
Nat. Hazards Earth Syst. Sci., 14, 1505–1515, 2014
www.nat-hazards-earth-syst-sci.net/14/1505/2014/
doi:10.5194/nhess-14-1505-2014
© Author(s) 2014. CC Attribution 3.0 License.

The extreme runoff index for flood early warning in Europe

L. Alfieri 1,2, F. Pappenberger1, and F. Wetterhall1

1European Centre for Medium-Range Weather Forecasts, Reading, UK
2European Commission – Joint Research Centre, Ispra, Italy

Correspondence to:L. Alfieri (lorenzo.alfieri@jrc.ec.europa.eu)

Received: 21 November 2013 – Published in Nat. Hazards Earth Syst. Sci. Discuss.: 16 December 2013
Revised: 3 April 2014 – Accepted: 30 April 2014 – Published: 17 June 2014

Abstract. Systems for the early detection of floods over con-
tinental and global domains have a key role in providing
a quick overview of areas at risk, raise the awareness and
prompt higher detail analyses as the events approach. How-
ever, the reliability of these systems is prone to spatial inho-
mogeneity, depending on the quality of the underlying input
data and local calibration.

This work proposes a simple approach for flood early
warning based on ensemble numerical predictions of surface
runoff provided by weather forecasting centers. The system
is based on a novel indicator, referred to as an extreme runoff
index (ERI), which is calculated from the input data through
a statistical analysis. It is designed for use in large or poorly
gauged domains, as no local knowledge or in situ observa-
tions are needed for its setup. Daily runs over 32 months are
evaluated against calibrated hydrological simulations for all
of Europe. Results show skillful flood early warning capabil-
ities up to a 10-day lead time. A dedicated analysis is per-
formed to investigate the optimal timing of forecasts to ma-
ximize the detection of extreme events. A case study for the
central European floods of June 2013 is presented and fore-
casts are compared to the output of a hydro-meteorological
ensemble model.

1 Introduction

The impact on society from river floods and flash floods has
steadily increased over the past decades at a global scale
(CRED, 2013). Probabilistic approaches to tackling the issue
of flood forecasting and early warning are becoming com-
mon practice in operational hydro-meteorological applica-
tions. Such a transition has been fostered by the increased
availability of ensemble weather predictions (see Cloke and

Pappenberger, 2009), of uncertainty analyses (Renard et al.,
2010; Zappa et al., 2011), and the considerable research
work devoted to improving the conveyance of probabilis-
tic information to the end users (e.g., Demeritt et al., 2013;
Pappenberger et al., 2013).

Most flood early warning systems operate at national level
and require a wealth of input data and local information. Data
assimilation and post-processing techniques are used to re-
duce the predictive uncertainty at river stations where ob-
served water levels or discharges are collected (see van An-
del et al., 2013). On the other hand, the large data require-
ment limits the current implementation of early warning
systems at continental scale to just a few cases, the Euro-
pean Flood Awareness System (EFAS, see e.g., Thielen et
al., 2009) being a prominent example for Europe. In poorly
gauged areas, a simplified option to monitor and forecast
floods is by linking them to extreme rainfall occurrences
(e.g., Lalaurette, 2003; Hurford et al., 2012; Ahn and Il Choi,
2013). This assumption is widely accepted for surface water
flooding events and flash floods due to short and intense rain-
fall events in small-size catchments. However, in larger river
basins, other hydrological processes considerably influence
the runoff dynamics and cannot be neglected in the early de-
tection of flood events. The Flash Flood Guidance (FFG, see
e.g., Ntelekos et al., 2006) was designed to provide a simple
approach for early detection of flash floods in poorly gauged
catchments, by including the effect of soil moisture condi-
tions. Its success is demonstrated by its widespread applica-
tion (see Gourley et al., 2012). A number of similar meth-
ods based on rainfall and soil moisture (e.g., Norbiato et al.,
2009; Javelle et al., 2010; Van Steenbergen and Willems,
2013) or on runoff (Raynaud et al., 2014) threshold ex-
ceedances have been proposed in recent years. Many of these
supported the findings that simplified approaches for flood
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early warning often provide as accurate results as those of
physically based models, particularly when transferred to un-
gauged river basins.

