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Abstract. A technology able to rapidly forecast wildfire dy-
namics would lead to a paradigm shift in the response to
emergencies, providing the Fire Service with essential in-
formation about the ongoing fire. This paper presents and
explores a novel methodology to forecast wildfire dynamics
in wind-driven conditions, using real-time data assimilation
and inverse modelling. The forecasting algorithm combines
Rothermel’s rate of spread theory with a perimeter expansion
model based on Huygens principle and solves the optimisa-
tion problem with a tangent linear approach and forward au-
tomatic differentiation. Its potential is investigated using syn-
thetic data and evaluated in different wildfire scenarios. The
results show the capacity of the method to quickly predict the
location of the fire front with a positive lead time (ahead of
the event) in the order of 10 min for a spatial scale of 100 m.
The greatest strengths of our method are lightness, speed and
flexibility. We specifically tailor the forecast to be efficient
and computationally cheap so it can be used in mobile sys-
tems for field deployment and operativeness. Thus, we put
emphasis on producing a positive lead time and the means to
maximise it.

1 Towards an operative forecasting tool

Current computational wildfire dynamics simulators are not
fast enough to provide valid predictions on time (Sullivan,
2009) and require input parameters that are difficult to ac-
quire and sense during an emergency situation. A potential
solution to develop an operational forecasting tool is to as-

similate real-time sensor data (Cowlard et al., 2010), which
has been shown to greatly accelerate fire simulations without
loss of accuracy (Mandel et al., 2008; Jahn et al., 2011; Ro-
choux et al., 2013). The cornerstone to reach such a tool is
to find a computational algorithm that combines a fire model
with sensor data that reliably delivers an accurate forecast
with a positive lead time (i.e. time before the event, in the
order of 10 min for a spacial scale of 100 m), and enables
emergency responders to make better tactical decisions. At
the same time, it has to be versatile enough to be adapted
in different fire situations (range of fuels, complex topogra-
phy, weather conditions). Ideally, it should also be able to in-
corporate the effect of fire fighting actions (e.g. water lines,
fire breaks, back fires) and weather forecasts. More impor-
tantly, it should not require high computational resources (i.e.
high-performance computing or supercomputers) so that it
can also be deployed flexibly in portable devices by fire re-
sponders.

1.1 Data assimilation and inverse modelling

Inverse modelling, which is the core of data assimilation
techniques, consists of studying measurements from sensors
to gain information about the physical phenomena using a
variety of mathematical models and algorithms. This new in-
formation is then used to forecast the future evolution of the
phenomena. Instead of just writing the outputs of a model,
inverse modelling exploits the sensor outputs and aims to un-
veil the governing parameters and the boundary conditions of
the problem.
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The inverse method is particularly appropriate for wildfire
modelling due to the large amount of unknowns. The fuel
properties, location, area covered by foliage, moisture con-
tent, meteorological conditions and topography are necessary
parameters to initialise a fire model but all of them can hardly
ever be measured. By contrast, the inverse approach can find
these parameter by using a range of sensor measurements of
the ongoing fire.

Despite its promising capacity for coping with complex
problems with a large number of unknown parameters, only
few authors have tried to apply data assimilation or forecast-
ing techniques to fire science. Among these,Jahn et al.(2011,
2012) successfully pioneered the approach to forecast fires
in enclosures using both simple and complex models (two-
zone model and computational fluid dynamics). In the field
of wildfire, Mandel et al.(2009) explored this technique to
predict the time–temperature curve of a sensor placed in the
way of an advancing wildfire. They examined a reaction–
diffusion equation and a semi-empirical fire line propaga-
tion model coupled with an Eulerian level-set-based equa-
tion. Despite this progress, their implementation was found
to be unstable due to the generation of spurious fires which
cause non-physical results.

Rochoux et al.(2013) pioneered the successful application
of data assimilation to predict the location and spread of the
wildfire front using infra-red sensors. Data were assimilated
with a Kalman filter to balance computational and sensor er-
rors. Rochoux et al. (2013) assimilates perimeter locations at
different times and uses the fuel depth as the only input. The
propagating model uses two components: the rate of spread
(RoS) is represented by a product between the fuel depth (δ)
and a constant (0) to be quantified as part of the forecasting
problem (RoS= 0 · δ). Their model uses a level-set-based
equation to cast the fire perimeter. They tested the model
in a controlled small-scale experiment assimilating one fire
front and delivering a 30 s forecast. Most recently,Rochoux
et al. (2014) have presented a work that solves for more
than one parameter and uses parallel computing. Also using
a level-set model and sensor data,Lautenberger(2013) ex-
plored stochastic optimisation of the wildfire problem.Coen
et al.(2013) used satellite data to initialise a weather–wildfire
growth model at the kilometre scale.

