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Abstract. In this paper a procedure to derive synthetic flood
design hydrographs (SFDH) using a bivariate representation
of rainfall forcing (rainfall duration and intensity) via copu-
las, which describes and models the correlation between two
variables independently of the marginal laws involved, cou-
pled with a distributed rainfall–runoff model, is presented.
Rainfall–runoff modelling (R–R modelling) for estimating
the hydrological response at the outlet of a catchment was
performed by using a conceptual fully distributed procedure
based on the Soil Conservation Service – Curve Number
method as an excess rainfall model and on a distributed unit
hydrograph with climatic dependencies for the flow routing.
Travel time computation, based on the distributed unit hy-
drograph definition, was performed by implementing a pro-
cedure based on flow paths, determined from a digital eleva-
tion model (DEM) and roughness parameters obtained from
distributed geographical information. In order to estimate the
primary return period of the SFDH, which provides the prob-
ability of occurrence of a hydrograph flood, peaks and flow
volumes obtained through R–R modelling were treated sta-
tistically using copulas. Finally, the shapes of hydrographs
have been generated on the basis of historically significant
flood events, via cluster analysis.

An application of the procedure described above has been
carried out and results presented for the case study of the
Imera catchment in Sicily, Italy.

1 Introduction

Floods are a global problem and are considered the most
frequent natural disaster worldwide. They may have serious
socio-economic impacts in a community, causing victims,
population displacement and damages to the environment,
ecology, landscape and services.

Flood risk analysis and assessment are required to provide
information on current or future flood hazard and risks in
order to accomplish flood risk mitigation, to propose, eval-
uate and select measures to reduce risk. Thus, the European
Parliament has adopted the new Directive 2007/60/EC (Eu-
ropean Union, 2007) that requires member states to assess
if coastal areas and water courses are at risk from flood-
ing, to produce flood risk maps and take measures to miti-
gate the consequent risk. The objective of this directive is to
establish a framework for the assessment and management
of flood risk in Europe, emphasising both the frequency and
magnitude of a flood as well as its consequences.

Reliable estimates of the likely magnitude of the extreme
floods are essential in order to reduce future flood damages.
Despite the occurrence of extreme floods, a problem across
Europe, physical mechanisms responsible for the generation
of floods will vary between countries and regions. As a re-
sult, no standardised European approach to flood frequency
estimation exists. Where methods exist, they are often sim-
ple and their ability to predict accurately the effect of envi-
ronmental change (e.g. urbanisation, land-use change, river
training and climate change) is unknown.

Moreover, Mediterranean water courses have specific
features compared to other river systems. Mediterranean
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catchments are, in fact, generally small, with extents of a
few hundred km2, highly torrential and may generate flash
floods (Brigandì and Aronica, 2008; Koutroulis and Tsanis,
2010; Aronica et al., 2012a; Camarasa-Belmonte and Sori-
ano, 2012). Runoff generation in those areas is the final re-
sult of numerous spatial and temporal complex processes that
take place at the hillslope and on catchment scale. The com-
plexity of the processes involved derives from the great het-
erogeneity of rainfall inputs, surface and subsurface charac-
teristics, and a strong nonlinear dependency on antecedent
wetness which controls the infiltration capacity of the soil
surface and the connectivity of surface and subsurface runoff
pathways (Nicolau et al., 1996; Candela et al., 2005).

The flood frequency analysis (FFA) estimates how often
a specified event will occur and aims to evaluate the flood
event in terms of a maximum discharge value corresponding
to a given return period and/or relative volume. The proba-
bility of future events can be predicted by fitting the past ob-
servations to selected probability distributions. Flood event
estimation (hydrograph design) requires the use of different
methods depending on whether it is enough to know the max-
imum discharge value or whether it is necessary to know the
full hydrograph. In both cases, the problem can be solved
directly, starting from flow measurements available for the
catchment, or indirectly using rainfall data recorded as input
for a rainfall–runoff model. This latter approach is the basis
of the derived distributed approach methods (DDA methods)
that allow one to derive flood hydrographs using rainfall–
runoff models. Analytical difficulties associated with this ap-
proach are, often, overcome by adopting numerical Monte
Carlo methods. In these cases, a stochastic rainfall genera-
tor is used in order to generate rainfall data for a single event
or continuously (Blöschl and Sivapalan, 1997; Loukas, 2002;
Rahman et al., 2002; Aronica and Candela, 2007).

FFC analysis is, usually, based on the derivation of FFC
to define the maximum discharge value corresponding to a
given return period only. However, for flooding management,
it is not enough to know information about flood peaks only,
but it is also useful to evaluate flood volume and hydrograph
duration statistically. Since flood peaks and corresponding
flood volumes are variables of the same phenomenon, they
should be correlated and, consequently, bivariate statistical
analyses should be applied (Serinaldi and Grimaldi, 2011;
Aronica et al., 2012b).

In general, bivariate (multivariate) probability models
were limited by mathematical difficulties due to the genera-
tion of consistent joint laws with ad hoc marginals. Actually,
copulas have overcame many of these problems (Salvadori et
al., 2007), as they are able to model the dependence structure
independently of the marginal distributions.