Alfieri et al. (2011) proposed the European Precipitation
Index based on simulated Climatology (EPIC) to monitor
the European domain for upcoming severe storms possibly
leading to flash floods. The main assumption of the EPIC is
that statistically, extreme cumulated precipitation on small-
size catchments is a good predictor for flash floods, inde-
pendent from other hydrological processes taking place in
the real world. A flash flood warning system based on EPIC
is currently run in the EFAS system, which uses a proba-
bilistic approach based on COSMO-LEPS (Marsigli et al.,
2005) ensemble numerical weather prediction (NWP). The
system has proved to be successful in spotting a number of
flash floods across Europe (Alfieri and Thielen, 2012; see re-
cent results inhttp://www.efas.eu/efas-bulletins.html), show-
ing its complementarity to the hydro-meteorological fore-
casts run within EFAS for larger river basins.

The aim of this work is to test the feasibility and the per-
formance of a warning system based on a concept similar to
EPIC, in order to predict extreme streamflow events induc-
ing river floods in a wide range of basin sizes. Such a system
is based on the hereby defined extreme runoff index (ERI),
which is calculated on forecasts of surface runoff, a variable
produced by the land surface scheme of several operational
weather prediction models. The basic idea of this approach is
to use extreme cumulated surface runoff at the basin scale as
predictor for flood occurrences. Different from the EPIC, the
ERI includes hydrological processes such as snowmelt, evap-
otranspiration and the effect of soil moisture, among others,
so all types of weather-driven floods can be detected by such
an approach. The performance of ERI in flood early warning
in Europe is assessed over about 32 months of daily simula-
tion. Results are discussed and complemented by a case study
for the central European flood that occurred in June 2013,
where the ERI and EFAS hydro-meteorological forecasts are
compared to each other.

2 Data and methods

2.1 Input data

2.1.1 Operational ensemble forecasts

Input data used to run ERI consist of surface runoff (sro)
forecasts taken from the output of a NWP model. In the cur-
rent setup, data used are taken from the integrated forecast
system (IFS, Miller et al., 2010) of the European Centre for
Medium-Range Weather Forecasts (ECMWF). Among the
models run within the IFS, forecasts from a 51-member en-
semble NWP are used, referred to as ENS. ENS is currently
set up at global scale on a Gaussian reduced grid of T639
spectral resolution, corresponding to about 32 km horizontal

resolution, with a forecast lead time (LT) up to 10 days and
a time step of 3–6 h, depending on the lead time. After day
10, the model run is extended up to day 15 (day 32 twice
per week) at a coarser horizontal resolution of about 65 km.
The surface runoff is an output variable of HTESSEL (see
e.g., Balsamo et al., 2011), the ECMWF land surface scheme,
which is coupled in the operational model runs with the at-
mospheric circulation model. For this work, 10-day surface
runoff forecasts are extracted from daily runs at 00:00 UTC,
for a time window of 2 years and 8 months starting on 1 De-
cember 2010, comprising a total of 988 ENS forecasts. This
is the longest period that could be simulated with the pro-
posed approach, as before December 2010 surface and sub-
surface runoff were computed as a single cumulated variable
(i.e., runoff) by the land surface scheme.

2.1.2 Reference climatology

To estimate the extremity of the forecast surface runoff,
climatological values are needed for statistical comparison,
consisting of a long data series of surface runoff for the same
computation domain. At ECMWF, every Thursday the IFS
is rerun in hindcast mode for the same day of the previous
20 years, using the latest operational model version of ENS.
On such a basis, a 20-year climatology of surface runoff was
constructed by taking the unperturbed run of ENS of the lat-
estN = 20 years from the hindcast data set, taking one fore-
casts run per week. The first 7 days of each forecast surface
runoff were extracted and merged into a continuous time se-
ries at each grid point of the domain, following the approach
described by Alfieri and Thielen (2012).

