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Abstract. When designing or maintaining an hydraulic struc-
ture, an estimate of the frequency and magnitude of extreme
events is required. The most common methods to obtain
such estimates rely on the assumption of stationarity, i.e. the
assumption that the stochastic process under study is not
changing. The public perception and worry of a changing cli-
mate have led to a wide debate on the validity of this assump-
tion. In this work trends for annual and seasonal maxima in
peak river flow and catchment-average daily rainfall are ex-
plored. Assuming a two-parameter log-normal distribution,
a linear regression model is applied, allowing the mean of
the distribution to vary with time. For the river flow data, the
linear model is extended to include an additional variable, the
99th percentile of the daily rainfall for a year. From the fitted
models, dimensionless magnification factors are estimated
and plotted on a map, shedding light on whether or not geo-
graphical coherence can be found in the significant changes.
The implications of the identified trends from a decision-
making perspective are then discussed, in particular with re-
gard to the Type I and Type II error probabilities. One strik-
ing feature of the estimated trends is that the high variability
found in the data leads to very inconclusive test results. In-
deed, for most stations it is impossible to make a statement
regarding whether or not the current design standards for the
2085 horizon can be considered precautionary. The power of
tests on trends is further discussed in the light of statistical
power analysis and sample size calculations. Given the ob-
served variability in the data, sample sizes of some hundreds
of years would be needed to confirm or negate the current
safety margins when using at-site analysis.

1 Introduction

A realistic estimate of the expected high flows of a river is
of vital importance when designing hydraulic structures or
when assessing the flood risk of a certain area. Such esti-
mates are typically obtained through frequency analysis of
annual maxima series (AMS) of observed peak flows using
statistical extreme value models (e.g.Stedinger et al., 1993;
Institute of Hydrology, 1999). The standard methods for the
frequency analysis of extreme events assume that the sta-
tistical properties of the extreme generating process are not
changing, which is to say that the stochastic process is sta-
tionary. It has long been recognized that the assumption of
stationarity is, at best, an approximation, since anthropogenic
activities such as construction of reservoirs, urbanization and
channel alignment will most likely have introduced changes
in the river flow process in many catchments. More recently,
concerns over the potential impact of climate change on the
hydrological process have been raised (e.g.Hirsch, 2011).
The perception that the river flow process is changing has
caused a lively debate on whether stationarity should be dis-
regarded in favour of different approaches based on climate
modelling, (e.g.Milly et al., 2008) or whether, even acknowl-
edging that stationarity is at best an approximation, it should
still be the starting point for any analysis (e.g.Stedinger and
Griffis, 2011; Cohn and Lins, 2005). In view of the exten-
sive discussion on climate change and its impact on the natu-
ral processes, much effort has been put into investigating the
existence, or not, of trends in hydro-meteorological records.
Hannaford and Marsh(2008), for example, investigated the
hydrological flow records from 87 undisturbed “benchmark
catchments” in the UK and concluded that there was evi-
dence of upward trend in high-flow data (but not for the
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annual maximum) from maritime-influenced upland catch-
ments in the north and west of the UK. However, there was no
compelling evidence for trend in lowland areas in the south
and east of the country. A further study byHannaford and
Buys (2012) investigated the seasonal changes in different
flow quantiles for the same benchmark catchments, divid-
ing the year into four different seasons. They found that the
proportion of catchments with a relevant change can be very
different for the different flow quantiles, and that the propor-
tion of catchments showing high increases or decreases in
high flows can be very variable from season to season.Laizé
and Hannah(2010) also discuss the importance of studying
trends not only in the annual series but also dividing the
data into different seasons. Trends in UK extreme rainfall
data have been studied byJones et al.(2013) who reported
an increase of intensity in long-duration events, but a de-
cline in intensity for short-duration summer rainfall.Jenk-
ins et al.(2008) also report a decrease in rainfall during the
summer season and an increase in winter rainfall, with a par-
ticular increase of high-rainfall events in winter. AsRodda
et al. (2010) point out, it is difficult to discern whether or
not the observed changes in extreme rainfall pattern can be
linked to human activities, as the signal for change can be
quite variable. The appropriate methodology and approaches
used in trend studies are still a debated issue: the same di-
rection of a signal in a data series can be identified by dif-
ferent methods, but these might give contrasting indications
when it comes to evaluating the statistical and practical sig-
nificance of the estimated signal; seeLins and Cohn(2005)
for a full commentary on this. In fact, novel approaches are
continuously being introduced, adapting the standard statis-
tical methods to the actual properties found in the observed
data series, which are in most cases relatively short and there-
fore only provide a limited view of a very complex, variable
and potentially slow-changing processes. Examples of stud-
ies attempting to address issues of incomplete information on
long-term change and variability in the flood series include
Salas and Obeysekera(2014), who revise the methods for re-
turn period estimation using a geometric distribution and in-
troduce changing probabilities over time; in order to reduce
the variability of return period estimates obtained by the short
recorded annual maxima series,Macdonald et al.(2013) and
Gaume et al.(2010) propose to include historical evidence
of large floods;Cohn and Lins(2005) discuss the importance
of accounting for long-term persistence in the data series and
how this would affect tests for non-stationarity;Renard et al.
(2008) discuss methods to simultaneously analyse data from
homogeneous regions to assess regional consistency and field
significance;Merz et al.(2012) point out that a more rigor-
ous approach is needed when reporting cause–effect claims
and stress the need for sound hypothesis-testing frameworks.
The methods presented in this work deal with the analysis of
annual and seasonal maxima, although peaks over the thresh-
old (POT) methods are also widely used in flood frequency
analysis: rather than using the maximum recorded in each

year these models are used to model series of exceedances
of a high threshold (e.g.Lang et al., 1999for an introduction
on POT models). POT data might indeed offer larger series
and allow for the frequency of large floods to be directly es-
timated. However, annual POT series are not as widely avail-
able as annual maxima series, and for the UK no seasonal
POT series exist, or could be readily produced from the raw
data available to the authors.

This study investigates trends in the annual and seasonal
maximum instantaneous peak river flow and catchment av-
erage daily rainfall totals, and discusses the statistical test-
ing framework by which trends are generally identified. First
a simple trend model is applied to the observed series of both
river flow and rainfall: assuming a two-parameter log-normal
distribution, an estimate for trends in time is then obtained by
the least squares method applied to the log-transformed se-
ries (see Sect.3). The estimated trend can be transformed
into a dimensionless magnification factor which indicates
how theT-year flood would change on a given timescale.
The magnification factors are computed for a large number
of catchments across the UK (see Sect.4), i.e. the analy-
sis is not restricted to catchments with a near-natural flow
regime. In Sect.4.1 results for near-natural flow regimes are
discussed. For the peak river flow series, the initial model
with time as the only variable is further extended by includ-
ing a process-related variable to account for the effect of
the rainfall-related climate variability. Estimates for the time
component in this latter model will give a better indication
of whether any change can be detected in the high-flow pro-
cess itself. Finally, Sect.5 discusses the implications that the
estimated trends could have for decision making in terms of
statistical hypothesis testing and power analysis, focusing on
the annual peak river flow maxima model as this will be most
relevant for the design and maintenance of hydraulic struc-
tures.

2 Data

The different data sets employed in the study, the annual and
seasonal (summer and winter) instantaneous peak river flow
and the catchment-average daily rainfall, are introduced be-
low. An annual maxima for a water year indicates the maxi-
mum value recorded in the period from October to Septem-
ber. Winter events are the ones occurring in the October–
March period, summer events the ones occurring in the
April–September period.

