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Abstract. Identifying deep convection is of paramount im-
portance, as it may be associated with extreme weather phe-
nomena that have significant impact on the environment,
property and populations. A new method, the hail detection
tool (HDT), is described for identifying hail-bearing storms
using multispectral Meteosat Second Generation (MSG)
data. HDT was conceived as a two-phase method, in which
the first step is the convective mask (CM) algorithm devised
for detection of deep convection, and the second a hail mask
algorithm (HM) for the identification of hail-bearing clouds
among cumulonimbus systems detected by CM. Both CM
and HM are based on logistic regression models trained with
multispectral MSG data sets comprised of summer convec-
tive events in the middle Ebro Valley (Spain) between 2006
and 2010, and detected by the RGB (red-green-blue) visu-
alization technique (CM) or C-band weather radar system
of the University of León. By means of the logistic regres-
sion approach, the probability of identifying a cumulonim-
bus event with CM or a hail event with HM are computed by
exploiting a proper selection of MSG wavelengths or their
combination. A number of cloud physical properties (liquid
water path, optical thickness and effective cloud drop radius)
were used to physically interpret results of statistical models
from a meteorological perspective, using a method based on
these “ingredients”. Finally, the HDT was applied to a new
validation sample consisting of events during summer 2011.
The overall probability of detection was 76.9 % and the false
alarm ratio 16.7 %.

1 Introduction

Measurements of solar reflection and emittance of cloud sys-
tems by means of satellite sensors have been shown to be in-

strumental for retrieving the cloud optical and microphysical
properties for a variety of uses, such as cloud physics, meteo-
rology and climate studies (e.g., King et al., 1992). The EU-
ropean organisation for the exploitation of METeorological
SATellites (EUMETSAT) has established the Satellite Ap-
plication Facility on Support to Nowcasting and Very Short
Range Forecasting (SAF-NWC), which makes available the
algorithms for retrieving cloud physical properties. Marcos
and Rodriguez (2013) developed an algorithm that provides
an estimate of the probability of precipitation occurrence us-
ing information on the microphysical properties of the cloud
top. The radiative properties of a cloud were characterized by
means of the effective radius (Re) and cloud optical thickness
(OT; see acronym list in Appendix A).

The current generation of European geosynchronous satel-
lites yields a high-quality signal and enhanced spatiotempo-
ral resolution, which represent a major step forward for mon-
itoring of short-lived weather phenomena such as rapidly-
developing convective storms, for which high spatial and
temporal resolution is critical. The first such sensor is the
Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
(Schmetz et al., 2002), which is the main instrument on board
the European geostationary satellite Meteosat Second Gen-
eration (MSG). It has 12 spectral channels with spatial sam-
pling distance of 3 km at the sub-satellite point and a high
resolution visible (HRV) channel with spatial sampling dis-
tance of 1 km. Temporal resolution for the full disk of the SE-
VIRI is 15 min, with the possibility of obtaining rapid scans
at shorter time intervals.

The increased number of spectral channels of SEVIRI
over the previous generation Meteosat sensors makes it pos-
sible to develop different multispectral and multithreshold
techniques to identify cloud types, such as the split win-
dow technique (Inoue, 1987). For example, when the BT
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(brightness temperature) difference of channels at 11 and
12 µm is greater than 2.5 K, the cloud is considered cirrus
(Kurino, 1997). Other authors (Strabala et al., 1994) use BTs
in the spectral range of 8–12 µm to identify the cloud thermo-
dynamic phase. This trispectral technique is based on the fact
that the absorption coefficient for water particles increases
more between 11 and 12 µm than between 8 and 11 µm; for
ice, the reverse is true.

Many studies have focused on identification of storm cells
using various satellite data. Kurino (1997) found that the BT
difference of 11–6.7 µm is 0 K or less for convective clouds
associated with heavy rain. Schmetz et al. (1997) found that
the equivalent BT of the 6.7 µm channel can be larger than
that of the 11 µm channel by 6–8 K. This is because deep
convective clouds penetrate the stratosphere, injecting water
vapor there. The temperature in the stratosphere is warmer
than that in the upper troposphere, so it is often true that BT
in the water vapor channels is higher than BT in the thermal
infrared channels. Zinner et al. (2008) used the temperature
index in the tropopause, obtained from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) model,
to detect mature convective clouds. The authors found that
these clouds had 1.5 K TB at 6.7 µm less than the tropopause
temperature.

Cattani et al. (2009) studied the cloud optical and
microphysical characteristics of convective storms. They
found that clouds with precipitation intensities greater than
5 mm h−1 had an effective radius(Re) between 20 and
30 µm at their tops. Other authors have studied microphysical
characteristics of convective storms (Rosenfeld et al., 2008;
Mecikalski et al., 2011). Updraft speeds could be computed
at cloud tops during the developing phase using satellite sen-
sors, according to the cloud-top cooling rate given a high
temporal resolution. Using the "rapid scan" mode of geosta-
tionary satellites it is possible to analyze microphysical prop-
erties of convective cloud growth (Mecikalski et al., 2011).
Additionally, Rosenfeld et al. (2008) conceived a method
to infer the intensity of the storm updrafts from the micro-
physics of cloud-top particles. Vertical profiles ofRe were
computed from the study of areas with convection in vari-
ous stages of development. The authors concluded that cloud
tops with very strong updrafts contain small ice crystals, and
reflectance in the near-infrared (NIR) channels is high.

