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Abstract. The use of non-systematic flood data for statistical
purposes depends on the reliability of the assessment of both
flood magnitudes and their return period. The earliest known
extreme flood year is usually the beginning of the histori-
cal record. Even if one properly assesses the magnitudes of
historic floods, the problem of their return periods remains
unsolved. The matter at hand is that only the largest flood
(XM) is known during whole historical period and its occur-
rence marks the beginning of the historical period and defines
its length (L). It is common practice to use the earliest known
flood year as the beginning of the record. It means that theL

value selected is an empirical estimate of the lower bound on
the effective historical lengthM. The estimation of the return
period of XM based on its occurrence (L), i.e.M̂ = L, gives
a severe upward bias. The problem arises that to estimate the
time period (M) representative of the largest observed flood
XM.

From the discrete uniform distribution with support
1,2, . . . ,M of the probability of theL position of XM, one
gets L̂ = M/2. ThereforeM̂ = 2L has been taken as the
return period of XM and as the effective historical record
length as well this time. As in the systematic period (N ) all its
elements are smaller than XM, one can getM̂ = 2(L + N).

The efficiency of using the largest historical flood (XM)
for large quantile estimation (i.e. one with return period
T = 100 years) has been assessed using the maximum likeli-
hood (ML) method with various length of systematic record
(N ) and various estimates of the historical period lengthM̂

comparing accuracy with the case when systematic records
alone (N ) are used only. The simulation procedure used
for the purpose incorporatesN systematic record and the
largest historic flood (XMi) in the periodM, which appeared
in the Li year of the historical period. The simulation re-
sults for selected two-parameter distributions, values of their

parameters, differentN andM values are presented in terms
of bias and root mean square error (RMSEs) of the quantile
of interest are more widely discussed.

1 Introduction

Flood engineering usually deals with the determination of the
flood of a given return periodT years, i.e. the flood quantile
XT or the design flood. The problems with the assessment
of these parameters result from short time series (N < T ),
unknown probability distribution function of annual peaks,
error corrupted data, the simplifying assumptions as of iden-
tical independently distributed (i.i.d.) data and, in particular,
the assumption of stationarity of relatively long data series.
All these account for high uncertainty of the upper quantile
estimate. The effect of sample size is widely documented for
various distribution models and estimation methods; thus, it
is obvious that due to a short sample the confidence interval
of the design flood estimate is already very broad. In addi-
tion to flood frequency analysis (FFA) other sources of error
would result in increasing uncertainty in the design flood es-
timate. This feature is not appreciated by the designers as
they want to have only one value for designing flood re-
lated structures. Conversely, efforts to improve the accuracy
of estimates of the hydrologic design value by specifying the
various sources of uncertainty and incorporating them in the
analysis produce the opposite effect from the one intended.

To improve the accuracy of estimates of upper quantiles,
all possible sources of additional information and “statisti-
cal tricks” are used: independent peaks above the thresh-
old, seasonal approach, regional analysis, record augmenta-
tion by correlation with longer nearby records and, finally,

Published by Copernicus Publications on behalf of the European Geosciences Union.



1544 W. G. Strupczewski et al.: Flood frequency analysis supported by the largest historical flood

augmentation of the systematic records by historical and
palaeo-flood data.

Frequency analysis of flood data arising from systematic,
historical, and palaeo-flood records has been proposed by
several investigators (a review Stedinger and Baker, 1987;
Frances et al., 1994; MacDonald, 2013). The use of non-
systematic flood data for statistical purposes depends on the
reliability of assessment both flood magnitudes and their re-
turn period. If the historical record is available, the informa-
tion about the floods larger than the prevailing majority of
floods reported in the systematic record can be introduced
to the data sets along with, if we are lucky, the unique in-
formation about the largest reported floods. Serious difficul-
ties relate to the (un)availability and (non-)exhaustiveness of
historical information, the (low) quality and (in)accuracy of
historical sources. As if it was not enough, depending on the
number of parameters and their method of estimation, the
estimates of high quantiles are more or less sensitive to the
largest observed floods.

