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Abstract. Rainfall–runoff modelling procedures for un-
gauged and poorly gauged watersheds are developed in this
study. A well-established hydrological model, the Univer-
sity of British Columbia (UBC) watershed model, is se-
lected and applied in five different river basins located in
Canada, Cyprus, and Pakistan. Catchments from cold, tem-
perate, continental, and semiarid climate zones are included
to demonstrate the procedures developed. Two methodolo-
gies for streamflow modelling are proposed and analysed.
The first method uses the UBC watershed model with a uni-
versal set of parameters for water allocation and flow rout-
ing, and precipitation gradients estimated from the avail-
able annual precipitation data as well as from regional infor-
mation on the distribution of orographic precipitation. This
method is proposed for watersheds without streamflow gauge
data and limited meteorological station data. The second hy-
brid method proposes the coupling of UBC watershed model
with artificial neural networks (ANNs) and is intended for
use in poorly gauged watersheds which have limited stream-
flow measurements. The two proposed methods have been
applied to five mountainous watersheds with largely vary-
ing climatic, physiographic, and hydrological characteristics.
The evaluation of the applied methods is based on the com-
bination of graphical results, statistical evaluation metrics,
and normalized goodness-of-fit statistics. The results show
that the first method satisfactorily simulates the observed hy-
drograph assuming that the basins are ungauged. When lim-
ited streamflow measurements are available, the coupling of
ANNs with the regional, non-calibrated UBC flow model
components is considered a successful alternative method to
the conventional calibration of a hydrological model based
on the evaluation criteria employed for streamflow modelling
and flood frequency estimation.

1 Introduction

The planning, design, and management of water resources
projects require good estimates of streamflow and peak dis-
charge at certain points within a basin. Observed meteoro-
logical and streamflow data are initially used for the under-
standing of the hydrological processes and thus for mod-
elling these processes in order to estimate the streamflow of
a watershed. It is likely that most watersheds or basins of
the world are ungauged or poorly gauged. There is a whole
spectrum of cases which can be collectively embraced un-
der the term “ungauged basins”. Some basins are genuinely
ungauged, whereas others are poorly gauged or were previ-
ously gauged, where measurements discontinued due to in-
strument failure and/or termination of a measurement pro-
gramme. Also, the term “ungauged basin” refers to a basin
where meteorological data or river flow, or both, are not
measured. The international community has recognized this
challenging problem and as a result the International Asso-
ciation of Hydrological Sciences (IAHS) had declared the
previous decade (2003–2012) the “decade of the ungauged
basin” (Sivapalan et al., 2003). The IAHS Decade on Predic-
tion in Ungauged Basins (PUB) was a major new effort and
an international research initiative to promote the develop-
ment of science and technology to provide hydrological data
where the ground-based observations are needed but missing.
This initiative included theoretical hydrology, remote sensing
techniques, in situ observations and measurements, and wa-
ter quantity and quality modelling (Hrachowitz et al., 2013).

In ungauged watersheds, where there are no data, the
hydrologist has to develop and use models and techniques
which do not require the availability of long time series of
meteorological and hydrological measurements. One option
is to develop models for gauged watersheds and link the
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model parameters to physiographic characteristics and apply
them to ungauged watersheds, whose physiographic charac-
teristics can be determined. Another option is to establish re-
gionally valid relationships in hydrologically similar gauged
watersheds and apply them to ungauged watersheds in the
region. This approach holds both for hydrograph and flood
frequency analysis. The various methods proposed for hydro-
logical prediction in ungauged watersheds can be categorized
into statistical methods and hydrological and stochastic mod-
elling methods (Blöschl et al., 2013; Hrachowitz et al., 2013;
Parajka et al., 2013; Salinas et al., 2013b). Regionalization
techniques are usually applied for statistical methods. These
techniques include the regression analyses of flood statis-
tics (statistical moments of flood series) or flood quantiles
of gauged watersheds within a homogenous region against
geographical and geomorphologic characteristics of the wa-
tersheds (Kjeldsen and Rosbjerg, 2002), the combination of
single site and regional data, the spatial interpolation of es-
timated flood statistics at gauged basins using geostatistics
(Blöschl et al., 2013), and the region of influence (ROI) ap-
proach (Burn, 1990). Then, the established relationships are
applied to ungauged watersheds of the region.

In hydrological modelling methods, hydrological models
of varying degrees of complexity are used to generate syn-
thetic flows for known precipitation (Singh and Woolhiser,
2002; Singh and Frevert, 2005; Singh, 2012). The complex-
ity of the models can vary from simple event-based models to
continuous simulation models, lumped to distributed models,
and models that simulate the discharge in sub-daily, daily, or
larger time steps. In this approach, a hydrological model is
firstly calibrated to gauged watersheds within a region and
the model parameters are linked through multiple regression
to physiographic and/or climatic characteristics of the water-
sheds or are spatially interpolated using geostatistics or even
using the average model parameter values (e.g. Micovic and
Quick, 1999; Post and Jakeman, 1999; Merz and Blöschl,
2004). At the ungauged watersheds of the region, the model
with the estimated model parameters is used for hydrological
simulation (Wagener et al., 2004; Zhang and Chiew, 2009;
He et al., 2011; Wagener and Montanari, 2011; Bao et al.,
2012; Razavi and Coulibaly, 2013; Viglione et al., 2013).

The stochastic modelling methods employ a hydrological
model which is used to derive the cumulative distribution
function of the peak flows. These methods use a stochastic
rainfall generation model, which is linked to the hydrologi-
cal model. The cumulative distribution function of peak flows
could be estimated analytically (Iacobellis and Fiorentino,
2000; De Michele and Salvadori, 2002) in the case of a sim-
ple hydrological model being used. However, the simplifica-
tions and the assumptions made in the analytical derivation
of the cumulative distribution function of peak flows may re-
sult in poor performance. To overcome this problem the peak
flow frequency could be estimated numerically using either
an event-based model (Loukas, 2002; Svensson et al., 2013)

or a continuous model (Cameron et al., 2000; Engeland and
Gottschalk, 2002).

There are difficulties in universally applying the above
methods for hydrograph simulation and peak flow estima-
tion of ungauged watersheds. These difficulties arise from
the definition of the homogenous regions, the number and
the areas of the gauged watersheds, and the different runoff
generation processes. The definition, or delineation, of ho-
mogeneous hydrologic regions has been a subject of research
for many years, and it is necessary for the application of re-
gionalization techniques. The definition of homogeneous re-
gions enables uncorrelated data to be pooled from similar
watersheds. A hydrological homogeneous region can be de-
fined by geography, by stream flow characteristics, and by
the physical and climatic characteristics of the watersheds.
However, problems may arise when an ungauged watershed
is to be assigned to a region. The assignment of the watershed
to a region is unambiguous when the geographical classifi-
cation is used and the regions are delineated clearly. On the
other hand, the hydrological response of the ungauged water-
shed may be similar to the response of watersheds belonging
in more than one region. This is particularly true for water-
sheds that are close to region boundaries. In the case of a
classification based on stream flow and watershed character-
istics, the regions commonly overlap each other. For a clas-
sification of regions based on the physical and climatic char-
acteristics of the watersheds, the ungauged watershed could
be erroneously assigned to a region. Furthermore, even if a
homogenous region is correctly defined and an ungauged wa-
tershed is assigned in that region, there should be enough wa-
tersheds with extended length of meteorological and stream-
flow records in order to develop statistically significant re-
gional relationships. However, this is not the case in many
parts of the world, where data are very limited, both spatially
and temporally. Additionally, the physiographic character-
istics, such as slopes, vegetation coverage, soils, etc., and
the runoff generation processes (rainfall runoff, snowmelt
runoff, glacier runoff, etc.) change as the size of the water-
shed increases, even in the same region.

The streamflow of a watershed is often measured for a lim-
ited period and these streamflow data are inefficient for hy-
drological model calibration and statistical analysis. In this
paper, a technique that couples a hydrological model with
artificial neural networks (ANNs) is proposed to improve
the streamflow simulation and estimation of peak flows for
watersheds with limited streamflow data. In recent years,
ANNs have become extremely popular for prediction and
forecasting of climatic, hydrologic, and water resource vari-
ables (Govindaraju and Rao, 2000; Abrahart et al., 2004) and
are extensively reviewed for their effectiveness in the estima-
tion of water quantitative and qualitative variables (Maier and
Dandy, 2000; Maier et al., 2010) and in hydrological mod-
elling and forecasting applications (ASCE, 2000; Dawson
and Wilby, 2001; Abrahart et al., 2010, 2012). In the con-
text of hydrological modelling, ANNs have mainly been used
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as rainfall–runoff models for the prediction and forecasting
of streamflow in various time steps (Coulibaly et al., 1999;
ASCE, 2000; Dawson and Wilby, 2001; Jain et al., 2009;
Abrahart et al., 2010). Abrahart et al. (2012) present recent
ANN applications and procedures in streamflow modelling
and forecasting, which include modular design concepts, en-
semble experiments, and hybridization of ANNs with typical
hydrological models. Furthermore, ANNs have been used for
combining the outputs of different rainfall–runoff models in
order to improve the prediction and modelling of streamflow
(Shamseldin et al., 1997; Chen and Adams, 2006; Kim et al.,
2006; Nilsson et al., 2006; Cerda-Villafana et al., 2008; Liu
et al., 2013) and the river flow forecasting (Brath et al., 2002;
Shamseldin et al., 2002; Anctil et al., 2004a; Srinivasulu and
Jain, 2009; Elshorbagy et al., 2010; Mount et al., 2013).

