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Abstract. The use of non-systematic flood data for statistical parameters, different andM values are presented in terms
purposes depends on the reliability of the assessment of botbf bias and root mean square error (RMSES) of the quantile
flood magnitudes and their return period. The earliest knowrof interest are more widely discussed.

extreme flood year is usually the beginning of the histori-

cal record. Even if one properly assesses the magnitudes of

historic floods, the problem of their return periods remains
unsolved. The matter at hand is that only the largest ﬂood1 Introduction
(XM) is known during whole historical period and its occur-

rence marks the beginning of the historical period and defines . . . N

its length ). It is common practice to use the earliest known Hood engineering usually_deals with Fhe determination O.f the
flood year as the beginning of the record. It means thaLthe flood of a given return period years, i.e. the flood quantile
value selected is an empirical estimate of the lower bound o1 O the design flood. The problems V.V'th the assessment
the effective historical length/. The estimation of the return of these parame;grs r_esglt frlom shorF time serfés<(T),
period of XM based on its occurrencE)( i.e. M = L, gives unknown probability dlstnputpn 'functlon of gnnual pegks,
a severe upward bias. The problem arises that to estimate tHe "or corrupted data, the simplifying assumptions as of iden-

time period (/) representative of the largest observed flood tical indepen_dently dist_ributgd (iid.) d_ata and, in particu!ar,
XM. the assumption of stationarity of relatively long data series.

From the discrete uniform distribution with support Al _these account for high uncer_tair}ty O.f the upper quantile
1,2,..., M of the probability of thel. position of XM, one est!mate._Th_e effect of sample size is W|gely documented fo_r
gets i = M/2. Therefored = 2L has been taken as the various distribution models and estimation methods; thus, it

d is obvious that due to a short sample the confidence interval
of the design flood estimate is already very broad. In addi-
tion to flood frequency analysis (FFA) other sources of error
would result in increasing uncertainty in the design flood es-
timate. This feature is not appreciated by the designers as
f_hey want to have only one value for designing flood re-

return period of XM and as the effective historical recor
length as well this time. As in the systematic periag @ll its

elements are smaller than XM, one can éEt: 2(L+N).

The efficiency of using the largest historical flood (XM)

for large quantile estimation (i.e. one with return period
T =100 years) has been assessed using the maximum likel .
hood (ML) method with various length of systematic record ated _structures. Conversely, eﬁor_ts to iImprove the_a(_:curacy
(N) and various estimates of the historical period Ien@th of estimates of the hydrologic design value by specifying the

comparing accuracy with the case when systematic recordgarious_ sources of uncertair_lty and incorporating them in the
alone (V) are used only. The simulation procedure used"’m""ly,SIS produce the opposite effept from the one mtendgd.
for the purpose incorporate¥ systematic record and the To improve the accuracy of estimates of upper quantiles,

largest historic flood (XM) in the periodd, which appeared all possible sources of additional information and “statisti-
in the L; year of the historical period. The simulation re- cal tricks” are used: independent peaks above the thresh-

sults for selected two-parameter distributions, values of theirqld’ seasonal a_pprogch, regional analysis, record augmenta—
tion by correlation with longer nearby records and, finally,
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augmentation of the systematic records by historical andnterest; and the probability threshold defining the historical
palaeo-flood data. floods.

Frequency analysis of flood data arising from systematic, Most often it is the first historical large flood that is
historical, and palaeo-flood records has been proposed bthe most remembered (and described in historical sources)
several investigators (a review Stedinger and Baker, 1987and, therefore, it is usually not considered as important
Frances et al., 1994; MacDonald, 2013). The use of non{or simply not known) as what had happened before (Gir-
systematic flood data for statistical purposes depends on theus and Strupczewski, 1965). In other words, the largest
reliability of assessment both flood magnitudes and their re{palaeo-)historical flood is best remembered (and thus
turn period. If the historical record is available, the informa- recorded) because of its destructive character and its disrup-
tion about the floods larger than the prevailing majority of tive effect on many lives, and in the case of pre-historical
floods reported in the systematic record can be introducedime, the largest inundation swept away any evidence of
to the data sets along with, if we are lucky, the unique in-smaller floods that occurred earlier. The date of the first
formation about the largest reported floods. Serious difficul-recorded historical flood is taken as the historical memory
ties relate to the (un)availability and (non-)exhaustiveness otengthL; i.e. L becomes the duration of a non-systematic pe-
historical information, the (low) quality and (in)accuracy of riod commencing on the date of the large flood. Even if one
historical sources. As if it was not enough, depending on theproperly assesses the magnitudes of historic floods, the prob-
number of parameters and their method of estimation, thdem of their return periods remains unsolved. In most liter-
estimates of high quantiles are more or less sensitive to thature examples (especially Benson, 1950; Dalrymple, 1960;
largest observed floods. IACWD, 1982; Zhang, 1982; NERC, 1975, p. 177) one reads