The greatest strengths of our method presented here are
lightness, speed and flexibility. We specifically tailor the
forecast to be efficient and computationally cheap so it can
be used in mobile systems for field deployment. Thus, we put
emphasis on producing a positive lead time and the means to
maximise it, while at the same time solving for multiple pa-
rameters. These are not the objectives of other papers in the
literature. For example,Rochoux et al.(2013), the truly first
paper in the literature that effectively forecast wildfire be-
haviour, integrates measurement errors with model errors to
increase accuracy (standard procedure in weather forecast-
ing), but it comes at the price of higher computational ex-
pense.Rochoux et al.(2013) andMandel et al.(2008) use

one single parameter at a time and do not emphasize lead
times. Moreover, they seem tailored more towards supercom-
puting platforms than to mobile systems for field deploy-
ment.

Another highlight of our method is the incorporation of
automatic differentiation into the inverse model, which is ac-
curate and fast, further decreasing the computational expense
of a forecast.

1.2 Forecasting algorithm

We formulate the inverse problem based on the premise
that some invariant exists by following the contributions of
Jahn et al.(2012) on forecasting fire dynamics in enclosures.
We define the invariants as the set of governing parameters
that are mutually independent and constant for a significant
amount of time. Invariant is a concept already in the liter-
ature (Jahn et al., 2012). Therefore, our implementation re-
lies on the assumption that some physical attributes of the
system remain constant at least during some time. Those at-
tributes can be uniform, a scalar or a vector field with spatial
dependency. From the point of view of our methodology, in-
variants are a central concept to forecasting systems that do
not focus on the initial conditions only. For example, weather
forecasting (i.e.Coen et al., 2013) solves an inverse problem
to find the initial conditions, and then runs the forward model
for predictions. In our work, we solve the inverse model of
selected key parameters inside the governing equations, the
invariants, not the initial conditions. It is an essential prop-
erty of the invariants that they remain constant during the
lead time of the forecast. When any invariant changes signif-
icantly (e.g. due to divergence of the assumptions or external
conditions) its effect is to limit the lead time. Examples of
such quantity are initial fuel’s moisture content or fuel depth.
However, the invariants are not restricted to physical vari-
ables but can represent mathematical attributes of the system
as well. For instance, if the wind speed changes but its ef-
fect on the RoS remains constant (boundary layer regime is
maintained) the most important invariant will be its effect on
the rate of spread rather than the wind speed itself.

After assimilating data during a period of time (assimila-
tion window) the invariants are estimated and used to fore-
cast the perimeter evolution. This forecast is then accurate
until any of the invariants change significantly, which would
be detected with the help of the continuous data feed from
sensors. The sensor errors in the assimilated data are con-
sidered to be smaller than the model accuracy and therefore
their influence is not directly considered here. This is a com-
plementary approach to that ofRochoux et al.(2013) who
balance data errors with model errors.

Regarding sensor data feeds, in the present work we con-
sider fire front positions hypothetically supplied by airborne
observations, or ground crews.
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However, additional data such as flame height or spread-
ing rate (recently measured by infra-red images and stereo
vision; Rossi et al., 2013) could be considered in future de-
velopments.

2 Building up the forward model

The initial step when posing an inverse modelling problem
is to determine the forward model and its invariants. The for-
ward model is the set of equations that relates the invariants
to the observables (variables that can be measured with sen-
sors). Its importance in the is twofold: the forward model is
first used iteratively to quantify the invariants and then run
again to deliver a forecast valid until the invariants change or
the next assimilation process is started.

To create our forward model, we combined
Rothermel(1972) and Richards (1990) models. The
Rothermel model estimates the RoS of any point in the fire
front whereas the Richard model uses these RoS to generate
the elliptical firelets that expand the fire front and compute
its location at any time.

2.1 Rothermel’s model

Rothermel’s model is based on an energy balance equation
where the heat sources and sinks are identified to estimate
the RoS of a surface fire. The original model uses several
empirical correlations from wind-tunnel experiments for fires
spreading at quasi-steady state. This means that any acceler-
ation of the fire is not considered. The shape of the fire front
is assumed to have no influence on the RoS.

Rothermel’s equation can be recast with three invariants
(Ix), defined as follows:

RoS= Imf(1+ Iu · Iw). (1)

Imf captures the effect of all the fuel properties; ovendry
fuel loading (wo), surface-area-to-volume ratio (σ ), moisture
content (Mf), moisture of extinction (Mx) and fuel depth (δ):

Imf = F(σ,wo,δ,Mf,Mx). (2)

The wind speed is directly equal toIu:

Iu = U. (3)

The effect of the wind speed on the fire spread also de-
pends on fuel properties such as layout, bulk density, surface-
area to volume ratio and fuel depth. Its effect is embedded in
Iw as

Iw =K(σ,wo,δ) · UB−1, (4)

whereB is an empirical coefficient.