The objectives of the study are therefore to develop
rainfall–runoff modelling procedures for ungauged and
poorly gauged watersheds located on different climatic
regions. A well-established rainfall–runoff model (Singh,
2012), the University of British Columbia (UBC) watershed
model, is selected and applied in five different river basins
located in Canada, Cyprus, and Pakistan. Catchments from
cold, temperate, continental, and semiarid climate zones are
included to demonstrate the procedures developed. In the
present study, the term “ungauged” watershed refers to a
watershed where river flow is not measured, and the term
“poorly gauged” watershed indicates a watershed where con-
tinuous streamflow measurements are available for three hy-
drological years. Two streamflow modelling methods are pre-
sented. The first method is proposed for application at un-
gauged watersheds using a conceptual hydrological model,
the UBC watershed model. In this method, most of the pa-
rameters of the UBC watershed model take constant val-
ues and the precipitation gradients are estimated by analy-
sis of available meteorological data and/or results of earlier
regional studies. A second modelling procedure that couples
the UBC watershed model with ANNs is employed for the
estimation of streamflow of poorly gauged watersheds with
limited meteorological data. The coupling procedure of UBC
ungauged application with ANNs is an effort to combine the
flexibility and capability of ANNs in nonlinear modelling
with the physical modelling of the rainfall–runoff process
acquired by a hydrological model.

2 Study basins and database

For the assessment of the developed methodologies, prefer-
ably a large number of undisturbed data-intensive catchments
located in different climate zones should be studied. How-
ever, data for these catchments are very difficult to obtain,
which is why the study is limited to five river basins located
in different continents. The main selection criteria were ac-
cessible hydrometeorological data of good quality and that
the studied watersheds represent various climatic types with

diverse runoff generation mechanisms. Hence, the developed
methodologies are applied to five watersheds located in vari-
ous geographical regions of the world and with varying phys-
iographic, climatic, and hydrological characteristics, as well
as quality and volume of meteorological data. The runoff
of all study watersheds contributes to the inflow of local
reservoirs.

Two watersheds are forested watersheds located in British
Columbia, Canada. The first watershed, the Upper Campbell
watershed, is located on the east side of the Vancouver Island
Mountains and drains to the north and east into the Strait of
Georgia. The 1194 km2 basin is very rugged, with peaks ris-
ing to 2235 m and with mean basin elevation of 950 m (Ta-
ble 1). The climate of the area is characterized as a maritime
climate with wet and mild winters and dry and warm sum-
mers. Most of precipitation is generated by cyclonic frontal
systems that develop over the North Pacific Ocean and move
eastwards. Average annual precipitation is about 2000 mm
and 60 % of this amount falls in the form of rainfall. Signif-
icant but transient snowpacks are accumulated, especially in
the higher elevations. Runoff and the majority of peak flows
are generated mainly by rainfall, snowmelt, and winter rain-
on-snow events (Loukas et al., 2000). The runoff from the
Upper Campbell watershed is the inflow to the Upper Camp-
bell Lake and Buttle Lake reservoirs. Daily maximum and
minimum temperatures were available at two meteorological
stations, one at 370 m and the other at 1470 m, and daily pre-
cipitation at the lower-elevation station. In total, seven years
of daily meteorological and streamflow data (October 1983–
September 1990) were available from the Upper Campbell
watershed.

The second study watershed is the Illecillewaet watershed,
which is located on the west slopes of the Selkirk Moun-
tains in southeastern British Columbia, 500 km inland from
the Coast Mountains. The size of the watershed is 1150 km2

and its elevation ranges from 400 to 2480 m (Table 1). The
Illecillewaet River is a tributary of the Columbia River and
contributes to the Arrow Lakes reservoir. The climate of the
area is continental, with cold winters and warm summers
with frequent hot days, and is influenced by the maritime Pa-
cific Ocean air masses and by weather systems moving east-
wards. Average annual precipitation ranges from 950 mm at
the mouth of the watershed to 2160 mm at the higher eleva-
tions. Substantial snowpacks develop during winter at all ele-
vations of the watershed. The snowpack at the valley bottom
is usually depleted by the end of April, but permanent snow-
packs and a glacier with an area of 76 km2 exist at the high-
est elevations. Streamflow is mainly generated during spring,
by rain and snowmelt, and summers, by snowmelt and the
contribution of glacier melt (Loukas et al., 2000). Good-
quality daily precipitation and maximum and minimum tem-
perature data are measured at three meteorological stations
at 443, 1323, and 1875 m elevation, respectively. Twenty
years of meteorological and streamflow data (October 1970–
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Table 1.Characteristics of the five study watersheds.

Watershed Location/country Drainage
area
(km2)

Elevation
range (m)

Climate type Mean
annual
precip-
itation
(mm)

Mean
annual
discharge
(m3 s−1)

Main
runoff
generation
mechanisms

Meteorological
station availability
(station elevation, m)

Upper
Campbell

Coastal British
Columbia, Canada

1194 180–2235 Pacific
maritime

2000 71 Rainfall –
snowmelt

1 P.S.* (370)
2 T.S.* (370, 1470)

Illecillewaet Southwestern
British Columbia,
Canada

1150 440–2480 Continental 2100 53 Snowmelt 3 P.S. (443, 1323, 1875)
3 T.S. (443, 1323, 1875)

Yermasoyia Cyprus 157 70–1400 Mediterranean 640 0.5 Rainfall 3 P.S. (70, 100, 995)
1 T.S. (70)

Astor Himalayan range,
Pakistan

3955 2130–7250 Himalayan
alpine

700 120 Snowmelt –
glacier melt

1 P.S. (2630)
1 T.S. (2630)

Hunza Karakoram Range,
Pakistan

13100 1460–7885 Continental
alpine

150 360 Glacier melt 2 P.S. (1460, 2405)
1 T.S. (1460)

* P.S. denotes precipitation station; T.S. denotes temperature station.

September 1990) were used to assess the simulated runoff
from the watershed.

The third study basin is the Yermasoyia watershed, which
is located on the southern side of mountain Troodos of
Cyprus, roughly 5 km north of the city of Limassol. The wa-
tershed area is 157 km2 and its elevation ranges from 70 m
up to 1400 m (Table 1). Most of the area is covered by typi-
cal Mediterranean-type forest and sparse vegetation. A reser-
voir with storage capacity of 13.6 million m3 was constructed
downstream of the mouth of the watershed in 1969 for irri-
gation and municipal water supply purposes (Hrissanthou,
2006). The climate of the area is of Mediterranean maritime
climate, with mild winters and hot and dry summers. Pre-
cipitation is usually generated by frontal weather systems
moving eastwards. Average basin-wide annual precipitation
is 640 mm, ranging from 450 mm at the low elevations up
to 850 mm at the upper parts of the watershed. Mean annual
runoff of the Yermasoyia River is about 150 mm, and 65 %
of it is generated by rainfall during winter months. The river
is usually dry during summer months. The peak flows are
observed in winter months and produced by rainfall events.
Good-quality daily precipitation from three meteorological
stations located at 70, 100, and 995 m elevation were used.
Data of maximum and minimum temperature measured at
the low-elevation station (70 m) were used in this study. In
total, 11 years of meteorological and streamflow data (Oc-
tober 1986–September 1997) were available for the Yerma-
soyia watershed.

The fourth and fifth study watersheds, the Astor and the
Hunza watersheds, are located within the upper Indus River
basin in northern Pakistan. The Astor watershed spans eleva-
tions from 2130 to 7250 m and covers an area of 3955 km2,
only 5 % of which is covered with forest and 10 % covered
with glaciers (Table 1). Precipitation is usually generated
by westerly depressions, but occasionally monsoon storms

produce heavy precipitation. Average basin annual precipi-
tation is about 700 mm and more than 90 % of this amount
is snow (Ahmad et al., 2012). Runoff and the peak stream-
flows are mainly generated by snowmelt and glacier melt
(Loukas et al., 2002; Archer, 2003). Mean annual stream-
flow is about 120 m3 s−1, which amounts to 5 % of the in-
flow to the downstream Tarbela reservoir. Daily precipita-
tion and maximum and minimum temperature data are mea-
sured at one meteorological station located at an elevation of
2630 m. In total, nine years of meteorological and stream-
flow data (October 1979–September 1988) were available
from the Astor watershed. The Hunza watershed lies within
the Karakoram Mountain Range. The Hunza River flows
southwest from its headwaters near the China–Pakistan bor-
der and through the Karakoram to join the Gilgit River
near the town of Gilgit. The Hunza watershed has a total
drainage area of 13 100 km2 (Table 1) and the entire area
is a maze of towering peaks, massive glaciers, and steep-
sided gorges. The highest mountain peaks within the Hunza
Basin area are Batura (7785 m), Rakaposhi (7788 m) and
Disteghil Sar (7885 m). The elevation of the Hunza Basin
ranges from 1460 to 7885 m. Twenty-three percent of the wa-
tershed area is covered by glaciers, including the large Bal-
toro and Hispar glaciers (Bocchiola et al., 2011; Ahmad et
al., 2012). The Hunza Basin is arid and annually receives
less than 150 mm of precipitation, mainly in the form of
snow, from westerly weather systems. More than 90 % of
the annual runoff and peak streamflows are generated by
glacier melt (Loukas et al., 2002; Archer, 2003). Mean an-
nual streamflow is about 360 m3 s−1, which amounts to more
than 13 % of the inflow to the downstream Tarbela reser-
voir. Daily precipitation data measured at two meteorolog-
ical stations located at 1460 and 2405 m elevation were used.
Data of maximum and minimum temperature measured at the
low-elevation station (1460 m) were used in this study. Four
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years of meteorological and streamflow data (October 1981–
September 1985) were available from the Hunza Basin.