Several authors have presented hydrological applications
with copula implementation as complex hydrological phe-
nomena such as floods, storms, and droughts. For all these
phenomena it is fundamental to be able to link to each other
the marginal distributions of different variables (De Michele

and Salvadori, 2003; Favre et al., 2004; Salvadori and De
Michele, 2004, 2010; Grimaldi and Serinaldi, 2006; Dupuis,
2007; Zhang and Singh, 2007; Kao and Govindaraju, 2010;
Klein et al., 2010; Vandenberghe et al., 2010; Aronica et
al., 2012b; Serinaldi, 2013; Sraj et al., 2014g). Particularly,
De Michele et al. (2005), Requena et al. (2013) and Gräler
et al. (2013) used copulas for modelling statistical depen-
dence between flood peaks and volume for hydraulic design
purposes.

The aim of the paper is to propose an indirect procedure
for the estimation of synthetic flood design hydrographs us-
ing a bivariate representation (via copulas) of rainfall (rain-
fall duration and intensity), used as forcing input to a dis-
tributed rainfall–runoff model for assessing the hydrological
response of a catchment. Specifically, the proposed proce-
dure is based on a single-event approach and not on a contin-
uous simulation.

In fact, despite several authors showing how “continuous
simulation” schemes that consist of generating long synthetic
rainfall time series and transforming them through a contin-
uous rainfall–runoff model could be preferable with respect
to “event-based” schemes for the SFDH definition (Verhoest
et al., 2010; Grimaldi et al., 2012b), this requires complex
rainfall–runoff models to simulate hydrological response and
the availability of long continuous and reliable time series of
hydrological variables such as rainfall and discharge. When,
as in many real-world cases, available data are not sufficient
to allow the calibration of a continuous (and often with a
complex structure) rainfall–runoff model, an event-based ap-
proach could be preferable, because it is easily applicable
and affected by fewer errors and total uncertainties (Wagener
et al., 2004).

An important aspect to be considered in the estimation of
the SFDH is the choice of an appropriate return period. Sev-
eral authors found (see for instance Salvadori et al., 2011;
Gräler et al., 2013; Requena et al., 2013; Volpi and Fiori,
2014) how different return periods estimated by fitted copu-
las could be considered. Between them, the primary return
period, which provides the probability of occurrence of a
flood hydrograph, was selected in this study. In order to esti-
mate it, peaks and flow volumes obtained through R–R mod-
elling were treated statistically via copulas. Finally, the shape
of the hydrograph was generated on the basis of a modelled
flood event, via cluster analysis.

2 Case study

The Imera catchment, with an area of about 2000 km2, is
located in the southwestern part of Sicily, Italy (Fig. 1).
The study was focused on one sub-catchment named Drasi,
characterised by an area of 1789 km2 whose outlet is about
30 km upstream the river mouth in the Mediterranean Sea.
The “Imera at Drasi” flowgauge station is located at the out-
let of this sub-catchment. Its climate is Mediterranean with
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4 Figure 1. Imera catchment layout.

hot dry summers and a rainy winter season from October to
April and the hydrological response is greatly dependent on
the soil water initial state, which is highly variable because
of the large range of weather conditions. The measurement
network (Fig. 1) consists of eight raingauges (Canicattì, Cal-
tanissetta, Delia, Mazzarino, Enna, Riesi, Petralia Sottana,
Polizzi Generosa) located within the catchment and charac-
terised by a temporal resolution of 10 min, and of one flow-
gauge (Drasi). Historical series of rainfall are available from
1960 up to date on an hourly basis and from 2001 up to
date on a 10 min basis, while discharges are available only
on an hourly basis. Unfortunately the hourly series (rainfall
and discharges) shows many gaps, especially in the periods
of high flows. A digital elevation model characterised by a
resolution of 200 m with a grid of 278× 399 pixels is also
available for this catchment.

3 Methodology

This section describes in detail the proposed procedure
to derive SFDH whose layout can be summarised as fol-
lows: (1) stochastic generation of rainfall to derive single
synthetic rainfall events by a bivariate analysis based on cop-
ulas; (2) rainfall–runoff modelling for the estimation of the
hydrological response at the outlet of the catchment using
a conceptual fully distributed model; (3) derivation of syn-

thetic hydrographs (for a given design return period) by bi-
variate analysis of rainfall–runoff outputs.

3.1 Stochastic generation of rainfall

The hydrological input was derived by using a stochastic
model to derive single synthetic sub-hourly rainfall events
(Brigandì, 2009; Brigandì and Aronica, 2013). Generated
rainfall events are totally stochastic but with characteristics
in terms of shape, duration and average intensity that have to
satisfy the parameters derived by statistical analyses of the
available historic records.

Stochastic generation of rainfall was based on the imple-
mentation of the two following modules:

– Intensity–duration (statistical description and genera-
tion of storm characteristics using a bivariate model).

– Temporal pattern (generation of within-storm temporal
characteristics as time step intensity variations, using
simple statistical descriptors).

3.1.1 Intensity–duration module

Since storm duration, average intensity or rainfall volumes
are variables of the same phenomenon, they should be
correlated. Consequently, these variables have to be anal-
ysed jointly through bivariate models and, particularly, those
based on the theory of copulas.

