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Abstract. Rainfall-runoff modelling procedures for un- 1 Introduction
gauged and poorly gauged watersheds are developed in this
study. A well-established hydrological model, the Univer- The planning, design, and management of water resources
sity of British Columbia (UBC) watershed model, is se- projects require good estimates of streamflow and peak dis-
lected and applied in five different river basins located in charge at certain points within a basin. Observed meteoro-
Canada, Cyprus, and Pakistan. Catchments from cold, temogical and streamflow data are initially used for the under-
perate, continental, and semiarid climate zones are includegtanding of the hydrological processes and thus for mod-
to demonstrate the procedures developed. Two methodolcglling these processes in order to estimate the streamflow of
gies for streamflow modelling are proposed and analyseda watershed. It is likely that most watersheds or basins of
The first method uses the UBC watershed model with a unithe world are ungauged or poorly gauged. There is a whole
versal set of parameters for water allocation and flow rout-spectrum of cases which can be collectively embraced un-
ing, and precipitation gradients estimated from the avail-der the term “ungauged basins”. Some basins are genuinely
able annual precipitation data as well as from regional infor-ungauged, whereas others are poorly gauged or were previ-
mation on the distribution of orographic precipitation. This ously gauged, where measurements discontinued due to in-
method is proposed for watersheds without streamflow gaugétrument failure and/or termination of a measurement pro-
data and limited meteorological station data. The second hygramme. Also, the term “ungauged basin” refers to a basin
brid method proposes the coupling of UBC watershed modelvhere meteorological data or river flow, or both, are not
with artificial neural networks (ANNs) and is intended for measured. The international community has recognized this
use in poorly gauged watersheds which have limited streamchallenging problem and as a result the International Asso-
flow measurements. The two proposed methods have beegiation of Hydrological Sciences (IAHS) had declared the
applied to five mountainous watersheds with largely vary-previous decade (2003-2012) the “decade of the ungauged
ing climatic, physiographic, and hydrological characteristics.basin” (Sivapalan et al., 2003). The IAHS Decade on Predic-
The evaluation of the applied methods is based on the comtion in Ungauged Basins (PUB) was a major new effort and
bination of graphical results, statistical evaluation metrics,an international research initiative to promote the develop-
and normalized goodness-of-fit statistics. The results shovnent of science and technology to provide hydrological data
that the first method satisfactorily simulates the observed hywhere the ground-based observations are needed but missing.
drograph assuming that the basins are ungauged. When limFhis initiative included theoretical hydrology, remote sensing
ited streamflow measurements are available, the coupling ofechniques, in situ observations and measurements, and wa-
ANNs with the regional, non-calibrated UBC flow model ter quantity and quality modelling (Hrachowitz et al., 2013).
components is considered a successful alternative method to In ungauged watersheds, where there are no data, the
the conventional calibration of a hydrological model basedhydrologist has to develop and use models and techniques
on the evaluation criteria employed for streamflow modelling Which do not require the availability of long time series of
and flood frequency estimation. meteorological and hydrological measurements. One option
is to develop models for gauged watersheds and link the
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model parameters to physiographic characteristics and applgr a continuous model (Cameron et al., 2000; Engeland and
them to ungauged watersheds, whose physiographic charaGottschalk, 2002).
teristics can be determined. Another option is to establish re- There are difficulties in universally applying the above
gionally valid relationships in hydrologically similar gauged methods for hydrograph simulation and peak flow estima-
watersheds and apply them to ungauged watersheds in thteon of ungauged watersheds. These difficulties arise from
region. This approach holds both for hydrograph and floodthe definition of the homogenous regions, the number and
frequency analysis. The various methods proposed for hydrothe areas of the gauged watersheds, and the different runoff
logical prediction in ungauged watersheds can be categorizegeneration processes. The definition, or delineation, of ho-
into statistical methods and hydrological and stochastic modmogeneous hydrologic regions has been a subject of research
elling methods (Bléschl et al., 2013; Hrachowitz et al., 2013; for many years, and it is necessary for the application of re-
Parajka et al., 2013; Salinas et al., 2013b). Regionalizatiorgionalization techniques. The definition of homogeneous re-
techniques are usually applied for statistical methods. Thesgions enables uncorrelated data to be pooled from similar
techniques include the regression analyses of flood statisnvatersheds. A hydrological homogeneous region can be de-
tics (statistical moments of flood series) or flood quantilesfined by geography, by stream flow characteristics, and by
of gauged watersheds within a homogenous region againghe physical and climatic characteristics of the watersheds.
geographical and geomorphologic characteristics of the waHowever, problems may arise when an ungauged watershed
tersheds (Kjeldsen and Rosbjerg, 2002), the combination ofs to be assigned to a region. The assignment of the watershed
single site and regional data, the spatial interpolation of esto a region is unambiguous when the geographical classifi-
timated flood statistics at gauged basins using geostatisticsation is used and the regions are delineated clearly. On the
(Bloschl et al., 2013), and the region of influence (ROI) ap- other hand, the hydrological response of the ungauged water-
proach (Burn, 1990). Then, the established relationships arshed may be similar to the response of watersheds belonging
applied to ungauged watersheds of the region. in more than one region. This is particularly true for water-
In hydrological modelling methods, hydrological models sheds that are close to region boundaries. In the case of a
of varying degrees of complexity are used to generate synelassification based on stream flow and watershed character-
thetic flows for known precipitation (Singh and Woolhiser, istics, the regions commonly overlap each other. For a clas-
2002; Singh and Frevert, 2005; Singh, 2012). The complexsification of regions based on the physical and climatic char-
ity of the models can vary from simple event-based models toacteristics of the watersheds, the ungauged watershed could
continuous simulation models, lumped to distributed modelsbe erroneously assigned to a region. Furthermore, even if a
and models that simulate the discharge in sub-daily, daily, ohomogenous region is correctly defined and an ungauged wa-
larger time steps. In this approach, a hydrological model istershed is assigned in that region, there should be enough wa-
firstly calibrated to gauged watersheds within a region andersheds with extended length of meteorological and stream-
the model parameters are linked through multiple regressiorilow records in order to develop statistically significant re-
to physiographic and/or climatic characteristics of the water-gional relationships. However, this is not the case in many
sheds or are spatially interpolated using geostatistics or eveparts of the world, where data are very limited, both spatially
using the average model parameter values (e.g. Micovic andnd temporally. Additionally, the physiographic character-
Quick, 1999; Post and Jakeman, 1999; Merz and Bldschljstics, such as slopes, vegetation coverage, soils, etc., and
2004). At the ungauged watersheds of the region, the modehe runoff generation processes (rainfall runoff, snowmelt
with the estimated model parameters is used for hydrologicatunoff, glacier runoff, etc.) change as the size of the water-
simulation (Wagener et al., 2004; Zhang and Chiew, 2009;shed increases, even in the same region.
He et al., 2011; Wagener and Montanari, 2011; Bao et al., The streamflow of a watershed is often measured for a lim-
2012; Razavi and Coulibaly, 2013; Viglione et al., 2013).  ited period and these streamflow data are inefficient for hy-
The stochastic modelling methods employ a hydrologicaldrological model calibration and statistical analysis. In this
model which is used to derive the cumulative distribution paper, a technique that couples a hydrological model with
function of the peak flows. These methods use a stochastiartificial neural networks (ANNS) is proposed to improve
rainfall generation model, which is linked to the hydrologi- the streamflow simulation and estimation of peak flows for
cal model. The cumulative distribution function of peak flows watersheds with limited streamflow data. In recent years,
could be estimated analytically (lacobellis and Fiorentino, ANNs have become extremely popular for prediction and
2000; De Michele and Salvadori, 2002) in the case of a sim-forecasting of climatic, hydrologic, and water resource vari-
ple hydrological model being used. However, the simplifica- ables (Govindaraju and Rao, 2000; Abrahart et al., 2004) and
tions and the assumptions made in the analytical derivatiorare extensively reviewed for their effectiveness in the estima-
of the cumulative distribution function of peak flows may re- tion of water quantitative and qualitative variables (Maier and
sult in poor performance. To overcome this problem the peakDandy, 2000; Maier et al., 2010) and in hydrological mod-
flow frequency could be estimated numerically using eitherelling and forecasting applications (ASCE, 2000; Dawson
an event-based model (Loukas, 2002; Svensson et al., 2012nd Wilby, 2001; Abrahart et al., 2010, 2012). In the con-
text of hydrological modelling, ANNs have mainly been used
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as rainfall-runoff models for the prediction and forecasting diverse runoff generation mechanisms. Hence, the developed
of streamflow in various time steps (Coulibaly et al., 1999; methodologies are applied to five watersheds located in vari-
ASCE, 2000; Dawson and Wilby, 2001; Jain et al., 2009; ous geographical regions of the world and with varying phys-
Abrahart et al., 2010). Abrahart et al. (2012) present recentographic, climatic, and hydrological characteristics, as well
ANN applications and procedures in streamflow modellingas quality and volume of meteorological data. The runoff
and forecasting, which include modular design concepts, enef all study watersheds contributes to the inflow of local
semble experiments, and hybridization of ANNs with typical reservoirs.
hydrological models. Furthermore, ANNs have been used for Two watersheds are forested watersheds located in British
combining the outputs of different rainfall-runoff models in Columbia, Canada. The first watershed, the Upper Campbell
order to improve the prediction and modelling of streamflow watershed, is located on the east side of the Vancouver Island
(Shamseldin et al., 1997; Chen and Adams, 2006; Kim et al. Mountains and drains to the north and east into the Strait of
2006; Nilsson et al., 2006; Cerda-Villafana et al., 2008; Liu Georgia. The 1194 kébasin is very rugged, with peaks ris-
etal., 2013) and the river flow forecasting (Brath et al., 2002;ing to 2235 m and with mean basin elevation of 950 m (Ta-
Shamseldin et al., 2002; Anctil et al., 20044a; Srinivasulu andble 1). The climate of the area is characterized as a maritime
Jain, 2009; Elshorbagy et al., 2010; Mount et al., 2013). climate with wet and mild winters and dry and warm sum-
The objectives of the study are therefore to developmers. Most of precipitation is generated by cyclonic frontal
rainfall-runoff modelling procedures for ungauged and systems that develop over the North Pacific Ocean and move
poorly gauged watersheds located on different climaticeastwards. Average annual precipitation is about 2000 mm
regions. A well-established rainfall-runoff model (Singh, and 60 % of this amount falls in the form of rainfall. Signif-
2012), the University of British Columbia (UBC) watershed icant but transient snowpacks are accumulated, especially in
model, is selected and applied in five different river basinsthe higher elevations. Runoff and the majority of peak flows
located in Canada, Cyprus, and Pakistan. Catchments frorare generated mainly by rainfall, snowmelt, and winter rain-
cold, temperate, continental, and semiarid climate zones aren-snow events (Loukas et al., 2000). The runoff from the
included to demonstrate the procedures developed. In th&pper Campbell watershed is the inflow to the Upper Camp-
present study, the term “ungauged” watershed refers to dell Lake and Buttle Lake reservoirs. Daily maximum and
watershed where river flow is not measured, and the termminimum temperatures were available at two meteorological
“poorly gauged” watershed indicates a watershed where constations, one at 370 m and the other at 1470 m, and daily pre-
tinuous streamflow measurements are available for three hyeipitation at the lower-elevation station. In total, seven years
drological years. Two streamflow modelling methods are pre-of daily meteorological and streamflow data (October 1983—
sented. The first method is proposed for application at un-September 1990) were available from the Upper Campbell
gauged watersheds using a conceptual hydrological modelyatershed.
the UBC watershed model. In this method, most of the pa- The second study watershed is the lllecillewaet watershed,
rameters of the UBC watershed model take constant valwhich is located on the west slopes of the Selkirk Moun-
ues and the precipitation gradients are estimated by analytains in southeastern British Columbia, 500 km inland from
sis of available meteorological data and/or results of earliethe Coast Mountains. The size of the watershed is 1150 km
regional studies. A second modelling procedure that couplesind its elevation ranges from 400 to 2480 m (Table 1). The
the UBC watershed model with ANNs is employed for the lllecillewaet River is a tributary of the Columbia River and
estimation of streamflow of poorly gauged watersheds withcontributes to the Arrow Lakes reservoir. The climate of the
limited meteorological data. The coupling procedure of UBC area is continental, with cold winters and warm summers
ungauged application with ANNSs is an effort to combine the with frequent hot days, and is influenced by the maritime Pa-
flexibility and capability of ANNs in nonlinear modelling cific Ocean air masses and by weather systems moving east-
with the physical modelling of the rainfall-runoff process wards. Average annual precipitation ranges from 950 mm at
acquired by a hydrological model. the mouth of the watershed to 2160 mm at the higher eleva-
tions. Substantial snowpacks develop during winter at all ele-
vations of the watershed. The snowpack at the valley bottom
2 Study basins and database is usually depleted by the end of April, but permanent snow-
packs and a glacier with an area of 76%exist at the high-
For the assessment of the developed methodologies, prefeest elevations. Streamflow is mainly generated during spring,
ably a large number of undisturbed data-intensive catchmentby rain and snowmelt, and summers, by snowmelt and the
located in different climate zones should be studied. How-contribution of glacier melt (Loukas et al., 2000). Good-
ever, data for these catchments are very difficult to obtainquality daily precipitation and maximum and minimum tem-
which is why the study is limited to five river basins located perature data are measured at three meteorological stations
in different continents. The main selection criteria were ac-at 443, 1323, and 1875m elevation, respectively. Twenty
cessible hydrometeorological data of good quality and thatyears of meteorological and streamflow data (October 1970—
the studied watersheds represent various climatic types with
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Table 1.Characteristics of the five study watersheds.

