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Abstract. During the last decades, several windstorm series
hit Europe leading to large aggregated losses. Such storm se-
ries are examples of serial clustering of extreme cyclones,
presenting a considerable risk for the insurance industry.
Clustering of events and return periods of storm series for
Germany are quantified based on potential losses using em-
pirical models. Two reanalysis data sets and observations
from German weather stations are considered for 30 winters.
Histograms of events exceeding selected return levels (1-, 2-
and 5-year) are derived. Return periods of historical storm
series are estimated based on the Poisson and the negative bi-
nomial distributions. Over 4000 years of general circulation
model (GCM) simulations forced with current climate condi-
tions are analysed to provide a better assessment of historical
return periods. Estimations differ between distributions, for
example 40 to 65 years for the 1990 series. For such less fre-
quent series, estimates obtained with the Poisson distribution
clearly deviate from empirical data. The negative binomial
distribution provides better estimates, even though a sensitiv-
ity to return level and data set is identified. The consideration
of GCM data permits a strong reduction of uncertainties. The
present results support the importance of considering explic-
itly clustering of losses for an adequate risk assessment for
economical applications.

1 Introduction

Intense extratropical storms are the major weather hazard
affecting western and central Europe (Klawa and Ulbrich,
2003; Schwierz et al., 2010; Pinto et al., 2012). Such storms
typically hit western Europe when the upper tropospheric
jet stream is intensified and extended towards Europe (e.g.

Hanley and Caballero, 2012; Gómara et al., 2014). If these
large-scale conditions remain over several days, multiple
windstorms may affect Europe in a comparatively short time
period (Fink et al., 2009). The occurrence of such “cy-
clone families” (e.g. Bjerknes and Solberg, 1922) can lead
to large socio-economic impacts, cumulative losses (sum
of losses caused by a particular series of events or aggre-
gated over a defined time period) and fatalities. In statisti-
cal terms, this effect is known as serial clustering of events,
for example of cyclones (Mailier et al., 2006). A recent
study showed that clustering of extratropical cyclones over
the eastern North Atlantic and western Europe is a robust
feature in reanalysis data (Pinto et al., 2013). Furthermore,
there is evidence that clustering increases for extreme cy-
clones, particularly over the North Atlantic storm track area
and western Europe (Vitolo et al., 2009; Pinto et al., 2013).
In terms of windstorm-associated losses, a general result
is that large annual losses can be traced back to multiple
storms within a calendar year (MunichRe, 2001). One of
the most severe storm series regarding insured losses for
the German market occurred in early 1990, which includes
the storms “Daria1”, “Herta”, “Nana”, “Judith”, “Ottilie”,
“Polly”, “Vivian” and “Wiebke”, reaching a total cost of
ca. EUR 5500 million indexed to 2012 (Aon Benfield, 2013).
The cumulative damages associated with the windstorm se-
ries in December 1999 and January 2007 rank among the
highest of the recent decades, with total costs reaching
EUR 1500 million and about EUR 3000 million in terms of
insured losses, respectively (Aon Benfield, 2013). Also the
winter of 2013/14 has been characterised by multiple storms

1Storm names as given by theFreie Universität Berlinas used
by the German Weather Service (DWD). Source:http://www.met.
fu-berlin.de/adopt-a-vortex/historie/.
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Figure 1. (a)Location of reanalysis grid points (black) over and near Germany and population density (POP, colours) in number of inhab-
itants km−2 per 0.25◦ grid cell; (b) same as(a) but for ECHAM5 GCM grid points;(c) same as(a) but for DWD stations. Only stations
providing 80 % of the wind gust records for the period 1981/82 to 2010/11 are considered (112 stations). For each 0.25◦ grid cell, the
wind/gust is associated using the nearest neighbour method.

leading to large socio-economic impacts (“Christian” 28 Oc-
tober 2013, “Xaver” 7 December 2013, “Dirk” 23 Decem-
ber 2013, “Anne” 3 January 2014, and “Christina” 5 January
2014), which have affected primarily the British Isles.

The estimation of return periods of single storms (event
based losses) and storm series (cumulative losses) is needed
to determine the “occurrence loss exceeding probability”
(OEP; event loss) and the “aggregate loss exceeding prob-
ability” (AEP; accumulated loss per calendar year) for risk
assessment and the fulfilment of the Solvency II (Solvency
Capital Requirements, QIS5) requirements. As top annual
aggregated market losses (like 1990 for Germany) are asso-
ciated with multiple storms, the importance of clustering has
long been discussed within the insurance industry. However,
little to no attention has been paid to the clustering of wind-
storm related losses in peer-review literature. In this study,
the clustering of estimated potential losses associated with
extratropical windstorms is analysed in detail for Germany
and for recent decades. In particular, the probability of oc-
currence of multiple storm events per winter over Germany
exceeding a certain return level is evaluated with help of re-
analysis and general circulation model (GCM) data.

2 Data

In statistical terms, it is possible to build a simple storm loss
model using both wind gusts and daily maximum 10 m wind
speeds. For example, Pinto et al. (2007) gave evidence that
loss estimations following the Klawa and Ulbrich (2003) ap-
proach based on both variables provide equivalent results.
For this study, wind gusts are available and considered for
German weather service (“Deutscher Wetterdienst”, here-
after DWD) observation data. As no gust data are available
for reanalysis and GCM, a daily maximum of 10 m wind
speed is used for those data sets.

