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Abstract. A technology able to rapidly forecast wildfire dy- similate real-time sensor dat@dwlard et al. 2010, which
namics would lead to a paradigm shift in the response tchas been shown to greatly accelerate fire simulations without
emergencies, providing the Fire Service with essential in-loss of accuracyNlandel et al.2008 Jahn et a].2011 Ro-
formation about the ongoing fire. This paper presents andhoux et al. 2013. The cornerstone to reach such a tool is
explores a novel methodology to forecast wildfire dynamicsto find a computational algorithm that combines a fire model
in wind-driven conditions, using real-time data assimilation with sensor data that reliably delivers an accurate forecast
and inverse modelling. The forecasting algorithm combineswith a positive lead time (i.e. time before the event, in the
Rothermel’s rate of spread theory with a perimeter expansiororder of 10 min for a spacial scale of 100 m), and enables
model based on Huygens principle and solves the optimisaemergency responders to make better tactical decisions. At
tion problem with a tangent linear approach and forward au-the same time, it has to be versatile enough to be adapted
tomatic differentiation. Its potential is investigated using syn- in different fire situations (range of fuels, complex topogra-
thetic data and evaluated in different wildfire scenarios. Thephy, weather conditions). Ideally, it should also be able to in-
results show the capacity of the method to quickly predict thecorporate the effect of fire fighting actions (e.g. water lines,
location of the fire front with a positive lead time (ahead of fire breaks, back fires) and weather forecasts. More impor-
the event) in the order of 10 min for a spatial scale of 100 m.tantly, it should not require high computational resources (i.e.
The greatest strengths of our method are lightness, speed amigh-performance computing or supercomputers) so that it
flexibility. We specifically tailor the forecast to be efficient can also be deployed flexibly in portable devices by fire re-
and computationally cheap so it can be used in mobile syssponders.

tems for field deployment and operativeness. Thus, we put

emphasis on producing a positive lead time and the means td-1 Data assimilation and inverse modelling

maximise it. . . oo
Inverse modelling, which is the core of data assimilation

techniques, consists of studying measurements from sensors

to gain information about the physical phenomena using a
1 Towards an operative forecasting tool variety of mathematical models and algorithms. This new in-

formation is then used to forecast the future evolution of the
Current computational wildfire dynamics simulators are notphenomena. Instead of just writing the outputs of a model,
fast enough to provide valid predictions on tinfgu(livan, inverse modelling exploits the sensor outputs and aims to un-
2009 and require input parameters that are difficult to ac- veil the governing parameters and the boundary conditions of
quire and sense during an emergency situation. A potentiaihe problem.
solution to develop an operational forecasting tool is to as-
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The inverse method is particularly appropriate for wildfire one single parameter at a time and do not emphasize lead
modelling due to the large amount of unknowns. The fueltimes. Moreover, they seem tailored more towards supercom-
properties, location, area covered by foliage, moisture conputing platforms than to mobile systems for field deploy-
tent, meteorological conditions and topography are necessamnent.
parameters to initialise a fire model but all of them can hardly Another highlight of our method is the incorporation of
ever be measured. By contrast, the inverse approach can firmutomatic differentiation into the inverse model, which is ac-
these parameter by using a range of sensor measurementsafrate and fast, further decreasing the computational expense
the ongoing fire. of a forecast.

Despite its promising capacity for coping with complex
problems with a large number of unknown parameters, onlyl.2 Forecasting algorithm
few authors have tried to apply data assimilation or forecast- i )
ing techniques to fire science. Among thelahn et al(2011 We formulate the inverse problem based on the premise

2019 successfully pioneered the approach to forecast fired1at some invariant exists by following the contributions of
in enclosures using both simple and complex models (tWO_Jahn et al(2012 on forecasting fire dynamics in enclosures.

zone model and computational fluid dynamics). In the field Ve define the invariants as the set of governing parameters
of wildfire, Mandel et al(2009 explored this technique to that aré mutually independent and constant for a significant
predict the time—temperature curve of a sensor placed in th@Mount of time. Invariant is a concept already in the liter-
way of an advancing wildfire. They examined a reaction—ature dahn et al.2013. Therefore, our implementation re-
diffusion equation and a semi-empirical fire line propaga-"es on the a§sumpt|on that some physmal att.nbutes of the
tion model coupled with an Eulerian level-set-based equa_system remain constant at least during some time. Those at-

tion. Despite this progress, their implementation was foundiributes can be uniform, a scalar or a vector field with spatial

to be unstable due to the generation of spurious fires whictflePendency. From the point of view of our methodology, in-

cause non-physical results. variants are a central concept to forecasting systems that do
Rochoux et al(2013 pioneered the successful application not focus on the initial conditions only. For example, weather

of data assimilation to predict the location and spread of thdorecasting (i.eCoen et al.2013 solves an inverse problem
wildfire front using infra-red sensors. Data were assimilated!© find the initial conditions, and then runs the forward model