2.1 Peak river flow data

The annual maximum series and seasonal maximum series of
peak river flow were extracted from the monthly maximum
peak flow data available from the UK National River Flow
Archive (NRFA). Only catchments which were classified as
being “suitable for QMED” and “suitable for Pooling” in the
National River Flow Archive HiFlows-UK data set v.3.1.1
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(National River Flow Archive, 2014) have been included in
the study. This should ensure that only flood data of rea-
sonably good quality are included. In addition, a minimum
record length of 20 years was imposed for a catchment to be
included in the study. A further quality control was done by
manually inspecting records for which a Pettitt test indicated
the presence of a change point. For some of the series where
a change point was identified, a comparison between the an-
nual series available from HiFlows-UK and the annual series
extracted from the monthly data showed large discrepancies,
mostly due to changes in the gauging structure and/or rating
curve. Series in which HiFlows-UK reported about changes
in the rating curve or the gauging structure were removed;
if no reason was found to justify a change in the data, the
series were kept in the study. This was done to exclude sta-
tions in which unnatural changes have occurred, as these sta-
tions would often show significant large trends. AsRenard
et al. (2008) point out, keeping series which are affected by
quality issues in the data set might distort the perception of
the size and direction of the natural changes. After the re-
moval of series which experienced spurious changes, the an-
nual maxima for the peak flow of each station were extracted
and compared to the HiFlows-UK AMAX data. If for a sta-
tion large discrepancies were found between the two series
the station was discarded from the final study: this step would
ensure that only stations in which data have gone through a
complete quality control are present in the study. Finally, for
each station, the information is considered as missing if data
were missing for more than two months in a water year. The
time coverage of the peak flow series for the different hydro-
metric areas are shown in Fig.1. A map with the location of
the hydrometric areas can be found atNational River Flow
Archive (2014) or in Marsh and Hannaford(2008), where
the Severn and the Trent areas are both included in the EA
Midlands hydrometric area. Note that stations are grouped
into hydrometric areas based on the actual authority respon-
sible for the maintenance of the gauging stations, not on the
stations’ hydrological characteristics. The data coverage be-
gins in 1935 and the number of gauged catchments increases
with time. By the mid-1970s most of the catchments included
in the study are gauged, although missing data are present in
some records. Water years in which the annual maxima was
recorded during the summer months are shown in red. There
are visible clusters of summer events in the different areas for
some years; this is just one of the many indications of how
correlated the series for neighbouring stations are. Although
only 18 % of the annual maxima are recorded in the summer,
these events are often some of the largest events in the whole
record. For 30 % of the stations the largest peak in the se-
ries occurred during the summer months, and for 53 % of the
stations the largest summer event is one of the three largest
events in the whole series. Figure2 shows how the propor-
tion of summer events of the total number of annual maxima
is fluctuating between decades. Although the median propor-
tion of summer events does not fluctuate much, the variability

Fig. 1. Time coverage for the annual maximum river peak flow se-
ries. Events occurring in summer are indicated in red.

Fig. 2. Proportion of summer events in the annual maximum peak
river flow series, shown separately for each decade. The number of
stations with at least 7 years of data used to compute the proportions
is indicated below thex axis.

is very large. This may be related to the exaggeration of the
rainfall divide between the northwest and the southeast of the
country that occurred in the late 1980s and largely through
the 1990s. The north and west was then even more than usu-
ally dominated by widespread frontal rainfall (orographically
enhanced mainly in winter), whereas high flows in the south-
east would to a relatively higher degree be caused by local-
ized heavy convective rainfall in the summer. This would re-
sult in the north and west experiencing fewer summer flood
events (compare the time series for west Scotland, W-SEPA,
against the series from the southeast area, NE-EA, Anglian-
EA, S-EA in Fig. 1), while the southeast would retain, or
even increase, its relatively higher proportion of flood events
in summer, resulting in the high variability seen in Fig.2.
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Fig. 3. Median ratio of annual and seasonal maximum peak river flow over long-term median of the annual maximum, shown separately for
each decade. The number of stations with at least 7 years of data used to compute the proportions is indicated below thex axis.

The rainfall divide was associated with the location of the
preferred mid-latitude storm track, as also captured by the in-
crease in the North Atlantic Oscillation Index from the 1960s
up to the 1990s (e.g.Osborn, 2006). This is also the main rea-
son why trend analyses carried out for this period of record
result in significant upward trends in high flows in the north
and west (e.g.Hannaford and Marsh, 2008). In Fig. 3, box
plots of the median ratio of the observed annual and sea-
sonal (winter, summer) maxima over the long-term median
annual maximum (QMED) are shown, separately for each
decade. The well-documented (Hannaford and Marsh, 2008)
drier conditions of the years between 1965 and 1975 are vis-
ible for both the annual and seasonal maxima, but it would
seem that the levels of river flows in the last decade have
not been substantially different from observed levels in other
decades.

The general patterns shown in Figs.2 and3 are still visible
when similar figures are drawn using only the stations with
data available in all decades (plots not shown). In these fig-
ures Northern Ireland and the North of Scotland are under-
represented due to a lack of data in the early decades (see
Fig. 1).

2.2 Gridded daily rainfall data

Catchment average daily rainfall (CADR) series were ex-
tracted from a gridded data set at 1 km resolution, which
covers the whole of the UK for the water years from 1961
to 2010. The data set is obtained using interpolation meth-
ods applied to the observed values of a dense network of rain
gauges, seeKeller et al.(2005) for further details. From the
CADR data set, annual and seasonal maxima series of daily
rainfall totals were extracted, in order to investigate whether
any evidence of changes in the extreme rainfall pattern can
be seen. In Fig.4 the proportion of summer events in the
annual and seasonal series for each decade is shown. About

Fig. 4.Proportion of summer events in the annual maximum rainfall
series, shown separately for each decade. The number of catchments
used to compute the proportions is indicated below thex axis.

half of the rainfall annual maxima are recorded in the sum-
mer months which is considerably more than the 18 % of an-
nual maximum river flows that occur in summer. This shows
the importance of drier soils in summer for inhibiting river
flow formation. The (median of the) proportion of rainfall
events occurring in summer is roughly inversely related to
the North Atlantic Oscillation Index, which showed an in-
crease from the 1960s to the 1990s (e.g.Osborn, 2006). As
discussed for Fig.2, the high value of this index towards the
late 1980s and 1990s signifies a dominance of frontal rainfall
in the hilly north and west which tends to be orographically
enhanced mainly in winter, thus reducing the proportion of
annual maximum rainfall events occurring in summer in this
area. This reduction in the median of the proportion of sum-
mer events is also discernible for the river flows in Fig.2,
albeit much less clearly. In Fig.5 box plots of the median
ratio of the observed maximum rainfall over the long-term
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Fig. 5. Median ratio of annual and seasonal maximum rainfall over long-term median of the annual maximum, shown separately for each
decade. The number of catchments used to compute the proportions is indicated below thex axis.

median annual maximum (RMED) are shown for each sea-
son, separately for each decade. The rainfall medians seem to
be quite variable from decade to decade, with very different
patterns for the different seasons. This is probably related
to the large-scale atmospheric circulation. For example, for
the winter season (Fig.5b) the decadal pattern of the rainfall
medians agrees with that of the North Atlantic Oscillation
Index, which is known to have an influence on winter precip-
itations in the UK (Burt and Howden, 2013). The difference
between the decadal patterns for rainfall (Fig.5) and river
flow (Fig. 3) is an indication of the complexity of the fac-
tors which regulate the interplay between precipitation and
run-off generation.