3 Method of analysis

Two methodologies are proposed in this paper for the simu-
lation of daily streamflow of the five study watersheds. The
first methodology uses the UBC watershed model with esti-
mated universal model parameters and estimates of precip-
itation distribution, and it is proposed for use in ungauged
watersheds. The second methodology proposes the coupling
of UBC watershed model with ANNs, and is intended for
use in watersheds where limited streamflow data are avail-
able. The UBC watershed model and the two methodologies
are presented in the next paragraphs.

3.1 The UBC watershed model

The UBC watershed model was first presented 35 years ago
(Quick and Pipes, 1977), and has been updated continuously
to its present form. The UBC is a continuous conceptual hy-
drologic model which calculates daily or hourly streamflow
using precipitation and maximum and minimum temperature
data as input data. The model was primarily designed for
the simulation of streamflow from mountainous watersheds,
where the runoff from snowmelt and glacier melt may be im-
portant, apart from the rainfall runoff. However, the UBC wa-
tershed model has been applied to variety climatic regions,
ranging from coastal to inland mountain regions of British
Columbia, including the Rocky Mountains, and the subarc-
tic region of Canada (Hudson and Quick, 1997; Quick et al.,
1998; Micovic and Quick, 1999; Loukas et al., 2000; Druce,
2001; Morrison et al., 2002; Whitfield et al., 2002; Merritt et
al., 2006; Assaf, 2007). The model has also been applied to
the Himalayas and Karakoram Mountain Ranges in India and
Pakistan, the Southern Alps in New Zealand, and the Snowy
Mountains in Australia (Singh and Kumar, 1997; Singh and
Singh, 2001; Quick, 2012; Naeem et al., 2013). This ensures
that the model is capable of simulating runoff under a large
variety of conditions.

The model conceptualizes the watersheds as a number of
elevation zones, since the meteorological and hydrological
processes are functions of elevation in mountainous water-
sheds. In this sense, the orographic gradients of precipita-
tion and temperature are major determinants of the hydro-
logic behaviour in mountainous watersheds. These gradients
are assumed to behave similarly for each storm event. Fur-
thermore, the physiographic parameters of a watershed, such
as impermeable area, forested areas, vegetation density, open
areas, aspect, and glaciated areas, are described for each el-
evation zone and can be estimated from analogue and digi-
tal maps and/or remotely sensed data. Hence, it is assumed
that the elevation zones are homogeneous with respect to the
above physiographic parameters. In a recent study, the UBC

Figure 1. Flow diagram of the UBC Watershed model.

watershed model was integrated into a geographical infor-
mation system that automatically identifies and estimates the
physiographic parameters of each elevation zone of a water-
shed from digital maps and remotely sensed data (Fotakis et
al., 2014). A certain watershed can be divided in up to 12
homogeneous elevation zones. The UBC watershed model
provides information on snow-covered area, snowpack wa-
ter equivalent, potential and actual evapotranspiration, soil
moisture interception losses, groundwater storage, and sur-
face and subsurface runoff for each elevation zone separately
and for the whole watershed. Figure 1 presents the flow dia-
gram of the UBC watershed model.

The model is made up of several sub-routines: the sub-
routine for the distribution of the meteorological data, the
soil moisture accounting sub-routine, and the flow-routing
sub-routine. The meteorological distribution sub-routine dis-
tinguishes between total precipitation in the form of snow
and rain using the temperature data. If the mean temperature
is below 0 or above 2◦C, then all precipitation is in the form
of snow or rain, respectively. When the mean temperature is
between 0 and 2◦C, then the percentage of total precipitation
which is rain is estimated by

%RAIN =
Temperature

2
× 100 (1)

and the remaining percentage of precipitation is snow. Snow
is stored until it melts, whereas rain is immediately processed
by the soil moisture routine accounting to a sub-routine. Each
meteorological station has two representation factors, one for
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snow, P0SREP, and one for rain, P0RREP. These factors are
introduced because precipitation data from a meteorological
station are point data and they may not be representative of a
larger area or zone. If the data are representative, then these
parameters are equal to zero.

The point station data of precipitation are distributed over
the watershed using the equation

PRi,j,l+1 = PRi,j,l · (1+ P0GRAD)
1elev
100 , (2)

where PRi,j,l is the precipitation from meteorological station
i for dayj and elevation zonel, P0GRAD is the percentage
precipitation gradient, and1elev is the elevation difference
between the meteorological station and the elevation zone.

The UBC model then adjusts the precipitation gradient ac-
cording to the temperature,

GRADRAIN = GRADSNOW− S(T ), (3)

where ST(T ) is a parameter, which is affected by the stabil-
ity of the air mass. It can be shown (Quick et al., 1995) that
the ST(T ) parameter is related to the square of the ratio of
the saturated and dry adiabatic lapse rates,LS andLD, re-

spectively i.e.
(

LS
LD

)2
. A plot of

(
LS
LD

)2
versus temperature

reveals an almost linear variation between−30 and+20◦C.
The gradient of this linear approximation is 0.01; thus ST(T )
can be estimated as

ST(T ) = 0.01· Tmean, (4)

whereTmeanis the mean daily temperature.
The UBC watershed model has the capability of using

three different precipitation gradients in a single watershed,
namely P0GRADL, P0GRADM, and P0GRADU. The low-
elevation gradient, P0GRADL, applies to elevations lower
than the elevation E0LMID, whereas the upper-elevation gra-
dient, P0GRADU, applies above the elevation E0LHI and the
middle-elevation gradient, P0GRADM, applies to elevations
between E0LMID and E0LHI.

The temperature in the UBC watershed model is dis-
tributed over the elevation range of a watershed according to
the temperature lapse rates. Two temperature lapse rates are
specified in the UBC watershed model, one for the maximum
temperature and one for the minimum temperature. Further-
more, the model recognizes two conditions, namely the rainy
condition and the clear-sky and dry-weather condition. Un-
der the rainy condition, the lapse rate tends to be the saturated
adiabatic rate. Under dry-weather conditions and during the
warm part of the day, the lapse rate tends to be the dry adi-
abatic rate, whereas the lapse rate tends to be quite low, and
occasionally zero lapse rates may occur during dry weather
and night. The lapse rate is calculated for each day using the
daily temperature range (temperature diurnal range) as an in-
dex. A simplified energy budget approach, which is based on
limited data of maximum and minimum temperature and can

account for forested and open areas, as well as aspect and lat-
itude, is used for the estimation of the snowmelt and glacier
melt (Quick et al., 1995).

The soil moisture accounting sub-routine represents the
nonlinear behaviour of a watershed. All the nonlinearity of
the watershed behaviour is concentrated into the soil mois-
ture accounting sub-routine, which allocates the water from
rainfall, snowmelt, and glacier melt into four runoff compo-
nents, namely the fast or surface runoff, the medium or in-
terflow runoff, the slow or upper zone groundwater runoff,
and the very slow or deep zone groundwater runoff. The im-
permeable area, which represents the rock outcrops, the wa-
ter surfaces, and the variable source saturated areas adjacent
to stream channels, divides the water that reaches the soil
surface after interception and sublimation into fast surface
runoff and infiltrated water. The total impermeable area at
each time step varies with soil moisture, mainly due to the
expansion or shrinkage of the variable source riparian areas.
The percentage of the impermeable areas of each elevation
zone varies according the Eq. (5):

PMXIMP = C0IMPA · 10−
S0SOIL
P0AGEN, (5)

where C0IMPA is the maximum percentage of impermeable
areas when the soil is fully saturated, S0SOIL is the soil
moisture deficit in the elevation zone, and P0AGEN is a pa-
rameter which shows the sensitivity of the impermeable areas
to changes in soil moisture.

The water infiltrated into the soil must first satisfy the soil
moisture deficit and the evapotranspiration and then contin-
ues to infiltrate into the groundwater or runs off as interflow.
This process is controlled by the “groundwater percolation”
parameter (P0PERC). The groundwater is further divided
into an upper and deep groundwater zones by the “deep zone
share” parameter (P0DZSH). This water allocation by the
soil moisture accounting sub-routine is applied to all water-
shed elevation zones. Each runoff component is then routed
to the watershed outlet, which is achieved in the flow-routing
sub-routine. However, a different mechanism is employed in
the case of high-intensity rainfall events, which can produce
flash flood runoff. The runoff from these events is controlled
by the soil infiltration rate. For these high-intensity rainfall
events, some of the rainfall infiltrates into the soil and is sub-
ject to the normal soil moisture budgeting procedure previ-
ously presented. The remaining amount of rainfall which is
not infiltrated into the soil is considered to contribute to the
fast runoff component, which is called FLASHSHARE and
is estimated with

FLASHSHARE= PMXIMP + (1− PMXIMP) · FMR, (6)

where FMR is the percentage of the flash share with range
from 0 to 1 and is estimated with

FMR =

1+ log
(

RNSM
V0FLAS

)
log

(
V0FLAX
V0FLAS

) ; (7)
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PMXIMP is the percentage of impermeable area of the ele-
vation zone and is estimated by Eq. (5); RNSM is the sum-
mation of rainfall, snowmelt, and glacial melt of the time
step; V0FLAS is a parameter showing the threshold value of
precipitation for flash runoff; and V0FLAX is the parameter
showing the maximum value of precipitation, which limits
the FMR range. The last two parameters (i.e. V0FLAS and
V0FLAX) take characteristic values for a given watershed
and their values depend on the geomorphology of the water-
shed (e.g. land slope, impermeable areas). The flow routing
employed in the UBC watershed model is linear and thus sig-
nificantly simplifies the model structure, conserves the wa-
ter mass, and provides a simple and accurate water budget
balance. The flow-routing parameters are the snowmelt and
rainfall fast runoff time constants, P0FSTK, and P0FRTK,
respectively; the snowmelt and rainfall interflow time con-
stants, P0ISTK and P0IRTK, respectively; the upper ground-
water time constant, P0UGTK; the deep zone groundwater
time constant, P0DZTK; and the glacier melt fast runoff time
constant, P0GLTK.

