 0.98 0.955 0.452
Roscoff r-LOS 0.998 14.235 1.00 0.997 0.014

POT 0.997 11.782 1.00 0.998 0.042

AM 0.990 20.691 0.46 0.814 0.762
Le Conquet r-LOS 0.998 15.976 0.95 0.999 0.238

POT 0.995 14.224 0.86 0.988 0.059

AM 0.994 24.058 0.96 0.820 0.736
Brest r-LOS 0.999 18.757 0.85 0.881 0.832

POT 0.996 15.904 0.62 0.916 0.255

AM 1.002 13.705 0.98 0.472 0.958
Port Tudy r-LOS 0.998 14.020 1.00 0.986 0.505

POT 0.999 12.212 1.00 0.974 0.720

AM 0.994 16.825 0.61 0.930 0.549
St-Nazaire r-LOS 0.997 20.782 1.00 0.946 0.186

POT 0.998 17.582 1.00 0.648 0.240

AM 0.995 17.430 0.98 0.947 0.120
St-Gildas r-LOS 0.999 19.506 1.00 0.907 0.385

POT 0.997 15.984 1.00 0.645 0.569

AM 0.995 19.070 0.92 0.618 0.767
Olonne r-LOS 0.998 19.675 1.00 0.955 0.374

POT 0.996 12.319 1.00 0.706 0.841

AM 0.948 18.988 0.77 0.936 0.230
La Rochelle r-LOS 0.992 23.204 0.07 0.577 0.970

POT 0.982 15.762 0.26 0.971 0.149

AM 1.001 19.083 0.99 0.801 0.452
Port Bloc r-LOS Port Bloc station failed the WWT

POT 0.996 12.973 1.00 0.792 0.150

AM Bayonne station failed the KT
Bayonne r-LOS Bayonne station failed the KT and the WT

POT Bayonne station failed the KT and the WT

AM 0.998 10.479 0.99 0.834 0.304
St-Jean r-LOS 0.998 9.644 1.00 0.856 0.592

POT 0.998 8.601 1.00 0.511 0.641

Smirnov (KS) and the Chi-2 statistics resulted inp values
that indicate that no model is rejected for all the sites. These
statistics, also presented in Table 3, do not give additional
and reliable information for the selection of the appropriate
model. The Chi-2p values are systematically smaller with
the AM method. These probabilities are higher than conven-
tional criteria for statistical significance (1–5 %), so normally
we would not reject the null hypothesis about the parent dis-
tribution of the sample (GEV for AM andr-LOS data sets
and GPD for POT samples). As mentioned in Sect. 2.3, these
Chi-2 test results have the shortcoming of being considered,
by the scientific community, not very powerful with contin-
uous distributions (the test result depends strongly on the
choice of the classes far more than the values of the sample).

As was also stated in Sect. 2.3, the Bias and RMSE were
computed for each approach at all the selected sites. It is seen
that, for all the sites, the bias is very close to 1 for all of
the methods. This means the overall performance is good
but this does not give additional information for the selec-
tion of the appropriate model. The RMSE provides a better
indication for this selection. It can be seen that the RMSE of
the estimates given by the AM andr-LOS methods are sys-
tematically higher than those given by POT. For the sake of
consistent comparison, in addition to these adequacy criteria
and tests we visually inspected, for each method and each
site, diagnostic plots (fitting and Q–Q plots) illustrating the
quality of the fit between the GEV distribution (for the AM
and r-LOS methods) or the GP (for the POT method) and
the observed probabilities. Figure 5 shows an example of a
distribution fit; the example was selected because the station
(Brest) is characterized by the presence of an outlier.

The visual inspection of diagnostic plots (Figs. 5 and 6)
exhibits that the confidence intervals are tighter when point
process (POT andr-LOS) methods are used. On the one hand
this promotes these methods, but on the other hand the ob-
servations which are considered as outliers do not fit within
these tighter confidence intervals. This is the case for Brest
and several other stations. It is also interesting to note that in
the presence of an outlier, the fitting at the right tail is not ad-
equate for all the analyzed methods, with a slight advantage
to the AM method which, as presented earlier in this section,
gives higher return levels.