with a Kalman filter to balance computational and sensor erf0r Predictions. In our work, we solve the inverse model of

rors. Rochoux et al. (2013) assimilates perimeter locations af€/eCted key parameters inside the governing equations, the
different times and uses the fuel depth as the only input. Thdvariants, not the initial conditions. It is an essential prop-
propagating model uses two components: the rate of sprea® Of the invariants that they remain constant during the
(RoS) is represented by a product between the fuel dépth ( !ead time of the forec;ast. When any invariant ghanges signif-
and a constant() to be quantified as part of the forecasting icantly (e.g. due to divergence of the assumptions or external
problem (RoS=T -8). Their model uses a level-set-based conditions) its effect is to limit the lead time. Examples of
equation to cast the fire perimeter. They tested the modepuch quantity are in_itial fuel's moisture_content or fua_'—:l depth.
in a controlled small-scale experiment assimilating one fireHOWeVer, the invariants are not restricted to physical vari-
front and delivering a 30 s forecast. Most recerfgchoux ables but can represent mathematical attributes of the system
et al. (2014 have presented a work that solves for more 85 well. For instance,' if the wind speed changes but its ef-
than one parameter and uses parallel computing. Also usinffct on the RoS remains constant (boundary layer regime is
a level-set model and sensor datautenbergef2013 ex- maintained) the most important invariant will be its effect on
plored stochastic optimisation of the wildfire problegoen  the rate of spread rather than the wind speed itself. =
etal.(2013 used satellite data to initialise a weather-wildfire _After assimilating data during a period of time (assimila-
growth model at the kilometre scale. tion window) the invariants are estimated and used to fore-

The greatest strengths of our method presented here at@st the perimeter evolution. This forecast is then accurate
lightness, speed and flexibility. We specifically tailor the Until any of the invariants change significantly, which would
forecast to be efficient and computationally cheap so it carP® detectéd with the help of the continuous data feed from
be used in mobile systems for field deployment. Thus, we puf€nsors. The sensor errors in the assimilated data are con-
emphasis on producing a positive lead time and the means tidered to be smaller than the model accuracy and therefore
maximise it, while at the same time solving for multiple pa- their influence is not directly considered here. This is a com-
rameters. These are not the objectives of other papers in thelémentary approach to that Bfochoux et al(2013 who

literature. For exampleéRochoux et al(2013, the truly first ~ Palance data errors with model errors.
paper in the literature that effectively forecast wildfire be- Regarding sensor data feeds, in the present work we con-

haviour, integrates measurement errors with model errors t§'der fire front positions hypothetically supplied by airborne
increase accuracy (standard procedure in weather forecaspPservations, or ground crews.

ing), but it comes at the price of higher computational ex-

pense Rochoux et al(2013 and Mandel et al.(2008 use
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However, additional data such as flame height or spread2.2 Huygens principle
ing rate (recently measured by infra-red images and stereo
vision; Rossi et al.2013 could be considered in future de- Although Rothermel’'s model can estimate the RoS of any
velopments. point, it is a mean value for the head filRdqthermel 1972

and does not inform about different directions of spread.
Therefore, it is not sufficient in predicting the fire front shape
2 Building up the forward model and location. In parallel to RoS estimation, some other model
must be used to represent the fire perimeter expansion. We
The initial step when posing an inverse modelling problemused Huygens’ principle — originally postulated to explain
is to determine the forward model and its invariants. The for-light wavefront propagation — with elliptical expansion, as
ward model is the set of equations that relates the invariantproposed byRichards(1993. Applying it to wildfire, this
to the observables (variables that can be measured with seprinciple considers every point in the fire perimeter at time
sors). Its importance in the is twofold: the forward model is ¢ as a new ignition source that spreads during a timf®id
first used iteratively to quantify the invariants and then runlowing an elliptical template shape — known afiralet The
again to deliver a forecast valid until the invariants change orcorresponding fire front line at time+ dr is the outer curve
the next assimilation process is started. that envelopes the firelets centred on the rear focus as shown
To create our forward model, we combined in Fig. 1.
Rothermel1972 and Richards (1990 models. The The details of the Huygens firelet model can be found in
Rothermel model estimates the RoS of any point in the fireRichard(1990 1993, but an overview of the main concepts
front whereas the Richard model uses these RoS to generatghd equations is provided here.
the elliptical firelets that expand the fire front and compute Considering the initial ignition point situated gXo, Yo}

its location at any time. and using a parametrisation variablee [0— 2], the
{(x; (®), yi (1)} coordinates of fire front vertices can be ana-

2.1 Rothermel's model lytically calculated by integrating a set of partial differential

) _ equations:

Rothermel’'s model is based on an energy balance equation

where the heat sources and smk§ are identified to estimate ) L (420 cos9(0) costK) + b2 sind 1) Sin(K) _ .

the RoS of a surface fire. The original model uses severa’f@v’):xﬁf > : ~esing () | di (5)

- . ; ) . o \/a (1) COR(K) + b2(t) i (K)

empirical correlations from wind-tunnel experiments for fires

spreading at quasi-steady state. This means that any acceler- . _ F{ a2(1)sind (1) cos K ) + b2(1) cosh (1) sin(K) AW ©6)

ation of the fire is not considered. The shape of the fire front’*" = °+0/( a2(1) coR(K) + b2(1) SirP (K) e m) "

is assumed to have no influence on the RoS.