Another feature of severe storms (associated to severe
weather according to Johns and Doswell, 1992) is that they
often develop overshooting tops with a V-shape leeward of
the cloud top, resembling a diverging plume above the anvil
top (Heymsfield et al., 1983). This plume can have high
reflectance in the NIR channels because it contains small
ice particles (Levizzani and Setvák, 1996). In fact, Adler et
al. (1983) found that most storms with this V-shape were re-
lated to severe weather (tornadoes, hail, and intense rain).
The presence of overshooting clouds confirms strong up-
drafts within the storm often being associated with hazardous
weather (Dworak et al., 2012). These types of clouds can be

detected using spatial gradients of 11 µm BTs (Bedka et al.,
2010; Bedka, 2011). Setvák et al. (2010) observed with en-
hanced infrared window satellite imagery that deep convec-
tive storms can have long-lived cold rings at the cloud top,
causing a warm area inside the ring in overshooting clouds.

In summary, numerous studies have identified different as-
pects of convection using satellite data. The strong relation-
ships established between different products and hail precip-
itations have been considered in preparing this study, intro-
ducing an unsupervised objective hail detection algorithm to
identify hail precipitation in real time.

The middle Ebro Valley (MEV) in the northeast of the
Iberian Peninsula is one of the areas in Europe with high-
est frequency of hail events, with about 60 days character-
ized by storms each summer (López and Sánchez, 2009).
Since 2001, the Atmospheric Physics Group (GFA) of the
University of León in Spain has been developing a number
of projects in this area to study hailstorm convection and
monitor its development (García-Ortega et al., 2007, 2011;
Sánchez et al., 2009). The GFA uses a C-band weather radar
system with a nowcasting model for detection of hailstorms
(NMDH) (López and Sánchez, 2009). However, this hail de-
tection system has some drawbacks, such as limited spatial
range and radar beam shielding in mountainous areas. The
aim of the present study is to develop a tool for identify-
ing hail storms in real time that avoids the drawbacks of the
radar system. Thus, the aim was to develop a nowcasting tool
to identify hail-bearing clouds using MSG data. Its temporal
resolution (15 min in operational mode) is lower than that of
the radar (4 min for the University of León radar), but it may
be used to monitor convection in real time.

To meet this objective, a hail detection tool (HDT) has
been developed in two steps using logistic regression mod-
els. First, the deep convection is identified using a convective
mask algorithm (CM); second, the hail mask algorithm (HM)
is used to identify hail precipitation within the clouds. This
system was applied in the summer months (June, July and
August) during daylight hours (with solar zenith angle lower
than 70◦), when hailstorms are most frequent in the study
area.

2 Study area and nowcasting model for detection of
hailstorms

The study area covers the entire Iberian Peninsula (Fig. 1),
although the ground truth data (hail precipitation intensity)
were obtained exclusively for the MEV. As already noted,
the GFA uses a C-band weather radar system with an NMDH
(López and Sánchez, 2009). The NMDH was based on a
database of 702 events, identified by the radar using Thun-
derstorm Identification, Tracking Analysis and Nowcasting
(TITAN) software. The NMDH was trained and validated
using a network of 700 voluntary observers across most of
the MEV, providing a probability of detection (POD) rate of
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Fig. 1.Study area map. Circled area shows GFA radar range.

85 % and false alarm ratio (FAR) of 15 %. Therefore, this
tool determines the presence or absence of hail and predicts
the spatial likelihood of hail precipitation for each storm de-
tected by the radar.

In this paper, the results of the NMDH have been used as
“ground truth” for the construction of the training and valida-
tion databases of HDT. The reason for this is the accuracy of
this tool in identifying hail precipitation (López and Sánchez,
2009). Furthermore, it is possible to determine to some extent
the time of hail precipitation events. Given the small spatial
and temporal scales of these events, determining the exact
time is important. Nevertheless, it was decided not to use di-
rect observation of hail data on the ground from the observer
network, as these reports have larger time uncertainties.

3 The logistic regression method

Logistic regression is a widely used statistical tool in mete-
orology and land use studies (Applequist et al., 2002; Bas-
tarrika et al., 2011; López et al., 2007). Sections 4.2 and 5.2
describe construction of two logistic regression models for
formulating the CM and HM algorithms. The present section
describes basic features of the logistic regression technique
applied in the study. The technique provides probability of
occurrence (P) of a particular weather event (categorical vari-
able) from values of a number of metric explanatory vari-
ables (Xk). When the categorical variable is dichotomous,
binary logistic regression is used. When there are more than
two values involved, the latter is substituted by multinomial
logistic regression (Hosmer and Lemeshow, 1989). The P
obtained by the model for a categorical variable of the two

Table 1.List of channels of SEVIRI (Schmetz et al., 2002) used as
explanatory variables in CM and HM.

Channel Characteristics of spectral band (µm)
λmin λcen λmax

VIS0.6 0.56 0.635 0.71
VIS0.8 0.74 0.81 0.88
NIR1.6 1.50 1.64 1.78
IR3.9 3.48 3.90 4.36
WV6.2 5.35 6.25 7.15
WV7.3 6.85 7.35 7.85
IR8.7 8.30 8.70 9.10
IR9.7 9.38 9.66 9.94
IR10.8 9.80 10.08 11.80
IR12.0 11.00 12.00 13.00
IR13.4 12.40 13.40 14.40

groups is expressed as follows:

P1(X1,X2 . . .Xk) = p1 =
exp(Z1)

1+ exp(Z1)
, (1)

P2(X1,X2 . . .Xk) = p2 = 1− p1 =
1

1+ exp(Z1)
, (2)

whereZ1 = α+

k∑
j=1

βjXj ; Xj for j = 1, . . .,k are the metric

explanatory variables;k is the total number of variables or
interactions between variables included in the model;α is
the intercept;βj for j = 1, . . .,k the various discriminating
coefficients; andPn represents the probability of belonging
to group (1) or group (2), which ranges between 0 and 1.
Note thatp1 + p2 = 1.