The earliest and simplest procedures for employing histor-
ical and palaeo-flood data were based on plotting positions
and graphical concepts (Zhang, 1982, 1985; Bernieur et al.,
1986; Wang and Adams, 1984; Hirsch, 1985; Cohn, 1986).
The The probability weighted moments (PWM) method and
linear moments (L-moments) were introduced by Ding and
Yang (1988); Wang (1990, 1996) and Hosking (1995). To
deal with historical and palaeo-floods, Hosking and Wal-
lis (1986a, b) applied the maximum likelihood (ML) as
the estimation method. Recently the Bayesian estimation
paradigm has been incorporated (Vigilione et al., 2013; Par-
ent and Bernier, 2003; Reis and Stedinger, 2005). It takes
into account that the historical floods are known with uncer-
tainty, for instance with lower and upper bounds (in fact the
effect of corrupted historical flood magnitudes was investi-
gated by Hosking and Wallis via the maximum likelihood
(ML) as mentioned as early as 1986a, b). The subject of
historical floods currently constitutes one of the main scien-
tific threads in flood frequency analysis (MacDonald, 2013;
Payrastre et al., 2011, 2013). It is important to add that the in-
clusion of historical information is recommended in a num-
ber of national and international policy documents (e.g. EU
Flood Directive). The two-parameter distributions – namely
log Gumbel, Weibull and Gumbel distributions together with
maximum likelihood method – were considered by Frances
et al. (1994) to tackle systematic and historical or palaeo-
flood data in FFA. To assess the potential statistical derived
from historical information the asymptotic variances of the
quantile estimates from the systematic records alone and the
combined time series were compared by means of computer
simulation experiments. The study performed to define the
length (M) of historical period indicate that value of the his-
torical data for estimating flood quantiles can vary depending
on only three factors: the relative magnitudes of the length
of the systematic record (N) and the length of the histori-
cal period (M); the return period (T ) of the flood quantile of

interest; and the probability threshold defining the historical
floods.

Most often it is the first historical large flood that is
the most remembered (and described in historical sources)
and, therefore, it is usually not considered as important
(or simply not known) as what had happened before (Gir-
gús and Strupczewski, 1965). In other words, the largest
(palaeo-)historical flood is best remembered (and thus
recorded) because of its destructive character and its disrup-
tive effect on many lives, and in the case of pre-historical
time, the largest inundation swept away any evidence of
smaller floods that occurred earlier. The date of the first
recorded historical flood is taken as the historical memory
lengthL; i.e.L becomes the duration of a non-systematic pe-
riod commencing on the date of the large flood. Even if one
properly assesses the magnitudes of historic floods, the prob-
lem of their return periods remains unsolved. In most liter-
ature examples (especially Benson, 1950; Dalrymple, 1960;
IACWD, 1982; Zhang, 1982; NERC, 1975, p. 177) one reads
that the effective length of the historical recordM used for
frequency analysis is always taken to be the period from the
first extraordinary flood to the beginning of the systematic
record, i.e.L.

The matter at hand is that only the largest flood (XM) is
known during the entire historical period, and its occurrence
marks the beginning of the historical period and defines its
length (L) (Fig. 1). That is because the beginning of the his-
torical period was somehow forced by the appearance of the
largest flood (XM), but in fact its unusual magnitude cor-
responds rather to a longer return period thanL (or, if in
systematic record all observations are smaller than XM, to
(L+N)-period); i.e. the probability that the actual return pe-
riod of XM is longer than theL is greater than fifty percent.
The case of the largest historical flood smaller than the sys-
tematic record maximum is not considered here.

Attempts to eliminate or lessen this error lead us to esti-
mate the time period (M) representative of the largest ob-
served flood XM as accurately as possible. In order to do
so, we will carry out the evaluation of the efficiency of using
the largest historical flood (XM) for large quantile estimation
and its comparison with the case when systematic records
alone (N) are used. To keep and preserve the unspoiled gen-
uine information contained in the observation (XM,L), the
return period (M̂) of the largest observed historical flood
(XM) should be assessed without data from the systematic
record provided that it does not contain elements larger than
XM values.