2.2 The extreme runoff index

The extreme runoff index (ERI) is defined as

ERI(t) = max
∀di

 Usro(di, t)

1
N

N∑
yi=1

max(Usro(di))yi

 ;

0.6tC ≤ di ≤ 1.2tC, (1)

where

Usro(di, t) =

t∑
t−di

∑
A

sro (2)

andtC is the basin time of concentration.
Usro(di) is the upstream cumulated surface runoff at each

grid point, that is, the double summation of surface runoff
over the upstream area (A) and over a certain durationdi pre-
ceding the considered timet .

Different from the EPIC index, the ERI is designed to fore-
cast floods in a wide range of basin sizes. The upper limit is
reached when the river routing, not considered within this
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approach, starts to have a substantial role in the timing and
dampening of the flood wave. To this end,di is set propor-
tionally to the basin time of concentration (tC), which was
estimated for every grid point of the river network using the
empirical formula by Giandotti (1934) based on geomorpho-
logic parameters. In practice, the basic assumption is that
flood events can occur at a generic point in the river network
when the cumulated surface runoff is extreme (in statistical
terms) over durations which are of the same magnitude of
its lag time and its time of concentration. Such choice is in
agreement with the rational method (see e.g., Chow et al.,
1988) and with the findings from Fiorentino et al. (1987) and
from Viglione and Blöschl (2009). In addition, Eq. (1) as-
sumes the relation between basin lag time (tL) and time of
concentration (tC) used by the Natural Resources Conserva-
tion Service (NRCS),tL = 0.6tC (e.g., McCuen, 1989).

It is worth noting that a formulation similar to Eq. (1) was
proposed by Raynaud et al. (2014) to forecast flash floods
in Europe, wheredi is set to the fixed values{6,12,24h} as
in EPIC, and the upstream runoff is estimated by multiplying
the upstream precipitation by a variable runoff coefficient de-
rived from different components of a background hydrologi-
cal simulations.

The ERI is a dimensionless index aimed at flood early
warning and comparable with EPIC or with normalized dis-
charge, as shown by Alfieri and Thielen (2012). In opera-
tional forecasts the procedure was adapted to an ensemble
approach, where the return period of ERI is shown for each
ensemble member. The procedure is described in detail in the
following:

1. For computational reasons, a fixed number of durations
di is chosen for cumulating upstream surface runoff;
di ∈ {6,12,18,24,30,36,48,60,72,96,120,144}h.

2. For each duration indi, a Gumbel extreme value dis-
tribution is fitted to the annual maxima of Usro(di) de-
rived from the 20-year climatology, using the method of
L moments (see Hosking, 1990), deriving for each grid
point a scale parameterα(di) and a location parameter
ξ(di) of the obtained distribution.

3. In operational 10-day ERI forecasts, each point of the
river network is assigned a subset of durationsdj ∈ di,
among those that fulfill the criterion 0.6tC ≤ di ≤ 1.2tC.
For instance, iftC = 60 h,dj = {36,48,60,72} h.

4. For each duration indj, the return period of Usro(dj, t)
is calculated from the formulation of the Gumbel distri-
bution:

T (t,dj) =
1

1− exp
(
−exp

(
−

Usro(t,dj)−ξ(dj)
α(dj)

)) . (3)

5. For each 6 h time stept within the 10-day forecast, the
maximumT among the selecteddj is selected.

6. Points 4 and 5 are iterated over all 51 ensemble mem-
bers.

7. For each time step, the probability of exceeding a warn-
ing threshold, corresponding to a selected return period,
is calculated by summing the number of members above
the threshold and dividing by the ensemble size.

A schematic view of the calculation of ERI forecasts is
shown in Fig. 1. Note that whent < min(dj), the duration
of the accumulation includes time steps which are before the
start of the forecast. In such cases, the Usro is calculated by
filling previous time steps with the most recent 24 h forecasts
of each antecedent day.

The above-described approach was set up on the same
computational grid of EFAS, which covers all of Europe with
a 5km× 5km grid, including 29 349 grid points in the mod-
eled river network, with upstream area larger than 1000 km2.
Also, the largest rivers withtC > 144 h are not considered in
the calculation. This mostly occurs in large river basins with
upstream areas larger than 100 000 km2.