2.2 Huygens principle

Although Rothermel’s model can estimate the RoS of any
point, it is a mean value for the head fire (Rothermel, 1972)
and does not inform about different directions of spread.
Therefore, it is not sufficient in predicting the fire front shape
and location. In parallel to RoS estimation, some other model
must be used to represent the fire perimeter expansion. We
used Huygens’ principle – originally postulated to explain
light wavefront propagation – with elliptical expansion, as
proposed byRichards(1993). Applying it to wildfire, this
principle considers every point in the fire perimeter at time
t as a new ignition source that spreads during a time dt fol-
lowing an elliptical template shape – known as afirelet. The
corresponding fire front line at timet + dt is the outer curve
that envelopes the firelets centred on the rear focus as shown
in Fig. 1.

The details of the Huygens firelet model can be found in
Richards(1990, 1993), but an overview of the main concepts
and equations is provided here.

Considering the initial ignition point situated at{X0,Y0}

and using a parametrisation variables ∈ [0− 2π ], the
{(xi(t),yi(t)} coordinates of fire front vertices can be ana-
lytically calculated by integrating a set of partial differential
equations:

x(s, t̂) = X0 +

t̂∫
0

 a2(t)cosθ(t)cos(K) + b2(t)sinθ(t)sin(K)√
a2(t)cos2(K) + b2(t)sin2(K)

· c(t)sinθ(t)

dt (5)

y(s, t̂) = Y0 +

t̂∫
0

(
a2(t)sinθ(t)cos(K) + b2(t)cosθ(t)sin(K)√

a2(t)cos2(K) + b2(t)sin2(K)
· c(t)cosθ(t)

)
dt, (6)

where

K = θ(t) + s, (7)

whereθ is the wind direction andb andc are related to the
backwards and to the forward propagation velocities that can
vary spatially and are calculated by imposing Rothermel’s
rate of spread for the head fire from the new ignition point:

b(s, t) + c(s, t) ≡ RoS(s, t). (8)

The lateral front velocitya, however, is directly related to the
eccentricity of the firelet. It was originally estimated using
an experimental correlation found byAnderson(1983) that
relates the ratio between the major and the minor firelet’s
axis, and thus, the ratio betweenb anda (independent of the
time step1t used). Its value depends on the wind speed (U )
in accordance with the equation

a(s, t)

b(s, t)
= 0.936e0.2566U

+0.461e−0.1548U
−0.397≡ LB. (9)

Note that the power coefficients in this empirical equation
have units of [s m−1], LB is called length-to-breadth ratio
and accounts for the eccentricity of the elliptical firelets. The
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Figure 1. Example of Huygens expansion with elliptical firelets (grey lines) from an ignition point (red dot in the centre). Ten fire fronts
(blue lines) are plotted during the spread of the fire over an heterogeneous fuel depth (0.6± 0.3 m) and under changing wind (5± 2 m s−1)
speed and direction at every time step (1 min each). This Rothermel–Huygens model is also used in FARSITE (Finney, 1998).

constant 0.397 is a modification of Anderson’s original for-
mula to ensure that the fire expands circularly (LB= 1) un-
der no-wind conditions (U = 0).

Once the LB,a, b, c velocities can be calculated using
Eqs. (8) and (9) and the elliptical geometry properties:

a = RoS
1+ 1/HB

2LB
(10)

b = RoS
1+ 1/HB

2
(11)

c = b −
RoS

HB
, (12)

where

HB =
LB +

√
LB2 − 1

LB −
√

LB2 − 1
.

If the invariantIu = U , introduced in Rothermel’s model,
is reused in Huygens’ firelets expansion, only one additional
invariant is required to account for the principal direction of
spreading determined by the wind direction:

Iθ = θ. (13)

The forward model is then a function of four invariants:

M(Iu,Iw,Imf,Iθ ,T ) =

{
RoS=R(Iu,Iw,Imf)

{x,y} =H(RoS,Iu,Iθ ,T ),

(14)

whereT is the time when the latest sensor data arrive,R
represents Rothermel’s model with cast invariants (Eq.1) and
H the firelet expansion (from Eqs.5 and6).

Depending on the available sensor data, the invariants can
be turned into input data for the problem. For example, if
reliable wind speed data arrive, there is no need to solve for
it but instead it is directly used as input in the forward model.

2.3 Cost function

The invariants are calculated by minimising a cost function
J that measures the difference between the model output
and the sensor observations. The cost function proposed is
the Euclidean norm summed over the different assimilation
times:

J (p) =

tf∑
t=ti

√[
xi − x̂i(p)

]T Wi

[
xi − x̂i(p)

]
, (15)

where{xi} ∈ R2 are theN -coordinate set of the observed fire
front position in a given time stepi andx̂i(p) =Mx(p) are
the corresponding model output positions for a set of invari-
ants (p). Wi is a weigh function that could be used to give
more importance to particular sets of sensor data. However,
in the present work no weighting function is used (Wi =

I) but the framework is set to allow introductions of non-
uniform weights in future work (for example to give more
importance to aerial images than to in situ observations).
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Equation (15) can be simplified if thex–y coordinates are
concatenated as one-row vectoryi andỹi =Mi(p):

J (p) =

tf∑
t=ti

√[
yi − ỹi(p)

]T [
yi − ỹi(p)

]
. (16)

Although the square root gives the correct Euclidean norm,
it does not affect the minimisation and therefore was re-
moved for the computational implementation. Each observed
front (yi) is angularly discretised between rays emanating
from the origin of coordinates. The model output (ỹi) is
also angularly discretised at each optimisation step, so a La-
grangian framework is used and updated for the evaluation of
the cost function. No refinement is added regarding the front
convexity, although this could be explored in further versions
of the work to handle more complex front shapes.