Reanalysis data from the National Centre for Environ-
mental Prediction/National Centre for Atmospheric Research
(hereafter NCEP) as well as from the European Centre

for Medium Range Weather Forecast (ERA-Interim project,
hereafter ERAI) are used in this study. The NCEP data are
available on a Gaussian grid with a resolution of T62 (1.875◦,
roughly 200 km; Kistler et al., 2001), while the ERAI data
are available on a reduced Gaussian grid with a resolution
of T255 (0.7◦; about 80 km over central Europe; Dee et
al., 2011). For comparability, ERAI is interpolated to the
NCEP grid performed with a bilinear interpolation method
(Fig. 1a shows relevant grid points for Germany). For both
data sets, the 6-hourly instantaneous 10 m wind speed (here-
after wind) is considered. The daily maxima (largest val-
ues for each calendar day between 00:00, 06:00, 12:00 and
18:00 UTC) are selected. Based on these daily maxima the
98th percentiles (see Sect. 3) are calculated for 30 winters
(October–March, 1981/82 to 2010/11) respectively.

In order to obtain statistically robust estimates of the re-
turn periods of storm series based on potential losses, a
large ensemble of 47 simulations performed with the cou-
pled ECHAM5/MPI-OM1 (European Centre Hamburg Ver-
sion 5/Max Planck Institute Version – Ocean Model ver-
sion 1; Jungclaus et al., 2006; hereafter ECHAM5) GCM
is analysed. These simulations have a wide variety of se-
tups, but are all consistent with greenhouse gas forcing con-
ditions between the year 1860 (pre-industrial) and near future
(2030) climate conditions. All simulations were performed
with T63 resolution (1.875◦, roughly 200 km, see grid in
Fig. 1b); 37 of them were conducted for the ESSENCE (En-
semble SimulationS of Extreme weather events under Non-
linear Climate changE) project (Sterl et al., 2008). Details of
all simulations can be found in Supplement A. Again, the 6-
hourly instantaneous 10 m wind speed is used to determine
the daily maxima. The 98th percentile for GCM data is cal-
culated based on the 37 ESSENCE simulations for the winter
half year, as the length of this data set is long enough to de-
rive statistically stable estimates.

As the physical cause for building losses can be primarily
attributed to the peak wind gusts (Della-Marta et al., 2009)
a data set of daily maxima of the 10 m wind gust observa-
tions from DWD is used for comparability and validation
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purposes. The time series of these data sets differ in terms of
the length of the available time period and data quality (e.g.
Born et al., 2012). After an evaluation, 112 stations (Fig. 1c)
are considered for further analyses. For these stations, wind
gusts for at least 80 % of the days in winter are available for
the period 1981/82 to 2010/11. The 98th percentile at each
station is calculated for the winter half year. Then, a normal-
isation of the 10 m wind gust observations with the 98th per-
centile at each station is performed. The normalised values
were interpolated to the 0.25◦ grid of the population density
(Fig. 1c) using the inverse distance weighted interpolation
of second order. This method assumes that the interpolated
value for each grid box should be influenced more by nearby
stations and less by more distant stations. The second-order
fit permits a higher weighting for nearer stations.

The German Insurance Association (“Gesamtverband der
Deutschen Versicherungswitschaft”, hereafter GDV) pro-
vides a simulation of daily residential building losses for pri-
vate buildings for the period of 1984–2008 for the 439 ad-
ministrative districts of Germany. This data were collected
from most of the insurance companies active in the German
market, so are representative of the insured market loss in
Germany and are used here as a reference. Loss ratios, i.e.
the ratio between losses attributed to one event and the total
insured value for that area are used. Inflation effects can be
neglected as well as other socio-economic factors that may
have changed slightly during this period. More information
can be found in Donat et al. (2011) and Held et al. (2013).

As insurance data are not available for the whole analysed
period, population of the year 2000 is used as proxy for the
estimation of potential losses. This data set was provided by
the Centre for International Earth Science Information Net-
work (CIESIN) of Columbia University and the Centro In-
ternational de Agricultura Tropical (CIAT). The population
density is given as inhabitants km−2, with a spatial resolu-
tion of 0.25◦

×0.25◦ (Fig. 1, coloured boxes). For grid boxes
which are only partially within German borders the percent-
age of each box is calculated with the geoinformation system
(GIS).

3 Methodology

In this section, the potential loss indices based on the ap-
proach by Klawa and Ulbrich (2003) and Pinto et al. (2012)
are presented. These indices are used to select events exceed-
ing a certain return level. For the chosen events, histograms
are analysed, and statistical distributions like the Poisson and
the negative binomial distribution are used to estimate return
periods of storm series. As the GCM data overestimate the
frequency of zonal weather patterns, the approach to cali-
brate GCM data towards reanalysis using weather types is
described.

3.1 Storm loss indices

The potential loss associated with a storm can be quantified
using simple empirical models (Palutikof and Skellern, 1991;
Klawa and Ulbrich, 2003; Pinto et al., 2007). Here, calendar-
day-based potential damages for Germany are estimated by
using a modified version of the loss model of Klawa and Ul-
brich (2003) for stations and gridded data. The general as-
sumptions of the loss model are as follows:

– Losses occur only if a critical wind speed is exceeded.
This threshold corresponds to the local 98th percentile
(v98) of the daily maximum wind speed (e.g. Palutikof
and Skellern, 1991; Klawa and Ulbrich, 2003).

– Above this threshold, the potential damage increases
with the cube of the maximum wind speed, as the ki-
netic energy flux is proportional to the cube of wind
speed. This implies a strong non-linearity in the wind–
loss relation.

– Insured losses depend on the amount of insured property
values within the affected area. As real insured prop-
erty values are not available, the local population den-
sity (POP) is used as proxy.

– To each population density grid cell, the wind data (re-
analyses, GCM) from the nearest location are allocated
(nearest neighbour approach).