Rothermel's equation can be recast with three invariantsvhere

(Ix), defined as follows:

K=0(1)+s, ©)

ROS= Imt(1+ Iy~ fw)- (1) where# is the wind direction an@ andc are related to the

backwards and to the forward propagation velocities that can
vary spatially and are calculated by imposing Rothermel’s
rate of spread for the head fire from the new ignition point:

Ims captures the effect of all the fuel properties; ovendry
fuel loading (o), surface-area-to-volume ratie), moisture
content (5), moisture of extinctionXy) and fuel depth{):

b(s, 1) +c(s,t) = R0, 1). (8)

Imf = F (0, wo, §, Mt, Mx). (2)  The lateral front velocity:, however, is directly related to the
eccentricity of the firelet. It was originally estimated using
an experimental correlation found Bynderson(1983 that
relates the ratio between the major and the minor firelet’s
axis, and thus, the ratio betwekrmanda (independent of the

. , time stepAr used). Its value depends on the wind spdéjl (
The effect of the vymd speed on the fire sprea_d also de—in accordance with the equation
pends on fuel properties such as layout, bulk density, surface-

area to volume ratio and fuel depth. Its effect is embedded ing (s, r)

The wind speed is directly equal 1g:

Lh=U. 3)

= 0.936:025 1 0,461,015 _0.397=LB. (9)

Iy as b(s, 1)

Iy = K(o, wo, 8) - UB™L, (4) Note that the power coefficients in this empirical equation
have units of [sml], LB is called length-to-breadth ratio

whereB is an empirical coefficient. and accounts for the eccentricity of the elliptical firelets. The
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Figure 1. Example of Huygens expansion with elliptical firelets (grey lines) from an ignition point (red dot in the centre). Ten fire fronts
(blue lines) are plotted during the spread of the fire over an heterogeneous fuel degt® ®ré) and under changing wind 52 ms™1)
speed and direction at every time step (1 min each). This Rothermel-Huygens model is also used in FARSEYELO99.

constant 0.397 is a modification of Anderson’s original for- Depending on the available sensor data, the invariants can

mula to ensure that the fire expands circularly &R) un- be turned into input data for the problem. For example, if

der no-wind conditions{{ = 0). reliable wind speed data arrive, there is no need to solve for
Once the LB,a, b, c¢ velocities can be calculated using it butinstead itis directly used as input in the forward model.

Egs. 8) and Q) and the elliptical geometry properties:
2.3 Cost function

1+1/HB
o = Ros—/HB (10) .y _ |
2LB The invariants are calculated by minimising a cost function
b RoSl+ 1/HB an 7/ that measures the difference between the model output
2 and the sensor observations. The cost function proposed is
—h RoS (12) the Euclidean norm summed over the different assimilation
HB’ times:

where

1f
A T ~
LB+ /LB2—1 J(P)=Z\/[xi—xi(P)] W; [x; —%i(p)], (15)
= t=t;
LB-+LBZ-1
If the invariantl, = U, introduced in Rothermel’'s model, Where{x;} € R? are theN-coordinate set of the observed fire
is reused in Huygens' firelets expansion, only one additionalffont position in a given time stepandx; (p) = Mx(p) are
invariant is required to account for the principal direction of the corresponding model output positions for a set of invari-
spreading determined by the wind direction: ants (p). W; is a weigh function that could be used to give
more importance to particular sets of sensor data. However,
Ip =90. (13) in the present work no weighting function is useél;(=
The forward model is then a function of four invariants: 1) but the framework is set to allow introductions of non-
uniform weights in future work (for example to give more
MUy I Inf. I, T) = RoS=R(lu, Iw, Imf) importance to aerial images than to in situ observations).
{x,y}=H(RoS Iy, Iy, T),

HB

(14)

whereT is the time when the latest sensor data arrike,
represents Rothermel’s model with cast invariants (Egnd
H the firelet expansion (from EgS.and6).
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Equation {5) can be simplified if thee—y coordinates are The gradient of the linearised function is then
concatenated as one-row vecigrandy; = M;(p):

Iy T
y _ VoI () =23 [ (VpMi(pD(p - )] (7)
7 =3\ - 5] [5: - 5:»)]. (16) =
= [7: = (Mip® + Y, Mi 0" (0 — ) |

Although the square root gives the correct Euclidean norm, ) ) N o )
it does not affect the minimisation and therefore was re-APPlying the first-order condition for minimisation and in-
moved for the computational implementation. Each observedroducing the following notation:
front (y;) is angularly discretised between rays emanatingM' — Mi(pP
from the origin of coordinates. The model outpyt)(is i =Mi(p)
also angularly discretised at each optimisation step, so a LaH; = V,M; 929)
grangian framework is used and updated for the evaluation ol? —(p—p°
the cost function. No refinement is added regarding the front '
convexity, although this could be explored in further versionsgives
of the work to handle more complex front shapes.