Watershed Location/country Drainage Elevation Climate type Mean Mean Main Meteorological
area range (m) annual annual runoff station availability
(kmz) precip- discharge generation (station elevation, m)
itation (m3s~1)  mechanisms
(mm)
Upper Coastal British 1194 180-2235 Pacific 2000 71 Rainfall - 1P.S.*(370)
Campbell Columbia, Canada maritime snowmelt 2 T.S.* (370, 1470)
lllecillewaet  Southwestern 1150 440-2480 Continental 2100 53 Snowmelt 3 P.S. (443, 1323, 1875)
British Columbia, 3T.S. (443, 1323, 1875)
Canada
Yermasoyia Cyprus 157 70-1400 Mediterranean 640 0.5 Rainfall 3 P.S. (70, 100, 995)
1T.S. (70)
Astor Himalayan range, 3955 2130-7250 Himalayan 700 120 Snowmelt— 1 P.S. (2630)
Pakistan alpine glaciermelt 1 T.S. (2630)
Hunza Karakoram Range, 13100 1460-7885 Continental 150 360 Glacier melt 2 P.S. (1460, 2405)
Pakistan alpine 1T.S. (1460)

* P.S. denotes precipitation station; T.S. denotes temperature station.

September 1990) were used to assess the simulated rungffoduce heavy precipitation. Average basin annual precipi-
from the watershed. tation is about 700 mm and more than 90 % of this amount
The third study basin is the Yermasoyia watershed, whichis snow (Ahmad et al., 2012). Runoff and the peak stream-
is located on the southern side of mountain Troodos offlows are mainly generated by snowmelt and glacier melt
Cyprus, roughly 5km north of the city of Limassol. The wa- (Loukas et al., 2002; Archer, 2003). Mean annual stream-
tershed area is 157 Khand its elevation ranges from 70m flow is about 120 As~1, which amounts to 5% of the in-
up to 1400 m (Table 1). Most of the area is covered by typi-flow to the downstream Tarbela reservoir. Daily precipita-
cal Mediterranean-type forest and sparse vegetation. A resetion and maximum and minimum temperature data are mea-
voir with storage capacity of 13.6 millionfwas constructed  sured at one meteorological station located at an elevation of
downstream of the mouth of the watershed in 1969 for irri- 2630 m. In total, nine years of meteorological and stream-
gation and municipal water supply purposes (Hrissanthouflow data (October 1979-September 1988) were available
2006). The climate of the area is of Mediterranean maritimefrom the Astor watershed. The Hunza watershed lies within
climate, with mild winters and hot and dry summers. Pre-the Karakoram Mountain Range. The Hunza River flows
cipitation is usually generated by frontal weather systemssouthwest from its headwaters near the China—Pakistan bor-
moving eastwards. Average basin-wide annual precipitatiorder and through the Karakoram to join the Gilgit River
is 640 mm, ranging from 450 mm at the low elevations up near the town of Gilgit. The Hunza watershed has a total
to 850 mm at the upper parts of the watershed. Mean annualrainage area of 13100 Kn(Table 1) and the entire area
runoff of the Yermasoyia River is about 150 mm, and 65%is a maze of towering peaks, massive glaciers, and steep-
of it is generated by rainfall during winter months. The river sided gorges. The highest mountain peaks within the Hunza
is usually dry during summer months. The peak flows areBasin area are Batura (7785m), Rakaposhi (7788 m) and
observed in winter months and produced by rainfall eventsDisteghil Sar (7885 m). The elevation of the Hunza Basin
Good-quality daily precipitation from three meteorological ranges from 1460 to 7885 m. Twenty-three percent of the wa-
stations located at 70, 100, and 995 m elevation were usedershed area is covered by glaciers, including the large Bal-
Data of maximum and minimum temperature measured atoro and Hispar glaciers (Bocchiola et al., 2011; Ahmad et
the low-elevation station (70 m) were used in this study. Inal., 2012). The Hunza Basin is arid and annually receives
total, 11 years of meteorological and streamflow data (Oc4ess than 150 mm of precipitation, mainly in the form of
tober 1986—September 1997) were available for the Yermasnow, from westerly weather systems. More than 90% of
soyia watershed. the annual runoff and peak streamflows are generated by
The fourth and fifth study watersheds, the Astor and theglacier melt (Loukas et al., 2002; Archer, 2003). Mean an-
Hunza watersheds, are located within the upper Indus Rivenual streamflow is about 360%a~1, which amounts to more
basin in northern Pakistan. The Astor watershed spans elevahan 13 % of the inflow to the downstream Tarbela reser-
tions from 2130 to 7250 m and covers an area of 3955km voir. Daily precipitation data measured at two meteorolog-
only 5% of which is covered with forest and 10 % covered ical stations located at 1460 and 2405 m elevation were used.
with glaciers (Table 1). Precipitation is usually generatedData of maximum and minimum temperature measured at the
by westerly depressions, but occasionally monsoon storm#ow-elevation station (1460 m) were used in this study. Four
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years of meteorological and streamflow data (October 1981—1,%15'% oLocicaL
September 1985) were available from the Hunza Basin. DISTRIBUTION BY