2.4 Optimisation

There are two main approaches to minimise Eq. (16):
gradient-free or gradient-based (Nocedal and Wright, 1999).
The first group are stochastic algorithms that evaluate the
cost functionJ (p) at many points to find the absolute
minimum, whereas the second group use an initial guess
(pb) and follow the gradient direction towards the clos-
est minimum. Although gradient-free algorithms can sweep
a broader search space to find the absolute minimum, they
have to evaluate the cost function multiple times which is
computationally expensive if the forward model is slow. On
the other hand, when the cost function is continuous and the
possible range of values of the invariants(p) is known as it is
in our problem), the gradient-based algorithms are more suit-
able and efficient. Gradient-based algorithms can converge
to a local minima instead of a global one. However, the ex-
tended sensitivity analysis performed on our problem showed
that the system is benign in the sense that all the functions in-
volved behave smoothly.

If the forward modelJ (p) is linear then the cost function
is quadratic and can be minimised by solving a system of
linear equations (as will be shown in the following sections).
For forward models that are not linear – as is the case – the
tangent linear model (TLM) is used for local linearisation
(Griewank, 2000).

2.5 Tangent linear model

The TLM consists in linearising the forward modelM(p) in
the vicinity of an initial guesspb. This linearisation can be
done if the model is weakly nonlinear, as in this case. The vi-
ability of the TLM relies on the initial guess and the fact that
the procedure is iterated until convergence. To calculate the
TLM we use first-order Taylor series expansion aroundpb.

The gradient of the linearised function is then

∇pJ (p) = 2
tf∑

t=ti

[(
∇pMi(p

b)(p − pb)
)]T

(17)[
yi −

(
Mi(p

b) + ∇pMi(p
b)(p − pb)

)]
.

Applying the first-order condition for minimisation and in-
troducing the following notation:

M i =Mi(p
b)

Hi = ∇pMi(p
b)

pi = (p − pb)

gives

tf∑
t=ti

HT
i Hip =

tf∑
t=ti

HT
i (yi − M i), (18)

which is a linear system that can be easily solved by us-
ing a QR factorisation with column pivoting (Nocedal and
Wright, 1999).

2.6 Automatic differentiation

Calculating the Jacobian multiplication termHT
i Hi in

Eq. (18) requires partially differentiating the model with re-
spect to the different invariants. This has to be donep×2n×

m times, wherep is the number of invariants used, 2n the co-
ordinates of the fire front andm is the number of times that
data arrives during the assimilation window..

The simplest way to numerically evaluate the Jacobian is
by finite centred differences:

Hj
k,i =

∂Mj
i (p

b)

∂pk

'
Mj

i

(
pb

+ εk

)
−Mi(p

b)

||εk||
,

whereεk ∈ Rp
= {0,0, . . . ε, . . .0} is a small perturbation of

magnitudeε in the positionk.
But this approach has two downsides: the forward model

has to be evaluated twice each time, andε should be reduced
as much as possible which introduces numerical truncation
errors (Griewank, 2000). For these reasons, we discarded fi-
nite differences and chose an automatic differentiation ap-
proach.

Automatic differentiation allows to directly calculate the
Jacobian matrixHi (normally calledTangent Linearor For-
ward) or HT

i (calledAdjoint). It consists of iteratively apply-
ing the chain rule of differential calculus to the programming
code of the forward model and so obtain directly the code for
all the partial derivatives.

Automatic differentiation is also suitable to differentiate
numerical integral evaluations – as in our case – since all
the statements can be split down to elemental mathematical
operations.
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Figure 2.Program structure flow diagram. Orange boxes are the required inputs, green box is the output and red box shows additional inputs.

The tangent linear differentiation is preferable when the
number of observables 2n (i.e. model outputs) is much larger
than the number of invariantsp. By contrast, calculating the
adjoint differentiation is more convenient and efficient when
there is a large number of invariants. Therefore, in the present
work, we use tangent linear differentiation.

In future work, if the number of invariants is increased,
the Adjoint Automatic Differentiation should be explored
to keep the computational efficiency high and maximise the
lead time.

2.7 Structure of forecasting algorithm

Figure2 summarises the principal parts of the assimilating
and inverse modelling program.