I i
2.4 Optimisation Y HIHip=) H G, —Mp, (18)
t=t; t=t;

There are two main approaches to minimise E{6):( o ) .

gradient-free or gradient-baseddcedal and Wrightt99g. ~ Which is a linear system that can be easily solved by us-
The first group are stochastic algorithms that evaluate thd"9 @ QR factorisation with column pivotingipcedal and
cost function 7(p) at many points to find the absolute Wright, 1999.

minimum, whereas the second group use an initial gues L .

(pP) and follow the gradient direction towards the clos- 2.6 Automatic differentiation

est minimum. Although grad!ent-free algorithmg can SWeepca|cylating the Jacobian multiplication terfiTH; in

a broader search space to find the absolute minimum, thegq 1g) requires partially differentiating the model with re-
have to evaluate the cost function multiple times which is spect to the different invariants. This has to be dpne2n x
computationally expensive if the forward model is slow. On ,, times. wherep is the number of invariants useds the co-
the other hand, when the cost function is continuous and thgqinates of the fire front ana is the number of times that
possible range of values of the invariagge is known asitis  y5ta arrives during the assimilation window..

in our problem), the gradient-based algorithms are more suit- Tp,¢ simplest way to numerically evaluate the Jacobian is
able and efficient. Gradient-based algorithms can CoNVerggy finite centred differences:

to a local minima instead of a global one. However, the ex-
tended sensmwt.y ana[y3|§ performed on our problem ;howgd i aMl{(pb) N Mlg (pb + Ek) — M:(p®
that the system is benign in the sense that all the functions inHj ; =
volved behave smoothly.

If the forward model7 (p) is linear then the cost function  wheree, € R? = {0,0, ...¢,...0} is a small perturbation of
is quadratic and can be minimised by solving a system ofmagnitude: in the positionk.
linear equations (as will be shown in the following sections).  But this approach has two downsides: the forward model
For forward models that are not linear — as is the case — th@as to be evaluated twice each time, arghould be reduced
tangent linear model (TLM) is used for local linearisation as much as possible which introduces numerical truncation

s

vk ek !l

(Griewank 2000). errors Griewank 2000. For these reasons, we discarded fi-
. nite differences and chose an automatic differentiation ap-
2.5 Tangent linear model proach.

L . . Automatic differentiation allows to directly calculate the

;I;]he 'I_'L_I\/!tcor}smts_ |r_1t_I|r|1ear|S|n%tr_1reh_forl\_Nard _mot‘_“" (p) mb Jacobian matrid; (normally calledTangent Lineaor For-

d € V'i'?r: yo an[m a gktljesgv I IS |ngar;f]§ lon caq_h € ward) or Hl.T (calledAdjoint). It consists of iteratively apply-
oneirthe modetis weakly noniinear, as in this case. 1he V"ing the chain rule of differential calculus to the programming

ability of the TLM relies on the initial guess and the fact that code of the forward model and so obtain directly the code for
the procedure is iterated until convergence. To calculate th%ll the partial derivatives

TLM we use first-order Taylor series expansion aroy)ﬁd Automatic differentiation is also suitable to differentiate

numerical integral evaluations — as in our case — since all
the statements can be split down to elemental mathematical
operations.
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Forward Model
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| y(tr) = M(tr,p*) y(tr)
Measurements ﬁ
Invariants
*
P
Invariants' Forward Model ~ [Rothermel’s )
First Guess B b 0 RoS = R(Ly, Ly, Imy) | &7 Yés
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Optimization loop

Figure 2. Program structure flow diagram. Orange boxes are the required inputs, green box is the output and red box shows additional inputs.

The tangent linear differentiation is preferable when the The fact that a loop is needed to estimate the invariants
number of observables:Zi.e. model outputs) is much larger reduces the inaccuracy added by applying a tangent linear
than the number of invariangs. By contrast, calculating the approach to a nonlinear model since in every new iteration
adjoint differentiation is more convenient and efficient when the model is linearised (i.e. the differentiated forward model
there is a large number of invariants. Therefore, in the preseri run) in a new state poinp(+1). In addition, if any of the
work, we use tangent linear differentiation. new invariant values in the vectpf*1 exceeds the physical

In future work, if the number of invariants is increased, range, its value is set back to the initial guess to prevent non-
the Adjoint Automatic Differentiation should be explored physical results.
to keep the computational efficiency high and maximise the Note that every time that the differentiated forward model

lead time. is run, the forward model is also evaluated. Thus the forward
. . model is always evaluated at the same time as the differenti-
2.7 Structure of forecasting algorithm ated model, speeding up the algorithm and enabling the use