Following these assumptions, the potential loss (LIraw) per
calendar day is defined by the sum of all grid pointsij with
vij exceedingv98ij weighted by the population density:

LI raw =

∑
ij

( vij

v98ij
− 1

)3
 · POPij · I

(
vij ,v98ij

)
(1)

with I
(
vij ,v98ij

)
=

{
0 for vij < v98ij

1 for vij > v98ij ,

POPij = population density for grid pointij , vij = wind speed
at grid pointij andv98ij = 98th percentile at grid pointij .

Following Pinto et al. (2012), a meteorological index
(MI raw) is also considered. MIraw is defined as the sum of all
grid pointsij per calendar day, wherevij is exceedingv98ij
without weighting with the population density:

MI raw =

∑
ij

( vij

v98ij
− 1

)3
 ·I

(
vij ,v98ij

)
. (2)

In this study, the method is modified to identify individ-
ual events of high LIraw (or MIraw). In a first step overlap-
ping 3-day sliding time windows of LIraw (MI raw) time series
are analysed, as this corresponds to the 72 h event definition
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often used by insurance companies in reinsurance treaties
(Klawa and Ulbrich, 2003). Moreover, given that Germany
is a comparatively small area, 3 days are reasonable for sep-
arating events. For each 3-day time window, the middle day
is defined as event if it is a local maximum of LIraw (MI raw).
If no maximum is identified within the 3-day window, the
first day after an event (for all LIraw 6= 0; considering the last
day of the 3-day time window) is defined as event. The out-
come is a time series of events. With this approach, storms
like “Vivian” and “Wiebke” (26 and 28 February 1990) can
be identified as separate events (see Supplement E).

In a second step, the local details of the identified events
are analysed in more detail. In analogy to the above, the
temporal local maximum of the 3-day time window at each

grid point ij (following max3-D

(
vij
v98ij

)
) is analysed for each

event. If the determined maximum max3-D

(
vij
v98ij

)
is not at

the middle day,
vij
v98ij

on the event day is replaced with the

identified maximum value of the first or the last day of the
3-day time window in LIraw (MI raw). In rare cases, events
are only separated by 1 day (e.g. Vivian and Wiebke, see

Supplement E). If max3-D

(
vij
v98ij

)
is identified between both

events (here 27 February 1990), it is allocated to the event
with higher

vij
v98ij

. This ensures that each local maximum only

counts once. To guarantee spatially coherent wind fields,
larger values occurring on the first or third day only sub-
stitute the values from the middle day if multiple (spatially
contiguous) nearby grid points exceed the 98th percentile.

The method to estimate potential losses of single events
can be described as

LI3-D=

∑
ij

[
max3-D

(
vij

v98ij

)
−1

]3

· POPij ·I
(
vij ,v98ij

)
, (3)

MI3-D=

∑
ij

[
max3-D

(
vij

v98ij

)
− 1

]3

· I
(
vij ,v98ij

)
. (4)

This new definition has the advantage that single storm
events can be well separated. Furthermore, strong potential
losses occurring 1 day before or 1 day after an event, which
are probably associated with the same event, are incorporated
in LI raw (MI raw).

Hereafter LI3-D (MI3-D) is named LI (MI) for simplicity.
These formulations are used for reanalysis, DWD and GCM
data. Then, the resulting time series of LI (MI) are ranked and
1-, 2- and 5-year return levels are computed. The selected
samples of events exceeding each corresponding threshold
(e.g. 30, 15 and 6 events respectively for 30 years of reanaly-
sis data) are then assigned to individual winters. The naming
is given by the second year, e.g. winter 1989/90 is named
1990.

3.2 Statistics

The Poisson distribution is the simplest approach to describe
independent events and is often used to model the number
of events occurring within a defined time period. This proce-
dure is useful to describe the temporal distribution of events
at a certain region and is typically used by insurance compa-
nies to estimate losses of winter storms. This discrete distri-
bution depends on one parameter and is a special case of the
binomial distribution. For the Poisson distribution the rate
parameterλ is equal to both the variance (Var(x)) and mean
(E(x)). For a random variablex the probability distribution
is defined as

P (x)=
λxe−λ

x!
,x = 0,1,2. . . ;E(x)= λ= Var(x). (5)

After Mailier et al. (2006), the dispersion statistics (a simple
measure of clustering) is defined as

ψ =
Var(X)

E(X)
− 1. (6)

If the Var(x) > E(x) the distribution is overdispersive (clus-
tering), forE(x) > Var(x) the distribution is underdispersive
(regular) and forE(x)= Var(x) it is a random process. Be-
side the Poisson distribution the negative binomial distribu-
tion is one of the major statistics that is used to describe in-
surance risks. Following Wilks (2006), the probability of the
negative binomial distribution is defined as

P (x)=
0(x+ k)

0 (k) · x!
(1− q)k · qx (7)

with 0()= gamma function,k = auxiliary parameter> 0
(see below), and 0< q < 1, q = 1−p, p= probability.

As in our studyE(x) is fixed as the return level of con-
sidered events,q is the only free parameter. The estimation
of q is done by a nonlinear least-square estimate using the
Gauss–Newton algorithm.

ConsideringE(x)=
kq

1−q
and Var(x)=

kq

(1−q)2

⇒ k =
(1− q)

q
E(x) (following Wilks, 2006). (8)

The dispersion statistics can also be described as

ψ =
1

1− q
− 1 ≥ 0. (9)

For q = 0, the negative binomial distribution is equal to the
Poisson distribution. The higherq, the higher is the overdis-
persion and therefore the clustering of events.