It is obvious that the return period of the historical flood
assessed on the base of the year of occurrence (L) represents
just the lower limit of its real empirical return period (M).
Of course, there is an upper empirical limit as well, which
however, can not be estimated unambiguously. This is so be-
cause, if the occurrence of a large flood was reported in a
given year, surely a similar or more serious flood a year be-
fore would have been also noted and commented in historical
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Figure 1. The case ofN systematic and the largest flood in the beginning of historical period.

sources (Hirsch and Stedinger, 1987). The same can be stated
for a horizon of 2, 3, 4, etc. years. If we could identify this
time span, we would have determined the upper limit of the
empirical return period.

The estimation ofM based on the date of the first extraor-
dinary flood occurrence exacerbates an already severe impre-
cision. By defining all floods during theM period as histor-
ical floods above a given threshold and taking four differ-
ent plotting position formulas, Hirsch and Stedinger (1987)
calculated (with the use of a Monte Carlo experiment) the
magnitude of the upward bias of the plotting position of the
largest sample elements occurring whenL is taken as the be-
ginning of the historical record. Doing so they noticed thatL

is a random variable dependent on the flood-producing pro-
cess itself; this would be a violation of the assumption of the
plotting position formulas.

Similarly, Hosking and Wallis (1986a, b) use a Monte
Carlo (MC) computer simulation to assess whether a single
palaeo-flood estimate, when included in a single-site max-
imum likelihood (ML) flood frequency analysis procedure,
gives a worthwhile increase in the accuracy of estimates of
extreme floods. They found that the main factors affecting the
utility of this kind of palaeological information are the spec-
ification of the fitted flood frequency (whether it has two or
three unknown parameters) and the size of the measurement
error of palaeo-discharge estimates. Errors in estimating the
date of the palaeo-flood are considered to be of minor impor-
tance. For distributions with higher coefficient of variation
(CV) or skewness (CS), the difference between the effects
of the errors of the magnitude of palaeo-flood and its return
period is smaller.

Note that the randomness of the systematic records time
series of i.i.d. variable can also be sometimes questioned and
undermined, e.g. when the largest value XM of a time series
intentionally terminates theN -elements’ systematic record.
Then the XM is the last element of theN -element time se-
ries. Such a case may arise when a water gauge was swept
away by a heavy flood (XM) and not restored, or when the
hydrological station was intentionally moved. As before, the

use of such a series in FFA witĥM = N will lead to an over-
estimation of large quantiles.

2 Problem formulation

The object of the paper is to assess by the use of the maxi-
mum likelihood (ML) method in order to determine whether
there is any impact of the largest flood terminating the time
series assuming its magnitude (XM) is known. Therefore,
the case of systematic data completed by the largest flood
is compared with the case where records contain systematic
data only. These two variants are examined by comparing
the bias (B) and the root mean square error (RMSE) of flood
quantiles. Similarly to Frances et al. (1994), the two two-
parameter distributions, namely Gumbel and Weibull were
used when applying the simulation experiments. The empha-
sis is put on the effect of misspecification of the return pe-
riod (M) of the largest historical (palaeo-) flood (XM) and
on the proper assessment of theM estimate on the basis
of XM occurrence (L). So far, the results of such research
have not been presented in the hydrological literature. We
are aware, however, that the results obtained will differ, if a
three-parameter distribution (e.g. generalised extreme value,
GEV) was involved in calculations. Upper quantiles, which
are the values of interest, depend strongly on asymmetry that
is easier to manipulate in three (or more) parametric distribu-
tions.

The theoretical framework of our research is based on
Maximum Likelihood estimation which has been generally
found to have desirable properties for both systematic and
historical information (Frances et al., 1994; Stedinger and
Cohn, 1986; Naulet et al., 2005). It is assumed that the annual
maximum floods are independent and identically distributed.