The UBC watershed model has more than 90 parame-
ters. However, application of the model to various climatic
regions and experience have shown that only the values of
17 general parameters and 2 precipitation representation fac-
tors (e.g. P0SREP and P0RREP) for each meteorological sta-
tion have to be optimized and adjusted during calibration,
and the majority of the parameters take standard constant
values. These varying model parameters can be separated
into three groups: the precipitation distribution parameters
(namely P0SREP(i), P0RREP(i), P0GRADL, P0GRADM,
P0GRADU, E0LMID, and E0LHI), the water allocation pa-
rameters (namely P0AGEN, P0PERC, P0DZSH, V0FLAX,
and V0FLAS), and the flow-routing parameters (namely
P0FSTK, P0FRTK, P0ISTK, P0IRTK, P0UGTK, P0DZTK,
and P0GLTK). These parameters are optimized through a
two-stage procedure. However, in this paper, the water allo-
cation parameters and the flow-routing parameters are given
constant universal values, whereas the precipitation distribu-
tion parameters are estimated from the meteorological data
and/or using the results of earlier regional studies on precipi-
tation distribution with elevation, as will be presented below.
The total number of model parameters for the Upper Camp-
bell and Astor watersheds is 19, for Illecillewaet and Yerma-
soyia 23, and for Hunza 21, as will be shown below.

3.2 Methodology for ungauged watersheds

The five study watersheds were initially treated as ungauged
watersheds, assuming that streamflow measurements were
not available. However, meteorological data were used from
the available stations at each study watershed. The UBC wa-
tershed model was used to simulate the streamflow from the
five study watersheds. Twelve out of the 17 general varying
model parameters were assigned constant universal values,
which were either estimated or taken as default (Tables 2 and

3). This work uses the results of a recent paper (Micovic and
Quick, 1999) that applied the UBC watershed model in 12
heterogeneous watersheds in British Columbia, Canada, with
different sizes of drainage area, climate, topography, soil
types, vegetation coverage, geology, and hydrologic regime.
Micovic and Quick (1999) found that averaged constant val-
ues could be assigned to most of the model parameters. Ta-
ble 2 shows the averaged values of the model parameters that
mainly affect the time distribution of the runoff.

Additionally, the UBC watershed model water allocation
parameters P0AGEN, V0FLAX, and V0FLAS were assigned
the default values suggested in the manual of the model
(Quick et al., 1995). The flow-routing parameter of glacier
runoff, P0GLTK, was assigned the value of the rainfall fast
flow-routing parameter, P0FRTK, assuming that the response
of the glacier runoff is similar to the response of the fast com-
ponent of the runoff generated by rainfall. The values of these
parameters are presented in Table 3. Apart from these pa-
rameters, the precipitation distribution parameters were esti-
mated separately from the available meteorological data for
each watershed. This estimation procedure is described in the
next paragraphs for each one of the five study watersheds.

3.2.1 Estimation of model precipitation distribution
parameters for the Upper Campbell watershed

Only one precipitation station was available in the Upper
Campbell watershed. For this station the precipitation rep-
resentation parameters for rainfall and snowfall, P0RREP
and P0SREP, respectively, were set to zero. The results of
earlier studies on the precipitation distribution with eleva-
tion in the coastal region of British Columbia (Loukas and
Quick, 1994; Loukas and Quick, 1995) were used for assign-
ing values of precipitation distribution model parameters. In
these earlier studies, it was found that the precipitation in-
creases 1.5 times from the coast up to an elevation equal
to about two-thirds of the elevation of the mountain peak,
and then levels off at the higher elevations. Using this infor-
mation, the low precipitation gradient, P0GRADL, was es-
timated from Eq. (2), substituting the mean annual precipi-
tation of the lower meteorological station located at 370 m
for PRi,j,l , PRi,j,l+1 the increased 1.5 times the mean an-
nual precipitation of the lower meteorological station, and
1elev the elevation difference between the elevation of the
maximum precipitation (two-thirds of the maximum moun-
tain peak, 1490 m) and the elevation of the lower meteoro-
logical station (370 m) which equals 1120 m. Hence, the esti-
mated value of P0GRADL was equal to 3.7 %. The elevation
where the maximum precipitation occurs (1490 m) defines
the value of model parameter E0LMID. The middle and up-
per precipitation gradients (i.e. P0GRADM and P0GRADU)
were set to zero. In this case, it was not necessary to define
the model parameter E0LHI, because the precipitation was
assumed constant above the E0LMID elevation (1490 m).

www.nat-hazards-earth-syst-sci.net/14/1641/2014/ Nat. Hazards Earth Syst. Sci., 14, 1641–1661, 2014



1648 A. Loukas and L. Vasiliades: Streamflow simulation methods

Table 2.Averaged values for the parameters of UBC watershed model affecting the time distribution of runoff (Micovic and Quick, 1999).

Model P0PERC P0DZSH P0FRTK P0FSTK P0IRTK P0ISTK P0UGTK P0DZTK
parameter (mm day−1) (days) (days) (days) (days) (days) (days)

Value 25 0.30 0.6 1 3 4 20 150

Table 3. Default values for the water allocation and flow-routing
parameters of UBC watershed model.

Model P0AGEN V0FLAX V0FLAS P0GLTK
parameter (mm) (mm) (mm) (days)

Value 100 1800 30 0.6

3.2.2 Estimation of model precipitation distribution
parameters for the Illecillewaet watershed

Three precipitation stations were available at the Illecillewaet
watershed located at elevations of 443, 1323, and 1875 m,
respectively. The model precipitation representation param-
eters for rainfall and snowfall and for all three stations were
set to zero (i.e. P0RREP(1) = P0SREP(1) = P0RREP(2) =

P0SREP(2) = P0RREP(3) = P0SREP(3) = 0). The low pre-
cipitation gradient, P0GRADL, was estimated from Eq. (2)
using the mean annual precipitation at the low- and middle-
elevation stations and the elevation difference between the
two stations (1elev=1323–443= 880 m). P0GRADL was
found to equal 6 %. Similarly, the middle precipitation gradi-
ent, P0GRADM, is estimated to equal 5.5 % considering the
mean annual precipitation of the middle- and upper-elevation
station. The upper precipitation gradient, P0GRADU, was set
to zero. The parameter E0LMID was set equal to the eleva-
tion of the middle-elevation station, which is 1323 m. The
parameter E0LHI was set equal to the highest elevation of
the watershed, 2480 m.

3.2.3 Estimation of model precipitation distribution
parameters for the Yermasoyia watershed

Precipitation data from three meteorological stations located
at 70, 100, and 995 m elevation were available at the Yer-
masoyia watershed. The precipitation representation param-
eters for snowfall and for all three stations were set equal
to zero, because snowfall is rarely observed (i.e. P0SREP(1)
= P0SREP(2) = P0SREP(3) = 0). The annual precipita-
tion data of the three stations were compared with the an-
nual precipitation of other stations in the greater area of
the watershed. This comparison showed that the three me-
teorological stations record 30 % more annual rainfall than
other stations located at similar elevations. For this reason
the rainfall representation parameters for all three stations
were set equal to−30 % (i.e. P0RREP(1) = P0RREP(2)
= P0RREP(3) = −30 %). The low precipitation gradient,

P0GRADL, was estimated using Eq. (2) as well as the
mean annual precipitation of the lower-elevation station and
the mean annual precipitation at the upper-elevation sta-
tion. The precipitation gradient between the two lower-
elevation stations is essentially zero because of the small el-
evation difference. The lower precipitation gradient parame-
ter, P0GRADL, was estimated to equal 4.9 %. The parameter
E0LMID was set equal to the elevation of the upper-elevation
station, which is 995 m. The middle and the upper precip-
itation gradients, P0GRADM and P0GRADU, respectively,
were set equal to zero. This means that the simulation was
performed with one precipitation gradient. In this case, it was
not necessary to define the model parameter E0LHI.

3.2.4 Estimation of model precipitation distribution
parameters for the Astor watershed

In the Astor watershed, only the precipitation data of one me-
teorological station located at 2630 m were available. For this
reason and because it was not any information on the distri-
bution of precipitation with elevation, all the model precipita-
tion representation and distribution parameters, i.e. P0RREP,
P0SREP, P0GRADL, P0GRADM, and P0GRADU, were set
equal to zero. In this case, it was not necessary to define
the model parameters E0LMID and E0LHI, which were set
equal to zero.