. . L ... of complex forwards models that would be prohibitive with
Figure 2 summarises the principal parts of the assimilating 4 finite differences approach.
and_lnve_rse mOde”'”,Q Pfﬂgfam- L . . Regarding convergence, two criteria can be requested. The
First, fire front positiong are assimilated during a specific gt i 1o state a maximum allowable error for the predictions
period of time (called assimilation windows). Meanwhile, an ;5 the cost function. The second is to state a maximum al-
educated guess estimates the first set of invarightdhis  |5apje change between consecutive invariant vectors. While

first guess is based on roughly estimated data. Its influencg,g first criterion ensures the predictions match the observa-
on the model is explored in Se@&.1 This invariant guess is  {ions, the second criteria might not always do so. In the fol-

input into the forward model together with the tirieof the  |5ying sections, both criteria are explored and compared.
last sensor data arrival and one known fire front position (or

the initial ignition point)M(p®, T, y°). The consequent first 2 g Synthetic data
prediction set of frontg; is compared with the assimilated

data by means of the cost functigh(y —y) (see Eq.16). In order to investigate the capabilities of the forecasting al-
If the the cost function is not zero, the algorithm starts thegorithm, we use it with synthetic data that works as a con-
optimisation loop. trolled experiment before challenging it with real data. The

The first statement in the loop is to calculate the Jacobiarsynthetic data were generated also by a Rothermel-Huygens
terms in Eqg. 16). The output is a new set of values for in- firelet expansion model. Fuels properties providedSoptt
variantsp¥ that is input to the forward model to get a new and Burgar(2005 were used. The synthetic data are input to
estimated set of fire fronts. If the convergence criteria arethe forecasting algorithm in due time mimicking the sensor
met, then the best estimated invariants vector has been foundlata acquisition in a real wildfire.

(p*) and thus the forecast is delivered by running the for-
ward model at until the forecast timg. Otherwise, the loop
is iterated again.
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Figure 3. Guess, observation and iterations of fire fronts incan plane (plan view of a wildfire). The black triangles are the 15 observed
perimeters. The red dashed lines are the fire fronts generated with the first guess and the dashed lines are the following iterations. The las
iteration is the green solid lines.

3 Results 3.1 Initial guess

The performance of the forecasting algorithm is investigatedThe forecasting algorithm needs an initial guess of the invari-
in different situations where synthetic data simulate the ob-ant value where the first tangent linear approximation (TLM)
servations to assimilate. The tests are performed for differenis performed. This first educated guess can be directly gener-
values of parameters like the assimilation window, assimi-ated within the range of validity of each invariant — without
lated data (fire fronts locations and feeding frequency) anctonsidering any hint from the actual wildfire — or by using
initial guess. We look at several features like convergencerothermel equivalent equations (EGs4 and13) and esti-

of the invariants, minimisation of the cost function, effect of mating the six physical underlying quantiti&sM;, My, o,

the initial guess, effect of the assimilating window width, the w, and# which can be roughly done by observing the fuel
computing time and the leading times obtained. and wind.

The same methodology is also applied with alternative in-  The six initialising quantities were studied over the range
variants to handle situations where some of the quantities asof values found according to operational-based considera-
sumed as constant are allowed to vary. tions. For instance, the fuel depthcan be easily distin-

In all of the following tests, punctual ignition source is guished to be between 5cm pine needle litter or 1 m for
considered as the initial integration point for the fire front tall grass. Its offset of the initial guess is lower than 1.50 m.
expansion. This ignition point source is depicted as ared spofn contrast, some other variables such as moisture content
in all the plots and is a required piece of information to run (as,,¢) or ovendry fuel loadingy), cannot be estimated with

the forecasting algorithm. In a real wildfire situation, it could such easy and therefore the possible offset is much larger.
be identified as the first reported location of the fire. If the fire

has spread out before the first bit of information arrives and it3.2  Quantifying the invariants

is no longer a point source, the first assimilated fire front can

be also used as a virtual ignition perimeter by considering theThe first scenario investigated here assimilates 15 fire fronts

whole fire front as a set of initial ignition sources. during a window width of 15 min (i.e. data of the fire front
position arrives once every minute). The invariants converge
within 3 iterations (i.e. three runs of TLM). Figueshows
the observed data, the fronts generated with the initial guess
of invariants and the respective fire fronts after each iteration
until convergence is reached. The invariants and cost function
convergence are shown in Fig. The cost function shows

www.nat-hazards-earth-syst-sci.net/14/1491/2014/ Nat. Hazards Earth Syst. Sci., 14, 1498063 2014
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= 15 min (1 assimilation mint).