The earliest and simplest procedures for employing historthat the effective length of the historical recartl used for
ical and palaeo-flood data were based on plotting positiongrequency analysis is always taken to be the period from the
and graphical concepts (Zhang, 1982, 1985; Bernieur et alfirst extraordinary flood to the beginning of the systematic
1986; Wang and Adams, 1984; Hirsch, 1985; Cohn, 1986)record, i.e.L.

The The probability weighted moments (PWM) method and The matter at hand is that only the largest flood (XM) is
linear moments I-moments) were introduced by Ding and known during the entire historical period, and its occurrence
Yang (1988); Wang (1990, 1996) and Hosking (1995). Tomarks the beginning of the historical period and defines its
deal with historical and palaeo-floods, Hosking and Wal-length ) (Fig. 1). That is because the beginning of the his-
lis (1986a, b) applied the maximum likelihood (ML) as torical period was somehow forced by the appearance of the
the estimation method. Recently the Bayesian estimatiodargest flood (XM), but in fact its unusual magnitude cor-
paradigm has been incorporated (Vigilione et al., 2013; Parresponds rather to a longer return period thaigor, if in

ent and Bernier, 2003; Reis and Stedinger, 2005). It takesystematic record all observations are smaller than XM, to
into account that the historical floods are known with uncer-(L + N)-period); i.e. the probability that the actual return pe-
tainty, for instance with lower and upper bounds (in fact theriod of XM is longer than thd. is greater than fifty percent.
effect of corrupted historical flood magnitudes was investi- The case of the largest historical flood smaller than the sys-
gated by Hosking and Wallis via the maximum likelihood tematic record maximum is not considered here.

(ML) as mentioned as early as 1986a, b). The subject of Attempts to eliminate or lessen this error lead us to esti-
historical floods currently constitutes one of the main scien-mate the time periodM) representative of the largest ob-
tific threads in flood frequency analysis (MacDonald, 2013;served flood XM as accurately as possible. In order to do
Payrastre et al., 2011, 2013). Itis important to add that the inso, we will carry out the evaluation of the efficiency of using
clusion of historical information is recommended in a num- the largest historical flood (XM) for large quantile estimation
ber of national and international policy documents (e.g. EUand its comparison with the case when systematic records
Flood Directive). The two-parameter distributions — namely alone (V) are used. To keep and preserve the unspoiled gen-
log Gumbel, Weibull and Gumbel distributions together with uine information contained in the observation (XK), the
maximum likelihood method — were considered by Francesreturn period §7) of the largest observed historical flood
et al. (1994) to tackle systematic and historical or palaeo{XM) should be assessed without data from the systematic
flood data in FFA. To assess the potential statistical derivedecord provided that it does not contain elements larger than
from historical information the asymptotic variances of the XM values.

gquantile estimates from the systematic records alone and the It is obvious that the return period of the historical flood
combined time series were compared by means of computesissessed on the base of the year of occurrehceepresents
simulation experiments. The study performed to define thegust the lower limit of its real empirical return period4(.
length (M) of historical period indicate that value of the his- Of course, there is an upper empirical limit as well, which
torical data for estimating flood quantiles can vary dependinghowever, can not be estimated unambiguously. This is so be-
on only three factors: the relative magnitudes of the lengthcause, if the occurrence of a large flood was reported in a
of the systematic recordW) and the length of the histori- given year, surely a similar or more serious flood a year be-
cal period (1); the return period®) of the flood quantile of  fore would have been also noted and commented in historical
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Figure 1. The case ofV systematic and the largest flood in the beginning of historical period.

sources (Hirsch and Stedinger, 1987). The same can be statee of such a series in FFA witif = N will lead to an over-
for a horizon of 2, 3, 4, etc. years. If we could identify this estimation of large quantiles.
time span, we would have determined the upper limit of the
empirical return period. _

The estimation oM based on the date of the first extraor- 2 Problem formulation
dinary flood occurrence exacerbates an already severe impr
cision. By defining all floods during th& period as histor-
ical floods above a given threshold and taking four differ-

%:he object of the paper is to assess by the use of the maxi-
mum likelihood (ML) method in order to determine whether
. o . - there is any impact of the largest flood terminating the time
ent plotting position formulas, Hirsch and Stedinger (1987 . L . .