For each catchment average daily rainfall series, the value
of the 99th percentile in each water year is also extracted.
This value corresponds more or less to the 1-in-100-day rain-
fall event, and is used as an indication of the potential for
large rainfall events in the year. Rather than the maximum
value for a series, which could be highly influenced by singu-
lar rare events, the 99th percentile is a more stable indicator
of whether a year has been characterized by larger or smaller
rainfall extremes. The quantity has previously been used in
a study by the UK Met Office (Met Office, 2013) which ex-
plored the long-term patterns in national high-rainfall events.
Figure6 shows a map of results for a Mann–Kendall trend
test performed on the 99th percentile of rainfall series for
each catchment, and identifies catchments for which the 99th
rainfall percentile appears to be changing in time. A consis-
tent increase can be seen in the east of Scotland and some
other scattered catchments around the country. For approx-
imately 82 % of the catchments no change can be detected
with a Mann–Kendall test at a 0.05 significance level.

Fig. 6. Results for a Mann–Kendall test of no change in the annual
series of the 99th quantile for daily rainfall. Significance tested at
aαMK = 0.05 level.
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2.3 Final data sets for analysis

The analyses presented in the remainder of the paper are
based on the catchments and water years for which both
gridded rainfall data and at least 20 years of river flow data
were available. This corresponds to 446 stations for the wa-
ter years between 1961 and 2010. The mean and median
record lengths for the high-flow data are respectively 39.3
and 40 years, and a total of 17 529 station years have been in-
cluded in the study. The selected catchments allow for a fairly
good spatial coverage of the UK, although coverage of North
Wales is poor, due to a lack of long records.

3 Methods

The evidence, or not, of changes in hydrological extremes
for the whole of the UK is investigated using the approach
suggested byVogel et al.(2011). The core idea is to quan-
tify in a simple way what would be the expected change
in the magnitude of events with a given return period over
a defined time period. A two-parameter log-normal distri-
bution (LN2) is assumed for annual and seasonal peak flow
and daily rainfall maxima. For each catchment the observed
flow and rainfall maxima series, respectivelyxF and xR,
are log-transformed and inference is based on the quantities
yF = log(xF) andyR = log(xR) which are by definition as-
sumed to be normally distributed. The quantile function for
the LN2 distribution is given by

xp = exp
{
µy + σyz1−p

}
, (1)

whereµy andσy correspond to the mean and the standard
deviation of the log-transformed distribution andz1−p is the
quantile of the standard normal distribution which is ex-
ceeded with probabilityp. The 1-in-T-years event is cal-
culated by takingp = 1/T . In the stationary case, theµy

and σy parameters are assumed to be constant and can be
estimated with different estimation procedures. In the non-
stationary case, one or both the LN2 parameters are as-
sumed to be varying. Much effort has been put particu-
larly into investigating whether the location parameterµy is
changing, see for example the review of change detection by
Kundzewicz and Robson(2004). A non-stationary extension
of the stationary model in Eq. (1) can be defined by relating
the change in the location parameter to time through a simple
linear relationship as

µ(t) = β0 + β1t, (2)

wheret is a variable describing time (e.g. the series of water
years). In the framework of a linear regression model this
becomes

log(xt ) = yt = µ(t) + εt = β0 + β1t + εt , (3)

whereεt is a zero-mean, homoscedastic, normally distributed
error term.xt denotes the value at timet of the variable under

study (either the peak flow or the daily rainfall maxima), and
it is assumed that observations at different time pointst are
independent from each other. Estimates forβ0 andβ1 can be
obtained via standard linear regression methods, and a sta-
tistical two-sided test onH0 : β1 = 0 will give indication of
non-stationarity in the stochastic process. The quantile func-
tion in the non-stationary case is obtained by substituting the
constant location parameter,µy , in Eq. (1) with the formula
in Eq. (2) and then becomes

xp(t)=exp
{
µy(t)+σyz1−p

}
=exp

{
β0+β1t+σyz1−p

}
. (4)

Rather than comparing the estimatedβ1 values,Vogel et al.
(2011) suggest to use a non-dimensional magnification factor
M1t defined as the ratio of the quantile function at a time
(t + 1t) and the quantile function at timet , which for the
LN2 distribution is given by

M1t =
xp(t + 1t)

xp(t)
= exp{β11t} . (5)

Magnification factors larger (smaller) than one indicate that
the magnitude of the events occurring with probabilityp is
increasing (decreasing). In other words, magnification fac-
tors larger (smaller) than one indicate that the current 1-in-
T-year event in the future will have a higher (smaller) prob-
ability of happening than the one that would be expected in
the stationary case. When using a LN2 distribution the value
of M1t only depends on the slopeβ1 and the time span1t ,
and not on the chosen exceedance probabilityp. Other dis-
tributional assumptions would lead to more complex formu-
las with an explicit dependence on the return period 1/p.
Laio et al. (2009) show that the two-parameter log-normal
distribution is an acceptable assumption for a large propor-
tion of the catchments in the UK, and discuss the difficulties
involved in testing a distributional assumption. A visual in-
spection of the residuals,εt , obtained from model (Eq.3)
seemed to confirm the goodness of the normality assump-
tion. If a deviation from normality was found in the data, this
was often due to the presence of a very high or low annual
maximum in the series: once the influential point is removed
from the series the residuals would show a normal behaviour.
The non-robustness of linear regression to influential points
is a well known issue and the effects on the final estimates
can be rather severe, especially if these outliers are located at
the beginning or end of the series. The use of robust meth-
ods to fit the linear model in Eq. (2) was tested on many
catchments and did not give substantially different results; if
only one or two outliers are present in the central part of the
data series, these will not have too strong an effect on the
results. A visual check of the model residuals was also car-
ried out for the rainfall data and did not raise major doubts
on the normality assumption, although again some catch-
ments showed a very small proportion of outliers. Taking the
catchment average rather than individual rain gauge values
ensures that some very localized large events are smoothed
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out and makes the data less skewed. As discussed in Sect.4,
a Shapiro–Wilkinson normality test was performed on the
model residuals for both rainfall and flow series, in order to
evaluate the goodness of the distributional assumption. Re-
sults are only presented for data series which do not seem to
strongly deviate from the normality assumption.

3.1 A more complete approach to non-stationarity

The model in Eq. (2) is a rather simple model, relating the
changes in the flow-generating process only to the time co-
variate. Visual inspection of flood time series typically show
a large variability between years, indicating a high level of
climatic influence. In an attempt to better estimate any un-
derlying trend, the 99th rainfall percentile was introduced
as a second covariate. In this way it is possible to separate
the effect of the rainfall climatology from time on the high-
flow process, verifying whether or not there are underlying
changes in the high-flow process. Consequently, the non-
stationary model in Eq. (2) is updated to a multivariate model
as

µ(t) = β0 + β1t + β2rt , (6)

wherert is the 99th percentile of the daily rainfall in wa-
ter yeart . The value ofβ1 in this model then describes how
time has an impact on the process, after the potential for large
rainfall events of a given year has been taken into account.
It is an indication of what is left to explain in the model,
when a process-related variable is also taken into account.
The values ofβ2 will give an indication of how important
the potential for large rainfall events of the water years is in
explaining the variability in the data: for some catchments,
where the catchment characteristics or water management
have a strong impact, this might be less of an important vari-
able. In this study the variable has been found to be signifi-
cant for a large majority of the catchments, and it explains
a fair proportion of the inter-year variability of the flood
records. The 25th, 50th and 75th percentiles of theR2 for
a model with only the 99th percentile of the daily rainfall
as covariate (µ(t) = β0 + β2rt ) fitted to all the 446 annual
peak flow series in the data set are equal to 0.1, 0.2, and
0.3. From the model in Eq. (6) one can again compute the
magnification factorM1t as in Eq. (5): this is now an indica-
tion of how the quantile function would change in a certain
time span1t for a constantrt value. Similarly the magni-
fication factor can be computed for river flow correspond-
ing to 1r changes in the 99th percentile of daily rainfall for
a constant timet asM1r = exp{β21r}. Finally, magnifica-
tion factors for both time and rainfall changes can be com-
puted. As an example, in Fig.7 magnification factors ob-
tained from the model in Eq. (6) for different values of1t

and 1r are shown. The left panel of the figure shows the
magnification factor as a function of time for three differ-
ent 99th percentile of rainfall increase scenarios. The values
chosen for the rainfall increase are based on the interquar-