The return period is defined as the inverse of the proba-
bility (Emanuel and Jagger, 2010). The estimation of return
periods of storm series consisting of events with a certain re-
turn level is calculated by the probabilityP for x events of
certain intensity within 1 year:

WKP(x)=
1

P(x)
(10)
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Figure 2. Time series of 3-day accumulated losses between 15 January and 15 March 1990. The values are normalised by the maximum
accumulated loss of the period 1981/82 to 2010/11 for each data set.(a) Comparison between MI derived DWD gust observations (blue),
MI estimates based on NCEP (green) as well as MI obtained from ERAI (orange);(b) same as(a) but for LI and additionally compared to
simulated insurance data (GDV, red). Unlike MI, LI is population weighted.

3.3 Calibration of GCM data with circulation weather
types

In order to obtain robust estimates of return periods for the
historical storm series, the large ensemble of ECHAM5 sim-
ulations is considered to enhance the data sample. As the
large-scale atmospheric circulation is too zonal over Eu-
rope in GCMs (e.g. Sillmann and Croci-Maspoli, 2009), a
correction of the model bias towards the reanalysis clima-
tology is necessary. This correction is performed based on
weather types, so that the variability of weather patterns over
Germany corresponds to the historical time period. The se-
lected weather typing classification is the circulation weather
type (CWT) following Lamb (1972) and Jones et al. (1993).
The large-scale flow conditions over Germany are calculated
from 00:00 UTC mean sea level pressure fields, using 10◦ E,
50◦ N (near Frankfurt/Main) as central grid point. Each day
is classified into one of eight directional types defined as 45◦

sectors: northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), west (W), northwest (NW), and north (N).
Two circulation types are considered: cyclonic (C) and anti-
cyclonic (A). If neither rotational nor directional flow domi-
nates, the day is attributed as hybrid CWT (e.g. anticyclonic–
west). The correction is done by adapting the relative fre-
quency of events per CWT in the GCM simulations to the
number of events per CWT in the ERAI data (see Sect. 4.3).
This is only a first-order correction of the model biases. In
fact, differences in the probability density function of ex-
treme losses per weather type may still be present (Pinto et
al., 2010).

4 Results

In this section, the different loss indices (Sect. 4.1) and
the events selection (Sect. 4.2) are first analysed for the

reanalysis period. Second, results of the calibration of GCM
data based on CWTs are presented in Sect. 4.3. The estima-
tion of return periods for storm series based on reanalysis
(Sect. 4.4) and GCM data (Sect. 4.5) follow.

4.1 Comparison of loss indices for the reanalysis period

The loss indices described in Sect. 3.1 are now compared
based on different data sets. First, the MIs based on both re-
analysis data sets are compared to the MI derived from DWD
data as an illustrating example (storm series of early 1990).
Results for the period from 15 January to 15 March 1990 are
displayed in Fig. 2a. The outcome shows that the timing of
extreme events (“Daria” 25 January 1990, “Herta” 4 Febru-
ary 1990, “Judith” 7 February 1990, “Vivian” 26 February
1990 and “Wiebke” 1 March 1990) is generally well iden-
tified from all three data sets. In some cases, a 1-day shift
is observed, e.g. for 12 and 15 February. Such modifications
are associated with the methodology of the data assimilation
within the data set (e.g. highest winds in NCEP may occur at
18:00 UTC of a certain day, for ERAI only 6 h later). In case
of doubt the first day is taken (see Sect. 3.1). This means
that the split-up of events and thus accurate event identifica-
tion may depend on the data set. Though the timing of the
events is well accessed, the relative intensity of the events
sometimes differs from data set to data set (e.g. “Vivian”,
26 February 1990). The results for the LIs (Fig. 2b) are also
compared to accumulated potential losses based on the GDV
data. With this aim, the latter is also aggregated for time win-
dows of 3 days. The timing of the identified events is pre-
dominantly correct. As expected, the findings are similar to
those for the MIs, with a good assessment of the timing of
the events and differences in terms of the relative intensity
between data sets. A calibration of the intensity towards the
GDV data is not performed, as a linear calibration (as im-
plemented e.g. in Held et al., 2013) would not change the
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Table 1. List of the identified top 30 events and corresponding re-
turn level for each event for NCEP, ERAI and DWD gust data. Dates
are given as dd.mm.yyyy.

NCEP Return ERAI Return DWD Return
level level level

15.12.1982 1 24.11.1981 2 18.01.1983 1
01.02.1983 2 16.12.1982 1 01.02.1983 1
27.11.1983 1 04.01.1983 1 27.11.1983 1
14.01.1984 5 18.01.1983 1 14.01.1984 1
24.11.1984 2 01.02.1983 2 24.11.1984 5
19.01.1986 2 13.01.1984 1 01.01.1986 1
20.10.1986 2 15.01.1984 1 20.10.1986 1
19.12.1986 2 24.11.1984 5 19.12.1986 2
25.01.1990 5 06.12.1985 1 25.01.1990 5
14.02.1990 1 20.01.1986 2 03.02.1990 2
26.02.1990 5 19.12.1986 2 08.02.1990 2
28.02.1990 5 25.01.1990 2 14.02.1990 1
13.01.1993 2 08.02.1990 1 26.02.1990 5
24.01.1993 2 26.02.1990 5 01.03.1990 5
09.12.1993 1 01.03.1990 5 21.03.1992 1
28.01.1994 2 14.01.1993 1 11.11.1992 1
22.01.1995 5 24.01.1993 5 26.11.1992 2
02.12.1999 1 09.12.1993 1 13.01.1993 1
26.12.1999 1 28.01.1994 2 24.01.1993 2
31.01.2000 1 23.01.1995 1 09.12.1993 2
28.01.2002 1 28.10.1998 1 28.01.1994 2
27.10.2002 2 03.12.1999 2 23.01.1995 1
02.01.2003 1 26.12.1999 5 26.01.1995 1
31.01.2004 1 29.01.2002 1 28.03.1997 1
20.03.2004 1 26.02.2002 1 03.12.1999 1
12.02.2005 1 28.10.2002 2 26.12.1999 2
16.12.2005 1 21.03.2004 1 27.10.2002 2
18.01.2007 5 18.01.2007 5 18.01.2007 5
01.03.2008 1 01.03.2008 2 01.03.2008 2
28.02.2010 1 28.02.2010 1 28.10.2010 1