In a two-dimensional context, copulaC is a function which
represents the joint distribution function of two dependent
random variables uniformly distributed between 0 and 1:

C(u1,u2) = Pr{U1 ≤ u1,U2 ≤ u2} , (1)

whereu1 andu2 denote realisations. Let two random vari-
ables beX andY , with their marginal distribution functions
Fx(x) andFy(y). Through a change of variables

Fx(x) = U1; Fy(y) = U2 (2)

it is possible to obtain the bivariate cumulative distribution
function, as expressed by the theorem of Sklar (1959):

Pr(X ≤ x;Y ≤ y) = FX,Y (x,y) = C(Fx(x),Fy(y)). (3)

The advantage of the copula method is that no assumption is
needed for the variables to be independent or have the same
type of marginal distribution. More information and appli-
cations about copulas can be found in Nelsen (2006) and
Genest and Favre (2007).

A particular subclass of copulas, called Archimedean, is
widely used for hydrological applications, given many use-
ful properties and particularly given their easy construction.
More in particular, because storm duration and average rain-
fall intensity are variables negatively correlated with each
other, the Frank copula was considered for this application
because of its ability to model both positive and negative
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correlations (Favre et al., 2004; Zhang and Singh, 2007). De
Michele and Salvadori (2003) found, in fact, how the Frank
copula is the best candidate for modelling the dependence be-
tween average rainfall intensity and storm duration in com-
parison with other families of copulas, and also for reproduc-
ing the asymptotic statistical distribution of the storm depth.

In the present study, Frank’s family class of 2-copulas
were considered:

C(u1,u2) = −
1

θ
ln

[
1+

(exp(−θu1) − 1)(exp(−θu2) − 1)

exp(−θ) − 1

]
(4)

with generation function

ϕ(t) = ln

[
exp(θt) − 1

exp(θ) − 1

]
and t = u1 or u2, (5)

whereθ is the parameter of a copula function that is related
to the Kendall coefficient of correlationτ betweenX andY

through the expression

τ = 1− 4
11(−θ) − 1

θ
, (6)

where11 is the first-order Debye function.
The first step in determining a copula is to obtain its

generating function from bivariate observations. The proce-
dure to calculate the generating function and the resulting
copula followed in this study was described by Genest and
Rivest (1993). It assumes that for a random sample of bi-
variate observations (x1,y1), (x2,y2), . . . , (xN ,yN ) the un-
derlying distribution functionHX,Y (x,y) has an associated
Archimedean copulaC(u1,u2) which can also be regarded
as an alternative expression of the joint cumulative distribu-
tion function (CDF). The procedure involves the following
steps, all implemented through the use of Matlab© routines:

1. Determine Kendall’sτ from observations.

2. Determine the copula parameterθ from the above value
of τ using Eqs. (5) and (6). For the Frank copula fam-
ilies introduced above, theθ parameter needs to be de-
termined numerically, since there are no closed-form re-
lations betweenτ andθ .

3. Obtain the copula having calculated the copula param-
eterθ . One can also obtain the generating function of
each copula, since the generating function is expressed
in terms of the copula parameter.

Moreover, the use of copulas requires the determination of
marginal distributions based on univariate data. Therefore,
fitting of several extreme value distributions was considered,
i.e. exponential, Gamma, Weibull and two-parameter lognor-
mal distribution functions:

F(x) = 1− e
x
a (7a)

F(x) =
1

ba0(a)

x∫
0

ta−1e−
t
b dt (7b)

F(x) = 1− e−( x
a )

b

(7c)

F(x) =
1

b
√

2π

x∫
0

e
−

[ln(t)−a]2

2b2

t
dt (7d)

These are one or two parameter distributions, allowing for
various degrees of model complexity. Three parameter dis-
tributions were not considered for this application, given the
reduced size of the samples.

3.1.2 Rainfall temporal pattern submodel

In order to define the temporal patterns of rainfall for each
event, the mass curves concept, as similarly implemented
by other various authors (Huff, 1967; Garcia-Guzman and
Aranda-Oliver, 1993; Chow et al., 1988), was considered
here. Following this kind of approach the variability of pre-
cipitation within a rainy period is represented by a dimen-
sionless hyetographH(d), defined as follows:

H(d) =
1

I · D

t∫
0

h(t) dt, (8)

which identifies the fraction of rainfall accumulated over the
time interval [0,d]. In Eq. (8), t (0 ≤ t ≤ D) is a fraction
of the total durationD of the considered event and, conse-
quently,d = t/D(0 ≤ d ≤ 1) is the corresponding dimension-
less duration,h(t) is the rainfall depth at timet (0 ≤ h ≤ V ),
V = I ·D is the total storm volume andD the storm duration
for the event.

The normalised events obtained are the input for selecting
an appropriate probability function for the hyetograph shape.
Although any continuous density function could be appro-
priate to represents the shape for every analysed time step
between 0 and 1, here the choice was orientated towards the
Beta distribution because it is a very simple model that fits
reasonably well this kind of rainfall data.

The Beta cumulative distribution function for a given value
x and a given pair of parametersa andb is

F(x) =
1

B(a,b)
·

x∫
0

ta−1(1− t)b−1dt, (9)

whereB(a,b) is the Beta function

B(a,b) =

1∫
0

ta−1(1− t)b−1dt =
0(a) · 0(b)

0(a + b)
(10)

and0(∗) represents the Gamma function.
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Table 1. Information and statistics of the rainfall data for 80 events
registered from 2010 to 2011.