As previously indicated, logistic regression was used to
generate the CM and the HM. In both cases, the metric ex-
planatory variables are the MSG channels, except the HRV
(Table 1). For construction of the CM, the categorical vari-
able was the presence or absence of cumulonimbus and,
for the HM, the presence or absence of hail. The model
is constructed using the stepwise method, where the met-
ric explanatory variables can be added according to their
forecasting potential (Hair et al., 1999). There are different
methods for incorporation of the variables into the model:
a higher Wald coefficient, higher conditional probability, or
the likelihood ratio. In this case, the criterion of the like-
lihood ratio was used, which is the greatest reduction in
the value of−2log likelihood (−2LL). Here, the variables
were introduced when the reduction of−2LL had signifi-
cance level 0.05 and, for the output, significance level 0.1.
The predictive equations were constructed with purely sta-
tistical criteria. However, the combination of variables must
have a meteorological justification for the analyzed weather
phenomenon (Doswell and Schultz, 2006). According to
Doswell et al. (1996) the “ingredients-based methodology”
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is the scientific path to assess an equation formulated using a
strictly statistical method.

The logistic regression model can be improved by intro-
ducing interactions between the predictor variables, thereby
increasing the predictive power of the equations. In this
study, the model was constructed by introducing first-order
interactions between the metric explanatory variables. Thus,
data from a particular MSG channel may be input individu-
ally or combined with those from another channel. The pres-
ence of interactions causes the relation between the categor-
ical variable and metric explanatory variable to depend on
the value of a third variable. Thus, the contribution of each
variable in the logistic model is conditioned by the variable
with which it interacts. This fact complicates interpretation
of the variables included in the model; however, it increases
its predictive power significantly. The sign ofβ coefficients
determines the sign of the contribution of each variable to the
model, when there are no interactions, or also the interaction
variable as a whole (Xm). In this case, a positiveβ coefficient
involves greater probability in the model when the value of
the variable increases, and the reverse is also true. When the
variables show interactions they must be interpreted together
physically, because in order to extract the sign of each single
variable (Xj ) it is necessary to combine theirβ coefficients
(Eq.3), which depend on the value of the variable with which
it interacts (Xi):

SignXj = Sign(βj + βmXi), (3)

whereXj and Xi are single variables involved in the in-
teraction, and SignXj is the sign of the contribution of
this variable to the model.Xm is the interaction variable
(Xm = XjXi) andβm is the interaction coefficient. As the
interaction variable (Xm) has a high order of magnitude, it
is necessary to provide the interactionβ coefficient with a
sufficient number of decimal points.

To check whether the explanatory variables added to the
model have a high degree of statistical significance, global
fitting of the model may be computed via the chi-squared
test for variation of the value−2LL with respect to the base
model (without variables). Thus, a model with good fit will
have a large reduction for−2LL, and a perfect fit is one in
which the likelihood is 1 and−2LL is zero. Owing to the in-
troduction of the independent variables, the chi-squared test
for assessing significance of the reduction of−2LL must be
significant. In addition, several differentR2 measures have
been constructed to represent a global fit of the model. Some
of these measures are the Cox and Snell (Hair et al., 1999)
and NagelkerkeR2 values (Hair et al., 1999); both are be-
tween 0 and 1, and 1 is considered a perfect fit.

Finally, the Wald test was applied to assess the significance
of the β coefficients for variables included in the logistic
equation (Hair et al., 1999). Variables with significance of
0.1 may thus be interpreted as metric explanatory variables
in discrimination of the categorical variable. It is important to
point out that the greater the significance and Wald statistic

are, the greater weight the variable will have in the logistic
model. The Wald statistic is used to compute the weight of
each variable in the model instead of theβ coefficients, be-
cause the metric explanatory variables have different orders
of magnitude.

In accord with Hosmer and Lemeshow (1989), the cutoff
point for discrimination between Eqs.1 and 2 was fixed at
0.5, for both the CM and HM.

4 Convective mask

HDT consists of two distinct stages. First, the CM was set
up to identify deep convection using MSG data. To do this, a
database of cloud events was created and subsequently ana-
lyzed from a microphysical point of view. These microphysi-
cal and optical analyses of the various cloud types were stud-
ied to interpret the results of the logistic model from a me-
teorological perspective. Although there are numerous CMs
for SEVIRI (Berendes et al., 2008; Henken et al., 2011), we
opted to develop a new CM to verify the HDT in its entirety.
However, other CMs for SEVIRI can be used as a basis for
later application of the HM.

4.1 Database

The training database used to construct the CM included
satellite imagery from the summer months between 2006
and 2010 during daytime (solar zenith angle lower than
70◦). Cloud types were identified using red-green-blue
(RGB) combinations. These combinations enabled repre-
senting physical information in the MSG channels (Lensky
and Rosenfeld, 2008). Using the RGB compositions “day mi-
crophysical”, “day solar” and “convective storms” by Lensky
and Rosenfeld (2008), 700 events were classified, 100 for the
following cloud types: cumulonimbus, stratocumulus, cirrus,
nimbostratus, cirrostratus and multilayer cloud, stratus, and
clear sky. An event was defined as an MSG image when
cloud systems of the above-mentioned cloud types with a
spatial extent of at least 10 km2 could be identified by RGB
combination. Only independent events were taken into ac-
count, removing MSG images related to the temporal evolu-
tion of the same cloud system.

The combination of physical properties of the clouds that
make up these RGB schemes (cloud drop size, thermody-
namic phase, cloud top height, optical thickness) permit each
cloud type to be identified, following guidelines established
by Lensky and Rosenfeld (2008). “Day microphysical” com-
positions (red = 0.8 µm; green = 3.9 µm reflectance; blue =
10.8 µm) are used to observe the microstructure of water and
mixed-phase clouds during daylight. In this scheme, stratus
with small cloud drops and high optical thickness appear
white, whereas warm precipitating clouds with large parti-
cles are pink. Cirrus clouds with tops composed of large ice
particles appear dark. The “day solar” scheme (red = 0.8 µm;
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Table 2. Parameters selected by logistic regression for CM: metric
explanatory variables input to the model,β coefficients used to ex-
tract the sign, and Wald parameter used to compute the weight. The
symbol “·” represents multiplication between variables.