3.2.5 Estimation of model precipitation distribution
parameters for the Hunza watershed

Daily precipitation data from two meteorological stations lo-
cated at 1460 and 2405 m elevation were available at the
Hunza Basin. The mean annual precipitation at the two sta-
tions was estimated, and it indicated that the precipitation
gradient between the two stations was essentially zero. For
this reason, and because there was no information on the dis-
tribution of precipitation with elevation, all the model pre-
cipitation representation and distribution parameters were set
equal to zero (i.e. P0RREP(1) = P0SREP(1) = P0RREP(2)
= P0SREP(2) = P0GRADL= P0GRADM= P0GRADU=

E0LMID = E0LHI = 0).

3.3 Methodology for poorly gauged watersheds

The streamflow is frequently measured for a limited period
of time. These streamflow data are inadequate for peak flow
analysis and validation of the simulated streamflow. Unfor-
tunately, there are no specific guidelines about the precise
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calibration length of streamflow data needed for optimal hy-
drological model performance in poorly gauged watersheds
(Seibert and Beven, 2009). Several studies in gauged wa-
tersheds have shown that, for an acceptable rainfall–runoff
model calibration, a large calibration record including wet
and dry years (at least eight years) is needed for complex
hydrologic models, and the minimum requirements are one
hydrological year (Sorooshian et al., 1983; Yapo et al., 1996;
Duan et al., 2003). For example, Yapo et al. (1996) stated that
for a reliable and acceptable model performance, a calibra-
tion period with at least eight years of data should be used for
NWSRFS-SMA hydrologic model with 13 free parameters.
Harlin (1991) suggested that from two to six years of stream-
flow data are needed for optimal calibration of the HBV
model with 12 free parameters. Xia et al. (2004) suggest that
at least three years of streamflow data are required for suc-
cessful application of their model (with seven parameters)
for a case study in Russia. In this regard, few studies investi-
gate the use of limited number of observations for calibration
periods shorter than one year. Brath et al. (2004) suggest for
flood peak modelling using a continuous distributed rainfall–
runoff model that three months are the minimum requirement
for flood peak estimation. However, their best results are ac-
quired with the use of one year continuous runoff data. Perrin
et al. (2007) found that calibration of a simple runoff model
(the GR4J model with four free parameters) is possible us-
ing about 100–350 observation days spread randomly over a
longer time period including dry and wet conditions. These
results were also verified by Seibert and Beven (2009), who
showed that a few runoff measurements (larger that 64 val-
ues) can contain much of the information content of contin-
uous streamflow time series. The problem of limited stream-
flow data might be tackled if the data are selected in an in-
telligent way (e.g. Duan et al., 2003; Wagener et al., 2003;
Juston et al., 2009) or by using information from other vari-
ables such as data from groundwater and snow measurements
in a multiobjective context (e.g. Efstratiadis and Koutsoyian-
nis, 2010; Konz and Seibert, 2010; Schaefli and Huss, 2011).
The above studies give an indication of the potential value
of limited observation data for constraining model prediction
uncertainties even for ungauged basins. However, these stud-
ies indicated that the results diverge significantly between
the watersheds, depending on the days chosen for taking the
measurements, and misleading results could be obtained with
the use of few streamflow data (Seibert and Beven, 2009).
Furthermore, the conceptual hydrological models employed
are simple and have a small number of free parameters, and
more research is needed for complicated hydrological struc-
tures with more than 10 parameters such as the UBC wa-
tershed model. In a recent study, the impact of calibration
length in streamflow forecasting using an ANN and a con-
ceptual hydrologic model, GR4J, was assessed (Anctil et al.,
2004b). The results showed that the hydrological model is
more capable than ANNs for 1-day-ahead flow forecasting
using calibration periods less than one hydrological year due

to its internal structure, and similar results are obtained for
calibration periods from one to five years. However, the ANN
model outperformed the GR4J model for calibration periods
larger than five years as a result of its flexibility (Anctil et al.,
2004b).

Based on the above studies and discussion, it is diffi-
cult to define the minimum requirements for model (con-
ceptual or black-box) calibration for poorly gauged water-
sheds. Furthermore, model accuracy may also depend on the
climatic zone, an aspect that is rarely explicitly analysed.
Therefore, we developed a methodology that can make use of
limited streamflow information with the internal memory of
a non-calibrated semi-distributed rainfall–runoff model and
the predictive capabilities of ANNs for poorly gauged water-
sheds as defined in this study.

3.3.1 UBC coupling with ANNs

The coupling of the UBC watershed model with ANNs is
described in this section. ANNs distribute computations to
processing units called neurons or nodes, which are grouped
in layers and densely interconnected. Three different layer
types can be distinguished: an input layer, connecting the in-
put information to the network and not carrying any com-
putation; one or more hidden layer, acting as intermediate
computational layers; and an output layer, producing the final
output. In each computational node or neuron, each one of
the entering values (xi) is multiplied by a connection weight,
(wji). Such products are then all summed with a neuron-
specific parameter, called bias (bj0), used to scale the sum
of products (sj ) into a useful range:

sj = bjo +

n∑
i=1

wji · xi . (8)

A nonlinear activation function (sometimes also called a
transfer function) to the above sum is applied to each compu-
tational node producing the node output. Weights and biases
are determined by means of a nonlinear optimization pro-
cedure known as training that aims at minimizing an error
function expressing the agreement between observations and
ANN outputs. The mean squared error is usually employed
as the learning function. A set of observed input and output
(target) data pairs, the training data set, is processed repeat-
edly, changing the parameters of ANN until they converge to
values such that each input vector produces outputs as close
as possible to the observed output data vector.

In this study, the following neural network characteristics
were chosen for all ANN applications:

1. Structure of ANNs: feedforward ANNs were used,
which means that information passes only in one direc-
tion, from the input layer through the hidden layers up
to the output layer, allowing only feedforward connec-
tions to adjacent layers.
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2. Training algorithm: back-propagation algorithm
(Rumelhart et al., 1986) was employed for ANNs
training. In this training algorithm, each input pattern of
the training data set is passed through the network from
the input layer to the output layer. The network output
is compared with the desired target output and the error
according to the error function,E, is computed. This
error is propagated backward through the network to
each node, and correspondingly the connection weights
are adjusted based on the following equation:

1wji(n) = −ε ·
∂E

∂wji

+ α · 1wji(n − 1), (9)

where1wji(n) and1wji(n − 1) are the weight incre-
ments between the nodej and i during thenth and
(n−1)th pass or epoch. A similar equation is employed
for correction of bias values. In Eq. (9) the parameters
ε andα are referred to as learning rate and momentum,
respectively. The learning rate is used to increase the
chance of avoiding the training process being trapped
in a local minimum instead of global minima, and the
momentum factor can speed up the training in very flat
regions of the error surface and help prevent oscillations
in the weights.

3. Activation function. Here, the sigmoid function is used:

f (sj ) =
1

1+ e−sj
. (10)

The sigmoid function is bounded between 0 and 1, and
is a monotonic and nondecreasing function that pro-
vides a graded, nonlinear response.

The UBC watershed model, as has been previously dis-
cussed, distributes the rainfall and snowmelt runoff into four
components, i.e. rainfall fastflow, snowmelt fastflow, rain-
fall interflow, snowmelt interflow, upper zone groundwater,
deep zone groundwater, and glacial melt runoff. These runoff
components due to errors in measurements and inefficiently
defined model parameters may not be accurately distributed,
affecting the overall performance of the hydrologic simula-
tion. The UBC watershed model used the parameters with
values described in the previous subsection of the paper. In
order to take advantage of the limited streamflow data and
achieve a better simulation of the observed discharge, the
runoff components of the UBC watershed model are intro-
duced as input neurons into ANNs. During the training pe-
riod of ANNs, the simulated total discharge of the watershed
is compared with the observed discharge to identify the sim-
ulation error.

The geometry or architecture of ANNs, which determines
the number of connection weights and how these are ar-
ranged, depends on the number of hidden layers and the num-
ber of hidden nodes in these layers. In the developed ANNs,

Figure 2. Typical ANN geometry for combining the outputs of the
UBC watershed model in the methodology for poorly gauged wa-
tersheds.

one hidden layer was used to keep the ANNs architecture
simple (three-layer ANNs), and the number of the hidden
nodes was optimized by trial and error. In this sense, the input
layer of ANNs consists of four to seven input neurons, de-
pending on the runoff generation mechanisms of the basin;
one hidden layer with varying number of neurons; and one
output layer with one neuron, which is the total discharge
of the watershed (Fig. 2). Since the various input data sets
span different ranges, and to ensure that all data sets or vari-
ables receive equal attention during training, the input data
sets were scaled or standardized in the range of 0–1. In addi-
tion, the output variables were standardized in such a way as
to be commensurate with the limits of the activation function
used in the output layer. In this study, the sigmoid function
(Eq. 10) was used as the activation or transfer function, and
the output data sets (watershed streamflow) were scaled in
the range 0.1–0.9. The advantage of using this scaling range
is that extremely high and low flow events occurring out-
side the range of the training data may be accommodated
(Dawson and Wilby, 2001).