Fig. 7. Illustrative examples of magnification factors for river
flows for different values of1t and 1r, taking β1 = 0.001
andβ2 = 0.045.

tile range for the observed 99th percentile of daily rainfall,
which is approximately equal to 7. In contrast, the right panel
illustrates changes in the magnification factor caused by the
increase in thert values for three different time steps. The
values ofβ1 = 0.001 andβ2 = 0.045 have been chosen as
representative (median) of the values found in the models
fitted to the annual river flow series used in this study. The
plot shows the effect of an interaction between time and the
potential increases in rainfall on the magnification factor val-
ues. This paper will primarily focus on the time-related mag-
nification factorM1t , although the model in Eq. (6) could
be used to assess the effect on flood risk of long-term fore-
casts of rainfall. This latter application is not pursued fur-
ther here, as it would require long-term forecasts of catch-
ment averaged rainfall. Finally, although the inclusion of the
99th percentile of rainfall explains a large part of the vari-
ability in the flow process, the runoff process is complex
and for a more complete model specification variables such
as soil moisture deficit and urbanization could be included.
Soil moisture deficits, longer aggregations (months) of rain-
fall, evapotranspiration and/or temperature would help to de-
scribe the longer-term water balance and might improve the
model, especially for more groundwater-dominated catch-
ments, which respond more slowly to heavy rainfall events.
The interaction between these variables would make their in-
clusion in the model a complex task, and the analyses pre-
sented in this work therefore build around the simpler model
in Eq. (6).
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4 Results

For all the annual and seasonal maximum series of both peak
flow and rainfall the decadal (10 years) magnification factors
M10 = exp{β110} were estimated for the simpler model in
Eq. (2) in which time is the only explanatory variable. Fur-
ther, only for the peak river flow series was the more com-
plex model involving the 99th rainfall percentile described
in Eq. (6) estimated and the correspondingM10 values com-
puted. The time horizon of 10 years is useful for understand-
ing short-term changes and is used byVogel et al.(2011):
results on the same timescale are shown in this work to al-
low for a comparison to those results. The choice of the time
horizon (1t) and the return levelT do not have an effect
of the interpretation of the magnification factors (see Eq.5)
and their relevance. As discussed in Sect.3 the modelling
framework relies on the assumption that the log-transformed
data are normally distributed. In order to avoid spurious re-
sults which could result from severe model misspecification,
a Shapiro–Wilkinson test for normality was performed on the
model residuals at significance levelαnorm = 0.01. As men-
tioned in Sect.3, a more detailed look at the model residuals
which appeared to be non-normal highlighted the fact that in
many cases the lowp values observed for a normality test
would have been much larger if the highest or lowest ob-
servations in the series were taken out. The normality tests
were then performed on the subset of residuals without the
two most extreme points, and these results are used in the
remainder of the paper. Results for the annual, winter and
summer maxima series are presented in Figs.8–10 respec-
tively. In each figure, results are shown for the magnification
factorsM10 obtained using the following three models:

a. log
(
xF,t

)
= β0 + β1t + εt , a model for peak flow data

with time as the only explanatory variable (panel a);

b. log
(
xR,t

)
= β0 + β1t + εt , a model for daily rain-

fall data with time as the only explanatory variable
(panel b);

c. log
(
xF,t

)
= β0+β1t +β2rt +εt , a model for peak flow

data with time and the 99th quantile of daily rainfall as
explanatory variables (panel c).

TheM10 values indicated as significant correspond to catch-
ments for which theβ1 coefficient was found to be signifi-
cantly different from 0 at aαreg = 0.1 level, using the stan-
dard inference based on thet distribution. Note that tak-
ing αreg = 0.1 for a two-sided test onβ1 = 0 will result in
accepting as significantly different from 0 the same slopes
which would have been identified if using a unidirectional
test atαreg = 0.05 for two separate one-sidedt tests onβ1.
Indeed, more than simply testing whether a generic change
is detected in the data, a more relevant point is to have an
understanding of whether or not an increase or a decrease
can be detected. More discussion on the implications of the

testing framework can be found in Sect.5. In Fig. 8 the
results for the annual maxima series are shown. Note that,
from the formula in Eq. (5), the M10 values correspond to
exponentials of the estimatedβt coefficients, soβt = −0.04
would imply a decrease of the magnitude of annual maxima
of 33 % sinceM10 = exp(−0.04· 10) = 0.67. Similarly, for
βt = 0.04, M10 = exp(0.04· 10) = 1.5. In Fig. 8a, showing
results for model (a), there is a consistent presence of upward
trends, mostly in the northern part of England and Scotland,
and a smaller cluster in South Wales. A few downward trends
are also seen in the far south and far north of Great Britain.
Interestingly, most catchments with non-normally distributed
residuals are located in the southeast of England: it is pos-
sible that the non-normality could be related to the slowly
responding nature of the catchments in this area. The trends
displayed in Fig.8b for model (b) indicate an increase for the
annual rainfall maxima for the northern half of the UK, with
some decrease observed in small clusters in the rest of the
country. Once the 99th percentile of annual daily rainfall is
included in the model for high flows (Fig.8c), the picture of
upward and downward trends becomes more scattered, with
many downward trends appearing in Scotland and around the
country.

Winter high-flow trends in Fig.9a again show some ge-
ographical clusters of upward trends in North England and
in Scotland. Again, normality has been rejected for many of
the series in the southeast. For rainfall maxima, in Fig.9b,
some local clusters of upward trends can be observed, mostly
in the north of England and Scotland. The residual effect
of time in model c shown in Fig.9c seems to be less ho-
mogeneous. Both upward and downward trends are visible,
with some clustering of upward trends in the northwest of
England. The results for the summer series are shown in
Fig. 10. A noticeable feature of theM10 values for the peak
flows in Fig.10a is the large cluster of downward trends in
the south and southeast of England, contrasting the upward
trends found in the north and west of Great Britain and in
Northern Ireland. Rainfall maxima also seem to be decreas-
ing in the southern part of England, although the magnitude
of the change is much smaller than for river flows. Finally,
results for model (c) show an even larger effect of time when
the 99th percentile of annual daily rainfall is included in the
model. Downward trends are visible in the south of England
and some clusters also appear in the north and west. At the
same time many of the upward trends in Fig.10a become
smaller or not significant, i.e. once the potential for large
rainfall events of a year is taken into account there is less
evidence of upward trends in summer high-flow data.

The model in Eq. (6) includes the 99th percentile of rain-
fall as an explanatory variable, but the runoff process is com-
plex and for a more complete model specification variables
such as soil moisture deficit and urbanization could be in-
cluded. A changing climate with expected higher tempera-
tures and increased evaporative demands which deplete the
underground water stores would be consistent with lower

Nat. Hazards Earth Syst. Sci., 14, 1125–1144, 2014 www.nat-hazards-earth-syst-sci.net/14/1125/2014/



I. Prosdocimi et al.: Non-stationarity in the UK 1133

Fig. 8.Estimated decadal magnification factorM10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)),(b) daily
rainfall maxima with time as the only explanatory variable, and(c) peak flow maxima with time and the 99th percentile of daily rainfall as
explanatory variables – annual maxima series.