Estimations of the parameters
Model variables β Wald Significance (Sig)

Channel 8.7 µm 1.188 37.206 0.00

Channel 6.2 µm −5.186 33.811 0.00

Channel 1.6 µm 2.226 14.502 0.00

Channel 0.8 µm −1.659 20.013 0.00

Channel 3.9 µm −0.884 31.158 0.00

Channel 7.3 µm −7.627 50.242 0.00

Channel 1.6 µm· −0.009810 16.354 0.00
Channel 8.7 µm

Channel 6.2 µm· 0.026309 41.09 0.00
Channel 7.3 µm

Channel 0.8 µm· 0.007047 22.329 0.00
Channel 3.9 µm

Incercept (α) = 1492.636

green = 1.6 µm; blue = 3.9 µm reflectance) is very sensitive to
cloud microphysics and serves to determine the particle size
and phase at the cloud top. Finally, the “convective storms”
scheme (red = BT difference 6.2–7.3 µm; green = BT differ-
ence 3.9–10.8 µm; blue = reflectance difference 1.6–0.6 µm)
highlights clouds with very cold tops and allows better iden-
tification of young, severe storms. Thus, convective clouds
characterized by strong updrafts that appear bright yellow
can be distinguished from cumulonimbus clouds with large
ice particles, which show up as red (Lensky and Rosenfeld,
2008). Uncertainty in the detection of each type of cloud via
these schemes has been reduced by combining information
from the various RGB schemes used.

For the total 700 identified events, radiances and re-
flectances of the MSG channels were retrieved for each event
at 15 min temporal resolution . The reflectances were trans-
formed into albedos following the Lambert method to avoid
their dependence on solar zenith angle, and the radiances
were transformed into BTs. The 3.9 µm radiances were con-
verted to BT, taking both contributions into account. It is im-
portant to point out that surfaces with high reflectances in
the direction of the satellite may have albedos greater than
100 %. Only albedos and BTs of different MSG channels
were then used as inputs in building the logistic regression
model.

4.2 Results of logistic regression

As mentioned in Sect. 2, logistic regression was used to con-
struct the CM, with data from the first 11 MSG channels
chosen as explanatory variables (Table 1) and the categor-

Table 3.Parameters of the global fit of the model for the CM. Chi-
squared test for−2LL reduction and severalR2 measures.

Information of the global fit
R2 contrasts Likelihood ratio contrasts

Cox and Snell Nagelkerke −2log likelihood Chi-squared Sig.
0.456 0.804 161.297 428.298 0.00

Table 4.Contingency table of database for CM.

Classification
Forecast

Observed Convective-free Convective Correct percentage

Convective-free 591 9 98.50 %
Convective 12 88 88.00 %
Global percentage 85.80 % 14.20 % 97.00 %

ical variable represented by the presence (P1) or absence
(P2) of cumulonimbus clouds. Thus, albedos and BTs of 600
cumulonimbus-free events were input to the model, along
with the cumulonimbus events, to find the combination of
MSG channels that best distinguished these two groups sta-
tistically. The binary logistic model is based on the forward
stepwise method and executed over 10 iterations, introduc-
ing 9 variables in Eqs. (1) and (2). The estimatedβ coeffi-
cients gave a correlation coefficient equal to zero, according
to Wald’s test (Table 2); thus, all are susceptible to physi-
cal interpretation. Global fit of the model was assessed using
the statistics described in Sect. 2. The chi-squared test used
to assess the reduction of the−2LL parameter showed that
it was significant (Sig< 0.05), so the fit was satisfactory. In
addition, the Nagelkerke’sR2 and the Cox and Snell’sR2

gave values of 0.456 and 0.804, respectively, which can be
considered an acceptable fit (Hair et al., 1999) (Table 3).

Table 4 shows the classification of events included in con-
struction of the logistic equation. A contingency table was
built, and 700 events were classified according to the algo-
rithm result. Of the 600 noncumulonimbus events included in
the training set, only 9 were classified as cumulonimbus. Of
the 100 cumulonimbus events, 12 were wrongly classified.
The correct classifications were 97 %, with POD of 88 % and
a FAR of 9 %.

4.3 Physical interpretation of results

To assist in physical interpretation of the logistic model re-
sults, the cloud physical properties optical thickness (OT),
effective radius (Re) and liquid water path (LWP) were ex-
tracted via the visible infrared solar-infrared split-window
technique (VISST; Minnis et al., 1995). Data were obtained
from the NASA Langley Research Center Cloud and Ra-
diation Group website (http://angler.larc.nasa.gov/) with the
same temporal and spatial resolution of MSG data. The mi-
crophysical properties dictate the emittance and bidirectional
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Fig. 2.14:00 UTC on 12 August 2011. Left, RGB image “day solar”; right, RGB image “convective storm”. Different cloud types are marked.
1: stratus; 2: cirrus; 3: nimbostratus; 4: cirrostratus; 5: developing convection; 6: dissipating convection.

reflectance of clouds, since they determine the amount of ra-
diation transferred to the surface, reflected and scattered to
the satellite sensor, and the amount of radiation absorbed by
the cloud layer. These characteristics vary according to cloud
type (King et al., 1992).

4.3.1 Cloud physical properties: liquid water path,
optical thickness and effective radius

The cloud physical properties were examined for a represen-
tative case study, for example, from the event on 12 August
2011 at 14:00 UTC (Coordinated Universal Time). This is
because at that time there were a variety of cloud types over
the Iberian Peninsula. Figure 2 is the RGB image “day so-
lar”, showing areas with stratus, nimbostratus, cirrus and cir-
rostratus clouds. To the right of the figure, the RGB image
“convective storm” highlights cumulonimbus clouds in dif-
ferent stages of development.