However, the final network architecture and geometry
were tested to avoid overfitting and ensure generalization as
suggested by Maier and Dandy (1998). For example, the to-
tal number of weights was always kept less than the num-
ber of the training samples, and only the connections that
had statistically significant weights were kept in the ANNs.
The developed ANNs were operated in batch mode, which
means that the training sample presented to the network be-
tween the weight updates was equal to the training set size.
This operation forces the search to move in the direction of
the true gradient at each weight update; however, it requires
large storage. The mean squared error was used as the mini-
mized error function during the training. The initial values of
weights for each node were set to a value,a =

1
√

fi
, wherefi
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is the number of inputs for the node. The learning rate (ε in
Eq. 9) was set fixed to a value of 0.005, whereas the momen-
tum (α in Eq. 9) was set equal to 0.8 as suggested by Dai and
Macbeth (1997).

3.3.2 Evaluation of the method

For the four study watersheds, namely the Upper Campbell,
Illecillewaet, Yermasoyia, and Astor watersheds, the first
three years of streamflow record were assumed to be avail-
able for training of ANNs. In this sense, the observed stream-
flow used as the target output of ANNs was the daily mea-
sured streamflow for the hydrological years 1983–1984 and
1985–1986 for the Upper Campbell watershed, the stream-
flow data for the hydrological years 1970–1971 and 1972–
1973 were considered for the Illecillewaet watershed, the
data for the hydrological years 1986–1987 and 1988–1989
were used for the Yermasoyia watershed and the streamflow
data for the hydrological years 1979–1980 and 1981–1982
were used for the Astor watershed. For the fifth catchment,
the Hunza watershed, streamflow data for two hydrological
years (1981–1982 and 1982–1983) were used for ANN train-
ing. The daily streamflow measurements for the remaining
years of record were used for the validation of the methodol-
ogy in each study watershed. The modelling procedure with
this configuration is termed UBCANN, or method with lim-
ited data. It should be noted that the early stopping technique
was applied to UBCANN to prevent overfitting and to im-
prove the generalization ability of the developed UBCANNs.
The last year in each watershed of the training period was
used as an indication of the error when ANN training should
stop (test set).

For comparison purposes, the UBCANN method was
compared with the ungauged application of the UBC model,
termed UBCREG, and with the classical calibration of the
UBC model in poorly gauged watersheds using the same cal-
ibration period for each watershed as defined previously. The
latter method is termed UBCCLA and is used for evalua-
tion of the proposed coupling method, UBCANN, for poorly
gauged watersheds. The UBC free parameters are optimized
through a two stage procedure. In the first stage, a sensitivity
analysis of each parameter is performed to estimate the range
of parameter values for which the simulation results are the
most sensitive. In the second stage, a Monte Carlo simulation
is performed for each parameter of each group by keeping all
other parameters constant. The parameter values are sampled
from the respective parameter range defined in the first stage
of the procedure (sensitivity analysis). The parameter value
that maximizes the objective function is put in the parame-
ter file, and the procedure is repeated for the next parameter
of the group and then for the parameters of the next group.
The procedure starts with the optimization of the precipita-
tion distribution parameters and ends with the optimization
the flow-routing parameters. The objective function of the

above calibration procedure is defined as

EOPT= NSE−

∣∣∣∣1−
Vsim

Vobs

∣∣∣∣ , (11)

whereVsim andVobs are the simulated and the observed flow
volumes, respectively, and NSE is the Nash–Sutcliffe effi-
ciency (Nash and Sutcliffe, 1970), defined as

NSE= 1−

n∑
i=1

(
Qobsi − Qsimi

)2
n∑

i=1

(
Qobsi − Qobs

)2 , (12)

whereQobsi is the observed flow on dayi, Qsimi
is the simu-

lated flow on dayi, Qobs is the average observed flow, andn

is the number of days for the simulation period. The evalua-
tion of all the applied methods is based on the combination of
graphical results, statistical evaluation metrics, and normal-
ized goodness-of-fit statistics. Furthermore, a comprehensive
procedure proposed by Ritter and Muñoz-Carpena (2013) for
evaluating model performance is tested for all applied meth-
ods. Approximated probability distributions for NSE and
root-mean-square error (RMSE) are derived with bootstrap-
ping followed by bias correction and enhanced calculation
of confidence intervals. Statistical hypothesis testing of the
indicators is done using threshold values to compare model
performance. More details on the evaluation protocol can be
found in Ritter and Muñoz-Carpena (2013).

Finally, the streamflow simulation results of the applied
methods for ungauged and poorly gauged watersheds were
used for frequency analysis of the annual maximum peak
flows. This analysis was performed only for the watersheds
which have streamflow data for at least six consecutive years.
Based on these criteria, the Hunza watershed is excluded
for this comparison. The estimated peak flows were com-
pared with the observed peak flows of the four study water-
sheds (Upper Campbell, Illecillewaet, Yermasoyia, and As-
tor). Furthermore, the results of frequency analysis of the es-
timated peak flow from the two methodologies were com-
pared to the results of frequency analysis of the observed
peak flows. The frequency analysis was performed using the
extreme value type I theoretical distribution (EVI) due to the
small sample of the streamflow observations, and due to its
simple two-parameter estimation procedure. This distribu-
tion is a special case of the generalized extreme value (GEV)
distribution, and the GEV distribution is considered in a re-
cent study as a potential pan-European flood frequency dis-
tribution (Salinas et al., 2013a). Furthermore, the EVI has
proven to give satisfactory and acceptable results for return
periods less than 50 and 100 years, respectively, in estimating
hydrometeorological extremes (Koutsoyiannis, 2004).
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Figure 3. Comparison of observed and simulated hydrographs for the(a) Upper Campbell,(b) Illecillewaet,(c) Yermasoyia,(d) Astor, and
(e)Hunza watersheds.

4 Application and results

The daily streamflow of the five study watersheds was simu-
lated using the two proposed methodologies for ungauged
watersheds and poorly gauged watersheds. The simulated
and observed hydrographs compared graphically and statisti-
cally. Five statistical indices were used to assess the accuracy
and performance of the two simulation methods, namely the
NSE; the percent runoff volume error %DV =Vsim−Vobs

Vobs
×100;

the correlation coefficient (CORR) between the simulated
and the observed flows; RMSE (in m3 s−1) between the sim-
ulated and the observed flows,

RMSE=

√√√√√ n∑
i=1

(
Qobsi − Qsimi

)2
n

; (13)

and the average percent error of the maximum annual flows,

%AMAFE =
1

k
·

k∑
j=1

(
MaxQsimj

− MaxQobsj

MaxQobsj
× 100

)
,

(14)

where MaxQsimj
is the simulated maximum annual flow of

yearj , MaxQobsj is the observed maximum annual flow of
yearj , andk is the number of hydrological years of the sim-
ulation period.

The model efficiency (NSE) is widely used in hydrolog-
ical simulation studies. It compares the scale and the shape
of the simulated and the observed hydrographs, and its opti-
mal value is 1. The percent runoff volume (%DV) is a scale
parameter which measures the percent error in volume under
the observed and the simulated hydrographs for the period
of simulation. Positive values of %DV indicate overestima-
tion of the observed runoff volume, negative values of %DV
indicate underestimation of the observed runoff volume, and
%DV equal to zero indicate perfect agreement between sim-
ulated and observed runoff volumes. The correlation coeffi-
cient (CORR) is a shape statistical parameter that measures
the linear correlation between the observed and simulated
flows with optimal value of 1. The RMSE measures the resid-
ual or error variance between the simulated and the observed
flows, and its optimal value is 0. The average percent error
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Table 4.Statistical indices of streamflow simulation with the proposed methodology for ungauged watersheds – UBCREG method.

Hydrologic %DV RMSE %AMAFE
Watershed period NSE (%) CORR (m3 s−1) (%)

Upper Campbell
1983–1986 0.72 −7.80 0.85 39.9 −27.6
1986–1990 0.68 −3.93 0.83 41.9 −35.4
1983–1990 0.70 −5.56 0.84 41.0 −32.1

Illecillewaet
1970–1973 0.89 12.03 0.96 20.9 7.3
1973–1990 0.83 15.09 0.96 23.8 11.9
1970–1990 0.84 14.63 0.96 23.4 11.3

Yermasoyia
1986–1989 0.78 14.94 0.88 0.85 −20.0
1989–1997 0.68 8.91 0.86 0.60 21.1
1986–1997 0.73 11.45 0.87 0.67 9.85

Astor
1979–1982 0.76 −6.15 0.90 63.2 −0.06
1982–1988 0.65 −8.68 0.82 84.7 9.48
1979–1988 0.68 −7.84 0.84 78.2 6.30

Hunza
1981–1983 0.86 5.82 0.95 172.7 9.65
1983–1985 0.90 0.25 0.95 171.5 1.03
1981–1985 0.88 2.80 0.94 172.1 5.34

of the maximum annual flows (%AMAFE) estimates the av-
erage percent error in the simulation of the maximum an-
nual peak flows for the simulation period. Positive values
of %AMAFE show the average overestimation of the maxi-
mum annual flow, whereas negative values indicate the aver-
age underestimation of the maximum annual flow; its optimal
value is 0.

Firstly, the five study watersheds were treated as ungauged
and the UBCREG methodology for ungauged watersheds
was applied. The daily streamflows of the study watersheds
were simulated using the uncalibrated UBC watershed model
with the estimated values of model parameters presented pre-
viously. The results of these simulations are shown in Fig. 3
and Table 4. The simulation was performed for the whole pe-
riod of available data in each study watershed since the UBC
watershed model was uncalibrated, and thus the whole sim-
ulation period is a validation period for the performance of
the method. However, the training and validation periods in-
dicated in Fig. 3 and Table 4 are indicated for comparison
with the results of the second methodology intended for use
in poorly gauged watersheds with limited streamflow mea-
surements.