Fig. 9.Estimated decadal magnification factorM10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)),(b) daily
rainfall maxima with time as the only explanatory variable, and(c) peak flow maxima with time and the 99th percentile of daily rainfall as
explanatory variables – winter maxima series.

summer high flows in slowly responding catchments, which
are mostly located in the south and east of the UK. This is
also the part of the country with a more continental, drier,
climate. Many of the records used in the analysis end in

the summer of 2011, i.e. during the 2010–2012 drought
that affected particularly the south and east of the coun-
try, seeKendon et al.(2013). Even though the records have
been selected to be relatively long, the effect of ending the
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Fig. 10. Estimated decadal magnification factorM10 for: (a) peak flow maxima with time as the only explanatory variable (model (a)),
(b) daily rainfall maxima with time as the only explanatory variable, and(c) peak flow maxima with time and the 99th percentile of daily
rainfall as explanatory variables – summer maxima series.

observation period in an exceptionally dry period could ex-
acerbate the signal of downwards trends. A re-analysis per-
formed for the period until 2008, not shown here, confirms
that this is the case, although the main pattern of decreasing
trends in the south and east remains visible.

The results for the winter and summer series for both river
flow and rainfall give different results, highlighting differ-
ent patterns in the regions of the UK. The annual maxima
series are a realization of different high-flow generating pro-
cesses, which can be pragmatically divided into summer and
winter processes, characterized by different conditions, like
rainfall patterns, soil moisture and evapotranspiration. Look-
ing at both annual and seasonal series can give a better under-
standing of possible changes in the hydrological processes.

4.1 A closer look at undisturbed catchments

In a large part of the British catchments human interventions
might have altered the river flow; changes detected in the
presence of notable artificial interventions would be a reflec-
tion of these rather than the result of a real change in the high-
flow generating process. In order to investigate whether the
identified changes can be attributed to human intervention,
the results for all the 446 catchments presented in the section
above are compared with the results obtained when fitting
the same models to the subgroup of the undisturbed bench-
mark catchments described inHannaford and Marsh(2008)
and Marsh and Hannaford(2008). In Tables1–3 a sum-
mary of this comparison for, respectively, the annual, winter

and summer series is shown. In each table the proportions of
significantly negative, non-significantly different from 0 and
significantly positive estimated slope coefficients are shown
for the whole data set, for the catchments which are not part
of the benchmark catchments and for the benchmark catch-
ments. The differences in total numbers of catchments used
for each model and each season is due to the fact that the
significance test is only performed on estimated models in
which the residuals appear to be normally distributed. The
total number and percentage of models in which the normal-
ity assumption could not be accepted are also shown in each
table. As already seen inKjeldsen et al.(2012), in general
there appear to be little difference in the proportions of sig-
nificant and non-significant coefficients for the non-natural
and near-natural catchments, although a marked difference
can be seen for model (c) in the summer series. In Fig.11
the maps for the whole summer data set, for the non-natural
and near-natural subsets is shown, with a lower proportion
of non-significant estimated slopes in Fig.11c. The differ-
ence in the proportions of significant coefficients for the two
subsets might be partially a consequence of the higher num-
ber of near-natural series in the southern part of the country.
Overall, no major differences have been found between the
proportion of significant and non-significant coefficients in
the non-natural and near-natural series: the changes observed
in the whole data set do not appear of be the result of human
influences on the catchments.
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Table 1.Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural
series and near-natural series – annual maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 3.1 78.6 18.3 398 48 (10.8)
Non-benchmark 2.7 79.0 18.3 328 36 (9.9)
Benchmark 4.3 77.1 18.6 70 12 (14.6)

Model (b) All 2.8 87.0 10.2 431 15 (3.4)
Non-benchmark 2.3 87.0 10.7 355 9 (2.5)
Benchmark 5.3 86.8 7.9 76 6 (7.3)

Model (c) All 8.1 81.5 10.4 405 41 (9.2)
Non-benchmark 7.8 82.3 9.9 334 30 (8.2)
Benchmark 9.9 77.5 12.7 71 11 (13.4)

Table 2.Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural
series and near-natural series – winter maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 2.0 82.5 15.5 400 46 (10.3)
Non-benchmark 1.8 82.5 15.7 331 33 (9.1)
Benchmark 2.9 82.6 14.5 69 13 (15.9)

Model (b) All 0.5 83.1 16.4 433 13 (2.9)
Non-benchmark 0.0 83.3 16.7 353 11 (3.0)
Benchmark 2.5 82.5 15.0 80 2 (2.4)

Model (c) All 4.4 86.8 8.8 408 38 (8.5)
Non-benchmark 4.5 86.9 8.6 336 28 (7.7)
Benchmark 4.2 86.1 9.7 72 10 (12.2)

Table 3.Comparison of the proportions of significant and non-significant estimated slope coefficients in the whole data set, the non-natural
series and near-natural series – summer maxima series.

Negative Non-significant Positive Total Non-normal (%)

Model (a) All 8.4 81.1 10.6 417 29 (6.5)
Non-benchmark 8.4 81.2 10.4 346 18 (4.9)
Benchmark 8.5 80.3 11.3 71 11 (13.4)

Model (b) All 9.0 89.4 1.6 434 12 (2.7)
Non-benchmark 9.0 89.3 1.7 355 9 (2.5)
Benchmark 8.9 89.9 1.3 79 3 (3.7)

Model (c) All 15.7 78.6 5.7 421 25 (5.6)
Non-benchmark 13.9 80.6 5.5 345 19 (5.2)
Benchmark 23.7 69.7 6.6 76 6 (7.3)
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Fig. 11.Estimated decadal magnification factorM10 for model (c) for all the available series(a), for series with non-natural flow(b) and for
series with near-natural flow(c) – summer maxima series.

5 Implications for decision making

The results presented in the previous section show that for
some catchments the assumption of stationarity in the loca-
tion parameter for the observed time series of extreme rain
and flow can be rejected. In this section, the implications of
these findings and the testing framework of non-stationarity
will be further investigated. The current procedure recom-
mended byDefra (2006) for considering the effect of cli-
mate change on design flood estimates in the UK is through
the use of precautionary safety factors. In practice, this is
done by first conducting a flood frequency analysis using
standard methods such as those presented in the Flood Esti-
mation Handbook (e.g.Institute of Hydrology, 1999; Kjeld-
sen and Jones, 2009) based on the assumption of stationar-
ity, and subsequently adding a safety margin of 20 % to the
design flow to represent changes expected by 2085. For the
final choice of design, it should be investigated whether this
increase in design flow has a significant impact on the de-
sign/management of the hydraulic structure. The choice of
20 % as a safety factor was based on modelling studies re-
ported byReynard et al.(2004) who coupled downscaled
UKCIP02 scenarios of rainfall with a hydrological model to
assess future flood risk. Structures being constructed at this
point in time should be over-engineered with a view to still
comply with protection against the 100-year event in the fu-
ture (2085 in this case). Further studies (e.g.Environment
Agency, 2011) have used the UKCP09 projections of rain-
fall and temperature to estimate river flows and investigated
the importance of catchment properties in the response to cli-

mate change. The study identifies regional change factor in-
tervals and discusses how these should be employed. In order
to keep the presentation more readable the results discussed
in the remainder of this work are obtained assuming a na-
tional safety margin of 20 %, which seems reasonable for the
purpose, even considering the results inEnvironment Agency
(2011).