no multiplicity in the forward model and only one value can
a rapid decrease towards zero. Its slope quantifies the corit the observations.
vergence rate. At the first iteration the slope is steep which One way to deal with multiplicity is by defining only one
indicates that the algorithm quickly corrects the large dis-invariant for the RoS. This approach, however, does not al-
crepancies. As the cost decreases so does the slope, indic#w for the forecasting algorithm to be ameliorated if extra
ing that convergence is achieved. Figalso shows that all  data become available (as will be done in S8 since no
invariants converge to the true values with 2 % of difference.information about particular contributions is achieved. Thus,

a more interesting way to diminish multiplicity is to recast
3.3 Invariant Multiplicity the invariants and input extra data in a way that they become

functionally independent. For instance, if the fuel-moisture
The window width (WW) is the length of time during which invariant is multiplied by a measurable quantity (such as fuel
the forecasting algorithm is being fed data (i.e. fire front lo- depth or moisture content) that varies spatially or over time,
cation in the case at hand). The time between consecutivéhen its value is no longer exchangeable with the wind fac-
fire front observations is called assimilation periaTi) tor. The same strategy could be used for the wind invariant if
and can be directly related to the assimilating frequencywind speed is known. This approach is successfully explored
(F =1/AT). in the following sections.

The main effect of the number of assimilated fronts The third way to deal with multiplicity is by assimilating
(WW/AT) is resolving the problem of invariant multiplic- additional quantities that are predicted by the forward model.
ity (or interdependence). Multiplicity is when different val- Itis worth pointing out the difference between inputting addi-
ues of two or more invariants lead to the same prediction oftional values and assimilating more data. The first consists of
the fire perimeter. The value of the cost function tends to in-€xtra inputs to run the forward model and allows it to handle
crease as the assimilation window increases and more front&ore complex situations. Examples of this could be informa-
are assimilated. The error of the initial guess amplifies withtion of moisture content, fuel properties or wind speed. More
the propagation (the previous fire front position is required data assimilation, in contrast, requires more outputs from the
to calculate the new one) and therefore the forecasting algoforward model. Thus, in our case, only the positions of the
rithm is more sensitive to the wrong identification of invari- fronts are assimilated but the forward model can be comple-
ants. This is shown in Figs where instead of assimilating mented so it delivers additional characteristics such as flame
15min (and 15 fire fronts) — as in the converging exampleheight or fire intensity. By assimilating this additional data
Fig. 4 — we assimilate front positions during 3 min (i.e. three the invariant multiplicity is reduced since each invariant is
front positions). The cost function rapidly drops to zero but then part of different equations and they are no longer de-
in this case the value estimated for bdth and I, differs pendent.
from the true value by 10 %. The reason is that now the ini-
tial cost function has a lower absolute value since the prop3.4 Positive lead times
agation of an inaccurate estimation is truncated in time and
therefore the effects of an incorrect assimilation are hiddenln order for it to be an operative tool, the forecasting algo-
It is worth mentioning that despite the possibility &fi and rithm must deliver the forecast ahead of the event, thus any
Iw misconverging, RoS is always correctly estimated as it hagorecast must meet the positive lead time requirement. The
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Figure 6. Computing time required for four different forecasting wind speed and direction are used as an input. The peak in the third

time lengths (10, 20, 30 and 40 min) versus the number of assimidteration of the cost function is due to the correcting algorithm that
lated fire fronts. resets negative values.

3.5.1 Wind speed as sensor data

lead time is defined as the amount of time b_etween the deIIV=I'he first step is to recast the invariants related to wind speed
ery of the forecast and the successful predicted event. If the, ; P : :
forecasting algorithm needs 25 s of computing time to deli erand wind direction by reversing, and /s into known pa-
S g algon ) . put 9 : Vel ameters. Theny, is redefined using the wind factor from

a 10 min forecast, then the lead time is 9.6 min. As shown INeothermel:
Fig. 6, the model is so fast (in the range from 2 to 25 s) that '
it delivers always a positive lead time in the order of dozens
of minutes for the case of synthetic data.

The lead time principally depends on the number of aS-Thus

similated fronts and the initial guess (i.e. iterations required '

—E
oy =CUB (g) =P(0, B, wo,8) - UB =Ly, -UM2. (19)
0

for convergence). The forecasting time lenggtteither we g\ F

ask for a 10 min or 40 min forecast) also plays a role whenfw; = P (0, wo,8) =C (ﬂ_> (20)
the forward model is computationally demanding. However, 0

due to the synthetic data scenario used in the case at hand, ifg. = 7 (0) = B, (21)

contribution is limited as shown in Fig. whereC andB are calculated with experimental correlations

derived by Rothermel anf, 8o are the nominal and the op-
timal packing ratio respectively.
The other invariant,s remains the same and, thus, the

The invariants can be adapted to different data situations. T({)Prgg(;l_ls described by three invariants plus the simulation
show the versatility of our model two different cases with '
different available data are presented as example. RoS= R(Iw;, Iw,, Imf)