The graphical and the statistical comparison of the sim-
ulated hydrographs with the observed hydrographs (Fig. 3
and Table 4) show that, in general, the ungauged UBCREG
method estimates the observed hydrograph with reasonable
accuracy. For the Upper Campbell watershed, the value of
CORR (CORR= 0.84) indicates that the method reproduced
the shape of the observed hydrograph reasonably well but
the annual peak streamflows were severely underestimated
(%AMAFE = −32.06 % in Table 4). The method performed
better in the Illecillewaet watershed, for which there was

a significant improvement in the simulation of hydrograph
(NSE= 0.84 and CORR= 0.96 in Table 4). However, in
the Illecillewaet watershed, the method overestimated the
total runoff volume and the maximum annual peak flows
(%DV = 14.6 3% and %AMAFE= 11.26 % in Table 4). The
simulation results for the Yermasoyia watershed indicate that
the method reproduced the shape and scale of the hydrograph
reasonably well(NSE= 0.73 and CORR= 0.87 in Table 4)
but overestimated the runoff volume and the annual peak
discharge (%DV= 11.45 % and %AMAFE= 9.85 % in Ta-
ble 4). The overall worst simulation results were acquired in
the Astor watershed; however, the annual peak flows were
generally overestimated (%AMAFE= 6.3 %), and the runoff
volume was underestimated (%DV= −7.68 %), leading to a
low but acceptable value of model efficiency (NSE= 0.68)
(Table 4). On the other hand, the best simulation results
were found for the Hunza watershed. The statistical in-
dices (Table 4) and the graphical comparison of the simu-
lated and the observed hydrographs (Fig. 3) indicate that the
shape and scale of the observed hydrograph were reproduced
reasonably well.

The above results indicate that the simulation accuracy
heavily depends on the quality and availability of meteoro-
logical data. This is obvious from the simulation results for
the Illecillewaet watershed (Fig. 3b and Table 4). This water-
shed has three high-quality meteorological stations, and the
hydrograph shape was simulated with improved accuracy, al-
though the runoff volume and the annual peak flows were
overestimated (Table 4). The performance of the method
also seems to be dependant on the runoff generation mech-
anisms. As a comparison, better simulation results have dis-
covered for watersheds that the runoff is mainly generated by
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Table 5.Geometry of optimized ANNs used in the methodology for poorly gauged watersheds.

Watershed
Number of neurons

Input layer Hidden layer Output layer

Upper Campbell 6
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater)

4 1

Illecillewaet 7
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater, glacial melt runoff)

7 1

Yermasoyia 4
(rainfall fastflow, rainfall interflow, upper zone groundwater,
deep zone groundwater)

3 1

Astor 7
(rainfall fastflow, snowmelt fastflow, rainfall interflow,
snowmelt interflow, upper zone groundwater, deep zone
groundwater, glacial melt runoff)

5 1

Hunza 5
(rainfall fastflow, snowmelt fastflow, upper zone
groundwater,deep zone groundwater, glacial melt runoff)

5 1

snowmelt and glacier melt and not by watersheds where rain-
fall runoff is the dominant runoff generation mechanism. For
example, the runoff simulation statistics for the Yermasoyia
watershed is similar to the simulation statistics for the Up-
per Campbell watershed, although data from three precipita-
tion stations were used for streamflow simulation of the small
Yermasoyia watershed (157 km2) and only one precipitation
station was used in the Upper Campbell watershed, which is
larger in area (1194 km2). Furthermore, the best simulation
results have been achieved for the Hunza and Illecillewaet
watersheds (13 100 and 1150 km2 in area, respectively). The
runoff in the Yermasoyia watershed is generated by rainfall,
whereas snowmelt is a significant percentage of total runoff
in the Upper Campbell watershed. On the other hand, more
than 90 % of the runoff in the Hunza Basin is generated by
glacier melting, whereas snowmelt and glacier melt produces
most of the runoff in the Illecillewaet watershed. The spa-
tial variability of rainfall is much larger than the variability
of snowfall. Also, the precipitation gradients are steeper and
more consistent for snowfall than rainfall (Loukas and Quick,
1994, 1995). Hence, a larger number of precipitation stations
is necessary in watersheds where rainfall–runoff is the dom-
inant runoff generation mechanism in order to capture the
spatial variability of rainfall and better simulate the stream-
flow (Brath et al., 2004). However, keeping in mind the very
limited number of meteorological stations and data used, the
overall results of the UBCREG methodology are judged sat-
isfactory and show that the UBC watershed model can simu-
late reasonably well the watershed streamflow in various cli-

Figure 4. Goodness-of-fit evaluation for validation period (1986–
1990) at the Upper Campbell watershed:(a) UBCANN method and
(b) UBCCLA method.

matic and hydrological regions with a universal set of model
parameters and making assumptions of precipitation stations
representativeness and precipitation distribution.

The second proposed UBCANN methodology for poorly
gauged watersheds was applied to the five study watersheds,
assuming that only two or three years of daily streamflow
data were available. The UBC watershed model was firstly
run as in the first methodology for the years that streamflow
data were assumed to be available, and the calculated runoff
components were used as input to ANNs. The ANNs were
optimized and trained for this initial period and then the UBC
watershed model coupled with the trained ANNs was run and
validated for the remaining period for validation. The final
geometry or architecture of the optimized ANNs for the five
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Figure 5. Goodness-of-fit evaluation for validation period (1973–
1990) at the Illecillewaet watershed:(a) UBCANN method and
(b) UBCCLA method.

Figure 6. Goodness-of-fit evaluation for validation period (1989–
1997) at the Yermasoyia watershed:(a) UBCANN method and
(b) UBCCLA method.

study watersheds is presented in Table 5. Figure 3 and Table 6
present the simulation results for the training and validation
periods of the UBCANN methodology at the five study wa-
tersheds. Comparison of the graphical (Fig. 3) and statistical
results (Tables 4 and 6) indicates that the coupling of UBC
watershed model with ANNs greatly improves the simulation
of hydrographs and maximum annual streamflow in all five
watersheds compared to the first methodology. The discus-
sion will be focused on comparison of the validation periods
of UBCANN application since the ANNs of this methodol-
ogy were optimized during the training period and an im-
provement in the simulation results is expected. Furthermore,
to investigate the suitability of the UBCANN method for
poorly gauged watersheds, the classical calibration method
of the hydrological model is applied and compared. Table 7
presents the results of the UBCCLA method as a benchmark
model for watersheds with limited information.

The simulation results of the UBCANN method for Up-
per Campbell watershed indicate that although there is sig-
nificant improvement in the prediction of runoff volume
and maximum annual peak flows (Table 6), the model ef-
ficiency (NSE= 0.68) has the same value with the first
method (Table 4). On the other hand, the runoff simulation
is greatly improved in the other four study watersheds. All
statistical indices of the hydrological simulation have been
improved in the Illecillewaet, Yermasoyia, and Astor wa-

Figure 7. Goodness-of-fit evaluation for validation period (1989–
1997) at the Astor watershed:(a) UBCANN method and(b) UBC-
CLA method.

Figure 8. Goodness-of-fit evaluation for validation period (1989–
1997) at the Hunza watershed:(a) UBCANN method and(b) UBC-
CLA method.

tersheds (Table 6). Only the percent runoff volume error
(%DV = −11.26% in Table 6) is not improved compared to
the results of the UBCREG method (%DV= 0.25 % in Ta-
ble 4) for the Hunza watershed. The improvement of the hy-
drograph simulation leads to better estimation of runoff vol-
ume and peak streamflow. The improvement of runoff sim-
ulation with the second methodology depends upon the vol-
ume and the range of the available streamflow data, since
ANNs are a data intensive technique. When the available data
cover a large range of streamflows, then the trained ANNs
can accurately and efficiently simulate the unknown stream-
flows.

Application of the UBCCLA method shows that UBC
is a reliable hydrological model in streamflow modelling
for diverse climatic environments because the statistics are
improved using streamflow data for calibration (Table 7).
However, from Tables 6 and 7 it is difficult to assess the
superiority of the UBCANN method using the UBCCLA
method. For example, the validation NSE values show that
the UBCANN method in the Yermasoyia and Astor water-
sheds greatly outperforms the UBCCLA method, in the Up-
per Campbell and Illecillewaet watersheds is marginally in-
ferior to the UBCCLA method, and in the Hunza watershed
both methods perform similarly (Tables 6 and 7). These con-
tradictory results are also in agreement with the study of
Anctil et al. (2004b), which showed that similar results are
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Table 6.Statistical indices of streamflow simulation with the proposed methodology for poorly gauged watersheds – UBCANN method.

%DV RMSE %AMAFE
Watershed Hydrologic period NSE (%) CORR (m3 s−1) (%)

Upper Campbell
Training 1983–1986 0.82 −0.69 0.91 31.7 −16.6
Validation 1986–1990 0.68 0.47 0.84 42.5 −14.9

Illecillewaet
Training 1970–1973 0.97 −0.04 0.98 10.9 −11.2
Validation 1973–1990 0.90 2.11 0.96 18.2 8.98

Yermasoyia
Training 1986–1989 0.91 2.71 0.95 0.55 −15.5
Validation 1989–1997 0.80 −4.15 0.90 0.48 −12.7

Astor
Training 1979–1982 0.94 −1.40 0.97 30.7 −8.31
Validation 1982–1988 0.79 −3.05 0.89 64.4 15.1

Hunza
Training 1981–1983 0.94 −0.86 0.97 113.1 −0.41
Validation 1983–1985 0.91 −11.26 0.96 158.9 −4.45

Table 7.Statistical indices of streamflow simulation with the classical methodology for poorly gauged watersheds – UBCCLA method.