relative ranking of events within a certain data set. Neverthe-
less, storms on successive days cannot always be well sep-
arated with our methodology. For example, storms “Elvira”
(4 March 1998) and “Farah” (5 March 1998) cannot be sep-
arated for either reanalysis or DWD data (not shown). How-
ever, this is also not possible based on insurance loss data.
On the other hand, our method separates important storms
like “Vivian” and “Wiebke” (26 February and 1 March 1990;
Fig. 2).

The top 30 events for the two reanalysis data sets as well as
the DWD observations are shown in Table 1. Per definition,
these are the events exceeding the 1-year return level for each
data set. The most prominent historical storms affecting Ger-
many like “Kyrill” (18 January 2007), “Vivian” (26 Febru-
ary 1990) and “Daria” (25 January 1990) are identified in
all three data sets as top events. However, some differences
are found regarding the exceeded return level. For example,
storm “Daria” is estimated as a 5-year return level event for
NCEP and DWD data and as 2-year event for ERAI. These
differences are partly attributed by the resolution of the data
sets and to known caveats. For instance, the relatively weak
values for “Lothar” (26 December 1999) in NCEP can be di-
rectly attributed to an insufficient representation of this storm

Figure 3. Time series of the number of events per winter exceeding
the 1-year return level (red), 2-year return level (green) and 5-year
return level (blue) between 1981/82 and 2010/11.(a) LI estimated
based on NCEP;(b) same as(a) but for ERAI; (c) same as(a) but
for DWD gust. The indicated year corresponds to the second year
of a winter (2000 indicates 1999/00).

in the data set (Ulbrich et al., 2001; see their Fig. 1). Other
differences may be associated with data availability or inter-
polation to the population density grid for DWD versus the
lower resolution gridded data sets for NCEP and ERAI. In
spite of these limitations, the method is able to identify con-
sistent events, which constitutes a reliable basis to estimate
the return period of storm series in the following. However,
70 % of the identified events in NCEP data are also found in
ERAI and DWD data, and the same is valid for DWD and
ERAI.

4.2 Comparison of identified events for the reanalysis
period

Bar plots for different data sets and intensities (1-, 2-, 5-
year return level events) are now analysed for the 30-year
period. For each threshold, the selected LI samples (30, 15
and 6 events, respectively) are shown in Fig. 3. In some
cases the number of events per winter differs from data set
to data set. Nevertheless, in all three data sets a maximum
of events is found in the winter 1989/90 (Fig. 3a, b denoted
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1990). Differences in the identified number of events at the 1-
year return level are determined for 11 winters. For example
for ERAI, the winter 1983 features four 1-year events, while
NCEP only features two events. For stronger events exceed-
ing a 2- or 5-year return level, seven/six years with a differ-
ence in the number of events are identified. For instance at
the 2-year return level for the storm series of 2000 (1999/00,
see Fig. 3a, b) two events for ERAI, and no event for NCEP
data are detected. This can be attributed to the limited rep-
resentation of storms like “Lothar” (26 December 1999) in
NCEP (c.f. Ulbrich et al., 2001). However, both data sets are
generally in good agreement, identifying clearly the winters
with well-known storm series like in 1990 or 2007. In com-
parison to the estimations based on the DWD observation
data (Fig. 3c) some differences to the reanalysis data are ap-
parent. For example the storm series of 2002 is not identified
for DWD data. On the other hand, the storm series of 1990
includes six events for the DWD data (1-year return level).
As mentioned in Sect. 4.1, this could be attributed both to
known caveats of the data sets, station density vs. gridded
data, and to the methodology used to assign the data to the
population grid cells. In spite of these deviations, the histor-
ical storm series can be generally identified in all data sets.
Furthermore, the resulting overall statistics over the 30 years
are also similar (Supplement B) as the small permutations of
the single events are in balance.

4.3 Calibration of GCM data based on CWTs

In order to enable the calibration of the GCM data, the dis-
tribution of the events for each CWT within the reanalysis
period is analysed. Each loss event is assigned to the identi-
fied CWT for the corresponding date. Additionally to the 1-,
2- and 5-year return levels, a return level of 0.5 years is con-
sidered to help with the calibration. The resulting histograms
are similar for both reanalysis data sets (Fig. 4a, b). Con-
sidering frequent events (0.5-year), most events are identi-
fied for W CWT. The focus on this class becomes more pro-
nounced for higher return levels. For example for a return
level of 5 years the maximum of all events are in the west-
erly CWT for both reanalyses. This predominance of wind-
storms in the westerly flow type is in line with previous re-
sults (e.g. Donat et al., 2010; Pinto et al., 2010). For the GCM
data (Fig. 4c) the distribution of the events per CWT is dif-
ferent. Most frequent events (e.g. 0.5-year) are identified for
A CWT. For higher return levels (e.g. 5-year) the events are
more equally distributed over all CWTs than for the two re-
analyses. This bias is corrected assuming the same relative
frequency of events per CWT as in ERAI for GCM data. For
example, two SW events are identified for the top 30 and
ERAI, which corresponds to 6.7 % of all considered events.
The corresponding number of events in GCM is 273 (6.7 %
of 4092). Thus, the top 273 SW events are included in the
event set of the 4092 top events. The resulting distribution is
shown in Fig. 4d.