ELEVATION ZONE v

A { INFILTRATION
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Two methodologies are proposed in this paper for the simu-

lation of daily streamflow of the five study watersheds. The Y Fiash
first methodology uses the UBC watershed model with esti- 2 WATersueo [ son BEHAVIOUR

MOISTURE BALANCE | MOISTURE \ FROM HIGH

mated universal model parameters and estimates of precip °°"™TATONS | conTROL INTENSITY
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itation distribution, and it is proposed for use in ungauged o
watersheds. The second methodology proposes the coupline, _ = ‘ w
sLOwW MEDIUM EAST

of U!SC watershed model yvit_h ANNSs, and is intended for_ COMPONENT Sow RUNORF RUNORF T
use in watersheds where limited streamflow data are avail- v v ¥ v

able. The UBC watershed model and the two methodologies . riue
are presented in the next paragraphs. R o e L N 23{2}

TEMPERATURE

SNOWFALL ‘ ‘ RAINFALL

GROUNDWATER GROUNDW ATER INTERFLOW

5. MODIFICATION BY /LAKE OR

3.1 The UBC watershed model

WATERSHED /RESERVOIR |
STORAGES | ROUTING
The UBC watershed model was first presented 35 years agc \CONTROL
(Quick and Pipes, 1977), and has been updated continuousl !
to its present form. The UBC is a continuous conceptual hy- ®&ésanes™ '™ GENERATED ‘
. . . STREAMFLOW DATA STREAMFLOW
drologic model which calculates daily or hourly streamflow

using precipitation and maximum and minimum temperature
data as input data. The model was primarily designed for-
the simulation of streamflow from mountainous watersheds,
where the runoff from snowmelt and glacier melt may be im- watershed model was integrated into a geographical infor-
portant, apart from the rainfall runoff. However, the UBC wa- mation system that automatically identifies and estimates the
tershed model has been applied to variety climatic regionsphysiographic parameters of each elevation zone of a water-
ranging from coastal to inland mountain regions of British shed from digital maps and remotely sensed data (Fotakis et
Columbia, including the Rocky Mountains, and the subarc-|. 2014). A certain watershed can be divided in up to 12
tic region of Canada (Hudson and Quick, 1997; Quick et al.,nomogeneous elevation zones. The UBC watershed model
1998; Micovic and Quick, 1999; Loukas et al., 2000; Druce, provides information on snow-covered area, snowpack wa-
2001; Morrison et al., 2002; Whitfield et al., 2002; Merritt et ter equivalent, potential and actual evapotranspiration, soil
al., 2006; Assaf, 2007). The model has also been applied tehoisture interception losses, groundwater storage, and sur-
the Himalayas and Karakoram Mountain Ranges in India angace and subsurface runoff for each elevation zone separately
Pakistan, the Southern Alps in New Zealand, and the Snowyand for the whole watershed. Figure 1 presents the flow dia-
Mountains in Australia (Singh and Kumar, 1997; Singh and gram of the UBC watershed model.
Singh, 2001; Quick, 2012; Naeem et al., 2013). This ensures The model is made up of several sub-routines: the sub-
that the model is capable of simulating runoff under a largeroytine for the distribution of the meteorological data, the
variety of conditions. soil moisture accounting sub-routine, and the flow-routing
The model conceptualizes the watersheds as a number @ p-routine. The meteorological distribution sub-routine dis-
elevation zones, since the meteorological and hydrologicatinguishes between total precipitation in the form of snow
processes are functions of elevation in mountainous waterand rain using the temperature data. If the mean temperature
sheds. In this sense, the orographic gradients of precipitags helow 0 or above 2C, then all precipitation is in the form
tion and temperature are major determinants of the hydroof snow or rain, respectively. When the mean temperature is

logic behaviour in mountainous watersheds. These gradientgetween 0 and 2C, then the percentage of total precipitation
are assumed to behave similarly for each storm event. Furyhich is rain is estimated by

thermore, the physiographic parameters of a watershed, such

as impermeable area, forested areas, vegetation density, OpesRAIN =
areas, aspect, and glaciated areas, are described for each el-
evation zone and can be estimated from analogue and digiand the remaining percentage of precipitation is snow. Snow
tal maps and/or remotely sensed data. Hence, it is assumad stored until it melts, whereas rain is immediately processed
that the elevation zones are homogeneous with respect to thay the soil moisture routine accounting to a sub-routine. Each
above physiographic parameters. In a recent study, the UB@neteorological station has two representation factors, one for

igure 1. Flow diagram of the UBC Watershed model.

T t
emperal ureX 100 )
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snow, POSREP, and one for rain, PORREP. These factors ameccount for forested and open areas, as well as aspect and lat-
introduced because precipitation data from a meteorologicaitude, is used for the estimation of the snowmelt and glacier
station are point data and they may not be representative of melt (Quick et al., 1995).

larger area or zone. If the data are representative, then these The soil moisture accounting sub-routine represents the

parameters are equal to zero. nonlinear behaviour of a watershed. All the nonlinearity of
The point station data of precipitation are distributed overthe watershed behaviour is concentrated into the soil mois-
the watershed using the equation ture accounting sub-routine, which allocates the water from

rainfall, snowmelt, and glacier melt into four runoff compo-
2 nents, namely the fast or surface runoff, the medium or in-
terflow runoff, the slow or upper zone groundwater runoff,
where PR ;; is the precipitation from meteorological station and the very slow or deep zone groundwater runoff. The im-
i for day j and elevation zong POGRAD is the percentage permeable area, which represents the rock outcrops, the wa-
precipitation gradient, andelev is the elevation difference ter surfaces, and the variable source saturated areas adjacent
between the meteorological station and the elevation zone. to stream channels, divides the water that reaches the soil
The UBC model then adjusts the precipitation gradient ac-surface after interception and sublimation into fast surface

Aelev
00,

PR.ji+1=PR ;- (1+POGRAD T

cording to the temperature, runoff and infiltrated water. The total impermeable area at
each time step varies with soil moisture, mainly due to the
GRADRAIN = GRADSNOW- §(T), (3)  expansion or shrinkage of the variable source riparian areas.

The percentage of the impermeable areas of each elevation

where ST() is a parameter, which is affected by the stabil- -\ aries according the E&){

ity of the air mass. It can be shown (Quick et al., 1995) that
the ST() parameter is related to the square of the ratio ofPMXIMP = COIMPA - 10~ FOAGER, (5)

the saturated and dry adiabatic lapse ratesand Lp, re- ) ) ]
where COIMPA is the maximum percentage of impermeable

2 2
. . L L

spectively '-e-<r§> - A plot of (ﬁ) Versus temperatureé  greas when the soil is fully saturated, SOSOIL is the soil

reveals an almost linear variation betwee80 and+20°C. moisture deficit in the elevation zone, and POAGEN is a pa-

The gradient of this linear approximation is 0.01; thusBJT(  rameter which shows the sensitivity of the impermeable areas

can be estimated as to changes in soil moisture.
The water infiltrated into the soil must first satisfy the soil
ST(T) =0.01- Tmean (4)  moisture deficit and the evapotranspiration and then contin-

) ) ues to infiltrate into the groundwater or runs off as interflow.
whereTmeanis the mean daily temperature. _ This process is controlled by the “groundwater percolation”
The UBC watershed model has the capability of Usingparameter (POPERC). The groundwater is further divided

three different precipitation gradients in a single watershed; . 4 upper and deep groundwater zones by the “deep zone
namely POGRADL, POGRADM, and POGRADU. The IoW- gharer narameter (PODZSH). This water allocation by the

elevation gradient, POGRADL, applies to elevations lower g moisture accounting sub-routine is applied to all water-

than the elevation EOLMID, whereas the upper-elevation grapeq elevation zones. Each runoff component is then routed

dignt, POGRA_DU’ applies above the elevatiqn EOLHI anc_j theyy the watershed outlet, which is achieved in the flow-routing
middle-elevation gradient, POGRADM, applies to elevations g ,p_routine. However, a different mechanism is employed in

between EOLMID and EOLHI. __ the case of high-intensity rainfall events, which can produce
‘The temperature in the UBC watershed model is dis-f55h fiood runoff. The runoff from these events is controlled
tributed over the elevation range of a watershed according tcE)y the soil infiltration rate. For these high-intensity rainfall

the t(_er_npe_rature lapse rates. Two temperature lapse re_ltes &Gents, some of the rainfall infiltrates into the soil and is sub-
specified in the UBC watershed model, one for the maximumya o 14 the normal soil moisture budgeting procedure previ-

temperature and one for the minimum temperature. Furtherg, gy presented. The remaining amount of rainfall which is
more, the model recognizes two conditions, namely the rainy, ot infiltrated into the soil is considered to contribute to the

condition and the clear-sky and dry-weather condition. Un-¢,ct runoff component, which is called FLASHSHARE and
der the rainy condition, the lapse rate tends to be the saturated o<timated with

adiabatic rate. Under dry-weather conditions and during the

warm part of the day, the lapse rate tends to be the dry adiFLASHSHARE= PMXIMP + (1 — PMXIMP) - FMR,  (6)

abatlc' rate, whereas the lapse rate tends to pe quite low, anv(\j/here FMR is the percentage of the flash share with range

occasionally zero lapse rates may occur during dry Weathe¥
. . ) r

and night. The lapse rate is calculated for each day using the

daily temperature range (temperature diurnal range) as an in- 1+ log (\%EAMS)

dex. A simplified energy budget approach, which is based ooFMR= —FM——=;