Assessment of the return periodM of the XM flood

Hirsch and Stedinger (1987) considered that the time of oc-
currence of the earliest documented historical floodL is the
random variable defining a lower bound of the sample size
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Figure 2. Relative bias (RB) and relative root mean square error (RRMSE) ofX̂T =100 as a function of gauge record lengthN and historic
periodM for M̂i = 0, Li , 2Li , M. Parent distribution Gumbel with CV equal: 0.25 and 1.0 andN = 15. Fitted distribution Gumbel.

used for computation of plotting positions. The positionL of
the largest inM period element (XM) (Fig. 1) is the random
variable being discretely and uniformly distributed in theM

period, i.e.pt = 1/M for t = 1, 2. . .M. Obviously the mag-
nitude of the largest element (XM) is also a random variable.
Within the population, it can correspond to a smaller or larger
value of the exceedance probability than 1/M, thereby defin-
ing the effective return period (MR) of XM. Therefore the
difference (MR − L) is not restricted in sign.

Assume that the return interval (M) of XM is known.
As L is the uniformly distributed variable in theM length
time series with supportL ∈ [0,1, . . . ,M], one getsE(L) =

M/2 andV (L) = M2/12. In reality M is not known and
its assessment is our goal. Taking the observedL value as
the estimate of the expecting value, i.e.L = E(L) we get
the M estimate equalM̂ = 2L. Because regardless of the
estimation method the quantile estimators are not in gen-
eral linear function ofM̂, the minimum bias of quantile

B
(
x̂p

)
= E

[
x̂p

(
M̂

)
− xp

]
does not necessarily correspond

to the zero-bias ofM̂, i.e. to M̂ = 2L. If in the systematic
period (N) all its elements are smaller than XM, one can get
M̂ = 2(L + N). Note that usuallyN � L.

2.1 Simulation procedure

The simulation procedure incorporatesN systematic record
and the largest historic flood (XM) in the periodM which
appeared in theL year toward the end of the historical period
(Fig. 1). Obviously, the systematic record and both magni-
tude (XM) and year of occurrence (L) randomly vary from
simulation to simulation. An estimate of the length of the
historical period shall be successivelŷM = L, 2L and the
actual valueM̂ = M, i.e. the length of the periodM in simu-
lation experiment.

First, generate a gauged recordx1, x2, . . . ,xN of inde-
pendent random variates from the assumed two-parameter
flood-like distribution [F(x)] with parameters chosen to give
specified values of CV. Then generate historical series of
the same distribution of the lengthM, i.e. y1, y2, . . . ,yM ,
and find the maximum event (XM) of the historical series
denoting the time (L) of its occurrence. Since the random
variables (XM) andL are mutually independent, the XM
can be generated from the distribution of the largest ele-
ment in aM-element series, i.e.F(M) = F1,M(y) = FM(y),
while the corresponding time of its occurrence (L) can be
generated from the discrete uniform distribution with sup-
port {1,2, . . . ,M}. The use of two-parameter distributions
allows us inter alia to concentrate only on the profit one
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Figure 3. RB and RRMSE ofX̂T =100 as a function of gauge record lengthN and historic periodM for M̂i = 0, Li , 2Li , M. Parent
distribution Gumbel with CV equal 0.25 and 1.0 andN = 50. Fitted distribution Gumbel.

can get while incorporating additional historical information
into systematic data without analysing the estimation errors
within the context of asymmetry. This is more flexible in
three-parameter distributions.

A flood frequency distribution fitted by the method of
maximum likelihood has a distribution functionF(x, θ) and
a density functionf (x, θ), whereθ is a vector of unknown
parameters, then the likelihood function (L) is taken to be

L(θ;x,y) =

F M̂−1
x (y = XM ;θ) · fx (y = XM ;θ) ·

{
N∏

i=1

fx (xi;θ)

}
, (1)

i.e. the use of incomplete data likelihood, whereM̂ = L, 2L

andM, and for systematic record only

L(θ;x) =

N∏
i=1

fx (xi;θ) . (2)

Calculate quantile estimateŝXT = F−1
(
1− 1

/
T ; θ̂

)
for

M̂ = L, 2L andM and the systematic record (N) only (i.e.
whenM̂ = 0), whereF−1 is the inverse distribution function
of the fitted flood frequency distribution,θ̂ is the maximum
likelihood estimate ofθ , andT is the return period of interest.