4.4 Estimation of return periods of storm series based
on reanalysis

The identified frequency of events per year for the two re-
analysis data sets as well as the DWD based data set is al-
most identical for the considered return levels (see Supple-
ment B1). For succinctness, in the following only results
based on ERAI data are discussed in detail. The return pe-
riod of storm series with a certain return level is estimated
based on the negative binomial and on the Poisson distri-
bution (Supplement D, left). The related return periods are
shown in Table 2 (left).

A return period about 65 years is estimated for a storm se-
ries with four 1-year return level events (like 1990) based
on the Poisson distribution (Table 2). For the negative bino-
mial distribution the assessed return period is ca. 49 years.
On the other hand, for a return level of observed two 5-year
events (like 1990), the estimated return periods are 61 years
for Poisson and about 42 years for negative binomial distribu-
tions. A9 value of about 0.16 for 1-year return level and of
0.25 for 5-year return level are determined for the negative
binomial distribution, both indicating serial clustering (see
Table 3a). The9 values calculated with Eq. (6) are different,
with more clustering for frequent events (0.24 for 1-year re-
turn level events) and less clustering for extreme events (0.17
at the 5-year return level, Table 3b). Nevertheless, both meth-
ods identify overdispersion for the events. The estimated re-
turn period of storm series with two events per year for 1-year
level (like in 1984) with the negative binomial distribution
and the Poisson distribution are closer to each other, with
about 5.9 and 5.4 years (Table 2). In fact, for 1-year events
large deviations between the two distributions are only found
for four or more events per year. The same is true for 2-
year (5-year) occurrences and three (two) or more events per
year (Table 2). In these cases, the Poisson distribution clearly
overestimates the return period of multiple events per winter.

In order to test the sensitivity to certain storm series
like 1990, additional computations were performed based on
NCEP and ERAI as above but single years (with three and
four events) were removed respectively. Results show for all
data little dependence on the selected years (not shown). For
comparatively frequent storm series, a relatively small spread
is identified, e.g. for 1-year return level and three events per
year the estimated return period remains between 15 and
16 years. On the other hand, for 5-year return levels and three
events the range is much larger, with estimates between 112
and 306 years (not shown). As the estimation of the return
period is almost independent of the chosen years, the method
is reliable for further application.

4.5 Estimation of return periods of storm series based
on GCM data

The large ensemble of GCM runs is now considered to en-
hance the estimation of return periods of historical storm
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Table 2.Estimated return periods for three different return levels (1-, 2-, 5-year) based on the Poisson distribution (Pois. RP), the empirical
data for each data set (eRP), and the negative binomial distribution (Neg. Bin. RP; with uncertainty estimates∗ using the Gaussian error
propagation) for NCEP, ERAI and independent selected GCM samples (GCM: all runs, GCMcorr, 37 ESSENCE runs: ESScorr, 3 20C runs
from MPI: 20Ccorr, PREcorr from MPI, 3 CSMT runs from MPI: CSMTcorr; all runs indexed with corr are bias corrected based on CWTs)
considering only the number of years available for each data set respectively. The number of years is indicated below each data set. For
further details see Table B1 in the Supplement.

Events ERAI NCEP GCM ERAI NCEP GCM GCMcorr ESScorr 20Ccorr PREcorr
per
year

30 years 30 years 30 years 4092 years 4092 years 2360 years 720 years 505 years

Pois. RP eRP Neg. Bin. RP

1-
ye

ar
R

et
ur

n
Le

ve
l

0 2.72 2.31 2.50 2.13 2.53± 1.54 2.49± 1.19 2.39± 0.11 2.35± 0.05 2.51± 0.09 2.4± 0.19 2.59± 0.26
1 2.72 3.00 3.33 3.42 2.93± 1.54 2.98± 1.19 3.13± 0.11 3.2± 0.05 2.96± 0.09 3.11± 0.19 2.86± 0.26
2 5.44 5.00 4.29 7.64 5.86± 3.6 5.96± 2.84 6.25± 0.29 6.39± 0.12 5.91± 0.2 6.21± 0.5 5.71± 0.58
3 16 – 30 19 15± 19 15± 15 15± 1.4 15± 0.59 15± 1.05 15± 2.37 16± 3.20
4 65 15 30 45 49± 89 46± 66 41± 6 40± 2 47± 5 42± 10 53± 16
5 326 – – – 172± 419 155± 294 121± 23 110± 9 163± 22 124± 39 207± 85

2-
ye

ar
R

et
ur

n
Le

ve
l 0 1.65 1.58 1.58 1.54 1.62± 0.68 1.58± 0.09 1.57± 0.03 1.57± 0.02 1.60± 0.02 1.59± 0.02 1.62± 0.03

1 3.3 3.00 3.75 4.07 3.5± 1.45 3.78± 0.22 3.81± 0.07 3.82± 0.05 3.62± 0.05 3.7± 0.05 3.47± 0.07
2 13 30 15 13 13± 16 13± 2.25 13± 0.7 13± 0.51 13± 0.5 13± 0.5 13± 0.8
3 79 30 30 51 65± 135 52± 15 51± 5 51± 3 58± 4 55± 3 65± 7
4 633 – – – 388± 1132 229± 93 221± 28 218± 20 294± 28 254± 23 391± 56

5-
ye

ar
R

et
ur

n
Le

ve
l 0 1.22 1.15 1.15 1.21 1.2± 0.02 1.16± 0.03 1.21± 0.01 1.21± 0.01 1.22± 0.01 1.21± 0.01 1.22± 0.04

1 6.11 7.50 10.00 6.60 7.45± 0.56 10.52± 1.06 6.74± 0.1 6.59± 0.05 6.38± 0.27 6.6± 0.23 6.24± 0.76
2 61 30 – 53 42± 7 38± 9 48± 2 50± 1 54± 5 50± 4 57± 16
3 916 – 30 334 225± 59 112± 40 369± 19 432± 11 567± 85 425± 51 707± 300

∗ As the propagation of uncertainty for one event per year and 1-year return level is not possible to identify, the error bars are set to be the same as for zero events per year.