3 Evaluation of ERI forecasts

The approach described in Sect. 2.2 was set up for opera-
tional daily run in hindcast mode over 2 years and 8 months
starting on 1 December 2010, using the input data described
in Sect. 2.1. The evaluation of results of the ERI is performed
through a threefold approach, focused on (1) the evaluation
of performance in detecting extreme events, (2) a statistical
description of alerts produced by the ERI, and (3) a case
study which compares ERI and EFAS flood forecasts with
a reference hydrological simulation. They are described in
the following sub-sections.

3.1 Performance in threshold exceedance prediction

The performance of ERI in flood early warning is tested by
comparing ERI ensemble forecasts with the EFAS water bal-
ance (WB), which is a hydrological simulation of the whole
European domain, run using spatially interpolated meteoro-
logical observations to obtain a continuous field. A descrip-
tion of the EFAS-WB and its underlying data can be found
in Alfieri et al. (2013).

The suitability of the ERI for potential use in flood early
warning is tested by comparing its skill in predicting dis-
charges above threshold in Europe. The chosen threshold is
the 2-year return period at each grid point of the river net-
work, which is a suitable tradeoff between a relatively ex-
treme value possibly leading to flooding, and having some
simulated threshold exceedances in the simulation period.
As the ERI is based on an ensemble system, forecast ex-
ceedances (Pfc) are expressed as probabilities, while simu-
lated exceedances (Psim) for validation are taken from the
EFAS-WB and are expressed as dichotomous values{0,1}.
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Figure 1. Schematic view of ERI forecasts and comparison with
river discharge (Q). Sample input sro is shown at the bottom.

The verification is based on the Brier skill score (BSS, see
e.g., Wilks, 2006):

BSS= 1−
BS

BSref
; (4)

where

BS=
1

n

n∑
k=1

(Psimk − Pfck)
2 . (5)

Equation (5) defines the Brier score, which is calculated on
then = 988 time steps, for each daily lead time. Since EFAS-
WB is calculated at 06:00 UTC, while ERI forecasts are run
at 00:00 UTC, lead times used in the verification range from
6 to 222 h (i.e., 9 days and 6 h). BSref is a reference BS calcu-
lated by assuming the climatological probability of exceed-
ing the 2-year threshold, calculated on a 21-year time series
of the EFAS-WB.

In addition, the same data set of forecast and simulated
threshold exceedances was used to calculate the probability
of detection (POD) and the false alarm rate (FAR) of the ERI
by choosing five different probability thresholds (i.e., pt= 10,
30, 50, 70, 90 %) for ensemble forecasts above the 2-year
return period.

3.2 Statistics of alert points

The second step of the evaluation approach was to collect and
analyze some statistics of all grid points exceeding a critical
flood threshold among forecast runs in the 32-month time
span. By setting a probability threshold of 15 % of exceeding
the 2-year return period, about 38 100 grid points with an
ERI forecast above threshold were detected. Each point is
characterized by the maximum probability of exceeding the
2, 5, and 20-year return period, and the corresponding time
horizon to the forecast peak.

In addition, the system is designed to produce output im-
ages in a similar fashion as in EFAS, by producing for each
forecast:

– Three maps of maximum probability of exceeding the
three warning thresholds of 2, 5, and 20-year return pe-
riod, over the forecast range.

– Point forecasts showing the ensemble prediction of ERI
over the forecast range for selected reporting points. Re-
porting points are selected to give an adequate coverage
of the areas at risk for every forecast. In detail, points are
chosen among those (1) with a probability larger than
60 % of exceeding the 2-year return period, (2) with a
minimum upstream area of 1000 km2, and (3) by keep-
ing a minimum distance of 100 km from each other,
along the river network, in case of long river reaches
above threshold.

Such criteria were derived iteratively to optimize the visu-
alization of results; therefore they are independent from the
evaluation approach.

3.3 Case study

Example figures of the output images are shown and com-
mented based on a case study of the severe floods which hit
a large portion of Central Europe in early June 2013. Re-
sults of the ERI are compared to the corresponding EFAS
forecasts for the same event and to the simulated threshold
exceedances. This will be the third step of the proposed eva-
luation approach.