%DV RMSE %AMAFE
Watershed Hydrologic period NSE (%) CORR (m3 s−1) (%)

Upper Campbell
Calibration 1983–1986 0.75 −2.36 0.87 37.4 −14.6
Validation 1986–1990 0.70 1.47 0.84 40.9 −24.2

Illecillewaet
Calibration 1970–1973 0.95 −0.93 0.98 13.5 −0.22
Validation 1973–1990 0.92 1.38 0.96 16.7 0.91

Yermasoyia
Calibration 1986–1989 0.83 −0.22 0.91 0.75 −16.1
Validation 1989–1997 0.73 −2.21 0.88 0.55 26.1

Astor
Calibration 1979–1982 0.82 −0.08 0.91 55.1 −9.98
Validation 1982–1988 0.70 0.32 0.83 79.0 −0.41

Hunza
Calibration 1981–1983 0.93 −4.43 0.96 122.4 −7.88
Validation 1983–1985 0.91 −2.07 0.96 165.5 −12.1

obtained using a simple hydrological model and an ANN
rainfall–runoff model for calibration periods from one to five
years. For this reason the evaluation tool developed by Ritter
and Muñoz-Carpena (2013) was used to assess the two meth-
ods for poorly gauged watersheds. Figs. 4–8 present the com-
prehensive validation results of the UBCANN and UBCCLA
methods for the study watersheds. These figures show the
scatterplots of observed and simulated values with the 1 : 1
line, the values of NSE and RMSE, and their corresponding
confidence intervals (CI) at 95 %, the qualitative goodness-
of-fit interpretation of NSE based on the established classes,
and the verification of the presence of bias or the possible
presence of outliers. Approximated probability distributions
of NSE and RMSE were obtained by block blockstrapping
with the bias-corrected and accelerated method, which ad-
justs for both bias and skewness in the bootstrap distribu-
tion. The calculation procedure of these figures is described
analytically in Ritter and Muñoz-Carpena (2013). Careful
examination of scatterplots, NSE classes, and 95 % CI of

the selected evaluation metrics NSE and RMSE showed that
the UBCANN method is less effective in streamflow mod-
elling than the UBCCLA in two watersheds (Figs. 4 and 5),
whereas in the other three watersheds is superior to the UBC-
CLA method (Figs. 6–8). For these watersheds no prior infor-
mation was used for the distribution of precipitation distribu-
tion and ANNs, with input the UBC flow components show-
ing great skill in reproducing the daily streamflow patterns.
However, in cases where prior hydrological knowledge was
incorporated in the UBC model, such as in the two Canadian
watersheds, ANNs showed similar capabilities with UBC-
CLA approach due to expert knowledge “optimization” of
the ungauged UBC flow components.

The second step of the analysis was to compare the simu-
lated and observed maximum annual peak flows and to per-
form a simple frequency analysis using the EVI theoretical
distribution. It should be noted that the EVI distribution was
selected to demonstrate that the methods employed for un-
gauged and poorly gauged watersheds and other candidate
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Figure 9. Flood frequency estimation for the(a) Upper Campbell,
(b) Illecillewaet,(c) Yermasoyia, and(d) Astor watersheds.

distributions could be used. This analysis was performed
only for the four study watersheds (Upper Campbell, Ille-
cillewaet, Yermasoyia, and Astor) which have streamflow
data for at least six consecutive years. Application of the
non-parametric Kolmogorov–Smirnov test for checking the
adequacy of the selected distribution with the observed and
simulated values showed that the EVI distribution is accept-
able at the 5 % significance level for all observed and sim-
ulated streamflow values at the study watersheds. Figure 9
shows the comparison of the fitted EVI distributions using
the three methodologies (UBCREG, UBCANN, and UBC-
CLA) with the observed data and the fitted observed EVI for
the four study watersheds. For Upper Campbell watershed
these results indicate that the methodology for ungauged wa-
tersheds underestimates the observed maximum annual peak
flows. Comparison of the UBCANN and UBCCLA meth-
ods for flood frequency estimation in poorly gauged basins
showed that high peak flows are more accurately represented
by the UBCANN method (Table 8 and Fig. 9a). Peak flow
frequency analysis for Illecillewaet watershed indicates that
the UBCREG methodology overestimate the observed peak
flows. The best flood frequency curves for this watershed are
acquired with the use UBCANN method, whereas the UBC-
CLA method underestimates the peak flows for all examined
return periods (1–100 years) (Table 8 and Fig. 9b). Peak flow
frequency analysis for the poorly gauged Yermasoyia water-
shed again shows the superiority of the UBCANN method
compared to the UBCCLA method. Flood frequency analy-
sis of the UBCREG method suggests that caution is required
for flood modelling since the method significantly underesti-
mates the observed peak flows (Table 8 and Fig. 9c). Finally,
in the Astor watershed, all applied methods perform simi-
larly and the flood frequency estimation using simulated val-
ues underestimates the observed flows at larger return periods
(Table 8 and Fig. 9c). However, except for the maximum an-
nual peak of the last hydrological year of record 1996–1997
(Fig. 3), the simulated peak flows using the methodology for

Table 8. Flood frequency estimation using annual maximum peak
flows (m3 s−1).

Return period Fitted EVI Fitted EVI Fitted EVI Fitted EVI
(years) observed data UBCREG UBCANN UBCCLA

Upper Campbell watershed

25 1061 713 963 926
50 1167 787 1071 1018
100 1272 859 1179 1110

Illecillewaet watershed

25 390 436 393 352
50 421 471 421 378
100 452 506 450 404

Yermasoyia watershed

25 33.7 26.2 35.2 29.5
50 39.6 30.3 41.6 34.4
100 45.4 34.5 47.9 39.3

Astor watershed

25 934 800 809 793
50 1036 871 875 851
100 1137 941 940 909

ungauged watershed underestimate the observed peak flows.
For this particular year, the method severely overestimates
the maximum annual peak flow. The result is that the esti-
mated peak flows with return periods of 25, 50, and 100 years
are quite similar with the applied methods for poorly gauged
watersheds (Table 8). Overall the coupling of ANNs with the
ungauged UBC flow model components is considered an im-
provement and an alternative method over the conventional
calibration of a hydrological model with limited streamflow
information based on the evaluation criteria employed for
streamflow modelling and flood frequency estimation.

5 Conclusions

Rainfall–runoff modelling procedures for ungauged and
poorly gauged watersheds are developed in this study. A
well-established hydrological model (Singh, 2012), the UBC
watershed model, is selected and applied in five different
river basins located in Canada, Cyprus, and Pakistan. Catch-
ments from cold, temperate, continental, and semiarid cli-
mate zones are included to demonstrate the procedures de-
veloped. Two methodologies for the modelling of stream-
flow are proposed and analysed. The first methodology, pro-
posed for ungauged watersheds, uses the UBC watershed
model with a set of universal constant values of model pa-
rameters and makes assumptions and estimates regarding the
representativeness of precipitation stations and precipitation
distribution. This methodology requires a good description
of the watershed (area, elevation bands, vegetation cover-
age, soils, etc.) and limited meteorological stations as well as
data to estimate the distribution of precipitation over the el-
evation range of the watershed, or even regional information
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about the orographic precipitation gradients of a watershed.
The second methodology is an extension of the first method,
and couples the UBC watershed model with ANNs. This
method is proposed for poorly gauged watersheds. The lim-
ited streamflow data are intended for training of ANNs. For
comparison purposes, this method is compared with the clas-
sical calibration of the UBC model in poorly gauged wa-
tersheds. The evaluation of all the applied methods is based
on the combination of graphical results, statistical evaluation
metrics, and normalized goodness-of-fit statistics.

Application of the methods employed to five watersheds
with areas that are in the range of 157 to 13 100 km2, have
different runoff generation mechanisms, and are located in
various climatic regions of the world resulted in reasonable
results for the estimation of streamflow hydrograph and peak
flows. The first methodology for ungauged watersheds per-
formed quite well despite the very limited available mete-
orological data. The second hybrid method is a significant
improvement on the first methodology because it takes ad-
vantage of the limited streamflow information. The coupling
of the UBC regional model with ANNs provides a good alter-
native to the classical application (UBC calibration and vali-
dation) without the need for optimizing UBC model param-
eters. The ANNs coupled to the UBC watershed model im-
prove the streamflow modelling at poorly gauged basins. Fur-
thermore, using the non-calibrated UBC flow components as
input to ANNs in a coupling or hybrid procedure combines
the flexibility and capability of ANNs in nonlinear modelling
with the conceptual representation of the rainfall–runoff pro-
cess acquired by a hydrological model. Hence, the black-box
constraints in ANN modelling of the rainfall–runoff are min-
imized. Overall the coupling of ANNs with the regional UBC
flow model components is considered to be a successful al-
ternative method over the conventional calibration of a hy-
drological model with limited streamflow information based
on the evaluation criteria employed for streamflow mod-
elling and flood frequency estimation. In the future, the two
methodologies should be compared with other regional tech-
niques or hydrologic models and could be applied in other
regions to generalize the results. Another step further could
be the more rigorous estimation of flood frequency by addi-
tionally incorporating the uncertainty of the state variables.
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