; )
limited data of maximum and minimum temperature and can )

om 0 to 1 and is estimated with

VOFLAX
log (VOFLAS
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PMXIMP is the percentage of impermeable area of the ele-3). This work uses the results of a recent paper (Micovic and
vation zone and is estimated by E§);(RNSM is the sum-  Quick, 1999) that applied the UBC watershed model in 12
mation of rainfall, snowmelt, and glacial melt of the time heterogeneous watersheds in British Columbia, Canada, with
step; VOFLAS is a parameter showing the threshold value ofdifferent sizes of drainage area, climate, topography, soil
precipitation for flash runoff; and VOFLAX is the parameter types, vegetation coverage, geology, and hydrologic regime.
showing the maximum value of precipitation, which limits Micovic and Quick (1999) found that averaged constant val-
the FMR range. The last two parameters (i.e. VOFLAS andues could be assigned to most of the model parameters. Ta-
VOFLAX) take characteristic values for a given watershedble 2 shows the averaged values of the model parameters that
and their values depend on the geomorphology of the watermainly affect the time distribution of the runoff.
shed (e.g. land slope, impermeable areas). The flow routing Additionally, the UBC watershed model water allocation
employed in the UBC watershed model is linear and thus sigparameters POAGEN, VOFLAX, and VOFLAS were assigned
nificantly simplifies the model structure, conserves the wa-the default values suggested in the manual of the model
ter mass, and provides a simple and accurate water budgéQuick et al., 1995). The flow-routing parameter of glacier
balance. The flow-routing parameters are the snowmelt andunoff, POGLTK, was assigned the value of the rainfall fast
rainfall fast runoff time constants, POFSTK, and POFRTK, flow-routing parameter, POFRTK, assuming that the response
respectively; the snowmelt and rainfall interflow time con- of the glacier runoff is similar to the response of the fast com-
stants, POISTK and POIRTK, respectively; the upper ground-ponent of the runoff generated by rainfall. The values of these
water time constant, POUGTK; the deep zone groundwateparameters are presented in Table 3. Apart from these pa-
time constant, PODZTK; and the glacier melt fast runoff time rameters, the precipitation distribution parameters were esti-
constant, POGLTK. mated separately from the available meteorological data for
The UBC watershed model has more than 90 parameeach watershed. This estimation procedure is described in the
ters. However, application of the model to various climatic next paragraphs for each one of the five study watersheds.
regions and experience have shown that only the values of
17 general parameters and 2 precipitation representation fag-2.1 Estimation of model precipitation distribution
tors (e.g. POSREP and PORREP) for each meteorological sta- parameters for the Upper Campbell watershed
tion have to be optimized and adjusted during calibration, L ) ) )
and the majority of the parameters take standard constarfP"ly On€ precipitation station was available in the Upper
values. These varying model parameters can be separatébampbe_" watershed. For this _stat|0n the precipitation rep-
into three groups: the precipitation distribution parameters'€Sentation parameters for rainfall and snowfall, PORREP
(namely POSREP(i), PORREP(i), POGRADL, POGRADM, and_ POSREP, respecuvely,_vyer(_e set _to zero. Thg results of
POGRADU, EOLMID, and EOLHI), the water allocation pa- Qarlu_er studies on the'premplta}t!on dlstrlbut_lon with eleva-
rameters (namely POAGEN, POPERC, PODZSH, VOFLAX, tlor_l in the coastal region of _Brltlsh Columbia (Loukas a_nd
and VOFLAS), and the flow-routing parameters (namely QUICk, 1994; Loukas and Quick, 1995) were used for assign-
POFSTK, POFRTK, POISTK, POIRTK, POUGTK, PODZTK, g values.of prec!p|tat.|on distribution model para_metgrs. .In
and POGLTK). These parameters are optimized through these earlier _studles, it was found that the preC|p|t_at|on in-
two-stage procedure. However, in this paper, the water allocr€ases 1.5 times from the coast up to an elevation equal
cation parameters and the flow-routing parameters are givefP about two-thirds of the elevation of the mountain peak,
constant universal values, whereas the precipitation distribu@nd then levels off at the higher elevations. Using this infor-
tion parameters are estimated from the meteorological datd'ation, the low precipitation gradient, POGRADL, was es-
and/or using the results of earlier regional studies on precipilimated from Eq. (2), substituting the mean annual precipi-
tation distribution with elevation, as will be presented below, tation of the lower meteorological station located at 370m
The total number of model parameters for the Upper Campf0" PR.j.1, PR, j+1 the increased 1.5 times the mean an-

bell and Astor watersheds is 19, for lllecillewaet and Yerma-nu@l precipitation of the lower meteorological station, and
soyia 23, and for Hunza 21, as will be shown below. Aelev the elevation difference between the elevation of the

maximum precipitation (two-thirds of the maximum moun-
tain peak, 1490m) and the elevation of the lower meteoro-
logical station (370 m) which equals 1120 m. Hence, the esti-

The five study watersheds were initially treated as ungauged"ated value of POGRADL was equal to 3.7 %. The elevation
watersheds, assuming that streamflow measurements weyd1ereé the maximum precipitation occurs (1490 m) defines
not available. However, meteorological data were used fronfl€ value of model parameter EOLMID. The middle and up-
the available stations at each study watershed. The UBC waR€' Precipitation gradients (i.e. POGRADM and POGRADU)
tershed model was used to simulate the streamflow from th&/€ré set to zero. In this case, it was not necessary to define
five study watersheds. Twelve out of the 17 general varyingtn® model parameter EOLHI, because the precipitation was
model parameters were assigned constant universal value@Ssumed constant above the EOLMID elevation (1490 m).

which were either estimated or taken as default (Tables 2 and

3.2 Methodology for ungauged watersheds
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Table 2. Averaged values for the parameters of UBC watershed model affecting the time distribution of runoff (Micovic and Quick, 1999).

Model POPERC PODZSH POFRTK POFSTK POIRTK POISTK POUGTK PODZTK
parameter  (mm dayt) (days) (days) (days) (days) (days) (days)
Value 25 0.30 0.6 1 3 4 20 150

Table 3. Default values for the water allocation and flow-routing POGRADL, was estimated using EqR)(as well as the

parameters of UBC watershed model. mean annual precipitation of the lower-elevation station and
the mean annual precipitation at the upper-elevation sta-

Model =~ POAGEN VOFLAX VOFLAS POGLTK tion. The precipitation gradient between the two lower-
parameter  (mm) (mm) (mm) (days) elevation stations is essentially zero because of the small el-
Value 100 1800 30 0.6 evation difference. The lower precipitation gradient parame-

ter, POGRADL, was estimated to equal 4.9 %. The parameter
EOLMID was set equal to the elevation of the upper-elevation
o . o station, which is 995m. The middle and the upper precip-
3.2.2 Estimation of model pr_eC|p|tat|on distribution itation gradients, POGRADM and POGRADU, respectively,
parameters for the lllecillewaet watershed were set equal to zero. This means that the simulation was

Thr recipitation stations were available at the lllecillew tperformedwith one precipitation gradient. In this case, it was
€€ precipitation stations were avallable at the fecliewaet ) necessary to define the model parameter EOLHI.

watershed located at elevations of 443, 1323, and 1875 m,
respectively. The model precipitation representation params » 4 Estimation of model precipitation distribution
eters for rainfall and snowfall and for all three stations were parameters for the Astor watershed

set to zero (i.e. PORREB(= POSREP]) = PORREPR) =

POSREPZ) = PORREPS) = POSREPE) =0). The low pre- | the Astor watershed, only the precipitation data of one me-
cipitation gradient, POGRADL, was estimated from E8. (  teorological station located at 2630 m were available. For this
using the mean annual precipitation at the low- and middle-reason and because it was not any information on the distri-
elevation stations and the elevation difference between thgtion of precipitation with elevation, all the model precipita-

two stations (elev=1323-443=880m). POGRADL was  tjon representation and distribution parameters, i.e. PORREP,
found to equal 6 %. Similarly, the middle precipitation gradi- POSREP, POGRADL, POGRADM, and POGRADU, were set

ent, POGRADM, is estimated to equal 5.5 % considering thegqual to zero. In this case, it was not necessary to define

station. The upper precipitation gradient, POGRADU, was selqual to zero.

to zero. The parameter EOLMID was set equal to the eleva-
tion of the middle-elevation station, which is 1323m. The 32,5 Estimation of model precipitation distribution
parameter EOLHI was set equal to the highest elevation of parameters for the Hunza watershed
the watershed, 2480 m.
Daily precipitation data from two meteorological stations lo-
3.2.3 Estimation of model precipitation distribution cated at 1460 and 2405m elevation were available at the
parameters for the Yermasoyia watershed Hunza Basin. The mean annual precipitation at the two sta-
tions was estimated, and it indicated that the precipitation
Precipitation data from three meteorological stations Iocatecbradiem between the two stations was essentially zero. For
at 70, 100, and 995m elevation were available at the Yerthjs reason, and because there was no information on the dis-
masoyia watershed. The precipitation representation paramripution of precipitation with elevation, all the model pre-
eters for snowfall and for all three stations were set equakipjtation representation and distribution parameters were set
to zero, because snowfall is rarely observed (i.e. POSBEP( equal to zero (i.e. PORREB(= POSREP]) = PORREP)

= POSREPRZ) = POSREP§)=0). The annual precipita- — PQSREPZ) = POGRADL=POGRADM= POGRADU=
tion data of the three stations were compared with the anggLMID = EOLHI = 0).