Having accepted the premise of increased flood risk and
put the appropriate safety procedures in place, rather than in-
vestigating whether or not a trend is detectable in the data,
it would be more relevant to investigate whether the trend
which can be currently detected in the data is larger than the
increase that the current design criteria already take into ac-
count. Assuming the change rate would stay the same as the
one identified at this point, this can also be seen as a test on
whether the current precautionary measures are safe enough
and whether they are supported by the currently observed
levels of change.

Consequently, it is suggested here to shift the attention
from a two-sided test on the presence of any trend (upward
or downward) in the observed data, to a one-sided test in
which it is investigated if the observed trend exceeds the
current safety margin. Starting from the guidelines byDe-
fra (2006), which considered changes happening in roughly
85 years from the time of the underlying study, the focus here
is on the changes expected in 85 years from a timet . Express-
ing the level of change as a magnification factor, the ques-
tion is whetherM85 > 1.2, with M85 = exp{β1 85} the 85 yr
magnification factor. Since log(M85) = β1 85, this translates
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Table 4.Schematic explanation of Type I, Type II errors in relation to the significance level,α, and power,π , of a test.

H0 is true H0 is not true

Test does not rejectH0 Happens with probability 1− α underH0 Type II error. Happens with probabilityβ underH1
Test rejectsH0 Type I error. Happens with probabilityα underH0 Happens with probability 1− β = π underH1

into the following hypothesis framework:

H0 : β1 ≤ log(1.2)/85

H1 : β1 > log(1.2)/85. (7)

The future flood estimates in catchments for which the null
hypothesisH0 can be rejected would be expected to exceed
the design flood value that would be obtained using the safety
margin in the current guidelines. AsVogel et al.(2013) point
out, the standard hypothesis testing framework is built with
the purpose of having a small pre-fixed probabilityα (the sig-
nificance level) of not accepting the null hypothesis when the
null hypothesis is actually true (Type I error). An error of this
type in the framework in Eq. (7) would lead to an increase in
flood protection measures (likely a money investment) which
would turn out not to be necessary. The price to pay in order
to have a test with smaller probabilities of Type I errors, is
to actually perform a test with lower power, i.e. the ability
of identifying a trend when a trend exists in the data. The
complement of this is a higher probabilityβ of not detecting
a trend when the trend is actually present (Type II error). Ta-
ble 4 shows the relationship between the hypothesis and the
consequences of either accepting or rejecting this hypothesis.
Committing a Type II error (rejecting the presence of a trend
when a trend actually exists), practically translates into not
updating flood protection measures when in fact it would be
overtopped more frequently than expected in the stationary
case. One then might rethink the trend detection routines in
order to increase the power of the test, and not only focus
on the Type I error. As discussed further in Sect.5.1, due
to the close relationship betweenα andβ, for a givenα the
only way to reduce the probability of Type II errors is to re-
duce the variability of the test statistics by either increasing
the sample size (i.e. wait more years) or improving the way
in which the test statistic is estimated. This study tries to do
the latter by adding relevant variables in the trend model. For
many natural processes, evidence of change has been found
in the data, and there is an increasing perception in the pub-
lic discourse that changes are occurring in environmental and
hydrological systems. Moreover, there is a high social cost in
not being prepared to cope with increasing flood risk (Hall
et al., 2012). In response to this change of perception,Vo-
gel et al.(2013) urge the use of tests which shift the atten-
tion from the null hypothesis being that there is no change to
the case where the change is assumed to be happening. This
radically changes the objective of the analysis and could be

Fig. 12. (a) Sites for which the null hypothesisH0 : β1 ≤

log(1.2)/85 is rejected.(b) Sites for which the null hypothesis
H0 : β1 > log(1.2)/85 is rejected. Results shown for two different
significance levelsα = 0.05 andα = 0.01.

translated into the following hypothesis framework:

H0 : β1 > log(1.2)/85

H1 : β1 ≤ log(1.2)/85. (8)

In this case, the future flood estimates in catchments for
which the null hypothesisH0 can be rejected are expected
not to exceed the design flood value that would be obtained
using the safety margin in the current guidelines.

Figure12 shows the results for the annual river flow se-
ries when testing within the two different testing frame-
works in Eqs. (7) and (8) at two different significance levels
αreg = 0.05 andαreg = 0.01, based on the regression model
presented in Eq. (6). Stations for which a large change was
found in the flow series according to the testing framework
in Eq. (7) are shown in Fig.12a. For these sites the null
hypothesis of magnification factor smaller than 1.2 is re-
jected and there is an indication that the floods for these
stations are increasing beyond what is catered for by the
20 % safety margin. These stations partially coincide with
the stations for which the highestM10 factors were found
(see Fig.8), although the map in Fig.12a adds the addi-
tional information on whether the estimated change is strong
enough to raise safety issues according to the current design
standards. In contrast, Fig.12b shows the stations for which

www.nat-hazards-earth-syst-sci.net/14/1125/2014/ Nat. Hazards Earth Syst. Sci., 14, 1125–1144, 2014



1138 I. Prosdocimi et al.: Non-stationarity in the UK

the null hypothesisH0 : β1 > log(1.2)/85 was rejected: these
sites are the ones for which the data do not support the as-
sumption that a worryingly large increase in the annual high-
flow process is occurring. Again, these stations are charac-
terized by very lowM10 in Fig. 8. For the majority of the
catchments (80 % at aα = 0.05 significance level) the null
hypothesis is not rejected in either of the testing frameworks,
suggesting that it is not possible to reject either of the null hy-
potheses of an increase in estimated design floods to be either
smaller than 20 % or larger than 20 %. These results show
how difficult it is to obtain definite information on change
from such variable data and support the assertion byLins
and Cohn(2005) that “stationarity and non-stationarity are
essentially indistinguishable” for river flows, given the cur-
rently available periods of record, when doing a single-site
analysis.

5.1 Testing and sample size

An important additional feature of statistical power analy-
sis theory is the possibility of calculating the sample size
which would be needed under certain specified assumptions
in order to attain a desired power (i.e. the probability of
not committing a Type II error). The issue is considered
as a routine step in many fields like clinical or behavioural
research: when setting up a study a decision needs to be
made regarding the amount of experimental units needed.
This choice is made based on the probability of the Type I
and Type II errors that the researcher is willing to accept, the
variability of the process under study and the precision that
is needed. Summarizing, the following quantities need to be
pre-specified:

– the significance levelα,

– the power to be attainedπ = 1− β,

– the variabilityτ of the parameter under study, in this
study the regression coefficientτ = sβ1,

– the effect size (ES)δ, an indication of the mag-
nitude of the effect that would be relevant to the
stochastic process of interest, in this study the trend
magnitude.