The cloud physical properties were obtained for each
cloud pattern and are described below.

a. LWP

The scatter plot of LWP values as a function of BT
(10.8 µm) for the various cloud types (Fig. 3, up-
per panels) shows that cirrus and cirrostratus have
the smallest LWP. Cumulus clouds with little devel-
opment also had low LWP values, whereas stratus
and nimbostratus are characterized by LWP values of
up to 410 g m−2, despite their relatively small thick-
ness. Convective clouds showed the highest LWP, with
many pixels having more than 1000 g m−2.

b. OT

The OT (Fig. 3, middle panels) shows that cirrus
clouds had very low OT values, since they are nearly
transparent. OT values increased for cumulus clouds
with weak development and, in stratus and nimbo-
stratus clouds, they neared 50, since these clouds are

opaque. Both developing and dissipating cumulonim-
bus clouds had the highest OT values (128 in this ex-
ample), with no major differences between the two.

c. Re

TheRe scatter plot (Fig. 3 bottom panels) shows that
cloud tops below the glaciated zone had lowRe val-
ues, as with stratus and developing cumulus clouds. In
contrast, cloud tops containing ice crystals had much
higher values. For strong convection in the developing
stage,Re values were not particularly high compared
to convection in the dissipating stage. This is due to the
fact that updrafts within convective clouds in the devel-
oping stage are much stronger and, as a result, hetero-
geneous nucleation produced in the mixed phase does
not have enough time to form large ice crystals. Thus,
smaller ice particles are formed via homogeneous ice
nucleation above the level of glaciation compared to
particles of greater size formed via heterogeneous nu-
cleation (Rosenfeld et al., 2008).

The microphysical properties of the different cloud types
were investigated to determine features that enable distinc-
tion between convective and other cloud events. Cumulonim-
bus clouds are characterized by high LWP, high OT values
and, depending on their stage of development, variableRe
values. Thus, albedos and BTs included in the logistic model
should reflect these characteristics.

4.3.2 Model input variables

The SEVIRI spectral channels and their combinations that
were included in the logistic equation are shown in Table 2.
Later, a physical interpretation of the variables, with respect
to their contributions to the model, was developed according
to the Wald statistics (Table 2). Variables showing interac-
tions were interpreted together as follows.
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Fig. 3. Left: Scatter plot of LWP (top), OT (middle) and Re(bottom) values as a function of 10.8-µm BT for

the cloud types at 1400 UTC, 12 August 2011. Right: LWP (top), OT (middle) and Re(bottom) over Iberian

Peninsula.

25Fig. 3. Left: scatter plot of LWP (top), OT (middle) andRe (bottom) values as a function of 10.8 µm BT for the cloud types at 14:00 UTC,
12 August 2011. Right: LWP (top), OT (middle) andRe (bottom) over the Iberian Peninsula.

– Channels at 6.2 and 7.3 µm, and their interaction
(channel 6.2 µm× channel 7.3 µm): emission in this
part of the spectrum occurs within the water va-
por (WV) absorption band. The channel at 6.2 µm
is sensitive to WV emittance in the upper tropo-
sphere, and that at 7.3 µm to emittance in the mid-

troposphere. These channels are also important when
computing atmospheric corrections (Minnis et al.,
1995). The 7.3 µm channel and its interaction with the
6.2 µm channel are the greatest weight in the equation
(Wald parameter in Table 2). Cumulonimbus clouds
are the only ones often extending through the entire
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troposphere, and this is a crucial feature for identify-
ing this cloud type. These clouds produce high LWP
values and low BTs in the WV channel spectrum. To-
gether, these three variables are inversely correlated
with high probabilities of cumulonimbus, so low BTs
in the 6.2 and 7.3 µm channels are associated with
high probability of cumulonimbus, which accords with
physical expectations.

– Channels at 8.7 and 1.6 µm, and their interaction
(channel 8.7 µm× channel 1.6 µm): the channel with
the next-highest weight in the model is of 8.7 µm
(Wald parameter in Table 2). The interpretation of
this channel in the model has been carried out con-
sidering its category (infrared windows). This means
that introducing new channels of the same category
does not lead to a statistically significant improve-
ment in the model. This fact was checked by sub-
stituting the 8.7 µm channel with other infrared win-
dow channels (at 10.8 and 12 µm). The results of this
new model were very similar to the original, after ad-
justing the coefficient. The atmospheric window chan-
nels permit distinction between different cloud top
temperatures. Developing cumulonimbus clouds have
tops formed by ice crystals near the tropopause, and
the channel therefore distinguishes them from middle
and low clouds. The channel with which it interacts
(1.6 µm), albeit with less weight in the model, permits
distinguishing the cloud-top phase. At 1.6 µm, ice and
liquid-water clouds have very different reflectances
(Cattani et al., 2007; Rosenfeld et al., 2008), owing to
sensitivity toRe and cloud phase. Cloud tops formed
by liquid-water hydrometeors have lower absorption
than those formed by ice crystals, so reflectances are
higher for water than for ice particles. In this case,
the signs of the variables are related. To extract these
signs, it is necessary to combine theirβ coefficients
(Table 2) using Eq.3. Thus, channel 1.6 µm has a
positive effect for channel 8.7 µm BTs of less than
226.91 K, and a negative effect for BTs greater than
that value. This result has a physical interpretation,
since clouds with 8.7 µm BTs of less than 226.91 K
(lower than the level of homogeneous nucleation, ac-
cording to Rosenfeld et al. (2008)) are formed by ice
crystals. Greater albedo values at 1.6 µm mean that
particles at cloud top are small, and updrafts are more
vigorous (Rosenfeld et al., 2008); that is, the probabil-
ity of cumulonimbus increases. On the contrary, clouds
with 8.7 µm BTs warmer than this temperature may be
formed by liquid water, with large albedos at 1.6 µm,
which diminishes the probability of cumulonimbus.