nual precipitation of other stations in the greater area of

the watershed. This comparison showed that the three me3.3 Methodology for poorly gauged watersheds
teorological stations record 30% more annual rainfall than

other stations located at similar elevations. For this reasormhe streamflow is frequently measured for a limited period
the rainfall representation parameters for all three station®f time. These streamflow data are inadequate for peak flow
were set equal t6-30% (i.e. PORREH]) = PORREP?) analysis and validation of the simulated streamflow. Unfor-
= PORREP8)=—-30%). The low precipitation gradient, tunately, there are no specific guidelines about the precise
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calibration length of streamflow data needed for optimal hy-to its internal structure, and similar results are obtained for
drological model performance in poorly gauged watershedsalibration periods from one to five years. However, the ANN
(Seibert and Beven, 2009). Several studies in gauged wamodel outperformed the GR4J model for calibration periods
tersheds have shown that, for an acceptable rainfall-runoffarger than five years as a result of its flexibility (Anctil et al.,
model calibration, a large calibration record including wet 2004b).

and dry years (at least eight years) is needed for complex Based on the above studies and discussion, it is diffi-
hydrologic models, and the minimum requirements are onecult to define the minimum requirements for model (con-
hydrological year (Sorooshian et al., 1983; Yapo et al., 1996 ceptual or black-box) calibration for poorly gauged water-
Duan et al., 2003). For example, Yapo et al. (1996) stated thasheds. Furthermore, model accuracy may also depend on the
for a reliable and acceptable model performance, a calibraelimatic zone, an aspect that is rarely explicitly analysed.
tion period with at least eight years of data should be used foiTherefore, we developed a methodology that can make use of
NWSRFS-SMA hydrologic model with 13 free parameters. limited streamflow information with the internal memory of
Harlin (1991) suggested that from two to six years of stream-a non-calibrated semi-distributed rainfall-runoff model and
flow data are needed for optimal calibration of the HBV the predictive capabilities of ANNs for poorly gauged water-
model with 12 free parameters. Xia et al. (2004) suggest thasheds as defined in this study.

at least three years of streamflow data are required for suc-

cessful application of their model (with seven parameters)3.3.1 UBC coupling with ANNs

for a case study in Russia. In this regard, few studies investi- . , )
gate the use of limited number of observations for calibration! "€ coupling of the UBC watershed model with ANNs is

periods shorter than one year. Brath et al. (2004) suggest soflescribed in this section. ANNs distribute computations to

flood peak modelling using a continuous distributed rainfall—PrOC€ssing units called neurons or nodes, which are grouped
runoff model that three months are the minimum requiremeni 1ayers and densely interconnected. Three different layer
for flood peak estimation. However, their best results are actYPes can be distinguished: an input layer, connecting the in-
quired with the use of one year continuous runoff data. PerrinPUt |r.1for_mat|on to the network and not carrying any com-
et al. (2007) found that calibration of a simple runoff model Putation; one or more hidden layer, acting as intermediate
(the GR4J model with four free parameters) is possible usComputational layers; and'an output layer, producing the final
ing about 100350 observation days spread randomly over §UtPut- In each computational node or neuron, each one of
longer time period including dry and wet conditions. These € €ntering valuest() is multiplied by a connection weight,
results were also verified by Seibert and Beven (2009), whdji): Such products are then all summed with a neuron-
showed that a few runoff measurements (larger that 64 valSPecific parameter, called b'aﬁj@i used to scale the sum
ues) can contain much of the information content of contin-Of Products {;) into a useful range:

uous streamflow time series. The problem of limited stream- .

rovy data might be tackled if the data are selected in an in—sj =bj,+ Zw/i CXi. (8)
telligent way (e.g. Duan et al., 2003; Wagener et al., 2003; i1

Juston et al., 2009) or by using information from other vari- _ o _ _

ables such as data from groundwater and snow measuremerfis nonlinear activation function (sometimes also called a
in a multiobjective context (e.qg. Efstratiadis and Koutsoyian- fransfer function) to the above sum is applied to each compu-
nis, 2010; Konz and Seibert, 2010; Schaefli and Huss, 2011)ational node producing the node output. Weights and biases
The above studies give an indication of the potential value2® detérmined by means of a nonlinear optimization pro-
of limited observation data for constraining model prediction c€dure known as training that aims at minimizing an error
uncertainties even for ungauged basins. However, these stufdnction expressing the agreement between observations and
ies indicated that the results diverge significantly betweenANN outputs. The mean squared error is usually employed
the watersheds, depending on the days chosen for taking tteS the learning function. A set of observed input and output
measurements, and misleading results could be obtained witfarget) data pairs, the training data set, is processed repeat-
the use of few streamflow data (Seibert and Beven, 2009)edly, changing the parameters of ANN until they converge to
Furthermore, the conceptual hydrological models employed’alues ;uch that each input vector produces outputs as close
are simple and have a small number of free parameters, an@® pos'_5|ble to the observ_ed output data vector. o
more research is needed for complicated hydrological struc- I this study, the following neural network characteristics
tures with more than 10 parameters such as the UBC waWere chosen for all ANN applications:

tersheq model. In a recent s_tudy, the impact of calibration ; g cture of ANNs: feedforward ANNs were used,
length in streamflow forecasting using an ANN and a con- which means that information passes only in one direc-
ceptual hydrologic model, GR4J, was assessed (Anctil et al., tion, from the input layer through the hidden layers up

2004b). The results showed that the hydrological model is to the output layer, allowing only feedforward connec-
more capable than ANNSs for 1-day-ahead flow forecasting tions to adjacent layers

using calibration periods less than one hydrological year due
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2. Training algorithm: back-propagation algorithm Jnput Layer
(Rumelhart et al., 1986) was employed for ANNs Hidden Layer
training. In this training algorithm, each input pattern of
the training data set is passed through the network from
the input layer to the output layer. The network output
is compared with the desired target output and the error
according to the error functiorf, is computed. This
error is propagated backward through the network to
each node, and correspondingly the connection weights
are adjusted based on the following equation:

Rainfall
Fastflow

Rainfall
Interflow

Snowmelt
Fastflow

Total
‘Watershed
Runoff

Snowmelt
Interflow

Upper Zone

Groundwater Output Neuron

Deep Zone
Groundwater

i
QEPQOOON

E +o-Awji(n—1), (9)

Awji(n) = —¢-
w]l(n) 8wji

Hidden Neuron
Glacial

Contribution

whereAw;; (n) and Aw;; (n — 1) are the weight incre-
ments between the nodgand: during thenth and tnput Neuron

— 1)th pass or epoch. A similar equation is employed
(n—DLthp P d ploy Figure 2. Typical ANN geometry for combining the outputs of the

for correction of bias values. Ir.] EcP)(the parameters UBC watershed model in the methodology for poorly gauged wa-
¢ anda are referred to as learning rate and MomentuM,. chads

respectively. The learning rate is used to increase the
chance of avoiding the training process being trapped

in a local minimum instead of global m_in_ima_, and the one hidden layer was used to keep the ANNs architecture
momentum factor can speed up the training in very flatginhie (three-layer ANNS), and the number of the hidden

regions of the error surface and help prevent oscillations,, , jeq as optimized by trial and error. In this sense, the input

in the weights. layer of ANNs consists of four to seven input neurons, de-
3. Activation function. Here, the sigmoid function is used: Pending on the runoff generation mechanisms of the basin;
one hidden layer with varying number of neurons; and one
output layer with one neuron, which is the total discharge
f(sj)= 1 (10) of the watershed (Fig. 2). Since the various input data sets
1+e™ span different ranges, and to ensure that all data sets or vari-
Gables receive equal attention during training, the input data
sets were scaled or standardized in the range of 0-1. In addi-
tion, the output variables were standardized in such a way as
to be commensurate with the limits of the activation function
The UBC watershed model, as has been previously disused in the output layer. In this study, the sigmoid function
cussed, distributes the rainfall and snowmelt runoff into four (Eq. 10) was used as the activation or transfer function, and
components, i.e. rainfall fastflow, snowmelt fastflow, rain- the output data sets (watershed streamflow) were scaled in
fall interflow, snowmelt interflow, upper zone groundwater, the range 0.1-0.9. The advantage of using this scaling range
deep zone groundwater, and glacial melt runoff. These runofis that extremely high and low flow events occurring out-
components due to errors in measurements and inefficientlgide the range of the training data may be accommodated
defined model parameters may not be accurately distributedDawson and Wilby, 2001).
affecting the overall performance of the hydrologic simula- However, the final network architecture and geometry
tion. The UBC watershed model used the parameters withwere tested to avoid overfitting and ensure generalization as
values described in the previous subsection of the paper. Isuggested by Maier and Dandy (1998). For example, the to-
order to take advantage of the limited streamflow data andal number of weights was always kept less than the num-
achieve a better simulation of the observed discharge, th&er of the training samples, and only the connections that
runoff components of the UBC watershed model are intro-had statistically significant weights were kept in the ANNSs.
duced as input neurons into ANNs. During the training pe-The developed ANNs were operated in batch mode, which
riod of ANNSs, the simulated total discharge of the watershedmeans that the training sample presented to the network be-
is compared with the observed discharge to identify the simiween the weight updates was equal to the training set size.
ulation error. This operation forces the search to move in the direction of
The geometry or architecture of ANNs, which determinesthe true gradient at each weight update; however, it requires
the number of connection weights and how these are arlarge storage. The mean squared error was used as the mini-
ranged, depends on the number of hidden layers and the nuntized error function during the training. The initial values of
ber of hidden nodes in these layers. In the developed ANNsyveights for each node were set to a value; # wheref;

The sigmoid function is bounded between 0 and 1, an
is a monotonic and nondecreasing function that pro-
vides a graded, nonlinear response.
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is the number of inputs for the node. The learning ratsn(  above calibration procedure is defined as
Eq. 9) was set fixed to a value of 0.005, whereas the momen-
tum (x in Eqg. 9) was set equal to 0.8 as suggested by Dai angopT— NSE_ ‘1 _ Vsim
Macbeth (1997).