P gp ger ( )serles assuming its magnitude (XM) is known. Therefore,

calculated (with the use of a Monte Carlo experiment) theth ¢ " tic dat leted by the | * flood
magnitude of the upward bias of the plotting position of the . € case ot systemalic data compieted Dy the fargest oo

largest sample elements occurring wheis taken as the be- :js fomp;areghwnh mt\: case w?ere records_ co;tsln system_atlc
ginning of the historical record. Doing so they noticed that tha 19” Y. Zsti 0 \t/anan S are exammeRMéEcoT[f)larlgg
is a random variable dependent on the flood-producing pro- € bias §) and the root mean square error ( ) of floo

cess itself; this would be a violation of the assumption of thequantlles. S|'m|I.arIyI to Frances et al. (1994), the.two two-
plotting position formulas. parameter distributions, namely Gumbel and Weibull were

Similarly, Hosking and Wallis (1986a, b) use a Monte used when applying the simulation experiments. The empha-

Carlo (MC) computer simulation to assess whether a singles.IS is put on the effect O.f m|§speC|f|cat|on of the return pe-
palaeo-flood estimate, when included in a single-site max—rIOd () of the largest historical (pala_eo-) flood (XM) af‘d
imum likelihood (ML) flood frequency analysis procedure, OPJI\‘/le Proper assessrger}t oftrt]fhe estllrpatef on ;he baS|sh
gives a worthwhile increase in the accuracy of estimates o o;:cburrence L. : ?j ?r,th egeju Is 0 SIUI(':t retseartiN
extreme floods. They found that the main factors affecting the ave not been presented In the nydrological literature. Ve

utility of this kind of palaeological information are the spec- ?hre aware, hotvve\(/j(_ari Fga;[‘the results obtal!neg W”tl differ, Ifl a
ification of the fitted flood frequency (whether it has two or ree-parameter distribution (e.g. generalised extreme value,

three unknown parameters) and the size of the measuremeﬁlE\t/% Wasl mvohf@dt n c?l(éulanogs.tUpp(Iar quantiles, Yh'iﬂ ¢
error of palaeo-discharge estimates. Errors in estimating th&€ the values otinterest, depend strongly on asymmetry tha

date of the palaeo-flood are considered to be of minor impor-'s easier to manipulate in three (or more) parametric distribu-

tance. For distributions with higher coefficient of variation t'0$f]' th tical f K of his based
(CV) or skewness (CS), the difference between the effectﬁvI € theoretical Tramework of our research 1S based on

of the errors of the magnitude of palaeo-flood and its return aximum L|kel|hogd estimation .Wh'Ch has been gengrally
period is smaller. found to have desirable properties for both systematic and

Note that the randomness of the systematic records timgistorical information (Frances et_al., 1994; Stedinger and
series of i.i.d. variable can also be sometimes questioned anSOhn’ 1986; Naulet e_t al., 2005). Itis as_sum_ed that _the_ annual
undermined, e.g. when the largest value XM of a time seriednaximum floods are independent and identically distributed.

intentionally terminates th&-elements’ systematic record.
Then the XM is the last element of thé-element time se-

ries. Such a case may arise when a water gauge was swepfirsch and Stedinger (1987) considered that the time of oc-
away by a heavy flood (XM) and not restored, or when thegyrrence of the earliest documented historical fldo the
hydrological station was intentionally moved. As before, the random variable defining a lower bound of the sample size

Assessment of the return periodM of the XM flood
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Figure 2. Releitive bias (RB) and relative root mean square error (RRMSE);af1op as a function of gauge record lengthand historic
periodM for M; =0, L;, 2L;, M. Parent distribution Gumbel with CV equal: 0.25 and 1.0 ane 15. Fitted distribution Gumbel.

used for computation of plotting positions. The positionf 2.1 Simulation procedure

the largest inM period element (XM) (Fig. 1) is the random

variable being discretely and uniformly distributed in tle ~ The simulation procedure incorporat¥ssystematic record

period, i.e.p;, =1/M fort =1, 2... M. Obviously the mag- and the largest historic flood (XM) in the peridd which

nitude of the largest element (XM) is also a random variable.appeared in thé year toward the end of the historical period

Within the population, it can correspond to a smaller or larger(Fig. 1). Obviously, the systematic record and both magni-

value of the exceedance probability thai4, thereby defin-  tude (XM) and year of occurrencé ) randomly vary from

ing the effective return period{r) of XM. Therefore the  simulation to simulation. An estimate of the length of the

difference MR — L) is not restricted in sign. historical period shall be successively = L, 2L and the
Assume that the return intervaM() of XM is known. actual valueM = M, i.e. the length of the periodlf in simu-