Table 3.9 values for the different data sets: (a) calculated with Eq. (9) and with the information of the confidence interval (b) computed
with ψ =

Var(X)
E(X) − 1, RL: Return Level.

RL ERAI NCEP GCM GCMcorr ESScorr 20Ccorr CTRLcorr

(a) 1 0.1595± 0.1127 0.1972± 0.1123 0.3062± 0.0188 0.6383± 0.0055 0.1777± 0.0071 0.2919± 0.0294 0.1020± 0.0115
2 0.0727± 0.0650 0.1962± 0.0271 0.2081± 0.0090 0.3168± 0.0039 0.1297± 0.0040 0.1661± 0.0049 0.0713± 0.0031
5 0.2464± 0.0290 0.8186± 0.1881 0.1161± 0.0023 0.1095± 0.0025 0.0491± 0.0027 0.0908± 0.0043 0.0240± 0.0037

(b) 1 0.2414 0.1034 0.1756 0.2717 0.1863 0.1752 0.1604
2 0.0690 0.2069 0.1442 0.1707 0.1210 0.0925 0.0513
5 0.1724 0.8621 0.1033 0.1303 0.0741 0.0662 0.0004

series. The corresponding return periods are shown in Table 2
(right). The consideration of 4092 years leads to the identi-
fication of multiple years with four or more 1-year events.
This enables more accurate estimates of the return period
as well as lower uncertainties calculated with the Gaussian
error propagation (Table 2). Following the above given ex-
amples, a return period of 41 years is assessed for a storm
series with four events per year exceeding the 1-year return
level (like 1990). This value is lower than for the negative
binomial fit based on ERAI data and the Poisson distribution
(49 and 65 years, respectively). The obtained return period
for two events per year exceeding the 5-year level is about
48 years. Clear deviations between the Poisson distribution
and the negative binomial distribution are also found for

four (three/two) or more events for 1- (2-/5-) year level (see
Table 2, Supplement D).

The consideration of GCM data with bias correction
(GCMcorr) leads only to a small difference for return periods,
e.g. notable for less frequent events and higher return levels
(Table 2). The9 for GCM attributions are in all cases clearly
positive, also indicating clustering of the events (Table 3a).
Clustering is also positive, but lower or similar when be-
ing calculated with Eq. (6) (Table 3b). However, unlike pre-
vious results obtained for extratropical cyclones (Pinto et
al., 2013), the9 value does not increase for larger return lev-
els. For more intense events (5-year return level) the derived
9 becomes smaller (e.g.9 = 0.11 considering all GCMcorr
runs), indicating less deviation from the Poisson distribution
than for the 1-year events (9 = 0.6 considering all GCMcorr
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Figure 4. (a)Distribution of events exceeding a certain return level
depending on the CWT for LI NCEP. Colours denotes the differ-
ent return level (0.5-, 1-, 2- and 5-year events);(b) same as(a) but
for ERAI; (c) same as(a) but for the GCM ensemble;(d) same as
(c) but for the corrected frequency of events per weather type based
on ERAI. For(a) and(b) the total number of years is 30, for(c) and
(d) it is 4092 years.

runs). The decrease of9 values is contributed to the fact that
the sample of lower intensity events includes also higher in-
tensity events and therefore more clusters are expected. For
higher return level the occurrence of cluster is more random
and therefore closer to the Poisson distribution. The reason
for the differences compared to Pinto et al. (2013) may be
that they based their conclusions on lower percentiles (and
thus a higher frequency of events). This suggests that cluster-
ing of windstorm and associated losses is quite complex, par-
ticularly in terms of intensity variations. Nevertheless, and in
all cases, clear overestimation of the return period is iden-
tified for the GCM based on the Poisson distribution. This
is an important result, as it indicates that return periods of
storm series are better estimated with the negative binomial
distribution than with the Poisson distribution, especially for
winters with a considerable number of events.

Analogously to the historical data, a sensitivity analysis
was performed regarding the GCM data. In this case, it was
analysed how the estimates depend on the choice of GCM
runs. With this aim, the computations were repeated for each
of the 47 runs (see Supplement A) individually and combina-
tions of them. As the length of the runs is different, this also
provides some insight on how the results may be sensitive to
the length of the time series. For example the estimated return
periods of three events a winter above the 1-year return level
are assessed to ca. 15 and 16 years depending on whether
the whole data set, selected groups of runs or individual runs
(see Table 2) are considered. The major difference is the
uncertainty: while for all GCMcorr data, 15± 0.59 years is
estimated, the value is for example 15± 1.05 years for all
ESSENCEcorr runs, 16±3.2 years for the PREcorr run and for
example 15± 8.24 years for the first Essencecorr run (length
only 50 years; not included separately in Table 2). PREcorr is
different because it is expected to have more (multi) decadal
variability (505 years of free running coupled GCM simu-
lation) than shorter 50-year runs. These results demonstrate
that the estimation of return periods by the negative binomial
distribution is robust and depend only little on the length of
data set. The more events per year are considered, the wider
the uncertainty range. For a storm series as in 1990 (four
events above the 1-year return level, three above the 2-year
return level and two events above the 5-year return level) for
all data sets and return levels the negative binomial based
estimate for the return period is between 40 and 65 years.
This is for all cases a more reliable estimate compared to the
empirical data (see Supplement B2) than based on the Pois-
son distribution, which has an estimate of 65 years (1-year
return level) and for more extreme events with a return level
of 2-year (5-year) an assessment of 79 (61) years. The devi-
ations between the Poisson and the negative binomial distri-
bution are much larger if less frequent series are considered
(Table 2).