Intensity Volume Duration
(mm h−1) (mm) (min)

Max 26.02 156.2 2060.0
Min 1.62 18.0 170.0
Mean 5.04 66.9 975.0
Standard deviation 3.76 27.6 453.0

3.2 Rainfall–runoff modelling

In Mediterranean areas, intense weather phenomena, respon-
sible for the flood events, are often characterised by high
spatial variability. For this reason, in this study a conceptual
fully distributed model with climatic dependencies for the
flow routing, derived starting from a semi-distributed model
presented by Di Lorenzo (1993), was proposed and imple-
mented.

This model is characterised by a parsimonious structure
(Jakeman and Hornberger, 1993) which was preferred over
more complex models because of its simplicity and ability
to approximate catchment runoff behaviour characterised by
a fast hydrological response, small areas and inadequate hy-
drological data.

The proposed model is based on the representation in the
form of a linear kinematic mechanism of transfer of the
full outflows coming from different contributing areas of the
catchment through the definition of a distributed hydrologi-
cal response array with climatic characteristics.

Rainfall inputs are, hence, distributed in space and varying
in time. They are represented by a three-dimensional matrix
P of order (A, B, N), whereA andB are the number of cells
into which the catchment was divided in the directionx and
y, andN represents the number of intervals into which the
rainfall event of duration� (with N = �/1t) was discre-
tised (on time step1t basis):

P(A,B,N) =


P1,1,N P1,2,N . . . P1,B,N

Pi,j,t

...
...

PA,1,N PA,2,N · · · PA,B,N

 (11)

In Eq. (11) the generic termPi,j,t represents the rainfall, ex-
pressed in mm, falling on the cell of coordinatesi, j at timet .

To transform the gross rainfall into effective rainfall, the
SCS–CN method, adopted by the USDA Soil Conservation
Service (1986), was used here. This method allows one to
incorporate information on land-use change, as the CN is a
function of soil type, land use, soil cover conditions and de-
gree of saturation of the soil before the start of the storm.

Since a precipitation variable in time was considered, the
runoff volume,Pe,i,j,t , was calculated in a dynamic form
(Chow et al., 1988; Montaldo et al., 2007; Grimaldi et al.,
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Figure 2. Comparison between empirical joint distribution and best
fitted copula. Goodness test for Frank’s copula.
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Figure 3. Plotting position: average intensity and duration.

2012a) as a function of the storm depthPi,j,t , given initial
abstraction,Ia,i,j = cSi,j , and the infiltrated volume,Fi,j,t ,
according to the following expression:

Pe,i,j,t =

{
0 Pi,j,t < c · Si,j

Pi,j,t − c · Si,j − Fi,j,t Pi,j,t > c · Si,j
(12)

with Fi,j,t calculated with the following expression:

Fi,j,t =
Si,j ·

(
Pi,j,t − c · Sa,i,j

)
Pi,j,t − c · Sa,i,j + Si,j

(13)

and

Si,j = 254·

(
100

CNi,j

− 1

)
. (14)

The CNi,j parameter was also defined in a distributed form
starting from a map of its spatial distribution obtained on the
basis of the knowledge of soil types, land use and hydrologic
soil types. Using Eqs. (12)–(14), the matrix of effective rain-
falls Pe was obtained with the same structure of the matrix
(Eq.11).

The matrixH of order (2,A,B) describes the hydrologi-
cal response of the catchment and represents the space–time
distribution of contributing areas (isochrone areas). It can
be derived starting from the knowledge of the concentration
time for each cell within the catchment:

H(2,A,B) =


H1,1,1 H1,1,2 . . . H1,1,B

Hn,i,j

...
...

H2,A,1 H2,A,2 · · · H2,A,B

 (15)
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Table 2. Marginal distribution parameters and goodness of fit re-
sults for average intensity (I ).

a b AIC RRMSE A-D∗

Exponential 5.03644 – 420.672 13.890 10.557
Gamma 3.31078 1.52123 376.565 7.91708 3.099
Weibull 5.67845 1.57408 394.866 10.3672 4.928
Lognormal 1.45814 0.51516 357.209 5.84947 1.411

* Critical value for 95% significance level= 2.492.

Table 3. Marginal distribution parameters and goodness of fit re-
sults for duration (D).

a b AIC RRMSE A-D∗

Exponential 16.2542 – 608.136 56.130 9.588
Gamma 3.84882 4.22315 554.563 10.590 0.808
Weibull 18.3596 2.32434 549.195 6.842 0.451
Lognormal 2.65285 0.56908 564.288 18.451 1.522

* Critical value for 95% significance level= 2.492.

whereH2,i,j represents the cell surface of thei andj coordi-
nates and concentration timeϑn (with ϑn = ϑcatch/n ·1t , and
n = 1,2, . . .,2) and2 is the number of intervals in which
catchment concentration timeϑcatch is discretised.