First, fire front positionsy are assimilated during a specific
period of time (called assimilation windows). Meanwhile, an
educated guess estimates the first set of invariantspb. This
first guess is based on roughly estimated data. Its influence
on the model is explored in Sect.3.1. This invariant guess is
input into the forward model together with the timeT of the
last sensor data arrival and one known fire front position (or
the initial ignition point)M(pb,T ,y0). The consequent first
prediction set of fronts̃yi is compared with the assimilated
data by means of the cost functionJ (ỹ − y) (see Eq.16).
If the the cost function is not zero, the algorithm starts the
optimisation loop.

The first statement in the loop is to calculate the Jacobian
terms in Eq. (16). The output is a new set of values for in-
variantspk that is input to the forward model to get a new
estimated set of fire fronts. If the convergence criteria are
met, then the best estimated invariants vector has been found
(p∗) and thus the forecast is delivered by running the for-
ward model at until the forecast timetF . Otherwise, the loop
is iterated again.

The fact that a loop is needed to estimate the invariants
reduces the inaccuracy added by applying a tangent linear
approach to a nonlinear model since in every new iteration
the model is linearised (i.e. the differentiated forward model
is run) in a new state point (pk+1). In addition, if any of the
new invariant values in the vectorpk+1 exceeds the physical
range, its value is set back to the initial guess to prevent non-
physical results.

Note that every time that the differentiated forward model
is run, the forward model is also evaluated. Thus the forward
model is always evaluated at the same time as the differenti-
ated model, speeding up the algorithm and enabling the use
of complex forwards models that would be prohibitive with
a finite differences approach.

Regarding convergence, two criteria can be requested. The
first is to state a maximum allowable error for the predictions
via the cost function. The second is to state a maximum al-
lowable change between consecutive invariant vectors. While
the first criterion ensures the predictions match the observa-
tions, the second criteria might not always do so. In the fol-
lowing sections, both criteria are explored and compared.

2.8 Synthetic data

In order to investigate the capabilities of the forecasting al-
gorithm, we use it with synthetic data that works as a con-
trolled experiment before challenging it with real data. The
synthetic data were generated also by a Rothermel–Huygens
firelet expansion model. Fuels properties provided byScott
and Burgan(2005) were used. The synthetic data are input to
the forecasting algorithm in due time mimicking the sensor
data acquisition in a real wildfire.

Nat. Hazards Earth Syst. Sci., 14, 1491–1503, 2014 www.nat-hazards-earth-syst-sci.net/14/1491/2014/
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Figure 3. Guess, observation and iterations of fire fronts in anx–y plane (plan view of a wildfire). The black triangles are the 15 observed
perimeters. The red dashed lines are the fire fronts generated with the first guess and the dashed lines are the following iterations. The last
iteration is the green solid lines.

3 Results

The performance of the forecasting algorithm is investigated
in different situations where synthetic data simulate the ob-
servations to assimilate. The tests are performed for different
values of parameters like the assimilation window, assimi-
lated data (fire fronts locations and feeding frequency) and
initial guess. We look at several features like convergence
of the invariants, minimisation of the cost function, effect of
the initial guess, effect of the assimilating window width, the
computing time and the leading times obtained.

The same methodology is also applied with alternative in-
variants to handle situations where some of the quantities as-
sumed as constant are allowed to vary.

In all of the following tests, punctual ignition source is
considered as the initial integration point for the fire front
expansion. This ignition point source is depicted as a red spot
in all the plots and is a required piece of information to run
the forecasting algorithm. In a real wildfire situation, it could
be identified as the first reported location of the fire. If the fire
has spread out before the first bit of information arrives and it
is no longer a point source, the first assimilated fire front can
be also used as a virtual ignition perimeter by considering the
whole fire front as a set of initial ignition sources.

3.1 Initial guess

The forecasting algorithm needs an initial guess of the invari-
ant value where the first tangent linear approximation (TLM)
is performed. This first educated guess can be directly gener-
ated within the range of validity of each invariant – without
considering any hint from the actual wildfire – or by using
Rothermel equivalent equations (Eqs.2–4 and13) and esti-
mating the six physical underlying quantitiesδ, Mf , Mx, σ ,
W0 andθ which can be roughly done by observing the fuel
and wind.

The six initialising quantities were studied over the range
of values found according to operational-based considera-
tions. For instance, the fuel depthδ can be easily distin-
guished to be between 5 cm pine needle litter or 1 m for
tall grass. Its offset of the initial guess is lower than 1.50 m.
In contrast, some other variables such as moisture content
(Mmf) or ovendry fuel loading (wo), cannot be estimated with
such easy and therefore the possible offset is much larger.