: (11)

obs

whereVsim and Vgps are the simulated and the observed flow
3.3.2 Evaluation of the method volumes, respectively, and NSE is the Nash—Sutcliffe effi-
ciency (Nash and Sutcliffe, 1970), defined as

For the four study watersheds, namely the Upper Campbell,

n
2
lllecillewaet, Yermasoyia, and Astor watersheds, the first Z (Qobs - Qsim)
three years of streamflow record were assumed to be avaiNSE=1 — ’:nl , (12)
able for training of ANNSs. In this sense, the observed stream- 3 (Qobs —_Qobs)z

flow used as the target output of ANNs was the daily mea- i
sured streamflow for the hydrological years 1983-1984 and . R .
1985-1986 for the Upper Campbell watershed, the stream?/N€r€Qobs is the observed flow on day Qsiny is the simu-

flow data for the hydrological years 1970-1971 and 1972_!ated flow on day, Qobsis the average observed flow, and

1973 were considered for the lllecillewaet watershed, the'> the number of days for the simulation period. The evalua-

data for the hydrological years 1986-1987 and 1988—19gdion of all the applied methods is based on the combination of
were used for the Yermasoyia watershed and the streamflo@raphical results, statistical evaluation metrics, and normal-

data for the hydrological years 1979-1980 and 1981—19842€d goodness-of-fit statistics. Furthermore, a comprehensive

were used for the Astor watershed. For the fifth catchment,procemlure proposed by Ritter and Mufioz-Carpena (2013) for

the Hunza watershed, streamflow data for two hydrologicalevaluating model performance is tested for all applied meth-

years (1981-1982 and 1982—1983) were used forANNtrain—OdS' Approximated probability distributions for NSE and

ing. The daily streamflow measurements for the remainingro_ot—mean—square error (RMSE) are derived with bootstrap-
years of record were used for the validation of the methodol-P'"9 fo!lowed by bias correction and enhan.ced cglculaﬂon
ogy in each study watershed. The modelling procedure Withof confidence intervals. Statistical hypothesis testing of the
this configuration is termed UBCANN or method with lim- indicators is done using threshold values to compare model
ited data. It should be noted that the early stopping techniqu(?oel;;%rmagﬁzrl\ggge@sgf ggrg]:nzvgg?g?n protocol can be
was applied to UBCANN to prevent overfitting and to im- . - . ' .
prove the generalization ability of the developed UBCANNS. ;ﬁgg! fg?euitrgsmgg)gnﬂmgﬁ'on ;ﬁszgsvx?;tg;:hzzzh\?vire
The last year in each watershed of the training period wag" gaug poorly gaug

used as an indication of the error when ANN training should used for _frequenc_y analysis of the annual maximum peak
stop (test set). flows. This analysis was performed only for the watersheds

For comparison purposes, the UBCANN method Waswhlch have streamflow data for at least six consecutive years.

compared with the ungauged application of the UBC model,]lg""ls,::‘:.j on thes<_e Cr'te;'r?’ ther Hu:]zda watlfrfThed is excluded
termed UBCREG, and with the classical calibration of the or this comparison. € estimated peak flows were com-

UBC model in poorly gauged watersheds using the same Calpared with the observed peak flows of the four study water-

ibration period for each watershed as defined previously. Th(§heOIS (Upper Campbell, lllecillewaet, Yermasoyl_a, and As-
latter method is termed UBCCLA and is used for evalua—tpr)' Furthermore, the results of frequency angly&s of the es-
tion of the proposed coupling method, UBCANN, for poorly timated peak flow from the two methodo!ogles were com-
gauged watersheds. The UBC free parameters are optimiz red to the results of frequency analysis of the ob§erved
through a two stage procedure. In the first stage, a sensitivit;peak flows. The frequency analysis was performed using the

analysis of each parameter is performed to estimate the rang tre“me vallue t??r? : trtweoretfllcal d|;trlbut|?_n (EV) SU de totth_et
of parameter values for which the simulation results are theo1a!l Sample of the streamfiow observations, and due 1o 1ts
mple two-parameter estimation procedure. This distribu-

most sensitive. In the second stage, a Monte Carlo simulatioy P ial fih lized ext lue (GEV
is performed for each parameter of each group by keeping aﬁ'on is a special case of the generalized extreme value ( )

other parameters constant. The parameter values are samplglf t;'bijtlgn’ and thte GtE\ll dlstrllzbutlon IS c],;lonsclidfered Ina rde.-
from the respective parameter range defined in the first stag(éen study as a potential pan-uropean flood frequency dis-

of the procedure (sensitivity analysis). The parameter valuérIbUtlon (Sgllnas ?‘t al., 2013a). Furthermore, the EVI has
that maximizes the objective function is put in the parame-proven to give satisfactory and acceptable results for return

ter file, and the procedure is repeated for the next paramet«ﬁ?erk)dS less than .50 and 100 years, respgcti\{ely, in estimating
of the group and then for the parameters of the next group. ydrometeorological extremes (Koutsoyiannis, 2004).

The procedure starts with the optimization of the precipita-

tion distribution parameters and ends with the optimization

the flow-routing parameters. The objective function of the

1
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Figure 3. Comparison of observed and simulated hydrographs fofahepper Campbeli(b) lllecillewaet, (c) Yermasoyia(d) Astor, and
(e) Hunza watersheds.

4 Application and results (14)

The daily streamflow of the five study watersheds was simu-where MaxQsim; is the simulated maximum annual flow of
lated using the two proposed methodologies for ungaugedearj, MaxQops; is the observed maximum annual flow of
watersheds and poorly gauged watersheds. The simulate¢ear;j, andk is the number of hydrological years of the sim-
and observed hydrographs compared graphically and statistilation period.

cally. Five statistical indices were used to assess the accuracy The model efficiency (NSE) is widely used in hydrolog-
and performance of the two simulation methods, namely thdcal simulation studies. It compares the scale and the shape
NSE; the percent runoff volume error%Dva‘}—Vobsxloo of the simulated and the observed hydrographs, and its opti-
the correlation coefficient (CORR) between *the simulatedmal value is 1. The percent runoff volume (%DV) is a scale
and the observed flows; RMSE (irfsi 1) between the sim-  parameter which measures the percent error in volume under

ulated and the observed flows, the observed and the simulated hydrographs for the period
of simulation. Positive values of %DV indicate overestima-
n 2 tion of the observed runoff volume, negative values of %DV

_Z (Qobs — Osim) indicate underestimation of the observed runoff volume, and

RMSE= | =2 " ; (13) %DV equal to zero indicate perfect agreement between sim-

ulated and observed runoff volumes. The correlation coeffi-

and the average percent error of the maximum annual flows! cient (CORR) is a shape statistical parameter that measures
the linear correlation between the observed and simulated
flows with optimal value of 1. The RMSE measures the resid-

100 ual or error variance between the simulated and the observed
flows, and its optimal value is 0. The average percent error

1 Kk /MaxQsim. — MaxQops.
%AMAFE — = . Z QS|m] Qobs_, %
k MaxQobs;

j=1
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Table 4. Statistical indices of streamflow simulation with the proposed methodology for ungauged watersheds — UBCREG method.

Hydrologic %DV RMSE  %AMAFE
Watershed period NSE (%) CORR 3ml) (%)
1983-1986 0.72 —7.80 0.85 39.9 —27.6
Upper Campbell 1986-1990 0.68 —-3.93  0.83 41.9 -354
1983-1990 0.70 —5.56 0.84 41.0 -32.1
1970-1973 0.89 12.03 0.96 20.9 7.3
lllecillewaet 1973-1990 0.83 15.09 0.96 23.8 11.9
1970-1990 0.84 14.63 0.96 23.4 11.3
1986-1989 0.78 14.94 0.88 0.85 —-20.0
Yermasoyia 1989-1997 0.68 8.91 0.86 0.60 21.1
1986-1997 0.73 11.45 0.87 0.67 9.85
1979-1982 0.76 —6.15 0.90 63.2 —0.06
Astor 1982-1988 0.65 —8.68 0.82 84.7 9.48
1979-1988 0.68 —7.84 0.84 78.2 6.30
1981-1983 0.86 5.82 0.95 172.7 9.65
Hunza 1983-1985 0.90 0.25 0.95 171.5 1.03
1981-1985 0.88 2.80 0.94 172.1 5.34