In particular, in order to derive the concentration time at
cell scale, the Wooding formula (1965) was used here:

ϑi,j =
L

3/5
i,j→out

k
3/5
i,j→out · s

3/10
i,j→out · r

2/5
i,j

, (16)

whereLi,j→out [m] is the hydraulic path length between the
centroid of the cell of coordinatesi,j and the outlet section
of the catchment,ki,j→out [m1/3 s−1] is the Strickler rough-
ness for the same path,si,j→out [m m−1] is its slope, andri,j
[m s−1] is the average rainfall intensity for the rainfall event
over the cell of coordinatesi,j .

The matrix of runoffQ is obtained by multiplying the hy-
drological response matrixH by the effective rainfall matrix,
Pe:

Q(2,N) = H(2,A,B) × Pe(A,B,N)

=
1

1t
·


Q1,1 Q1,2 . . . Q1,N

Qi,j

...
...

Q2,1 Q2,2 · · · Q2,N

 (17)

in which Qi,j represents the available runoff for theϑ
isochrone zone at timet .

In this application, the path lengths and their average
slopes to be included in Eq. (16) were extracted from a DEM
(Noto and La Loggia, 2007).
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3.3 Synthetic hydrograph derivation

The final step of the methodology consists in the deriva-
tion of flood design hydrographs (FDH) via synthetic gen-
eration by using the output from the rainfall–runoff model.
The derivation of FDH was carried out following these
steps: (a) modelling of the statistical correlation between
flood peak and volume pairs generated by the R–R model via
copulas; (b) definition of the normalised hydrograph shape in
probabilistic form; (c) final derivation of the FDH by rescal-
ing the selected shape (i.e. for a given joint return period)
given the synthetic flood peak and volume values. The core
of step (c) is the choice of a joint (bivariate) return period
(JRP).

Several authors found (see for instance Salvadori et al.,
2011; Gräler et al., 2013; Requena et al., 2013; Volpi and
Fiori, 2014) how different return periods estimated by fit-
ted copulas could be considered. More in particular, three
types of return periods are usually defined: (1) the so-called
OR return period, well known also as a primary return pe-
riod, in which the thresholdsx or y are exceeded by the re-
spective random variablesX andY , (2) the so-called AND
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Table 4.Parameter estimation of the Beta distribution.

d 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α 1.070 1.369 1.706 2.029 2.029 3.629 4.643 5.600 9.558
β 8.127 4.727 3.456 2.790 2.790 2.543 2.151 1.649 1.198

Table 5.Engmann modified table reported Strickler’s coefficient values related to Imera catchment land use.

Land Bare Arable Clear
use Urban rocks land Untilled vineyard forest

Strickler
coefficient 100.0 50.0 22.0 20.0 7.69 6.67
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Figure 6. Spatial distribution of CNII for the Imera catchment.

return period, where the thresholdsx andy are exceeded by
the respective random variablesX andY , and (3) the sec-
ondary return period, or Kendall return period, that is associ-
ated with the primary return period and is defined as the mean
inter-arrival time of events (called super-critical or dangerous
events) more critical than design events.

Although all these three return periods can be obtained us-
ing copulas thanks to their formulation, in this application,
the primary return period was used because it is an intuitive
extension of the definition of a univariate return period. Fur-
thermore, as this paper mainly proposes a method for the
generation of a design ensemble, the choice of the return pe-
riod was considered only as a mere example. The primary
return period can be easily calculated by means of a bivariate
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3 Figure 7. Spatial distribution of roughness coefficientk.

copulaC(u1,u2) as

T =
1

1− C (u1,u2)
=

1

1− C
(
Fx(x),Fy(y)

) . (18)

All couples (u1,u2) that are on the same contour (corre-
sponding to an isolinep) of the copulaC will have the same
bivariate return period.

Hence, for a given design return periodT , the corre-
sponding levelp = C(u1,u2) can be calculated easily us-
ing Eq. (18) and all the pairs(u1,u2) on the isolinep have
the same return period. In order to select the single de-
sign point

(
u1,T ,u2,T

)
, Salvadori et al. (2011) and Graler et

al. (2013) suggest the selection of the point with the largest
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Figure 8. Event of 21 December 1976 registered at the Drasi flow-
gauge.

joint probability:(
u1,T ,u2,T

)
= argmax

C(u1,u2)=p

fXY

(
F−1

X ,F−1
Y

)
. (19)

Finally, the corresponding design valuesQmax,T andVT can
be calculated easily by inverting the marginal CDF:

Qmax,T = F−1
Qmax

(u1,T )VT = F−1
V (u2,T ). (20)

4 Application of the proposed methodology

4.1 Calibration of rainfall model

Synthetic sub-hourly rainfall events were derived starting
from a sample of annual maximum rainfall events, extracted
from the series of 10 min rainfall data recorded at the rain-
gauges mentioned above. Following De Michele and Sal-
vadori (2003), two events were considered independent if
they were separated by a dry period of at least 7 h. As a con-
sequence an inter-event time equal to 7 h was adopted here to
derive single rainfall events from the available rainfall series,
for which average intensity and duration were derived.

Kao and Govindaraju (2007) stated how the definition of
annual maximum events for multivariate problems is some-
what ambiguous. As matter of fact, extreme rainfall events
could be defined as those storms that have both high vol-
ume and peak intensity. Therefore, the definition of extreme
rainfall based on events with annual maximum joint cumu-
lative probability was considered in this study, where the
joint cumulative probabilities of samples can be estimated
directly via the empirical copulaCn as introduced by Yue et
al. (1999).