4 Results and discussion

4.1 Performance in threshold exceedance prediction

Forecast threshold exceedances of the ERI are compared to
the proxy simulations extracted from the EFAS-WB. A vi-
sual example of such comparison is shown in Fig. 2 for the
Danube River in Linz, Austria, for lead times of 1, 4, 7, and
10 days. Figure 2 shows three simulated events above the
2-year threshold, though the second and third exceedances
actually correspond to the same event, in June 2013. The
ERI predicted the second event with high probability (i.e.,
P (T > 2) = 100 % for LT= 1 and 4 days,P(T > 2) ≈ 80 %
for LT = 7 days) though it missed the first event for all lead
times. Some low probabilities of exceedance were also pre-
dicted in summer 2011 and 2012, though with no simulated
event above threshold.

The average BSS is plotted against the forecast lead time
in Fig. 3 with a dashed line. As shown in Fig. 3, the BSS
is unskillful for all lead times, and approaches the zero line
towards the longest forecast ranges. Indeed, such a compari-
son assumes that the timing of the ERI is set at the end of the
last time step of Usro accumulation. Such an assumption is
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Figure 2. Forecast (ERI) and simulated (sim) exceedance of the 2-
year discharge return period for the Danube River at Linz, Austria.
From top to bottom, LT= 1, 4, 7, and 10 days.

plausible, to some extent, considering that (1) the durations
of accumulation are constrained by 0.6tC ≤ di ≤ 1.2tC and
(2) the basin lag time (tL ≈ 0.6tC) is also defined as the time
shift between the center of mass of the effective hyetograph
(here comparable to surface runoff) and that of the hydro-

Figure 3. BSS of the ERI vs. lead time for the raw forecasts (aver-
age BSS with a dashed line) and considering the optimal time shift
(average BSS with a solid line; shadings indicate the 5–95 % range,
in light grey, and the 25–75 % range, in dark grey).

graph. However, the timing of events detected by the ERI
cannot be defined precisely a priori, as no routing nor delay
component is included in its definition. The issue of match-
ing observed and simulated peaks in model verification has
growth of interest with the spreading of hydrological fore-
casts in the past few years. Recent contribution to the topic
was given by Zappa et al. (2013) and by Ewen (2011). The
BSS was recalculated for several configurations, where the
ERI was shifted in time to search for the optimal time shift
to match it with the simulated threshold exceedance. Time
shifts TS are tested, with 6 h spacing, in the range

−1day− 20% LT≤ TS(LT) ≤ 1day+ 20% LT.

BSS derived with optimal time shifts are shown in Fig. 3
with grey shadings and a solid line. For LT≥ 2 days, about
75 % of BSS values are skillful compared to a climatologi-
cal forecast. Figure 4a shows a map of the BSS with opti-
mal time shift for each simulated grid point, averaged among
all lead times. Figure 4b shows the corresponding average
time shifts in hours. One can note that positive (i.e., skill-
ful) BSS values are associated with positive shifts, meaning
that the optimal timing of ERI predictions corresponds to a
shift forward of about 0–21 h, with an increasing trend with
the lead time. The average time shift among all points and
lead times is 7 h, though it rises to 16 h if calculated only on
grid points with positive average BSS. In 14 % of points, no
exceedance of the 2-year return period was simulated in the
considered time window, making the application and inter-
pretation of the BSS more difficult. In these points the op-
timization of the timing of the forecasts often resulted in
null or negative time shifts, due to the difficulty in match-
ing forecast threshold exceedances with no simulated ones.
Similarly, Fig. 5 displays the BSS of ERI (considering the
optimal time shift) for four different lead times of 1, 4, 7,
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Figure 4. Average BSS among the considered lead times(a) and
corresponding time shift of the ERI against the simulated threshold
exceedances(b).

Figure 5. BSS of the ERI for lead times of 1, 4, 7, and 10 days.

and 10 days. It shows a general convergence towards zero
for the BSS with the lead time. At LT= 1 day, the ensemble
spread is narrower, thus events above threshold are either de-
tected with high probability or completely missed. The same
behavior was found by Pappenberger et al. (2010) in evalu-
ating ensemble streamflow predictions. For increasing lead
times, the ensemble spread gets wider and more events are
predicted with lower probability of exceedance.

Figure 6. POD and FAR versus lead time, for different probability
thresholds between 10 and 90 %.