As L is the uniformly distributed variable in th& length lation experiment.

time series with suppott € [0, 1, ..., M], one getsE (L) = First, generate a gauged recorg x»,...,xy of inde-

M/2 and V(L) = M?/12. In reality M is not known and pendent random variates from the assumed two-parameter

its assessment is our goal. Taking the obseedhlue as  flood-like distribution [ (x)] with parameters chosen to give

the estimate of the expecting value, ile= E(L) we get  specified values of CV. Then generate historical series of

the M estimate equal = 2L. Because regardless of the the same distribution of the lengt, i.e. y1, y2,..., yum,

estimation method the quantile estimators are not in genand find the maximum event (XM) of the historical series

eral linear function ofM, the minimum bias of guantile denoting the time &) of its occurrence. Since the random

B(%)) = E [)?p (M) _xp] does not necessarily correspond variables (XM) andL are mutually independent, the XM

i N . ) ) can be generated from the distribution of the largest ele-
to the zero-bias of/, i.e. to M =2L. If in the systematic  mentin aym-element series, i.6(M) = F1y (y) = FM(y)

period (V) all its elements are smaller than XM, one can getyhjje the corresponding time of its occurrende) (can be

M =2(L + N). Note that usuallyV < L. generated from the discrete uniform distribution with sup-
port {1,2,...,M}. The use of two-parameter distributions
allows us inter alia to concentrate only on the profit one

Nat. Hazards Earth Syst. Sci., 14, 1543551, 2014 www.nat-hazards-earth-syst-sci.net/14/1543/2014/
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Figure 3. RB and RRMSE ofX7_10p as a function of gauge record length and historic periodv for M; =0, L;, 2L;, M. Parent
distribution Gumbel with CV equal 0.25 and 1.0 aNd= 50. Fitted distribution Gumbel.

can get while incorporating additional historical information

Repeat the above steps a large number of times (

into systematic data without analysing the estimation errorsand calculate the mean and variance f, and hence
within the context of asymmetry. This is more flexible in the relative bias RB and relatve RMSE ofy taking

three-parameter distributions.

A flood frequency distribution fitted by the method of

maximum likelihood has a distribution functian(x, 6) and
a density functionf (x, 8), whereé is a vector of unknown
parameters, then the likelihood functiab)(is taken to be

L@;x,y)=
N N
FM=1(y =XM;8) - f (y = XM;6) - i]_[fx(xi;ﬂ)}, 1)
i=1

i.e. the use of incomplete data likelihood, whéfe= L, 2L
andM, and for systematic record only

N
LO;x)=]]f(xi;0). (2)
i=1
Calculate quantile estimatésy = F~1 (1 — 1/T; é) for

M =L, 2L andM and the systematic record/{ only (i.e.
whenM = 0), whereF ~1is the inverse distribution function
of the fitted flood frequency distributiod, is the maximum
likelihood estimate of, andT is the return period of interest.

www.nat-hazards-earth-syst-sci.net/14/1543/2014/

N

M; =L;,2L; andM and the systematic recordv{ only

(M =0) considered as an estimator of the true quantile
Xr=F11-1/T; 0). If in a generated series one gets
max(x1, x2,...,xy) > XM, such a simulation is ignored,
which allows us to assumé = 2L.

3  Simulation results

The concise frame of this paper forced us to limit the number
of models we took into consideration in our calculations. In
order to lessen the number of the figures for all the combina-
tions of CS and CV values, we resigned from three-parameter
distributions such as generalised extreme value (GEV) and
turned into its two-parameter special forms, namely Gumbel
(Gu) and Weibull (We). Another cause was also that, how-
ever theoretically sound, the GEV working perfectly for large
samples often fails in far-from-asymptotic samples which we
examine in this study. We scrutinised a number of two- and
three-parameter distribution functions in terms of their best
fit to hydrological annual and seasonal peak flows in Poland
and it turned out that despite the regime of the river, other

Nat. Hazards Earth Syst. Sci., 14, 154854, 2014
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Figure 4. RB and RRMSE ofX7_10p as a function of gauge record length and historic period for M; =0, L;, 2L;, M. Parent
distribution Weibull with CV equal 0.25 and 1.0 and= 15. Fitted distribution Weibull.

models were preferred rather than GEV (Strupczewski et al., 2. Using as the true return period of the largest histori-