3.2 Quantifying the invariants

The first scenario investigated here assimilates 15 fire fronts
during a window width of 15 min (i.e. data of the fire front
position arrives once every minute). The invariants converge
within 3 iterations (i.e. three runs of TLM). Figure3 shows
the observed data, the fronts generated with the initial guess
of invariants and the respective fire fronts after each iteration
until convergence is reached. The invariants and cost function
convergence are shown in Fig.4. The cost function shows
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1498 O. Rios et al.: Forecasting wind-driven wildfires using an inverse modelling approach

1st guest 1 2 3
−50

−30

−10

10

30

50

of
f−

se
t t

ru
e 

vl
au

e 
[%

]

# Iterations

 

 

1st guest 1 2

0

5000

C
os

t F
un

ct
io

n 
V

al
ue

 [m
2 ]

I
u

Iθ I
w

I
mf Cost
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a rapid decrease towards zero. Its slope quantifies the con-
vergence rate. At the first iteration the slope is steep which
indicates that the algorithm quickly corrects the large dis-
crepancies. As the cost decreases so does the slope, indicat-
ing that convergence is achieved. Fig.4 also shows that all
invariants converge to the true values with 2 % of difference.

3.3 Invariant Multiplicity

The window width (WW) is the length of time during which
the forecasting algorithm is being fed data (i.e. fire front lo-
cation in the case at hand). The time between consecutive
fire front observations is called assimilation period (1T )
and can be directly related to the assimilating frequency
(F = 1/1T ).

The main effect of the number of assimilated fronts
(WW/1T ) is resolving the problem of invariant multiplic-
ity (or interdependence). Multiplicity is when different val-
ues of two or more invariants lead to the same prediction of
the fire perimeter. The value of the cost function tends to in-
crease as the assimilation window increases and more fronts
are assimilated. The error of the initial guess amplifies with
the propagation (the previous fire front position is required
to calculate the new one) and therefore the forecasting algo-
rithm is more sensitive to the wrong identification of invari-
ants. This is shown in Fig.5 where instead of assimilating
15 min (and 15 fire fronts) – as in the converging example
Fig. 4 – we assimilate front positions during 3 min (i.e. three
front positions). The cost function rapidly drops to zero but
in this case the value estimated for bothImf andIw differs
from the true value by 10 %. The reason is that now the ini-
tial cost function has a lower absolute value since the prop-
agation of an inaccurate estimation is truncated in time and
therefore the effects of an incorrect assimilation are hidden.
It is worth mentioning that despite the possibility ofImf and
Iw misconverging, RoS is always correctly estimated as it has
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Figure 5.Convergence of cost function (dashed line, right axis) and
individual convergence of each invariant to true value (solid line,
left axis). Assimilation windows= 3 min (1 assimilation min−1).

no multiplicity in the forward model and only one value can
fit the observations.

One way to deal with multiplicity is by defining only one
invariant for the RoS. This approach, however, does not al-
low for the forecasting algorithm to be ameliorated if extra
data become available (as will be done in Sect.3.5) since no
information about particular contributions is achieved. Thus,
a more interesting way to diminish multiplicity is to recast
the invariants and input extra data in a way that they become
functionally independent. For instance, if the fuel–moisture
invariant is multiplied by a measurable quantity (such as fuel
depth or moisture content) that varies spatially or over time,
then its value is no longer exchangeable with the wind fac-
tor. The same strategy could be used for the wind invariant if
wind speed is known. This approach is successfully explored
in the following sections.

The third way to deal with multiplicity is by assimilating
additional quantities that are predicted by the forward model.
It is worth pointing out the difference between inputting addi-
tional values and assimilating more data. The first consists of
extra inputs to run the forward model and allows it to handle
more complex situations. Examples of this could be informa-
tion of moisture content, fuel properties or wind speed. More
data assimilation, in contrast, requires more outputs from the
forward model. Thus, in our case, only the positions of the
fronts are assimilated but the forward model can be comple-
mented so it delivers additional characteristics such as flame
height or fire intensity. By assimilating this additional data
the invariant multiplicity is reduced since each invariant is
then part of different equations and they are no longer de-
pendent.

3.4 Positive lead times

In order for it to be an operative tool, the forecasting algo-
rithm must deliver the forecast ahead of the event, thus any
forecast must meet the positive lead time requirement. The
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Figure 6. Computing time required for four different forecasting
time lengths (10, 20, 30 and 40 min) versus the number of assimi-
lated fire fronts.

lead time is defined as the amount of time between the deliv-
ery of the forecast and the successful predicted event. If the
forecasting algorithm needs 25 s of computing time to deliver
a 10 min forecast, then the lead time is 9.6 min. As shown in
Fig. 6, the model is so fast (in the range from 2 to 25 s) that
it delivers always a positive lead time in the order of dozens
of minutes for the case of synthetic data.

The lead time principally depends on the number of as-
similated fronts and the initial guess (i.e. iterations required
for convergence). The forecasting time lengthtF (either we
ask for a 10 min or 40 min forecast) also plays a role when
the forward model is computationally demanding. However,
due to the synthetic data scenario used in the case at hand, its
contribution is limited as shown in Fig.6.

3.5 Different data contexts

The invariants can be adapted to different data situations. To
show the versatility of our model two different cases with
different available data are presented as example.