Moreover, as all raingauges are in a hydrologically homo-
geneous area (Cannarozzo et al., 1995), all subsequent sta-
tistical analyses were performed by aggregating all selected

Table 6.Ranges of parameters considered for the calibration.

Lower Upper Max eff
Parameter limit limit value

c 0 1 0.68
CN 70 90 87
k 50 100 75.8

Table 7.Goodness of fit results for copula (Qmax,V ).

Copula family θ LL AIC

Gumbel 14.792 9581.66 19163.32
Frank 57.476 10354.17 20708.35
Clayton 27.585 10140.84 20281.68

events obtaining a final sample of 80 rainfall events whose
characteristics are reported in Table 1.

The procedure described in Sect. 3.1.1 was applied in or-
der to derive theθ parameter for the Frank copula and the
generating function. The copula so obtained was charac-
terised by a parameterθ equal to−3.7573, calculated using
Eq. (6) where the Kendall coefficient of correlationτ was
equal to−0.381.

In order to evaluate the goodness of fit of the chosen cop-
ula, the empiricalCn and best fitted copula joint distribution
were reported in aQ–Q plot (Fig. 2, left). Furthermore, to
confirm the goodness of fit, the parametric and nonparamet-
ric values of the functionK(z), as defined by Genest and
Rivest (1993), were calculated and shown in Fig. 2 (right).
These comparisons confirmed that the Frank 2-copula is well
suited to describing the dependence structure between the
available intensity–duration data.

The parameters of the marginal distributions considered
were estimated by applying the maximum likelihood method
and the best fitted distribution was selected using various
criteria. More in particular, the Akaike information criterion
(AIC), the relative root mean square error (RRMSE), and the
Anderson–Darling test (Kottegoda and Rosso, 2008) were
applied to verify the goodness of the fitting. The results, as
shown in Tables 2 and 3, returned lognormal probability dis-
tribution as the best marginal distribution for average storm
intensity, and Weibull distribution as the best marginal distri-
bution for storm duration. Furthermore, Fig. 3 shows the two
marginal distributions defined respectively by Eq. (7c–d) and
the empirical exceedance probabilities computed using the
Gringorten formula of the observed data.

The historical dimensionless mass curves derived for all
the events selected are plotted in Fig. 4. Then, these curves
were sampled in 11 equal time steps (0; 0.1; 0.2; . . . ; 0.9; 1)
and, for each time step considered, the parameter estimation
of the Beta distribution was carried out using the ML method
(Table 4).
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Figure 9. Scatter plots illustrating the distribution of likelihood weighted hydrological parameter values distribution.
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Figure 10. Comparison between observed and modelled hydro-
graphs for the event of 21 December 1976.

Table 8. Marginal distribution parameters and goodness of fit re-
sults for flood peaks (Qmax).

a b c AIC A-D∗

Exponential 985.84 – – 7.895 1.110
Gamma 1.04 944.78 – 7.895 1.089
Weibull 982.33 0.99 – 7.895 1.130
Lognormal 6.34 1.16 – 7.913 2.819
GEV 425.29 438.01 0.51 7.916 1.204

* The critical value for the Anderson–Darling test is 2.492.

In order to test the model’s ability to reproduce rainfall
event characteristics, 1000 events were generated using the
Monte Carlo procedure. As can be seen in Fig. 5, generated
events show an excellent reproducibility of historical events
characteristics both in terms of duration–intensity correlation
and in terms of dimensionless hyetographs.

Table 9. Marginal distribution parameters and goodness of fit re-
sults for flood volumes (V ).

a b c AIC A-D∗

Exponential 39.66 – – 4.6816 3.745
Gamma 1.27 31.18 – 4.6649 0.680
Weibull 41.41 1.12 – 4.6716 1.199
Lognormal 3.24 1.03 – 4.6856 2.804
GEV 17.8733 20.327 0.39014 4.6824 0.944

* The critical value for the Anderson–Darling test is 2.492.
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Figure 11. Comparison between scatter plot of the observed and
generated pairs (Qmax, V ).

4.2 Calibration of the rainfall–runoff model

Regarding the rainfall–runoff model, calibration is only re-
quired for three parameters:c and CNi,j , for the effective
rainfall module (Eqs. 12–14), and the hydraulic roughness
ki,j→out for the transfer module (Eq. 15). The latter two pa-
rameters are spatially distributed and their calibration should
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Figure 13. Normalised scatter plot for the different copula models considered. The “empirical” points represent the pairs coming from the
R–R model.
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Figure 14.Plotting position: flood peak and volume.
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Figure 15.Comparison between a sample generated from the Gum-
bel copula and the observed data (left) with the copula contours
(right).
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3 Figure 16.Non-dimensional clustered hydrographs.

be carried out by considering both values to be their spatial
correlation. Other authors recently presented interesting re-
sults on the application of CN for hydrological modelling
in Sicily (D’Asaro et al., 2014) in lumped form. In order
to avoid a “lumped” estimation of CN and to overcome the
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Figure 17. p level of the copulaC(u1, u2) corresponding to a
JRP= 100 years, with indication of the single design point (white
dot).

difficulties arising from considering spatial correlation for
the calibration, a simple and efficient procedure proposed by
Candela et al. (2005) was implemented here.