– Channels at 3.9 and 0.8 µm, and their interaction (
channel 3.9 µm× channel 0.8 µm): the channel with
the next-highest weight in the model is at 3.9 µm (Wald
parameter in Table 2). BTs in this channel, together

with those measured in channel 1.6 µm, are very sensi-
tive toRe at cloud tops (Cattani et al., 2007; Rosenfeld
et al., 2004). Cloud tops formed by water or small ice
hydrometeors have low absorption and thus high BT.
This fact enables distinguishing between clouds with
tops characterized by lowRe values and high TB in
this channel, and those with tops associated with high
Re values and low BT. This channel interacts with the
0.8 µm channel and, according to Nakajima and King
(1990), reflectances at this wavelength depend primar-
ily on cloud OT. As a result, this channel distinguishes
between very dense, opaque clouds and thinner, trans-
parent clouds. The interaction between these two chan-
nels couples the effects ofRe and OT, and their infor-
mation can be used for simultaneous retrieval of OT
and Re (King et al., 1992). Mecikalski et al. (2010)
showed that changes in the reflectances of these chan-
nels were related to the variations of OT and hydrome-
teor size in growing clouds. The sign of the variables in
the model also varies. Combining theirβ coefficients
(Eq. 3), the 0.8 µm channel has a positive effect over
the entire range of possible values of the 3.9 µm chan-
nel. In other words, a large albedo at 0.8 µm produces
large OT and a greater probability of cumulonimbus.
The 3.9 µm channel has a positive effect for 0.8 µm
channel albedos greater than 125.44 %, and a nega-
tive effect for lesser albedos. The physical reason is
similar to that explained in the second point above.
Albedos greater than 125 % are typical of very dense
clouds and, since BTs increase in the 3.9 µm channel,
the probability of cumulonimbus increases. According
to Mecikalski et al. (2010), reflectances in the visible
channels do not provide definitive information about
cloud top character, but they can be used to confirm
that the cloud is optically thick and the use of 3.9 µm
is acceptable.

As mentioned above, the CM uses a large number of vari-
ables within the discriminating equation. This is because of
the wide range of cloud types included in the database. How-
ever, all channels selected using statistical criteria have an ad-
equate physical interpretation in cloud-type discrimination.
The results reveal that the “ingredients” required to distin-
guish cumulonimbus clouds from other cloud types are, in
order of importance, as follows:

– water vapor in the troposphere (assessed by the WV
channels),

– thermodynamic phase of particles at cloud top and top
cloud temperature (assessed by the NIR channels and
the 8.7 µm channel), and

– cloud optical thickness and size of the particles at
cloud top (assessed by the NIR channel and the 0.8 µm
channel).
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Cumulonimbus clouds are thick, with a high WV concen-
tration throughout the troposphere, and their cloud tops are
formed by ice crystals. The combination of all these features
enables discriminating this cloud type from others, and so
these are the three “ingredients” that must be included in an
algorithm for detecting cumulonimbus clouds. These ingre-
dients are linked to the aforementioned physical properties.
WV concentration, for example, is related to LWP. The ther-
modynamic phase of the cloud is related toRe, since this
parameter strongly depends on the presence of ice or water.

5 Hail mask algorithm

The second step in construction of the HDT from MSG
data is identification of hydrometeors within cumulonimbus
clouds detected by the CM. The method for building the HM
is similar to that described above for the CM. First, a database
of cumulonimbus events was created, with and without hail.
Then, the logistic regression model was constructed using the
albedos and BTs to determine the MSG channels that best
distinguish the hail events. Finally, microphysical and opti-
cal cloud properties were studied in areas with hail to inter-
pret the MSG channels included in the model from a physical
perspective.

5.1 Database construction

The database for the HM was built using information from
the GFA weather radar. This database includes daytime
events recorded in the summer months, during five observa-
tion campaigns between 2006 and 2010. To distinguish hail-
bearing from hail-free events, the results of the NMDH im-
plemented for the radar data (López and Sánchez, 2009) were
used. The NMDH provides the likelihood of hail precipita-
tion, and its results were considered "ground truth" data. A
hail pixel is one at which the likelihood of hail according to
the NMDH exceeds 90 %. To build the database using radar
data, the following issues were taken into account.

– Temporal resolution. The radar data must correspond
to the same time span of the MSG satellite scan across
the study area. In this case, for the MEV the satellite
gathers data between 8.5 and 9 min after the scan initi-
ation.

– Parallax effect. The parallax effect is important for the
MSG because the satellite is above the Equator, tak-
ing measurements of Europe at relatively low angles.
Lábó et al. (2007) found a deviation up to four pixels
towards the southwest for high clouds over Hungary.
The MEV is not situated at the satellite nadir and the
analyzed cumulonimbus clouds have high tops; thus,
correction must be done. The deviations computed in
this study follow the method of Vicente et al. (2002),
which takes data of cloud-top height from vertical re-
flectivity profiles obtained by the radar. For example,

Table 5.Parameters selected by logistic regression for HM: metric
explanatory variables input to the model,β coefficients used to ex-
tract the sign, and Wald parameter used to compute the weight. The
symbol “·” represents multiplication between variables.

Estimations of the parameters
Model variables β Wald Significance (Sig)

Channel 6.2 µm −0.624 7.961 0.005

Channel 1.6 µm −2.18 3.367 0.067

Channel 0.8 µm 0.118 18.796 0.000

Channel 1.6 µm· 0.010955 4.21 0.040
Channel 6.2 µm

Incercept (α) = 115.039

for high clouds (between 15 and 18 km) the deviations
reached 18 km to the south; there were very small de-
viations in the E-W direction, because the zero degree
meridian crosses the study area. Eventually, this cor-
rection enables comparing satellite and radar data at
the same surface location.