Figure 6 shows the POD and FAR calculated on the same
data set of forecasts and simulations, averaged among all
points and displayed as a function of the lead time. Such skill
measures are based on binary outcomes of forecasts and sim-
ulations at each time step; hence ensemble forecasts of ERI
were turned to dichotomous information, depending on the
probability of exceeding the 2-year return period. Figure 6
shows a higher sensitivity of the FAR depending on the prob-
ability threshold (pt), due to the increasing spread of the en-
semble with the lead time. The POD is rather constant with
the lead time and mostly below 0.1, which suggests substan-
tial differences between the duration of simulated discharge
above threshold and forecast threshold exceedance from the
ERI. Such figures are likely to underestimate the true poten-
tial in early warning of ERI, as they are calculated on each
time step rather than on an event basis (not computed in this
work). Indeed the ERI, as the EPIC, has the tendency to de-
cay below warning values faster than discharge, as the ap-
proach is based on a statistical comparison of the input sur-
face runoff and does not account for the routing of the flood
wave and in turn for the correct timing of the runoff. For ex-
ample, if calculated on an “event basis” and with pt= 30 %,
the POD at the station in Fig. 2 would become between 33
and 50 % (the latter if one considers that the last two peaks
above threshold are part of the same event) for all lead times.
Similarly, the FAR would become FARLinz = {0,50,0,0} %
for lead times of 1, 4, 7, 10 days.

4.2 Statistics of alert points

The cumulative distribution functions (cdf) of the probability
of exceeding return periods of 2, 5, and 20 years for the set
of forecasts above threshold (i.e., only for the event peak)
are shown in the three panels of Fig. 7. These are shown
with grey shades for each forecast lead time between 6 and
240 h. Contour lines are plotted at selected quantiles. By
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definition of the selection criteria (see Sect. 3.2), all points in
Fig. 7a haveP(T > 2) ≥ 15 % (see black area correspond-
ing to quantile 0). For higher quantiles, high probabilities of
exceeding the 2-year threshold are mostly detected for short
lead times. It is interesting to note in Fig. 7a the diurnal cycle
of the surface runoff (particularly for quantiles 0.75 and 0.9),
which induces higher values for lead times corresponding
to 12:00–18:00 UTC, where the influence of the snowmelt
and of convective precipitation (see Bechtold et al., 2013) is
more pronounced. Another peculiar feature shown in Fig. 7
is the high sharpness in forecasting extreme values. Indeed,
the contour line of the highest quantile in all three panels
does not show a significant trend with the lead time, indicat-
ing some forecasts reach the 100 % probability of exceeding
the three thresholds, even for lead times as long as 240 h. Fi-
nally, the black column in Fig. 7a for LT= 6 h supports the
idea of under-dispersed forecasts. In practice, at the shortest
lead times the ensemble spread is comparatively narrow, so
that if the 15th percentile exceeds a warning threshold, the
full ensemble is likely to exceed it too. For comparison, a
dashed line is shown in Fig. 7b to indicate the current crite-
rion to send flash flood alerts in EFAS, based on EPIC (i.e.,
P(T > 5) ≥ 60 %). Assuming that the same criterion could
be used to issue flood warnings on the basis of ERI, a subset
of 2091 forecasts above threshold would be detected in the
selected 32-month period. Such points, hereafter referred to
“flood alerts” are shown on a map in Fig. 8, where the cir-
cle size is proportional to the maximum lead time for which
the event peak was spotted. The probability density function
(pdf) and the cdf of the lead time of the flood alerts are shown
in Fig. 9, together with those of the corresponding upstream
area (A). Figure 9 indicates that nearly 60 % of flood alerts
were produced for lead times up to 12 h and upstream areas
smaller than 5000 km2. However, 192 flood alerts are associ-
ated to a lead time of 5 or more days. Flood alerts in Figs. 8
and 9 could not be verified against observed events, as this
would require the availability of observed discharge and the
corresponding thresholds virtually in every European river;
therefore, we limit the verification approach to the analysis
shown in Sect. 4.1.