In the first case, wind speed and direction are provided and
assumed to be uniform – same wind speed and direction for
all the fire perimeter – although they can vary in time. By
contrast, in the second case, the fuel depthδ is provided as as
sensor data and is allowed to vary spatially. Wind speed and
direction can be gathered from deployed units as well as from
weather stations. Regarding the information about fuel, for-
est managers usually map forest areas in advance to list their
spatially distributed characteristics. New techniques recently
brought into the field such as the use of lidar – light detec-
tion and ranging (Mutlu et al., 2008), potentially increases
the accuracy and availability of this information and opens
the door for preparing operative measuring systems for the
situations when these data are not known.
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Figure 7. Convergence of the cost function and the invariants when
wind speed and direction are used as an input. The peak in the third
iteration of the cost function is due to the correcting algorithm that
resets negative values.

3.5.1 Wind speed as sensor data

The first step is to recast the invariants related to wind speed
and wind direction by reversingIu and Iθ into known pa-
rameters. ThenIw is redefined using the wind factor from
Rothermel:

8w = CUB

(
β

β0

)−E

= P(σ,β,wo,δ) · UB
= Iw1 · U Iw2 . (19)

Thus,

Iw1 = P(σ,wo,δ) = C

(
β

β0

)−E

(20)

Iw2 = F(σ ) = B, (21)

whereC andB are calculated with experimental correlations
derived by Rothermel andβ,β0 are the nominal and the op-
timal packing ratio respectively.

The other invariantImf remains the same and, thus, the
model is described by three invariants plus the simulation
timeT :

M(Iw1,Iw2,Imf,T ) =

{
RoS=R(Iw1,Iw2,Imf)

{x,y} =H(RoS,Iu,Iθ ,T ).
(22)

The reason why three invariants are needed despite the new
sensor data is because the effect of the wind in the RoS and
the firelets shape depends on fuel parameters such as the
packing ratio or ovendry bulk density. However, the impor-
tant difference is that now the wind changes in time but is
known (it is not an invariant any more) and, therefore, the
forecasting algorithm can deal with more complicated – less
idealised – situations.

Despite this recast being, to some extent, more compli-
cated than the previous one, it makes it possible to identify
the invariants more accurately than the previous recast. Nev-
ertheless, on average, more iterations are needed to reach the
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Figure 8. Five assimilated fire fronts with 1 min intervals (black solid lines). The first guess (red dashed line) is taken to be far from the
true invariants vector to check the algorithm capability to converge. A 10 min forecast (blue solid lines) is also calculated using fuel depth as
sensor data.

required convergence which slightly increases the computing
time.

Besides considering observed values for wind speed and
direction, the forecast algorithm can also consider meteoro-
logical predictions to deliver a more accurate forecast when
these quantities vary. To illustrate this, five fire fronts are as-
similated during 25 min (at a frequency of 1 fire front every
5 min). The invariants are perfectly identified with six itera-
tions as shown in Fig.7. Then, a forecast is launched for the
next 25 min with a synthetic prediction of wind speed and
direction.

3.5.2 Fuel depth as sensor data

We consider now the case where fuel depth is available and
varies spatially but is constant. To cast the new invariants we
use the information obtained with a sensitivity analysis per-
formed on Rothermel’s model. The analysis reveals that RoS
is linearly related to fuel depthδ as a first approximation.
Thus, the RoS can now be written as

RoS= Imfw · δ(x,y), (23)

where fuel depthδ(x,y) varies spatially.
The wind contribution is now included in RoS= Imfw and

therefore we have to create a new parameter that accounts for
the shape of the elliptical firelets (i.e. the eccentricity):ILB ,
where LB stands for length-to-breadth ratio. This invariant
also depends on wind speed and, thus, is not independent
of Imfw. This does not affect the capacity of our forecasting
model sinceILB could be interpreted as a shaping factor and
the way it is used in the forward model (only in the Huygens

expansion part) prevents it from being mixed withImfw. As in
the previous cases the wind direction invariantIθ is required
to close the invariant cast.

The effect of assimilating a space-dependent variable is
that RoS now also depends on the location. This adds an ex-
tra non-linear behaviour to the model, since now when the
fire front location changes, the RoS changes as well. Despite
this higher complexity, our algorithm handles it in the opti-
misation loop and correctly matches the observations (Fig.8)
and identifies the invariants (Fig.9).

3.6 Lead time

The lead time for the different implementations discussed
above is investigated by assimilating different number of fire
fronts and recording the computing time to deliver a 30 min
forecast. The total assimilating time since it depends on the
assimilation frequency (i.e. the number of assimilations per
unit of time). Changing this frequency has a minor influence
on the computing time since its contribution is linear in our
forward model but might be important if more complex for-
ward models (such as Computational Fluid Mechanics based,
for example). The Rothermel variables that generate the syn-
thetic data and the educated guess were kept constant for all
the scenarios when they were not sensor data (such as wind
speed, wind direction or fuel depth).