In the first case, wind speed and direction are provided and"!(wy, Iwy, Imf, T) = {x,y) = H(ROS Iy, 15, T) (22)
assumed to be uniform — same wind speed and direction for ' T
all the fire perimeter — although they can vary in time. By The reason why three invariants are needed despite the new
contrast, in the second case, the fuel dépthprovided as as  sensor data is because the effect of the wind in the RoS and
sensor data and is allowed to vary spatially. Wind speed andhe firelets shape depends on fuel parameters such as the
direction can be gathered from deployed units as well as fronpacking ratio or ovendry bulk density. However, the impor-
weather stations. Regarding the information about fuel, for-tant difference is that now the wind changes in time but is
est managers usually map forest areas in advance to list theknown (it is not an invariant any more) and, therefore, the
spatially distributed characteristics. New techniques recentlyforecasting algorithm can deal with more complicated — less
brought into the field such as the use of lidar — light detec-idealised — situations.
tion and ranging Nlutlu et al, 2008, potentially increases Despite this recast being, to some extent, more compli-
the accuracy and availability of this information and openscated than the previous one, it makes it possible to identify
the door for preparing operative measuring systems for thehe invariants more accurately than the previous recast. Nev-
situations when these data are not known. ertheless, on average, more iterations are needed to reach the

3.5 Different data contexts

www.nat-hazards-earth-syst-sci.net/14/1491/2014/ Nat. Hazards Earth Syst. Sci., 14, 1498063 2014



1500 O. Rios et al.: Forecasting wind-driven wildfires using an inverse modelling approach

750~

— — —1stguess |:
iteration 4 | :
forecast
4 observed |:

650

o
S
S

y distance (m)
o
a
o

500

450

400 450 500 550 600 650 700
X distance (m)

Figure 8. Five assimilated fire fronts with 1 min intervals (black solid lines). The first guess (red dashed line) is taken to be far from the
true invariants vector to check the algorithm capability to converge. A 10 min forecast (blue solid lines) is also calculated using fuel depth as
sensor data.

required convergence which slightly increases the computingxpansion part) prevents it from being mixed wihy. As in
time. the previous cases the wind direction invariénis required
Besides considering observed values for wind speed antb close the invariant cast.

direction, the forecast algorithm can also consider meteoro- The effect of assimilating a space-dependent variable is
logical predictions to deliver a more accurate forecast wherthat RoS now also depends on the location. This adds an ex-
these quantities vary. To illustrate this, five fire fronts are as-tra non-linear behaviour to the model, since now when the
similated during 25 min (at a frequency of 1 fire front every fire front location changes, the RoS changes as well. Despite
5min). The invariants are perfectly identified with six itera- this higher complexity, our algorithm handles it in the opti-
tions as shown in Figi. Then, a forecast is launched for the misation loop and correctly matches the observations gfig.
next 25 min with a synthetic prediction of wind speed and and identifies the invariants (Fig).
direction.

3.6 Leadtime
3.5.2 Fuel depth as sensor data

The lead time for the different implementations discussed
We consider now the case where fuel depth is available an@pove is investigated by assimilating different number of fire
varies spatially but is constant. To cast the new invariants W&rgnts and recording the computing time to deliver a 30 min
use the information obtained with a sensitivity analysis per-forecast. The total assimilating time since it depends on the
formed on Rothermel's model. The analysis reveals that Ro$ssimilation frequency (i.e. the number of assimilations per
is linearly related to fuel depth as a first approximation. ynit of time). Changing this frequency has a minor influence

Thus, the RoS can now be written as on the computing time since its contribution is linear in our
forward model but might be important if more complex for-
ROS= Imfw - 8(x,y), 23 ) . :
miw - 8(1. ) (23) ward models (such as Computational Fluid Mechanics based,
where fuel deptld (x, y) varies spatially. for example). The Rothermel variables that generate the syn-

The wind contribution is now included in RGS Imsy and thetic data and the educated guess were kept constant for all
therefore we have to create a new parameter that accounts ftine scenarios when they were not sensor data (such as wind
the shape of the elliptical firelets (i.e. the eccentricity, speed, wind direction or fuel depth).
where LB stands for length-to-breadth ratio. This invariant Figurel0depicts the computing time versus the number of
also depends on wind speed and, thus, is not independemissimilated fronts. The invariant cast for the situation when
of Imfw. This does not affect the capacity of our forecasting wind speed and direction are known sensor data turns out
model sincel| g could be interpreted as a shaping factor andto be the faster case. As expected, decreasing the number
the way it is used in the forward model (only in the Huygens of invariants to be identified, speeds up the model since the
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3.7 Effect of errors in the data

ivariants: |+ +
1201 —4— 3invariants: | I+l

The fact that the synthetic data are generated with
a Rothermel-Huygens model implies that there exists at least
one true invariant vector that exactly generates the observed
fronts. However, this is not the case in reality since the for-
T ward model used is only an approximation of the real fire

o 1 dynamics. Thus, to test the forecasting algorithm in a situa-
20 8 tion where such a true vector no longer exists (thus, perfect