For data sets without outliers, the point process methods,
especially the POT approach, provided an improved model
fit to the observations, compared with the two other methods,
and give good and appropriate fits at the upper tails. Figure 6
illustrates well this situation. Further visual analyses of the
diagnostic plots have exhibited a difficulty in discriminating
between the compared methods, especially when data sets
are long enough and do not contain outliers. However, we
can see that the POT method best fits the observations at the
lower tails.
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Figure 6. Visual inspection – example of a distribution fit (and Q–Q plot) for Calais station (without outlier) using AM (annual maxima),
r-LOS (r-largest order statistics) and POT (peaks-over-threshold) methods. The 95 % lines correspond to confidence intervals. TheT100 is
the 100-year return period.

4.4 Improving extreme surge frequency estimation

When examining data sets containing outliers we are inter-
ested in asking the question: is the outlier of exceptional
intensity? In order to answer this question we have to rec-
ognize if similar large or even larger historical events that
may have occurred before the observation period, the “out-
lier” will look less exceptional. Therefore, it is important to
get these nonsystematic data that will increase the represen-
tativeness of the outlier and enlarge the data set.

Historical data are generally imprecise and their inaccu-
racy should be properly accounted for in the analysis. How-
ever, even with substantial uncertainty in the data, the use of

historical information is a viable mean to improve estimates
of rare events related to extreme environmental conditions
(e.g., Ouarda et al., 1998; Cœur and Lang, 2008; Pons, 2008;
Hamdi, 2011; Payrastre et al., 2011). Several studies have
emphasized the potential gain in estimation accuracy with
the use of the historical information. A review of the litera-
ture on this subject has been made by Stedinger and Baker
(1987) and Ouarda et al. (1998).
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5 Concluding remarks

Three frequency analysis methods, the annual maxima and
the point process (peaks-over-threshold and the r-largest or-
der statistics) were applied and compared. The principal ob-
jective of this study was to identify, for each site, the most
reliable and adapted method. All the data sets were screened
for outliers. Non-parametric tests for randomness, homo-
geneity and stationarity of time series were used. Stations
that failed one or more of these tests were eliminated from
the analysis. For the remaining stations, the shape and scale
parameters stability plots, the mean excess residual life plot
and the stability of the standard errors of return levels were
used to select optimal thresholds andr values for each sta-
tion for the POT andr-LOS method, respectively. The com-
parison of methods was done from three angles: (i) the un-
certainty degrees, (ii) the adequacy criteria and tests, and
(iii) the visual inspection.

Adequacy criteria and tests have failed to discriminate be-
tween the methods, except for the RMSE criterion, which
highlighted the POT method. This is largely due to the
fact that the methods have given rise to different samples.
This difference in samples is most notable between the AM
method and the point process ones. In an extreme value con-
text it is wiser to account for the error with which we make
our inferences. As we predict surges further into the future,
it is important to qualify our estimates with an appropriate
degree of uncertainty.

The results of the comparison based on uncertainty de-
grees were more discriminant. Overall, adding ther-LOS
and POT data to the model has reduced the standard error
of the parameter estimates and the 100 and 500 years return
levels compared to the AM method. This also provided an
improved model fit to the observations when data sets do not
contain outliers. However, this does not imply that having
more data will improve the model, as more data might invali-
date the asymptotic assumption. When more data is available
it is more difficult to determine which of the available data is
in fact extreme and which is not. Indeed, these point process
methods provide an improved model fit to the observations
but not the outlier if it exists.

The visual inspection of diagnostic plots has confirmed the
numerical results based on uncertainty degrees. The fitting
and Q–Q plots have shown larger confidence intervals when
the AM method is used. It was also exhibited that in the pres-
ence of an outlier the fitting at the right tail is not adequate for
all the analyzed methods, with a slight advantage to the AM
method that gives systematically higher estimates of return
levels. It is therefore advised to be rather prudent in selecting
a frequency analysis method. It will be more safe to use the
AM method when the sample size is sufficiently high, else-
where the POT method must be used.
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