2012; Kochanek et al., 2012). However, the crucial argument
after the choice of the parent distribution was the pioneering

works of Frances et al. (1994) that we wanted to continue and

develop. Results of simulation experiments are shown for Gu

and We distributions with four values of the coefficient of

variation CvV=0.25, 0.5, 0.75, 1.0, with two different lengths

of systematic recordd = 15, 50 and the length of effective
historical periodM = N10 wherea € [0, 3]. Due to the

limited capacity of this paper without the loss of generality,
only the selected results were presented in Figs. 2-5, namely

for CV=0.25 and 1.0; the results for C¥0.5 and 0.75

cal flood (XM) the estimate of the historical memory
length ) results in considerable upward bias RB of
1% quantile, far exceeding the bias for the systematic
record only. Its value increases with, (andCys) and
with the M/ N ratio.

3. Using an ML estimation théZ = 2L instead of¥ = L

considerably reduces the bias and further reduction is
obtained for the = M, i.e. for the return periodM)
of the largest historical flood XM.

4. Although the use oM = 2L instead of# = L reduces

locate themselves between those presented in the figures.

Results for the correct value ofAthe return per'(m?d =M)
are compared with those got fof = L;, 2L;. For comple-
tion the results for the systematic record only (.= 0)

were presented in all figures (solid line). Of course, for this 5.

case the results do not dependMnand in consequence on
log(M/N).

4 Discussion of the results

1. The shorter the gauged recor®d) is, the more useful
the historical information.

Nat. Hazards Earth Syst. Sci., 14, 1543551, 2014

the bias more than twice, it is still ca. 40 % larger than
the bias of a known return periad of XM, and com-
parable to the bias from systematic recasd.(

As far as the relative root mean square error (RRMSE)
of 1% quantile is concerned, for both Gumbel and
Weibull models one can notice some reduction (under-
stood as the difference between non-systematic and sys-
tematic results) in its values when one uge2L or M
return periods in comparison to the systematic sample.
The worst reduction of RRMSE one gets fbr better

for 2L and the best foM which means that it is worth,

at least, considering using a historical measurement XM

www.nat-hazards-earth-syst-sci.net/14/1543/2014/
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Figure 5. RB and RRMSE off(rzloo as a function of gauge record length and historic periodV for Mi =0,L;,2L;, M. Parent
distribution Weibull with CV equal 0.25 and 1.0 antd= 50. Fitted distribution Weibull.

in upper quantile estimation and then set the return pe-10. To sum up the RRMSE issues, the inclusion of the

riod of XM to 2L rather tharL if we do not knowa/.

. The reduction in RMSE for both models (Gumbel
and Weibull) rises generally with//N ratio. In other
words: the biggeiM (compared taV), the higher dis-
tance between RRMSE values got for the sample with
additional historical information and the systematic se-
ries. It goes without saying, that fav =15 one gets
better reduction than fav = 50.

. For both the Gumbel and Weibull models the reduction

in RRMSE compared to systematic samples depends on12

CV —the larger CV, the larger is the reduction.

. For Gumbel model in comparison to systematic sample
for log(M/N) =3, CV=0.25 andN =15 the reduc-
tion gets up to 2.2, 3.6 and 5.3% fo 2L and M, re-
spectively. Fotv =50, these numbers are roughly three
times smaller.

. For Weibull the gain in RRMSE is more spectacular
and for logM/N) =3, N =15 and CV=0.25 equals

to 3.4, 4 and 4.9 % fok,, 2L andM, respectively (when
CV =1.0the gain is ca. four times higher). Rgr=50

the general trend for Weibull remains the same as for
N =15, but the reduction of RRMSE is smaller.

www.nat-hazards-earth-syst-sci.net/14/1543/2014/

11.

13.

largest historical flood in FFA withif = 2L (i.e. the
effective historical record length) gives a few-percent
reduction in RRMSE of extreme flood estimates. How-
ever, the reduction is ca. 20 up to 60 % lower than if
we took Mas the length of simulation period. The true
value of M is not available in reality, so one is doomed
to use 4 instead.

Therefore, to benefit from the largest historical obser-
vation every effort should be made to establigtaccu-
rately.

. In the absence of any information about the period pre-
ceding the occurrence of XM one should gutequal
to 2L or 2(L + N).

The benefit from including the largest historical flood of
a given value is measured by the reduction of RRMSE.
It depends on:

a. the length of systematic record/§,

b. the ratio of the true return period of XM, i.8/ to
N!

c. the ratio of N to the return period of quantile of
interest,

d. theCy and skewness of the parent distribution.
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