4.3 Case study – the central European floods of June
2013

Between the end of May and the beginning of June 2013, a
low pressure system brought moist air from the east and the
northeast of Europe, generating large rainfall accumulations
in southern Germany and western Austria. In addition, oro-
graphic enhancement of precipitation on the northern side of
the Alps played a prominent role. A number of rivers, mostly
within the Danube, Rhine, and Elbe river basins, exceeded
warning thresholds and several cities suffered from damage
and service disruption caused by the floods. Further details
on the flood and on the underlying atmospheric processes are
described by Blöschl et al. (2013) and by Grams et al. (2014).

Figure 7. Cdf of the probability of the ERI exceeding the 2, 5, and
20-year return period (event peak), with contour lines at significant
probability levels.

A visual comparison between ERI and EFAS forecasts was
performed for this flood event and is shown in Fig. 10, in
panels a and c, respectively. Results from the EFAS water
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Figure 8. Location of flood alerts predicted in the 32-month period.
Circle size is proportional to the lead time to the event peak.

Figure 9.Pdf and cdf of lead time(a) and upstream area(b) of flood
alerts detected by the ERI.

balance are shown in Fig. 10b. The three panels in Fig. 10
show the forecast and simulated exceedance of the 5-year
return period for the three models. On this occasion, ERI
predicted reasonably well the river reaches at risk of thresh-
old exceedance. Results from the EFAS hydrological simula-
tions, run with the same ECMWF ensemble model as input,
produced a similar pattern but with lower magnitude, indicat-
ing maximum probabilities of threshold exceedance around
30 % (see Fig. 10c). Figure 11 shows the ensemble prediction
of ERI (left) and the EFAS multi-model (right) for a point on
the Danube by the city of Linz, in Austria. The comparison
of the two panels indicates higher severity of the ERI, with

Figure 10. Maximum exceedance of the 5-year return period be-
tween 30 May 2013 and 9 June 2013 for(a) ERI forecasts,
(b) EFAS-WB, and(c) EFAS forecasts. The location of Linz is
shown with a blue circle.

the ensemble mean reaching the 50-year return period, while
most of the EFAS ensemble lay between 2 and 5 years (yel-
low area) at the time of the forecast peak. Such difference
stresses the potential of using a consistent reforecast data
set to calculate warning threshold, as was done for the ERI.
On the other hand, current EFAS thresholds are derived from
statistical analysis on the EFAS-WB, which in turn is based
on interpolated meteorological observations as input. Indeed,

Nat. Hazards Earth Syst. Sci., 14, 1505–1515, 2014 www.nat-hazards-earth-syst-sci.net/14/1505/2014/



L. Alfieri et al.: The extreme runoff index for flood early warning in Europe 1513

Figure 11.Comparison between 10-day ensemble forecasts of the ERI (left) and the EFAS multi-model (right) for Linz.

recent work on the evaluation of EFAS forecasts in Europe
pointed out some underestimation of the forecast runoff in
mountain areas such as in the Alps and the Pyrenees (Alfieri
et al., 2014). Further, the event peak of the ERI is anticipated
for about 12–24 h compared to the hydrological forecasts of
EFAS, supporting the findings of Sect. 4.1 of the need for a
positive time shift to optimize the timing of ERI forecasts.

5 Discussion and concluding remarks

In this work we present a non-parametric approach for en-
semble flood early warning for a wide range of basin sizes,
based exclusively on the output of a state-of-the-art global
circulation model. We defined the extreme runoff index
(ERI), which is designed to detect extreme accumulations of
surface runoff over critical flood durations for each section of
the river network. Its strength in detecting extremes is given
by the use of a coherent 20-year climatology of the same in-
put parameter (i.e., surface runoff), so that anomalous fore-
casts are identified and their severity quantified in statistical
terms. In addition, the reforecast data set is updated in par-
allel with changes in the circulation model, so that warning
thresholds can be recalculated and maintain their consistency
with operational ensemble forecasts. The work follows and
complements the positive findings of the European Precipi-
tation Index based on simulated Climatology (EPIC, Alfieri
and Thielen, 2012), currently used in the context of the Euro-
pean Flood Awareness System to issue flash flood warnings.
The main advances of the proposed approach are:

– The ERI is based on the output of a land surface scheme
of a global circulation model, thus it considers all the
hydrological processes involved in the generation of
surface runoff. It is an appropriate indicator to predict
river floods for a wide range of conditions, including
soil saturation and snowmelt-driven floods, yet preserv-
ing the capabilities in detecting floods driven by extreme
precipitation over short durations.