The last quantity is rarely discussed in the standard presen-
tation of the hypothesis testing framework, but is very rele-
vant when calculating sample sizes, as it indicates the level
of precision to be achieved. It can also be interpreted as an
indication of where the alternative hypothesis really begins.
In a test forH0 : β1 = 0, it would be reasonable to not al-
ready start rejecting the null hypothesis for a test statistic
which gives indication of, say,β1 = 10−26, but rather allow
an ES valueδ such that for any|β1| ≥ δ the null hypothesis
can be rejected. The ES can either be fixed beforehand by
the researcher, or can be derived from properties expected to
be found in the data based on previous studies. See among

othersCohen(1992) for a discussion on how to obtain ES
andCohen(1994, 1990) for a detailed discussion on ES and
the importance of each pre-specified component in a power
analysis. For a univariate model, like the simple regression in
Eq. (2), the powerπ for a one-sided test withH1 : β1 > δ is
defined as

P
(
T̃ ≤ tα,n−2

)
= 1− π, (9)

whereT̃ is a t distribution with(n − 2) degrees of freedom
and non-centrality parameter

√
nδ/τ . The standard devia-

tion of the regression parameter in this case is estimated by
s
β̂1

= τ/
√

n. The termtα,n−2 corresponds to the 1−α quan-
tile of a standardt distribution with(n − 2) degrees of free-
dom, i.e. the cutoff value which marks the beginning of the
rejection region.tα,n−2 changes as a function of the sample
sizen and the significance levelα. Equation (9) is often ap-
proximated with

P
(
T ≤ tα,n−2 −

√
nδ/τ

)
= 1− π, (10)

whereT is a standardt distribution random variable with
(n − 2) degrees of freedom. The decisions made on the size
of each of(α,τ,δ), the three quantities used in Eq. (10), will
have an effect on the sample size needed to attain the pre-
specified powerπ . A typical value forπ is π = 0.8, which
translates into a probability of Type II errorβ = 0.2. For the
commonly used significance levelα = 0.05 a powerπ = 0.8
corresponds to a 4: 1 proportion of probability of Type II
errors over the probability of Type I errors.

In most cases, the value ofτ would be unknown and dif-
ficult to estimate from previous studies or the researchers’
knowledge. However, for a univariate regression model the
value ofτ can be related toρ, the correlation between the de-
pendent and independent variables, which for the univariate
case corresponds to the square root of the well-known coeffi-
cient of determinationR2 (see Appendix A for the derivation

of this relation). Thus, takingτ =

√
ρ2/

(
(1− ρ2)δ2

)
the for-

mula in Eq. (10) can be rewritten as

P

(
T ≤ tα,n−2 −

√
nρ2/

(
1− ρ2

))
= 1− π, (11)

which corresponds to the formula used byVogel et al.(2013).
Note that for this formula the ESδ is cancelled out from the
formula and the power levels are completely determined by
the sample size and the strength of the relationship between
the dependent and independent variable. Alternatively, the
value ofτ can be estimated starting from the parametersσ

andsx , defined as the standard deviation of the model resi-
dualsε and the sample standard deviation of the independent
variablex, respectively. Takingτ = σ/(sx) then, the formula
in Eq. (10) can be rewritten as

P
(
T ≤ tα,n−2 −

√
nδsx/σ

)
= 1− π. (12)
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Once the ES and the sample size have been fixed, power
levels in Eq. (12) are determined by the variability of the
model errors relative to the sample variability of the inde-
pendent variable. In the particular case studied in this work,
time (e.g. the water year) is the independent variable, so that
sx is changing and known for increasing sample sizes (see
Appendix A). From the formulas in Eqs. (11) and (12) it is
then clear that the power of the test on the regression pa-
rameterβ1 will be strictly connected with the variability of
the dependent and independent variables in the model, and
the strength of the relationship between them. For multivari-
ate regression models like the one in Eq. (6), the relationship
between the different independent variables also play a role.
Thus, in order to do a power analysis for the effect of one of
the independent variables, some further assumptions need to
be made regarding these relationships. In order to keep the
presentation more readable the discussion in the remainder
of this section is limited to univariate models.

Computation of the sample size necessary to attain the de-
sired power of a test requires a number of assumptions on the
variability of the variables involved in the model. Depend-
ing on which information is more easily available and more
reliable, one of the two formulas in Eqs. (11) and (12) can
be used to investigate the relationship between sample size
and power. Levels of power for increasing sample sizes com-
puted using the formula in Eq. (11) are shown in the curves
in Fig. 13a: for higherR2 smaller sample sizes are needed
to attain a given power level. Since in the framework under
study each measurement corresponds to a water year, assum-
ing that a data series would start in a certain year, for exam-
ple 1970, each sample size corresponds to an end of record
year. On the lowerx axis of Fig.13 the year corresponding
to each sample size is indicated. The graph in Fig.13a shows
representative power functions obtained with the 25th, 50th
and 75th percentile of theR2 for the fitted univariate mod-
els for flow data as in Eq. (2): the observedR2 are fairly
small and if a sample size for a test for trend in the flow
data was to be chosen based on the current levels of corre-
lation between time and flow data, it might only be possible
to obtain a reasonable power for the test by waiting for an-
other 500 years. In Fig.13b levels of power for increasing
sample sizes computed using the formula in Eq. (12) for an
ESδ = log(1.2)/85 are shown: for lower standard deviations
of the model errors (σ ) smaller sample sizes are needed to
attain a given power level. Again, the representative values
of σ in the plot correspond to the 25th, 50th and 75th per-
centile of the estimated values ofσ for the univariate models
fitted to flow data as in Eq. (2). It would appear that reason-
able power levels for a test on the regression coefficient for
models as in Eq. (2) should be attained by the end of the
21st century. The huge difference in the sample sizes chosen
using the two different formulas is partially due to the fact
that for the particular case at hand, when using the formula
in Eq. (12) one can also include the information on the ac-
tual sample standard deviationsx , which will necessarily in-

Fig. 13. Power functions for different sample sizes for a test with
significance levelα = 0.05. In the left panel power functions are
shown for representativeR2; in the right panel power functions for
δ = log(1.2)/85 are shown for representative model residual stan-
dard deviationsσ .

crease for increasing sample sizes. When using the formula
in Eq. (11) the information on the increased variability of the
independent variable is not used. In a different experimental
setup, researchers might be able to control the sample stan-
dard deviation of the independent variable, but since this is
not possible in the case under study it only makes sense to
use this additional information.

It should be pointed out that when deciding on the sample
size for a designed experiment, power analysis should not be
performed ex post, after an experiment has been carried out,
but rather ex ante, in the experiment design step. A researcher
should have some knowledge on the variability of the pro-
cess under study and can decide on the sample size based
on this knowledge. This is clearly not a viable approach for
flow data, as researchers have no control on the variability of
the processes and more data can only be obtained by waiting
more years. It is important to stress that the sample sizes in-
dicated in Fig.13 are only giving an indication of the time
needed to attain a required power when performing at-site
trend analysis on gauged peak flow under some pre-specified
conditions.

The power analysis for a regression parameter as discussed
in this section would be valid for complete, independent data
series. Some short-term and long-term autocorrelation might
be observed in hydrometric series, and would have an im-
pact on the variability of the test statistic and therefore on
the power levels, although less so for series of extremes (see
Hannaford and Marsh, 2008). Auto-correlation for the river-
flow and rainfall maxima series analysed in this work have
been found to be largely not significant (results not shown)
and Hannaford and Marsh(2008) show that correcting for
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the auto-correlation in river flow annual maxima series lead
to only marginally different results. Methods to overcome the
auto-correlation present in hydrometric data are discussed by,
among others,Yue et al.(2002).

Another source of uncertainty that would require fur-
ther corrections in power analysis is the correlation be-
tween events recorded in the same year at different stations.
Throughout the study each station has been analysed in iso-
lation, i.e. the stations are taken into consideration indepen-
dently, although correlations may exist between them, as
Fig.1 suggests. Not accounting for the spatial correlation can
potentially lead to problems when trying to interpret the sig-
nificance of the results. However, accounting for it is a non-
trivial issue, see for exampleDavison et al.(2012) andHuser
and Davison(2014).