Figure10depicts the computing time versus the number of
assimilated fronts. The invariant cast for the situation when
wind speed and direction are known sensor data turns out
to be the faster case. As expected, decreasing the number
of invariants to be identified, speeds up the model since the
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Figure 9. Cost function and invariant convergence when fuel depth
is sensor data.
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dimension of the matrices involved in the optimisation pro-
cess decreases. The exception is when fuel information is
data. The spatial dependency of the fuel depth and the fact
that RoS has to be recalculated in every node raises the com-
puting time, and thus this case is the slower one. The effect of
feeding the algorithm with wind speed data becomes notice-
able above 16 assimilated fronts when the complexity of the
fire front shapes increases the number of iterations required
to reach convergence.

Despite these significant differences, when eight fronts are
assimilated the forecast is delivered in less than 1 min and
even when 24 fronts are assimilated the lead time is well
above 25 min for a 30 min forecast.

A laptop with dual processor core of 2.2 GHz is used as
a computational tool since (as stated in the initial require-
ments) the forecasting algorithm must be suitable for desktop
computers.
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Figure 11. Convergence of cost function (black dashed line) and
invariants (solid lines) when perturbed data are assimilated.

3.7 Effect of errors in the data

The fact that the synthetic data are generated with
a Rothermel–Huygens model implies that there exists at least
one true invariant vector that exactly generates the observed
fronts. However, this is not the case in reality since the for-
ward model used is only an approximation of the real fire
dynamics. Thus, to test the forecasting algorithm in a situa-
tion where such a true vector no longer exists (thus, perfect
convergence is then impossible), the synthetic data used in
the fuel depth sensor data case (Sect.3.5.2) have been ran-
domly perturbed with an error uniformly distributed in the
range of[0±10] m. Apart from exploring the response of the
forecasting algorithm in a case where the forward model can-
not properly describe the fire locations, this test can be seen
as a sensitivity check of the errors and accuracy involved in
data acquisition.

As expected, the best optimisation does not match the ob-
servations perfectly and, thus, the cost function converges to
a value of 2500 m2 instead of zero (see Fig.11). Despite this
fact, the convergence of the invariants – towards true values
– is still reached with an error lower than 5 %.

Figure12 shows the observed fronts and the correspond-
ing optimisation after four iterations. The sharp corners in the
observed perimeters are due to the random distribution of the
fuel depth and the added error. More tests performed while
extending the error added to observation demonstrate that
the algorithm manages to assimilate the observations with
perturbations of up to±20 m in magnitude. The invariants
also converged in this case which demonstrates the potential
of this forecasting algorithm even when inaccurate data are
available.

4 Conclusions

A simple but powerful methodology to forecast wildfire
dynamics based on data assimilation is implemented and
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Figure 12.Perturbed fire fronts (black lines) correctly assimilated after four integrations. The invariant cast used is this of Sect.3.5.2where
fuel depth is used as an input and three invariants are identified.

explored focusing on wind-driven wildfires. The algorithm
framework is general enough to be valid to different sensor
data or forward models. In this work the forward model is
composed by use of Rothermel’s spread theory and Huy-
gens expansion and is challenged with synthetically gener-
ated front locations. The forecasting algorithm uses direct
automatic differentiation and a tangent linearisation of the
forward model to solve the optimisation problem. This strat-
egy showed great efficiency finding the invariants within less
than 10 iterations (runs of TLM), although special attention
must be taken regarding multiplicity in the determination of
the invariants. Multiplicity can be avoided by extending the
forward model so that it predicts extra parameters (such as
flame height or heat release rate) and assimilates them, or
including extra information about the system to break the
multiplicity. The latter was implemented and illustrated in
two different scenarios. All the invariants were then correctly
identified, even when the first guess greatly differed from the
true value. All the implementations had a positive lead time
(time ahead of the event). The most computationally expen-
sive implementation is the one that uses fuel depth since the
RoS varies in each node of the front.

Future work should study real sensor data (e.g.Coen et al.,
2013) and look into improved (more accurate yet faster)
models. To keep developing the methodology some identi-
fied limitations should be tackled as spotting fires – which
do not follow the classical (i.e. Rothermel) fire spread – and
the capacity of the forecasting algorithm to deal with uncer-
tainties caused by the lack of reliable data, and deliver prob-
abilistic values as outputs. To pursue this, we propose to in-

crease the number of invariants to several dozen. Then the
automatic direct differentiation should be switched to adjoint
differentiation (adjoint modelling approach) to keep the low
computational cost requirement.

A discussion on whether data assimilation should involve
more complex models or not might be spurious at this point.
This will be decided by the International wildfire commu-
nity at large, specially the Fire Service. If the development
of weather forecasting systems over the last few decades can
serve as guidance somehow for wildfire forecasting systems,
we note that they currently simulate weather patterns in a
series of models of diverse complexity of which the grids
range from fine and regional to global and coarse. So far, we
can show that our wildfire forecast method is light, fast and
flexible. It can be adapted to run on models of any complex-
ity, and we show its strengths here using synthetic data and
a model that, albeit rather simple, is the most widely used
model by the international wildfire community.
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