For insurance applications, it is often desirable to consider
not exactly a certain number of events, but rather a minimum
value, e.g. three or more events per year above 2-year re-
turn level. With this aim, the estimations of Table 2 were
computed for cumulative probabilities (Supplement C). Re-
sults are in line with the previous: for example, the estimated
return periods for four or more events at the 1-year return
level is between 26 and 40 years based on the negative bi-
nomial distribution, whereas by the Poisson distribution it is
53 years. For two or more events at the 5-year return level the
range is between 42 and 53 years with the negative binomial
distribution, while for the Poisson distribution it is 57 years.
Also from this perspective, the results clearly indicate the im-
portance of estimates with the negative binomial distribution,
which considers explicitly the clustering of events.
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5 Summary and conclusions

For insurance applications, it is important to use reliable
methods to estimate “occurrence loss exceeding probability”
(OEP) and the “aggregate loss exceeding probability” (AEP).
With this aim, an adequate quantification of clustering is es-
sential. In this study we analysed different methods to esti-
mate the return period of series of windstorm related losses
exceeding selected return levels. For the purpose of statistical
robustness, a combination of two reanalysis data, observation
DWD data and an ensemble of over 4000 years of GCM runs
were considered. First, the potential loss for Germany was es-
timated using an approach of the storm loss model of Klawa
and Ulbrich (2003) for all data sets and additionally a me-
teorological index (Pinto et al., 2012). These methods were
adapted to separate consecutive potential losses associated
with extreme events within 3 days. As Germany is a compar-
atively small area, this time frame is reasonable for separat-
ing events. Moreover, it accords to the 72 h event definition,
which is often used by insurance companies in reinsurance
treaties (Klawa and Ulbrich, 2003). The estimated events are
ranked and only the top events representing a return level of
1-year, 2-year or 5-years are analysed. The distribution of the
number of events per winter was analysed. This was followed
by the estimation of the return period of storm series like in
1990 (with four storms in ERAI) with the Poisson distribu-
tion as well as with the negative binomial distribution. The
main conclusion is that especially for storm series with many
events per winter (e.g. four events exceeding the 1-year re-
turn level) the Poisson distribution clearly overestimates the
return period for storm series, as overdispersion is evident.
Deviations from the Poisson distribution are also identified
when considering the long GCM data set (over 4000 years),
but results show that mean estimates and uncertainties do
vary between data sets (see Table 2). In general terms, the
negative binomial distribution provides a good approxima-
tion of the empirical data. However, a constant overdisper-
sion factor9 cannot be identified for storm losses, as9
changes both with intensities and between data sets. This
suggests that clustering of windstorms and associated losses
is a complex phenomenon and needs further discussion. The
primary advantage of considering the extended GCM data set
is a strong reduction in the uncertainties.

As qualitatively good insurance data or meteorological
data (peak gusts) are mostly available only after 1970, it is
difficult to classify the year 1990 based on the historical time
period alone. According to our evaluation based on 30 years
of observational data (NCEP, DWD, ERAI) there is a strong
indication that the return period of this event combination
(four events with a loss return level of≥ 1 year) is longer
than the existing data length (30 years). The used negative bi-
nomial distribution suggests return periods of about 49 years
(ERAI). Nevertheless, the estimated uncertainty is large, as
the data basis of only 30 years is clearly too short. By us-
ing the 4092 years of GCM data a strong reduction of the

uncertainty estimates was achieved. These results put the his-
torical storm series into a much larger perspective: the es-
timates indicate that an occurrence of exactly four events
like in 1990 takes place once in 40–53 years. If four or more
events are considered, the estimation of the accumulated like-
lihood is between 26 and 40 years based on the negative bi-
nomial distribution.

Results of the present study are potentially helpful for in-
surance companies to parameterise loss frequency assump-
tions of severe winter storm events. In Germany, the possible
number of significant storm events per year was intensively
discussed after the storm series in 1990, which is the top an-
nual aggregated loss for recent decades (e.g. for insurance
of residential buildings in Germany, after inflation correc-
tion: GDV, 2012). Even over 20 years later, German compa-
nies use the 1990 storm series as an internal benchmark test
for their reinsurance cover or capital requirements. A similar
discussion took place in France after the events “Lothar” and
“Martin” (Ulbrich et al., 2001) hit the country in late 1999.

The present results demonstrate that the negative bino-
mial distribution provides good estimates of return periods
for less frequent storm series. Future work should focus on a
more detailed analysis of events with different return periods
within one winter as this could improve results. Furthermore,
an investigation of the clustering within single CWTs, espe-
cially for CWTs with a high frequency of events, could be
helpful for a better understanding of the physical aspects of
clustering. Another interesting investigation could be to per-
form a similar analysis of further European countries.

The Supplement related to this article is available online
at doi:10.5194/nhess-14-2041-2014-supplement.
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