Another possible strategy to lower the number of years
needed for each station to detect possible spatially coherent
changes would be to apply a regional method for trend de-
tection, such as the ones presented inRenard et al.(2008)
and applied to a number of French and Alpine high river
flow variables in, respectively,Giuntoli et al.(2012) andBard
et al. (2012). By analysing spatially and hydrologically co-
herent data together, stronger evidence can be found in favour
or against the presence of non-stationarity for hydrological
variables in a region. Some efforts have been made to de-
fine hydrologically coherent regions in the UK (e.g.Kingston
et al., 2013; Svensson and Prudhomme, 2005), and the main
division for the country would seem to be into two regions:
the northwest and the southeast. These two large regions
could be employed to perform a regional analysis, but they
might not be as well defined as the ones employed in the
French and Alpine studies. Identifying coherent regions for
high flows and rainfall patterns in the country would be a nec-
essary initial step to perform a regional analysis, and this is
beyond the scope of this paper. Moreover, for some regional
tests like the non-parametric approach presented inRenard
et al. (2008), the records for all stations included in the re-
gional study should all have data available for the same wa-
ter years: considering the several missing data which can be
seen in Fig.1, a careful selection of which stations should be
included in a regional analysis also needs to be carried out.

6 Summary

This study has investigated the presence of trends in the lo-
cation parameter of the distributions for annual and seasonal
maxima series of peak river flow and daily rainfall totals
recorded in the UK. Building onVogel et al.(2011), a di-
mensionless magnification factor is estimated for different
catchments and the presence of local patterns is investigated
by plotting the estimated factors on maps. For the peak river
flow data the simple time trend model is expanded by adding
a process-related variable: the 99th percentile of the daily
rainfall for each water year. This work only pursued a model

for µ, the location parameter of the distribution, assuming
the higher-order moments, like the dispersion, to be constant.
A detailed analysis of the variance function could be benefi-
cial, although a reliable estimate for the variance would ide-
ally require a higher number of observations for each station.

For the location parameter model, the 99th rainfall per-
centile explains a very large part of the variability seen in the
flow observations. The advantage of adding a rainfall-related
quantity is that any residual effect of time should be related
more to the other unknown drivers of change rather than pre-
cipitation, and that the variability of the slope estimate is re-
duced, thus giving more precise information. This is an at-
tempt in the direction of the better attribution effort (Merz
et al., 2012), and the framework could potentially accommo-
date additional variables other than time to better explain the
residual variability in the model.

Indeed the evidence for changing high flows is slightly dif-
ferent when the 99th rainfall percentile is taken into account
than when it is not. The results are shown in Figs.8–10, and
for all the annual and seasonal series, the inclusion of the
99th rainfall percentile in the model affects the detection of
changes in the series. For annual and winter river flow series,
no systematic patterns seem to emerge, with some small scat-
tered clusters of decreasing and increasing trends. However,
there is a strong indication of decreasing maxima summer
flows, particularly in the southeast of England.

The last part of this work in Sect.5 discusses some as-
pects of the statistical testing approach used to detect non-
stationarity and the implications for decision making. The
definition of non-stationarity can be expanded into some-
thing more relevant than the frequently used null-hypothesis
of no trend (H0 : β1 = 0), and the importance of Type II er-
rors is discussed. Indeed, the statistical testing framework
used in any study should be formulated thinking carefully
about the question that is relevant for the problem at hand.
With the data used in this study, only for a very small propor-
tion of stations can one of the two contrasting null hypothe-
sesH0 : β1 ≤ log(1.2)/85 andH0 : β1 > log(1.2)/85 be re-
jected. That is to say, for more than 80 % of the stations nei-
ther hypothesis can be rejected, and, assuming that the direc-
tion and strength of the future changes continue to be like
the ones detected at present, it cannot be determined whether
or not flood estimates are likely to exceed the current design
criteria for the 2085 horizon, or if they will be safely below
it. This striking result is due to the high natural variability
of the estimates for the regression coefficients: the trend sig-
nal is simply not strong enough to be really informative from
a statistical point of view. This is even more evident when
computing the sample sizes which would be needed to attain
relatively high power levels if the correlation values or the
model errors would be comparable to the ones obtained from
the models fitted to the data sets used in this study. Methods
to better account for, and use, the spatial correlation between
nearby stations might lead to more informative results.
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7 Conclusions

– Different patterns for changes are found in annual and
seasonal maximum instantaneous peak flow series.

– The potential for large rainfall events in each year ex-
plains a large part of the variability in the flow data.

– The testing framework does not need to be the usual
β1 = 0 test: it could be the translation of a relevant
question.

– Using such translated test hypothesis, and given the es-
timated trends at the present time, it is difficult to de-
tect changes in the flow series which would confirm
or negate the current design safety margins for climate
change.

– Given the observed variability in the data, sample sizes
of some hundreds of years would be needed to confirm
or negate the current safety margins when using at-site
analysis.
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Appendix A

A1 Derivation of some key quantities

In this appendix some of the formulas used in the approx-
imations in Eqs. (11) and (12) are derived. Most of these
derivations use known quantities for linear regression mod-
els. A comprehensive presentation of linear models can be
found inNeter et al.(1996).

In a model like the one in Eq. (3), yi = β0+β1xi +εi with
εi ∼ N(0,σ 2), a test on the coefficientβ1, with H0 : β1 = b1
againstH1 : β1 6= b1, is based on the test statistic:

T =
β̂1 − b1

s
β̂1

, (A1)

with s
β̂1

the estimated standard deviation for the estimated

coefficient β̂1. Under the null hypothesis it can be shown

that
(
β̂1 − b1

)
/s

β̂1
∼ tn−2. For a two-sided test at a signif-

icance levelα, the null hypothesis would be rejected when
|T | > tα/2,n−2. It can be shown thats

β̂1
= σ/(

√
nsx), so that

Eq. (A1) becomes(
β̂1 − b1

) √
nsx

σ
. (A2)

To calculate the power of a test, it is necessary to make as-
sumptions onσ and/orsx : in a designed studysx would be
either known or kept under control, but this is not possible
for a test on trend in time.

A2 Derivation of the approximation in Eq. (11)

The value of σ can be related to the sample correla-
tion coefficientρ̂ = cor(x,y). Sinceβ̂1 = ρ̂sy/sx , we have

that sy = sx β̂1/ρ̂. Also ρ̂2
= 1−

∑(
ŷ − ȳ

)2
/
∑

(y − ȳ)2.
Combining these well known relationships, the variance of
the model residuals can be written asσ 2

=
(
1− ρ̂2

)
s2
y =(

−1+ 1/ρ̂2
)
s2
x β̂2

1, so that

s
β̂1

=

√(
−1+ 1/ρ̂2

)
sx β̂1

√
nsx

.

Forb1 = 0, the test statistics in Eq. (A2) then reduces to

√
n

ρ̂2√(
1− ρ̂2

) .

A3 Derivation of the variance of a sequence of water
years

Let x be a sequence of numbers like the water years vari-
able. Since var(X+a) = var(X), the variance for a water year
record of lengthn corresponds to the variance of(1, . . . ,n).
Forx = (1, . . . ,n) the mean is

x̄ =
1

n

n∑
i=1

i =
1

n

(n + 1)n

2
=

(n + 1)

2

so

(n − 1)s2
x =

n∑
i=1

(i − x̄)2

=

n∑
i=1

(
i −

(n + 1)

2

)2

=

n∑
i=1

i2
− 2

(n + 1)

2

n∑
i=1

i + n
(n + 1)2

4

=
n(n + 1)(2n + 1)

6
−

n(n + 1)2

4

=
1

12
n(n2

− 1) (A3)

so thats2
x = n(n + 1)/12. This value for the variance of the

time variable is used when computing the power of a test
using the approximation in Eq. (12).
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