100~

80

Computing time [s]

ob— : - - = — convergence is then impossible), the synthetic data used in
Number of assimilated fire fronts the fuel depth sensor data case (S8c.2 have been ran-
Figure 10. Computing time for all the implementations of the fore- domly perturbed with an error unlfqrmly distributed in the
casting algorithm studied. range off0+ 10] m. Apart from exploring the response of the

forecasting algorithm in a case where the forward model can-
not properly describe the fire locations, this test can be seen
dimension of the matrices involved in the optimisation pro- as a sensitivity check of the errors and accuracy involved in
cess decreases. The exception is when fuel information iglata acquisition.
data. The spatial dependency of the fuel depth and the fact As expected, the best optimisation does not match the ob-
that RoS has to be recalculated in every node raises the congervations perfectly and, thus, the cost function converges to
puting time, and thus this case is the slower one. The effect oft value of 2500 rhinstead of zero (see Fig1). Despite this
feeding the algorithm with wind speed data becomes noticefact, the convergence of the invariants — towards true values
able above 16 assimilated fronts when the complexity of the- is still reached with an error lower than 5 %.
fire front shapes increases the number of iterations required Figure 12 shows the observed fronts and the correspond-
to reach convergence. ing optimisation after four iterations. The sharp corners in the
Despite these significant differences, when eight fronts arebserved perimeters are due to the random distribution of the
assimilated the forecast is delivered in less than 1 min anduel depth and the added error. More tests performed while
even when 24 fronts are assimilated the lead time is wellextending the error added to observation demonstrate that
above 25 min for a 30 min forecast. the algorithm manages to assimilate the observations with
A laptop with dual processor core of 2.2 GHz is used asperturbations of up ta-20 m in magnitude. The invariants
a computational tool since (as stated in the initial require-also converged in this case which demonstrates the potential
ments) the forecasting algorithm must be suitable for desktopf this forecasting algorithm even when inaccurate data are
computers. available.

4  Conclusions

A simple but powerful methodology to forecast wildfire
dynamics based on data assimilation is implemented and
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Figure 12. Perturbed fire fronts (black lines) correctly assimilated after four integrations. The invariant cast used is this3o5 Qedtere
fuel depth is used as an input and three invariants are identified.

explored focusing on wind-driven wildfires. The algorithm crease the number of invariants to several dozen. Then the
framework is general enough to be valid to different sensorautomatic direct differentiation should be switched to adjoint
data or forward models. In this work the forward model is differentiation (adjoint modelling approach) to keep the low
composed by use of Rothermel's spread theory and Huy€omputational cost requirement.
gens expansion and is challenged with synthetically gener- A discussion on whether data assimilation should involve
ated front locations. The forecasting algorithm uses directmore complex models or not might be spurious at this point.
automatic differentiation and a tangent linearisation of theThis will be decided by the International wildfire commu-
forward model to solve the optimisation problem. This strat- nity at large, specially the Fire Service. If the development
egy showed great efficiency finding the invariants within lessof weather forecasting systems over the last few decades can
than 10 iterations (runs of TLM), although special attention serve as guidance somehow for wildfire forecasting systems,
must be taken regarding multiplicity in the determination of we note that they currently simulate weather patterns in a
the invariants. Multiplicity can be avoided by extending the series of models of diverse complexity of which the grids
forward model so that it predicts extra parameters (such asange from fine and regional to global and coarse. So far, we
flame height or heat release rate) and assimilates them, aran show that our wildfire forecast method is light, fast and
including extra information about the system to break theflexible. It can be adapted to run on models of any complex-
multiplicity. The latter was implemented and illustrated in ity, and we show its strengths here using synthetic data and
two different scenarios. All the invariants were then correctly a model that, albeit rather simple, is the most widely used
identified, even when the first guess greatly differed from themodel by the international wildfire community.
true value. All the implementations had a positive lead time
(time ahead of the event). The most computationally expen-
sive implementation is the one that uses fuel depth since thécknowledgementsSupport for O. Rios from the Erasmus
ROS varies in each node of the front. Mundus European Project and the International Master of Science
in Fire Safety Engineering (IMFSE) is gratefully acknowledged.

Future work shpuld_study real sensor data (€gen et al. The authorsyalsogwant tg t(hank E)Isa I%astor f)(/)r commentg that

2013 and look into improved (more accurate yet faster) . :
. . . improved draft versions.

models. To keep developing the methodology some identi-
fied limitations should be tackled as spotting fires — which ggiteq by: D. Veynante
dO not fO||OW the CIaSSicaI (|e ROthermel) ﬁre Spread - andReviewed by A. Simeoni and two anonymous referees
the capacity of the forecasting algorithm to deal with uncer-
tainties caused by the lack of reliable data, and deliver prob-
abilistic values as outputs. To pursue this, we propose to in-
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