Repeat the above steps a large number of times (i)

and calculate the mean and variance ofX̂T , and hence
the relative bias RB and relative RMSE of̂XT taking
M̂i = Li, 2Li andM and the systematic record (N) only
(M̂ = 0) considered as an estimator of the true quantile
XT = F−1(1− 1/T ; θ). If in a generated series one gets
max(x1,x2, . . . ,xN ) ≥ XM, such a simulation is ignored,
which allows us to assumêM = 2L.

3 Simulation results

The concise frame of this paper forced us to limit the number
of models we took into consideration in our calculations. In
order to lessen the number of the figures for all the combina-
tions of CS and CV values, we resigned from three-parameter
distributions such as generalised extreme value (GEV) and
turned into its two-parameter special forms, namely Gumbel
(Gu) and Weibull (We). Another cause was also that, how-
ever theoretically sound, the GEV working perfectly for large
samples often fails in far-from-asymptotic samples which we
examine in this study. We scrutinised a number of two- and
three-parameter distribution functions in terms of their best
fit to hydrological annual and seasonal peak flows in Poland
and it turned out that despite the regime of the river, other
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Figure 4. RB and RRMSE ofX̂T =100 as a function of gauge record lengthN and historic periodM for M̂i = 0, Li , 2Li , M. Parent
distribution Weibull with CV equal 0.25 and 1.0 andN = 15. Fitted distribution Weibull.

models were preferred rather than GEV (Strupczewski et al.,
2012; Kochanek et al., 2012). However, the crucial argument
after the choice of the parent distribution was the pioneering
works of Frances et al. (1994) that we wanted to continue and
develop. Results of simulation experiments are shown for Gu
and We distributions with four values of the coefficient of
variation CV= 0.25, 0.5, 0.75, 1.0, with two different lengths
of systematic recordsN = 15, 50 and the length of effective
historical periodM = N10(a) wherea ∈ [0,3]. Due to the
limited capacity of this paper without the loss of generality,
only the selected results were presented in Figs. 2–5, namely
for CV = 0.25 and 1.0; the results for CV= 0.5 and 0.75
locate themselves between those presented in the figures.
Results for the correct value of the return period(M̂ = M)

are compared with those got for̂M = Li, 2Li . For comple-
tion the results for the systematic record only (i.e.M̂ = 0)

were presented in all figures (solid line). Of course, for this
case the results do not depend onM and in consequence on
log(M/N).

4 Discussion of the results

1. The shorter the gauged record (N) is, the more useful
the historical information.

2. Using as the true return period of the largest histori-
cal flood (XM) the estimate of the historical memory
length (L) results in considerable upward bias RB of
1 % quantile, far exceeding the bias for the systematic
record only. Its value increases withCV (andCS) and
with theM/N ratio.

3. Using an ML estimation thêM = 2L instead ofM̂ = L

considerably reduces the bias and further reduction is
obtained for theM̂ = M, i.e. for the return period (M)

of the largest historical flood XM.

4. Although the use ofM = 2L instead ofM̂ = L reduces
the bias more than twice, it is still ca. 40 % larger than
the bias of a known return periodM of XM, and com-
parable to the bias from systematic record (N ).

5. As far as the relative root mean square error (RRMSE)
of 1 % quantile is concerned, for both Gumbel and
Weibull models one can notice some reduction (under-
stood as the difference between non-systematic and sys-
tematic results) in its values when one usesL, 2L or M

return periods in comparison to the systematic sample.
The worst reduction of RRMSE one gets forL, better
for 2L and the best forM which means that it is worth,
at least, considering using a historical measurement XM
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Figure 5. RB and RRMSE ofX̂T =100 as a function of gauge record lengthN and historic periodM for M̂i = 0, Li , 2Li , M. Parent
distribution Weibull with CV equal 0.25 and 1.0 andN = 50. Fitted distribution Weibull.

in upper quantile estimation and then set the return pe-
riod of XM to 2L rather thanL if we do not knowM.