– The range of basin sizes monitored by the ERI is in-
creased, compared to the EPIC, thanks to a procedure
that considers a variable range of durations to detect ex-
treme events, which depends on the response time of
the basin. Theoretical boundaries of the minimum basin
size monitored by the ERI is related to the resolution
of the input data and the consequent ability of the cir-
culation model to represent correctly the anomaly of an
extreme event, compared to climatological conditions.
Following the discussions in Alfieri and Thielen (2012)
and Sangati and Borga (2009), the authors recommend
the use of ERI forecasts in river basins with areas larger
than 1000 km2, which is of the same magnitude of the
grid resolution of the input data. The upper limit is less
clear to define, as it is conditioned by the increasing ef-
fect of the river routing with the basin size, the timing of
flood peaks in different tributaries of the same basin, the
dampening of the flood wave in its travel downstream
and due to floodplains, the interplay between surface,
subsurface runoff and the groundwater. In the current
approach, the upper limit of basin size is of the order of
105 km2, and it is bounded by a maximum accumulation
period of surface runoff of 6 days.

In the presented setup, the ERI uses the same computation
domain and grid resolution of the EFAS. Also, input fore-
casts are derived from the same circulation model. The ad-
vantage of this is twofold. First, ERI forecasts can be com-
pared to those of a distributed hydrological model and rea-
sons for potential mismatch can be investigated, to help ad-
dress further improvements of both systems. Second, a back-
ground simulation of the actual river state on the same do-
main (i.e., EFAS-WB) was available and suitable for this
work as proxy truth to verify the performance of the ERI in
predicting the exceedance of discharge warning thresholds.
Such a unique data set for all of Europe enabled a verification
approach (1) on a large domain covering a wide range of cli-
mates and basin sizes and (2) based on assessing the system
behavior for extreme events, rather than just for relatively
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high flows (e.g., 90th, 95th percentile) as often found in the
literature. This aims to address some of the common weak-
nesses in the verification of ensemble flood forecasting sys-
tems as listed by Cloke and Pappenberger (2009). Results
in Sect. 4 suggest a positive skill of the ERI in flood early
warning, stressing the need for longer simulation periods to
achieve a consistent spatial overview in such a large domain.
Indeed, some river reaches within the simulated domain had
no exceedance of the 2-year threshold used for validation
in the considered 32-month time window. In 81 % of grid
points where ERI provided skillful forecasts (i.e., BSS> 0),
extreme events were found to be shifted forward in time to
optimize the timing of their detection, in comparison to the
initial assumption of matching the ERI with the end of the
accumulation period as in the EPIC. The implication is an
average increase of the forecast lead time (e.g., in Figs. 3
and 6), all skill scores being equal.

In a first step, ERI was set up for Europe and can now be
seen as a complementary tool to EPIC and EFAS hydrologi-
cal simulations, particularly for those river reaches where no
hydrological parameter can be calibrated due to lack of ob-
served discharge. However, additional development work in
this area could lead to two important achievements:

– The same system can be set up in any other part of
the world or even at a global scale, where computer re-
sources are available. Indeed, the dynamic input data
currently used (ECMWF-ENS and the corresponding
reforecast data set) are available globally and simply
need to be complemented with few static maps such
as drainage direction and upstream area, among others.
It is a relatively simple system for flood early warning
with strong potential in developing countries and in un-
gauged river basins, able to give a quick overview of ar-
eas at risk of extreme streamflow conditions in the com-
ing days.

– The implementation of the ERI on higher-resolution
forecasts from limited-area models is likely to bring sig-
nificant advances in flash flood forecasting and early
warning, especially in its ability to detect flood events
where the snowmelt component and the initial soil
wetness play key roles in the runoff production. This
would be possible by applying land surface schemes to
those models with a consistent reforecast climatology
available for use (e.g., COSMO-LEPS), so that surface
runoff can be derived and used as input for the ERI.
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