of the maximum annual flows (%AMAFE) estimates the av- a significant improvement in the simulation of hydrograph
erage percent error in the simulation of the maximum an-(NSE=0.84 and CORR=0.96 in Table 4). However, in
nual peak flows for the simulation period. Positive valuesthe lllecillewaet watershed, the method overestimated the
of %AMAFE show the average overestimation of the maxi- total runoff volume and the maximum annual peak flows
mum annual flow, whereas negative values indicate the avert%DV = 14.6 3% and %AMAFE=11.26 % in Table 4). The
age underestimation of the maximum annual flow; its optimalsimulation results for the Yermasoyia watershed indicate that
value is 0. the method reproduced the shape and scale of the hydrograph
Firstly, the five study watersheds were treated as ungaugerkasonably well(NSE 0.73 and CORR=0.87 in Table 4)
and the UBCREG methodology for ungauged watershed$ut overestimated the runoff volume and the annual peak
was applied. The daily streamflows of the study watershedslischarge (%D\= 11.45 % and %AMAFE=9.85% in Ta-
were simulated using the uncalibrated UBC watershed modeble 4). The overall worst simulation results were acquired in
with the estimated values of model parameters presented prehe Astor watershed; however, the annual peak flows were
viously. The results of these simulations are shown in Fig. 3generally overestimated (%AMAFE 6.3 %), and the runoff
and Table 4. The simulation was performed for the whole pe-volume was underestimated (%RV—7.68 %), leading to a
riod of available data in each study watershed since the UBQow but acceptable value of model efficiency (NSB.68)
watershed model was uncalibrated, and thus the whole sim{Table 4). On the other hand, the best simulation results
ulation period is a validation period for the performance of were found for the Hunza watershed. The statistical in-
the method. However, the training and validation periods in-dices (Table 4) and the graphical comparison of the simu-
dicated in Fig. 3 and Table 4 are indicated for comparisonlated and the observed hydrographs (Fig. 3) indicate that the
with the results of the second methodology intended for useshape and scale of the observed hydrograph were reproduced
in poorly gauged watersheds with limited streamflow mea-reasonably well.
surements. The above results indicate that the simulation accuracy
The graphical and the statistical comparison of the sim-heavily depends on the quality and availability of meteoro-
ulated hydrographs with the observed hydrographs (Fig. Jogical data. This is obvious from the simulation results for
and Table 4) show that, in general, the ungauged UBCREGhe lllecillewaet watershed (Fig. 3b and Table 4). This water-
method estimates the observed hydrograph with reasonabkhed has three high-quality meteorological stations, and the
accuracy. For the Upper Campbell watershed, the value ohydrograph shape was simulated with improved accuracy, al-
CORR (CORR=0.84) indicates that the method reproduced though the runoff volume and the annual peak flows were
the shape of the observed hydrograph reasonably well bubverestimated (Table 4). The performance of the method
the annual peak streamflows were severely underestimatealso seems to be dependant on the runoff generation mech-
(WAMAFE = —32.06 % in Table 4). The method performed anisms. As a comparison, better simulation results have dis-
better in the lllecillewaet watershed, for which there was covered for watersheds that the runoff is mainly generated by
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Table 5. Geometry of optimized ANNs used in the methodology for poorly gauged watersheds.

Number of neurons
Watershed

Input layer Hidden layer  Output layer

Upper Campbell 6 4 1
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater)

lllecillewaet 7 7 1
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater, glacial melt runoff)

Yermasoyia 4 3 1
(rainfall fastflow, rainfall interflow, upper zone groundwater,
deep zone groundwater)

Astor 7 5 1
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater, glacial melt runoff)

Hunza 5 5 1
(rainfall fastflow, snowmelt fastflow, upper zone
groundwater,deep zone groundwater, glacial melt runoff)

snowmelt and glacier melt and not by watersheds where rain- ,
fall runoff is the dominant runoff generation mechanism. For >
example, the runoff simulation statistics for the Yermasoyia . e
watershed is similar to the simulation statistics for the Up- § e, Bl
per Campbell watershed, although data from three precipita- /<& 3
tion stations were used for streamflow simulation of the small
Yermasoyia watershed (157 Kimand only one precipitation
station was used in the Upper Campbell watershed, which is
larger in area (1194 kf. Furthermore, the best simulation
results have been achieved for the Hunza and lllecillewaet
watersheds (13 100 and 1150%in area, respectively). The Figure 4. Goodness-of-fit evaluation for validation period (1986—
runoff in the Yermasoyia watershed is generated by rainfall,1990) at the Upper Campbell watershé):UBCANN method and
whereas snowmelt is a significant percentage of total runofflb) UBCCLA method.

in the Upper Campbell watershed. On the other hand, more

than 90 % of the runoff in the Hunza Basin is generated by

glacier melting, whereas snowmelt and glacier melt prOOI'“'Ce§’r1atic and hydrological regions with a universal set of model

m(I)st of the rur;off_lr} tlrll? IIIeC|IrI]e\I/vaet Wﬁtersﬂed. T_hi_ls_pa- parameters and making assumptions of precipitation stations
tial variability of rainall is much larger than the variability o, asentativeness and precipitation distribution.

s . S
of snowfall. Also, the precipitation gradients are steeper ancf The second proposed UBCANN methodology for poorly
more consistent for snowfall than rainfall (Lou_kgs gnd QUi.Ck' gauged watersheds was applied to the five study watersheds,
1994, 1995). Hence, a larger number of precipitation Stat'onsassuming that only two or three years of daily streamflow
is necessary in watersheds where rainfall-runoff is the domaata were available. The UBC watershed model was firstly
manF runoff g.e?nerauop mechanism in prder to capiure therun as in the first methodology for the years that streamflow
spatial variability of rainfall and better simulate the stream- data were assumed to be available. and the calculated runoff
flow (Brath et al., 2004). However, keeping in mind the very components were used as input to ANNs. The ANNs were

limited number of meteorological stations and data used, theE)ptimized and trained for this initial period and then the UBC

overall results of the UBCREG methodology are judged satyatershed model coupled with the trained ANNs was run and
isfactory and show that the UBC watershed model can simu

validated for the remaining period for validation. The final

late reasonably well the watershed streamflow in various CI"geometry or architecture of the optimized ANNSs for the five
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g 3or L@ 2000
£ ) 7o A () o s

2000

@
g
8

1500

3
8
8

1000

Observed values
\,
Observe: values
\
Observed values
Observed values

©
\
o
@
g
8
@
g
8

NSE =0.913 [0.891 - 0.949]
RMSE= 158.896 [83.393 - 228.037)

NSE=0.906 [0.873 - 0.952

7 ~ 3]
NSE = 0731 0.378 - 0.838] RMSE= 165.486 [86.054 - 255.762)

RMSE= 0551 [0.389 - 0.81]

@ NSE=0.797 [0.57-0882]
RMSE= 0.479 [0.325 - 0.719]

500 1000 1500 2000 500 1000 1500 2000
Computed values Computed values
EVALUATION EVALUATION

0 5 10 15 20 25 30 35 15 20 25 30
Computed values Computed values

EVALUATION EVALUATION
Evaluation of NSE: From GOOD to VERY GOOD
Evaluation of NSE: From UNSATISFACTORY to GOOD Evaluation of NSE: From UNSATISFACTORY to GOOD B ol naing. o €000 to VERY 600D Prabantny of t beingy o
Probabily of it being: Probabily of it being: robab o % 000
" 1 9000 (NSE =0.500 - 1000): 50.3% Very good (NSE = 0.900 - 1.000): 67.5%
e o e oo ek, 3% ~ Very good (NSE =0.900 - 1.000): 0% - Good (NSE = 0.800 - 0.899): 9. ~ Good (NSE = 0.800 - 0.899): 32.5%
e et o a1 36 2% e e ook Tea s as ~ ceepiale (NGE = 06800700y 0% ~ Acceptable (NSE = 0.650 - 0.799): 0%
\cceptable - - 0650~ d ~ Unsatisfactory (NSE < 0.650): 0% ~ Unsatisfactory (NSE < 0.650): 0%
- Unsatisfactory (NSE < 0.650): 17.5% - Unsatisfactory (NSE < 0.650): 31.9% n( ) n( &
Presence of outlers (Q-test): N Presence of outers (Q-test): NO
Presence of outlers (Q-test): present and maybe affecting indicators Presence of outlers (Q-test): NO Mgl East U eescltin by —11,5% of the mean ot
Model bias: NO Model bias: NO (NSE may be influenced by modl bias)
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(b) UBCCLA method. CLA method.

study watersheds is presented in Table 5. Figure 3 and Table&rsheds (Table 6). Only the percent runoff volume error
present the simulation results for the training and validation(%DV = —11.26% in Table 6) is not improved compared to
periods of the UBCANN methodology at the five study wa- the results of the UBCREG method (%B3¥0.25 % in Ta-
tersheds. Comparison of the graphical (Fig. 3) and statisticable 4) for the Hunza watershed. The improvement of the hy-
results (Tables 4 and 6) indicates that the coupling of UBCdrograph simulation leads to better estimation of runoff vol-
watershed model with ANNSs greatly improves the simulationume and peak streamflow. The improvement of runoff sim-
of hydrographs and maximum annual streamflow in all five ulation with the second methodology depends upon the vol-
watersheds compared to the first methodology. The discusame and the range of the available streamflow data, since
sion will be focused on comparison of the validation periods ANNSs are a data intensive technique. When the available data
of UBCANN application since the ANNSs of this methodol- cover a large range of streamflows, then the trained ANNs
ogy were optimized during the training period and an im- can accurately and efficiently simulate the unknown stream-
provement in the simulation results is expected. Furthermoreflows.
to investigate the suitability of the UBCANN method for  Application of the UBCCLA method shows that UBC
poorly gauged watersheds, the classical calibration methois a reliable hydrological model in streamflow modelling
of the hydrological model is applied and compared. Table 7for diverse climatic environments because the statistics are
presents the results of the UBCCLA method as a benchmarkmproved using streamflow data for calibration (Table 7).
model for watersheds with limited information. However, from Tables 6 and 7 it is difficult to assess the
The simulation results of the UBCANN method for Up- superiority of the UBCANN method using the UBCCLA
per Campbell watershed indicate that although there is sigmethod. For example, the validation NSE values show that
nificant improvement in the prediction of runoff volume the UBCANN method in the Yermasoyia and Astor water-
and maximum annual peak flows (Table 6), the model ef-sheds greatly outperforms the UBCCLA method, in the Up-
ficiency (NSE=0.68) has the same value with the first per Campbell and lllecillewaet watersheds is marginally in-
method (Table 4). On the other hand, the runoff simulationferior to the UBCCLA method, and in the Hunza watershed
is greatly improved in the other four study watersheds. All both methods perform similarly (Tables 6 and 7). These con-
statistical indices of the hydrological simulation have beentradictory results are also in agreement with the study of
improved in the lllecillewaet, Yermasoyia, and Astor wa- Anctil et al. (2004b), which showed that similar results are

www.nat-hazards-earth-syst-sci.net/14/1641/2014/ Nat. Hazards Earth Syst. Sci., 14, 164864, 2014



1656

A. Loukas and L. Vasiliades: Streamflow simulation methods

Table 6. Statistical indices of streamflow simulation with the proposed methodology for poorly gauged watersheds — UBCANN method.