To include its spatial distribution, the CN map was
rescaled according to some weightswCNi,j

allowing for CN
spatial variability in the catchment, with regards to a refer-
ence valueCN which coincides with the spatially averaged
value of CNi,j :

CNi,j = wCNi,j
· CN. (21)

In this way, it is not necessary to calibrate each single value
of CN, but only the reference value. Hence, the new CN spa-
tial distribution can be obtained easily from Eq. (18) given
the spatial distribution ofwCNi,j

.
The values of the weight coefficients have been obtained

from the CN map for AMC condition II available for the
Imera catchment at 100 m grid resolution (Fig. 6) by us-
ing Eq. (21) given the CN reference value. This map was
extracted from the CNII map for the whole of Sicily pro-
duced using the information coming from the Corine Land
Cover 2000 project (Regione Siciliana, 2004). The uncali-
brated value of the reference CN obtained from this map is
equal to 82.

Similarly, the Strickler roughness coefficients (Fig. 7)
were rescaled according to some weights,wki,j→out, allow-
ing for roughness variability in the catchment, with regard
to a reference roughness valuek which coincides with the
spatially averaged value ofki,j→out.

ki,j→out = wki,j→out · k (22)

The spatially averaged value ofki,j→out was easily calcu-
lated starting from its effective spatial distribution in relation
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Figure 18. Flood design hydrograph corresponding to a
JRP= 100 years.

to soil type and land use by the modified Engmann table (En-
gmann, 1986; Candela et al., 2005) (Table 5). Its value was
derived equal to 20.5 m−1/3 s1−. As for CN, the weight co-
efficients have been obtained from the roughness coefficients
map using Eq. (22).

The calibration of the three model parameters was carried
out by comparing observed and predicted variables in terms
of discharges for the event of 21 December 1976, recorded at
the Imera at the Drasi flowgauge station (Fig. 8). The men-
tioned event was chosen for the calibration because it was a
very significant event in terms of duration, flood volume and
peak discharge.

In calibration it is not difficult to get optimal fittings to the
observations by adjusting parameter values, but rather that
there are many sets of parameter values that will give ac-
ceptable fits to the data (Beven, 1993). Often there are no
techniques available for estimating or measuring the values
of effective parameters required at the grid element or catch-
ment scale. These values will therefore be subject to some
uncertainty, especially in semiarid areas for which data are
not always adequate and there is an extreme variability in
space and time of all factors controlling the runoff processes
(Yair and Lavee, 1982).

In this study parameter calibration was performed by using
the Generalised Likelihood Uncertainty Estimation (GLUE)
procedure proposed by Beven and Binley (1992). GLUE
is a Monte Carlo technique that transforms the problem of
searching for an optimum parameter set into a search for the
sets of parameter values, which would give reliable simula-
tions for a wide range of model inputs. Following this ap-
proach there is no requirement to minimise or maximise any
objective function, but the performances of individual param-
eter sets are characterised by a likelihood weight, computed
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by comparing predicted to observed responses using some
kind of likelihood measure. The GLUE places emphasis on
the study of the range of parameter values, which have given
rise to all of the feasible simulations (Freer et al., 1996).

Table 6 lists parameters required for the model and the
ranges assigned to each for the Monte Carlo simulations; in
particular, each interval was chosen as wide as possible in
order to explore a feasible parameter space.

This analysis was carried out by generating 5000 uniform
random sets of parameters and using these sets to perform
model simulations. The results presented in this study use
the sum of squared errors as a basic likelihood measure, in
the form of the Nash and Sutcliffe (1970) efficiency criterion:

L(2i/Y ) = (1− σ 2
i /σ 2

obs) σ 2
i < σ 2

obs (23)

whereL(2i/Y ) is the likelihood measure for theith model
simulation for parameter vector2i conditioned on a set of
observationsY , σ 2

i is the associated error variance for theith
model andσ 2

obs is the observed variance for the event under
consideration.

Figure 9 shows scatter plots for the likelihood measure
based on Eq. (23) for each of the three parameters to be cali-
brated. Each dot represents one run of the model with differ-
ent randomly chosen parameter values within the ranges of
Table 6. These plots are projections of the surface of the like-
lihood measure within a three-dimensional parameter space
into single parameter axes. Scatter plots for the three param-
eters are very similar to each other, in terms of form of like-
lihood surface and level of performance.

It is readily seen from these plots that, consistent with the
concepts that underlie the GLUE approach, there is consid-
erable overlap in performance between simulations and that
there are many different parameter sets that give acceptable
simulations.

Moreover, a best fit parameter set was fixed corresponding
to maximum efficiency values, and a comparison between
observed and simulated hydrographs was reported in Fig. 10.

5 Results

The capability of the proposed procedure in reproducing the
joint statistics of both peak discharges and corresponding
volumes was tested through the generation of 5000 synthetic
hydrographs starting from 5000 synthetic rainfall events of
an assigned shape, average intensity and duration. Figure 11
shows the scatter plot of the pairs (Qmax,V ) derived from
synthetic hydrographs generated. Comparison with pairs of
observed (Qmax,V ) values at the Drasi station (Aronica et
al., 2012b) shows a good ability of the procedure to repro-
duce both observed values and their correlative structure for
all ranges of values.