6. The reduction in RMSE for both models (Gumbel
and Weibull) rises generally withM/N ratio. In other
words: the biggerM (compared toN), the higher dis-
tance between RRMSE values got for the sample with
additional historical information and the systematic se-
ries. It goes without saying, that forN = 15 one gets
better reduction than forN = 50.

7. For both the Gumbel and Weibull models the reduction
in RRMSE compared to systematic samples depends on
CV – the larger CV, the larger is the reduction.

8. For Gumbel model in comparison to systematic sample
for log(M/N) = 3, CV= 0.25 andN = 15 the reduc-
tion gets up to 2.2, 3.6 and 5.3 % forL, 2L andM, re-
spectively. ForN = 50, these numbers are roughly three
times smaller.

9. For Weibull the gain in RRMSE is more spectacular
and for log(M/N) = 3, N = 15 and CV= 0.25 equals
to 3.4, 4 and 4.9 % forL, 2L andM, respectively (when
CV = 1.0 the gain is ca. four times higher). ForN = 50
the general trend for Weibull remains the same as for
N = 15, but the reduction of RRMSE is smaller.

10. To sum up the RRMSE issues, the inclusion of the
largest historical flood in FFA withM̂ = 2L (i.e. the
effective historical record length) gives a few-percent
reduction in RRMSE of extreme flood estimates. How-
ever, the reduction is ca. 20 up to 60 % lower than if
we tookMas the length of simulation period. The true
value ofM is not available in reality, so one is doomed
to use 2L instead.

11. Therefore, to benefit from the largest historical obser-
vation every effort should be made to establishM accu-
rately.

12. In the absence of any information about the period pre-
ceding the occurrence of XM one should putM̂ equal
to 2L or 2(L + N).

13. The benefit from including the largest historical flood of
a given value is measured by the reduction of RRMSE.
It depends on:

a. the length of systematic record (N),

b. the ratio of the true return period of XM, i.e.M to
N ,

c. the ratio ofN to the return period of quantile of
interest,

d. theCV and skewness of the parent distribution.
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5 Conclusions

Errors in historical data reduce, of course, the utility of the
data for improvement of the estimation of flood magnitude at
a given return period. In the simulations (Figs. 2–5) it was as-
sumed that the magnitude of the largest historical flood (XM)
was measured without error and the same was assumed for
the systematic record. It is realistic to suppose that the XM
flood was measured much less accurately than the gauged
record. Error in estimating the largest historical magnitude
(XM) is much more important than error in estimating the
date of its occurrence (e.g. Hosking and Wallis, 1986a, b).
Ironically the tendency to improve the accuracy of estimates
of flood quantiles through more realistic assumptions and a
fuller use of the information leads to just the opposite effect
– to the increase of uncertainty of flood estimates.

The next step should be to refer to the general problem of
historical information when the applied distribution model is
false, which is always the case (Strupczewski et al., 2002),
and/or is the three-parametric function. On the other hand,
the uncertainty of the palaeo-historical floods (both in terms
of their magnitude and return period) combined with con-
siderable increases in the complexity of the problem (when
compared to analysis of systematic data only) provokes a
fundamental question, whether the whole operation is worth
a candle. Therefore, whether to include the palaeo-historical
information or turn a blind eye to it, is a matter of conscience.

All these generate three important practical problems
which we leave for further study, namely:

1. What is the theoretical upper limit of accuracy of high
quantile estimation when the theoretical value (i.e. taken
from the parent distribution) of return period for XM is
known?

2. Here in our simulation experiment we assumed the
knowledge of the true (parent) distribution function.
The role of historical information when the assumed
distribution serves as the model of the true distribution
remains, for the time being, unknown.

3. We also assumed that the parent distributions are the
Gumbel and Weibull two-parameter distributions which
narrows down the ability to manipulate the skewness of
the distributions. The obtained results will, of course,
differ when a three-parameter distributions are involved
in the calculations.

Only the solutions to these three problems completed by
the consideration of the observation errors in FFA brings
us closer to the answer to the fundamental question stated
above, i.e. whether the available palaeo-historical record can
provide worthwhile improvement in flood estimates.
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