– Spatial resolution. The GFA radar data have a resolu-
tion of 0.75 km, whereas the MSG data have spatial
sampling distance of 3 km at the subsatellite point. Be-
cause of this and considering small deviations of hail
precipitations that may be attributed to wind, we con-
sidered only hail precipitation with an extent of at least
18 radar pixels. In this case, an event is defined as a
cumulonimbus with a spatial extent of at least 10 km2

identified in radar images pertaining to independent
convective cells.

The hail training database was thus constructed, with the fol-
lowing events:

– 100 events of precipitating cumulonimbus clouds with
hail,

– 50 events of precipitating cumulonimbus clouds with-
out hail, and

– 50 anvil clouds.

Finally, radiances or reflectances of the first 11 MSG chan-
nels were considered for each event (Table 1). These were
transformed into BTs and albedos, respectively, as with the
CM algorithm.

5.2 Results of logistic regression

The HM was built with a categorical variable of binary type,
taking value 1 for hail events and 0 for hail-free events. The
binary logistic model was created as with the CM, introduc-
ing the albedos and BTs of both hail-free and hail events.
The model executed eight iterations, inputting four variables
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Table 6.Parameters of global fit of the model for HM. Chi-squared
test for−2LL reduction and severalR2 measures.

Information of the global fit
R2 contrasts Likelihood ratio contrasts

Cox and Snell Nagelkerke −2log likelihood Chi-squared Sig.
0.588 0.784 99.843 177.416 0.00

Table 7.Contingency table for HM database.

Classification
Forecast

Observed Hail-free Hail Correct percentage

Hail-free 93 7 93.00 %
Hail 8 92 92.00 %
Global percentage 50.50 % 49.50 % 92.50 %

in the equation. Theβ coefficients estimated for each vari-
able are significant (Sig< 0.1) for physical interpretation,
according to Wald’s test (Table 5). Global fit of the model
was assessed through the statistics described in Sect. 2. The
chi-squared test used to assess reduction of the−2LL pa-
rameter yielded significant results (Sig< 0.05), revealing a
good fit for the model. In addition, Nagelkerke’sR2 and
Cox and Snell’sR2 indicators yield 0.784 and 0.588, respec-
tively, demonstrating an acceptable fit (Hair et al., 1999) (Ta-
ble 6). Table 7 shows the classification of events included in
the construction of the logistic equation. A contingency table
was built, classifying the 200 events according to the model.
Among the 100 hail-free events, only seven were wrongly
classified. Among the 100 hail events, eight were wrongly
classified. Correct classification amounted to 92.5 %, with
POD 92 % and FAR 7 %.

5.3 Physical interpretation of results

As in the case of the CM, the cloud physical properties OT,
LWP andRe were extracted from the VISST algorithm for
a sample case study, to make a proper physical interpreta-
tion of the MSG channels selected by the model. The aim
was to determine microphysical characteristics in areas with
and without hail. To study these properties, several single-
cell storms were chosen. The NMDH was used to identify
storm areas with high likelihood of hail precipitation. Then,
scatter plots of the cloud properties as a function of corre-
sponding cloud-top temperatures were used to compare these
hail sectors with others within the cumulonimbus cloud.

5.3.1 Cloud physical properties: liquid water path,
optical thickness and effective radius

The scatter plots were constructed by selecting convec-
tive areas identified by the CM in the sample case study
(14:00 UTC, 12 August 2011). Areas affected by hail are

Table 8. Average results of algorithms for the 26 events of each
type included in the verification database. CM shows cumulonim-
bus probability and HM hail precipitation probability.

CM HM

Hail cumulonimbus 99.34 68.43
Free-hail cumulonimbus 80.63 29.82
Free cumulonimbus 4.09 0.05

shown by black contours (Fig. 4). The radar only covers the
northeast of the study area (red circle in figure), so hail areas
outside of this coverage are not identified.

a. LWP

The LWP (Fig. 4, upper panels) did not reveal major
differences between hail and hail-free areas. Neverthe-
less, whereas clouds without hail and lower heights ex-
hibit a wide range of LWP values of up to 3000 g m−2,
clouds with hail have smaller LWP values. For hail ar-
eas, most of the water vapor is transported by strong
updrafts toward upper levels in the cloud, forming ice.
However, in other parts the cloud is affected by down-
drafts and, thus, there are significant accumulations of
liquid water at the base, thereby increasing the LWP.

b. OT

The OT (Fig. 4, middle panels) shows that the hail ar-
eas were mostly in regions with OT between 40 and
100. It is seen that many cloud pixels not associated
with hail precipitation also have high OT values, be-
cause the anvil has high values.

c. Re

The Re (Fig. 4, bottom panels) shows that most hail
pixels hadRe between 30 and 50 µm, considerably
smaller than values at other cold pixels. This represents
the microphysical property that best discriminates hail
and hail-free regions within a cloud. In hail areas, up-
drafts are stronger than in other parts of the cloud, and
lowerRe values are found.

5.3.2 Variables input to the model

Channels included in the logistic equation are shown in Table
5. A physical interpretation of the variables, along with their
interactions in order of weight in the model according to the
Wald statistics, is shown below.

– Channel at 0.8 µm: this channel with a positive effect
has the highest weight in the model (Wald parame-
ter, Table 5). Thus, the greater the 0.8 µm albedo, the
greater the probability of hail. According to Heyms-
field et al. (1983), hail areas are commonly associ-
ated with high OT, related to overshooting clouds or
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Fig. 4. Left: LWP (top), OT (middle) and Re(bottom) as in Fig. 3 for hail (black) and no hail (gray) pixels.