The first step of the methodology (as outlined in Sect. 3.3)
involved the choice of the best copula for the bivariate anal-

ysis of the output data from the R–R model. In this study,
three copula families (namely Gumbel-Hougard, Frank and
Clayton) were adapted to the 5000 generated pairs of flood
peak discharges and volumes. These two series are charac-
terised by a Kendall correlation coefficient equal to 0.932.
The parameter of the studied copulas was estimated using
the inversion of Kendall’s Tau method (Table 7).

In order to select the copula that best represents the de-
pendence structure of observed variables, graphical tools and
statistical tests were used here. In Fig. 12 the K plot, as de-
fined by Genest and Rivest (1993), is shown for the three
copula families considered. For a best detection of modelling
the correlation structure, the normalised scatter plot of the
empirical and theoretical 5000 pairs is reported in Fig. 13.
In addition, more rigorous tests based on statistical analysis
were performed. Specifically, the AIC criterion and the log-
likelihood test were applied to verify the goodness of the fit-
ting. The graphical tools and the statistical test returned the
Gumbel-Hougard copula family as the best choice for de-
scribing the dependence structure between the flood peaks
and volumes.

The parameters of the marginal distributions used here (ex-
ponential, Gamma, Weibull, lognormal, and GEV) were es-
timated by applying the maximum likelihood method, and
the best fitted distribution was selected using various criteria.
Again, the AIC and the Anderson–Darling test (Kottegoda
and Rosso, 2008) were applied to verify the goodness of the
fitting (Tables 8 and 9). The goodness of fit criteria returned
Gamma distribution as the best marginal distribution for both
univariate variables. Figure 14 shows the marginal distri-
bution defined by Eq. (7b) compared with the exceedance
probabilities computed using the Gringorten formula of the
empirical data.

A comparison between a sample generated from the
Gumbel-Hougard copula and the empirical (Qmax−V ) pairs
is plotted in Fig. 15 (left). Also, contours of the fitted copula
that represent the events with the same probability of occur-
rence are shown (Fig. 15, right).

The second step of the procedure is devoted to the deriva-
tion of the shape of the FDH generated via cluster analysis
with the Ward method (1963) using the procedure proposed
by Apel et al. (2004, 2006) and Aronica et al. (2012b). The
procedure consists in normalising the empirical hydrographs
(5000 in this study) in such a way that the non-dimensional
hydrograph has peak flow and a volume equal to 1. The nor-
malised hydrographs were then grouped into various clusters
according to the Ward method (1963) (the minimum vari-
ance algorithm that minimises increments in sums of squares
of distances of any two clusters that can be formed at each
step). The results of this cluster analysis are the three shapes
of hydrograph shown in Fig. 16. In relation to the number
of hydrographs belonging to each cluster, a probability of
about 0.11 (Shape 1), 0.5 (Shape 2) and 0.39 (Shape 3) were
assigned to these shapes.
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The final step of the procedure allows one to obtain the
SFDH for any return time by merging the non-dimensional
hydrographs (for a given probability) and the generated peak-
volume pairs from copulas.

In this application, as an example, the SFDH with a de-
sign return period ofT = 100 years was calculated. For
T = 100 years, the copula levelp is equal to 0.99, corre-
sponding to a specific isoline (Fig. 17).

Eq. (22) can be solved to find the single design point(
u1,T ,u2,T

)
with the largest joint probability, i.e. (0.9912,

0.9901). Using the inverse marginal CDFs the design
event pair is obtained: (Qmax,T ,VT ) = (4564.8 m3 s−1,
162.5 Mm3). Finally, the design hydrograph can be obtained
using Shape 3 and de-normalising the time and the discharge
by multiplying by the values of the pair (Fig. 18).

6 Conclusions

In this study a procedure to derive flood design hydrographs
(FDH) using a bivariate representation of rainfall forcing
(rainfall duration and intensity) described by copulas coupled
with a distributed rainfall–runoff model was presented. In or-
der to estimate, the return period of the SFDH which gives
the probability of occurrence of hydrograph flood peaks and
flow volumes obtained through R–R modelling was treated
statistically via copulas. The choice of copulas was moti-
vated by its strong capability to describe the statistical cor-
relation between variables, which allows one to obtain the
return period related to the entire SFDH and not only to a
single variable (usually the peak flow) as in the univariate
analysis. This circumstance has a significant importance in
all those cases where all the hydrological variables (flood
volume, flood peaks, etc.) included in a design hydrograph
play an important role (i.e. hazard and risk mapping, design
of flood control systems as reservoirs or storage areas, etc.).

In addition, a statistical label (in terms of probability of oc-
currence) was also given to the hydrograph shape through the
cluster analysis of the R–R model-generated hydrographs.
This completes the statistical definition of the FDH, which
can be identified with a specific return period (joint return
period, JRP).

The procedure described above applied to the case study
of Imera catchment i, and shows how this approach allows a
reliable estimation of the design flood hydrograph in a way
which can also be implemented easily in practical situations.

These results, hence, underline the necessity of consider-
ing JRP estimation methods in the definition of design events
for all practical purposes.

Further research efforts will be devoted to move
from single-design-event methods to ensemble-design-event
methods by considering uncertainty via a complete applica-
tion of the GLUE procedure.
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