%DV RMSE  %AMAFE
Watershed Hydrologic period NSE (%) CORR 3(B’T1) (%)
Ubper Camppey TTAINNG 1083-1086  0.82 —0.69  0.91 31.7 ~16.6
PPErL-ampbell \slidation 1986-1990  0.68 047 084 425 -149
Hecilowaet Training 1970-1973  0.97 —0.04  0.98 10.9 ~11.2
ecriewae Validation 1973-1990 0.90 211  0.96 18.2 8.98
v _ Training 1986-1989  0.91 271 0.95 055 —15.5
ermasoyia Validation 1989-1997 0.80 —4.15  0.90 0.48 —12.7
Ast Training 1979-1982  0.94 —1.40  0.97 30.7 -8.31
stor Validation 1982-1988  0.79 —3.05  0.89 64.4 15.1
’ Training 1981-1983  0.94 —0.86  0.97 1131  -0.41
unza Validation 1083-1985 0.91 —11.26  0.96 158.9  —4.45

Table 7. Statistical indices of streamflow simulation with the classical methodology for poorly gauged watersheds — UBCCLA method.

%DV RMSE  %AMAFE
Watershed Hydrologic period NSE (%) CORR J&Tl) (%)
Ubper Camppeil Calloration 1083-1986  0.75 —2.36 087 37.4 —14.6
pperCampbell \,jidation 1986-1990 0.70  1.47  0.84 409 —242
Hecilowact Calibration 1970-1973 0.95 —-0.93  0.98 135 —0.22
ecillewae Validation 1973-1990 0.92  1.38  0.96 16.7 0.91
v . Calibration 1986-1989 0.83 —0.22  0.91 0.75 ~16.1
ermasoyla Validation 1989-1997  0.73 —2.21  0.88 0.55 26.1
At Calibration 1979-1982 0.82 —0.08  0.91 55.1 —9.98
stor Validation 1982-1988 0.70  0.32  0.83 790 —0.41
’ Calibration 1981-1983 0.93 —4.43  0.96 122.4 ~7.88
unza Validation 1983-1985  0.91 —2.07  0.96 165.5 ~12.1

obtained using a simple hydrological model and an ANN the selected evaluation metrics NSE and RMSE showed that
rainfall-runoff model for calibration periods from one to five the UBCANN method is less effective in streamflow mod-
years. For this reason the evaluation tool developed by Ritteelling than the UBCCLA in two watersheds (Figs. 4 and 5),
and Muioz-Carpena (2013) was used to assess the two methhereas in the other three watersheds is superior to the UBC-
ods for poorly gauged watersheds. Figs. 4-8 present the conELA method (Figs. 6-8). For these watersheds no prior infor-
prehensive validation results of the UBCANN and UBCCLA mation was used for the distribution of precipitation distribu-
methods for the study watersheds. These figures show th#on and ANNSs, with input the UBC flow components show-
scatterplots of observed and simulated values with the 1:Ing great skill in reproducing the daily streamflow patterns.
line, the values of NSE and RMSE, and their correspondingHowever, in cases where prior hydrological knowledge was
confidence intervals (Cl) at 95 %, the qualitative goodness-incorporated in the UBC model, such as in the two Canadian
of-fit interpretation of NSE based on the established classesyatersheds, ANNs showed similar capabilities with UBC-
and the verification of the presence of bias or the possibleCLA approach due to expert knowledge “optimization” of
presence of outliers. Approximated probability distributions the ungauged UBC flow components.

of NSE and RMSE were obtained by block blockstrapping The second step of the analysis was to compare the simu-
with the bias-corrected and accelerated method, which adlated and observed maximum annual peak flows and to per-
justs for both bias and skewness in the bootstrap distribuform a simple frequency analysis using the EVI theoretical
tion. The calculation procedure of these figures is describedlistribution. It should be noted that the EVI distribution was
analytically in Ritter and Mufioz-Carpena (2013). Careful selected to demonstrate that the methods employed for un-
examination of scatterplots, NSE classes, and 95% CI ofjauged and poorly gauged watersheds and other candidate
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Table 8. Flood frequency estimation using annual maximum peak
flows (M®s1).

Return period Fitted EVI Fitted EVI  Fitted EVI  Fitted EVI
(years) observed data UBCREG UBCANN UBCCLA

Upper Campbell watershed

25 1061 713 963 926
50 1167 787 1071 1018
100 1272 859 1179 1110

lllecillewaet watershed

25 390 436 393 352
50 421 471 421 378
100 452 506 450 404

o " Yermasoyia watershed
Figure 9. Flood frequency estimation for tH@) Upper Campbell, 25 33.7 26.2 35.2 295
(b) lllecillewaet, (c) Yermasoyia, andd) Astor watersheds. 50 39.6 30.3 416 34.4
100 45.4 345 47.9 39.3

Astor watershed

distributions could be used. This analysis was performed 25 934 800 809 793
only for the four study watersheds (Upper Campbell, llle- 50 1036 871 875 851
100 1137 941 940 909

cillewaet, Yermasoyia, and Astor) which have streamflow
data for at least six consecutive years. Application of the

non-parametric Kolmogorov—Smirnov test for checking the uyngauged watershed underestimate the observed peak flows.
adequacy of the selected distribution with the observed angor this particular year, the method severely overestimates
simulated values showed that the EVI distribution is aCCEpt-the maximum annual peak flow. The result is that the esti-
able at the 5% significance level for all observed and sim-mated peak flows with return periods of 25, 50, and 100 years
ulated streamflow values at the study watersheds. Figure Are quite similar with the applied methods for poorly gauged
shows the comparison of the fitted EVI distributions using watersheds (Table 8). Overall the coupling of ANNs with the
the three methodologies (UBCREG, UBCANN, and UBC- yngauged UBC flow model components is considered an im-
CLA) with the observed data and the fitted observed EVI for provement and an alternative method over the conventional
the four study watersheds. For Upper Campbell watershedalibration of a hydrological model with limited streamflow

these results indicate that the methodology for ungauged wanformation based on the evaluation criteria employed for
tersheds underestimates the observed maximum annual pegl¢eamflow modelling and flood frequency estimation.

flows. Comparison of the UBCANN and UBCCLA meth-

ods for flood frequency estimation in poorly gauged basins

showed that high peak flows are more accurately representesl Conclusions

by the UBCANN method (Table 8 and Fig. 9a). Peak flow

frequency analysis for lllecillewaet watershed indicates thatRainfall-runoff modelling procedures for ungauged and
the UBCREG methodology overestimate the observed peakoorly gauged watersheds are developed in this study. A
flows. The best flood frequency curves for this watershed aravell-established hydrological model (Singh, 2012), the UBC
acquired with the use UBCANN method, whereas the UBC-watershed model, is selected and applied in five different
CLA method underestimates the peak flows for all examinedriver basins located in Canada, Cyprus, and Pakistan. Catch-
return periods (1-100 years) (Table 8 and Fig. 9b). Peak flonments from cold, temperate, continental, and semiarid cli-
frequency analysis for the poorly gauged Yermasoyia watermate zones are included to demonstrate the procedures de-
shed again shows the superiority of the UBCANN methodveloped. Two methodologies for the modelling of stream-
compared to the UBCCLA method. Flood frequency analy-flow are proposed and analysed. The first methodology, pro-
sis of the UBCREG method suggests that caution is requireghosed for ungauged watersheds, uses the UBC watershed
for flood modelling since the method significantly underesti- model with a set of universal constant values of model pa-
mates the observed peak flows (Table 8 and Fig. 9¢). Finallyrameters and makes assumptions and estimates regarding the
in the Astor watershed, all applied methods perform simi-representativeness of precipitation stations and precipitation
larly and the flood frequency estimation using simulated val-distribution. This methodology requires a good description
ues underestimates the observed flows at larger return perioas the watershed (area, elevation bands, vegetation cover-
(Table 8 and Fig. 9c). However, except for the maximum an-age, soils, etc.) and limited meteorological stations as well as
nual peak of the last hydrological year of record 1996—1997data to estimate the distribution of precipitation over the el-
(Fig. 3), the simulated peak flows using the methodology forevation range of the watershed, or even regional information
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