Right: LWP (top), OT (middle) and Re(bottom), black lines correspond to areas with high likelihood of hail

according to radar. Circled area shows radar range. 26

Fig. 4. Left: LWP (top), OT (middle) andRe(bottom) as in Fig. 3 for hail (black) and no hail (gray) pixels. Right: LWP (top), OT (middle)
andRe (bottom), black lines correspond to areas with high likelihood of hail according to radar. Circled area shows radar range.

a V-shaped form. Bedka (2011) found that 53 % of
cumulonimbus with overshooting clouds produce hail
on the ground. To detect this type of structure it is
necessary to apply techniques of spatial recognition,
since the present method using a pixel-by-pixel anal-
ysis does not permit such detection. However, it has
been observed that these structures have high albedos
in the visible and NIR channels (Berendes et al., 2008).
Thus, pixels with elevated albedos in the 0.8 µm chan-
nel must be considered for hail identification. How-

ever, apart from the visible channels, additional chan-
nel information is necessary for this detection (Beren-
des et al., 2008).

– Channels at 6.2 and 1.6 µm, and their interaction
(channel 6.2 µm× channel 1.6 µm): the channel with
the second-highest weight in the model is WV 6.2 µm
(Wald parameter, Table 5), along with its interaction
with NIR 1.6 µm. Channel 6.2 µm has a negative ef-
fect for 1.6 µm albedo values of less than 56.96 % (this
threshold is obtained by combining theβ coefficients
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Table 9.Contingency table for verification of HDT by cumulonim-
bus events in summer 2011.

Classification
Forecast

Observed Hail-free Hail Correct percentage
Hail-free 22 4 84.62 %
Hail 6 20 76.92 %
Global percentage 53.85 % 46.15 % 80.77 %

(Table 5) in Eq.3). Channel 1.6 µm has a positive effect
for BTs greater than 198.99 K at 6.2 µm. In the train-
ing database, none of the episodes identified as cumu-
lonimbus via the CM had albedo values greater than
56.96 % at 1.6 µm or BT less than 198.99 K at 6.2 µm.
Thus in practice, channel 6.2 µm will have a negative
sign and channel 1.6 µm a positive sign. The probabil-
ity of hail increases with albedo in the 1.6 µm channel
and BT diminishes in the 6.2 µm channel, consistent
with physical expectations. Storms can produce hail in
their developing stage when their mass centroids are
in the upper layers (López and Sánchez, 2009). This
results in high WV concentrations in the upper tropo-
spheric layers, producing a decrease in BTs at 6.2 µm.
Channel 1.6 µm does not have the greatest weight in
the equation; however, it is fundamental for hail de-
tection. Its reflectances are associated with ice particle
size, since cloud tops formed by liquid water are fil-
tered by the CM.

As seen in the analysis of microphysical cloud properties,
hail areas have small ice particles at their cloud tops because
of the strong updrafts. It is well known that presence of hail
on the ground is directly related to updraft speed (López et
al., 2000). This speed determinesRe at cloud tops (Rosen-
feld et al., 2008). Therefore, reflectances in this channel are
higher than those in regions with large ice particles. These
results reveal that the ingredients necessary for discriminat-
ing regions with hail precipitation within cumulonimbus are,
in order of importance, as follows:

– optical thickness (assessed by the visible channels),

– water vapor in upper troposphere (assessed by the WV
channel), and

– speed of updrafts (assessed by the NIR channels).

The combination of all these ingredients discriminates hail
sectors from the remainder of the cumulonimbus cloud.

6 Verification of HDT from MSG data

The HDT was verified with convective hail events recorded
in the MEV during summer 2011, since these data were not
included in the initial training database.

Table 10. Skill scores for verification contingency table. Calcula-
tion follows method of López and Sánchez (2009).

Skill scores Acronyms Value

False alarm ratio FAR 16.7 %
Frequency of hits FOH 83.3 %
Frequency of misses FOM 23.1 %
Probability of detection POD 76.9 %
Probability of null event PON 84.6 %
Probability of false detection POFD 15.4 %
Detection failure ratio DFR 21.4 %
Frequency of correct null events FOCN 78.6 %
Heidke’s skill score HSS 0.640
True skill score TSS 0.615

6.1 Database

The same procedure as that chosen to extract hail events us-
ing the NMDH (no direct ground measurements) was fol-
lowed to build the verification database. Hail-free events
were either associated with convective clouds with tops
higher than 10 km and with liquid precipitation registered on
the ground of various intensities (radar-measured), or with
parts of the anvil of the convective cloud. The verification
database includes the following events:

– 26 convective-free events (cirrus, cirrostratus, stra-
tocumulus, stratus and blue-sky),

– 26 hail events corresponding to convective cells (one
or more cells), and

– 26 hail-free events (rain of varying intensities and
anvil).

The database constructed using these radar data was con-
sidered ground truth. To assess the HDT results, we need
to compare probabilities obtained by the model built using
MSG data and the ground truth data for each event. Spa-
tial probability weighting was used for this comparison. For
each event, the central MSG pixel was extracted together
with eight surrounding pixels, and the maximum likelihood
among all nine MSG pixels was considered. The reason for
this spatial weighting is that data from the MSG pixel might
not coincide exactly with hail recorded on the ground. De-
viations may occur, one source of these being the error in
cloud-top estimation with the radar, and another the compu-
tation of the parallax effect. Other deviations may be from
strong wind shear, which can tilt the storm. In all these cases,
the area on the ground where hail is recorded does not coin-
cide exactly with the cloud top.

6.2 Results

The results were assessed using a 50 % threshold as the dis-
tinction between hail and hail-free events, the same as used in
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Fig. 5.12 August 2011. Left: radar-based accumulated hail likelihood for entire day in MEV. Right: radar-based hail likelihood at 14:00 UTC.
Convective cells with high hail likelihood are marked in red. Circled area shows the 100 km radar range

Fig. 6.14:00 UTC on 12 August 2011. Left: convective areas delineated by CM. Right: HDT outputs in terms of hail probability.

model construction. Validation was done for the HDT over-
all. The verification of the CM for cumulonimbus detection
shows that of the 52 cumulonimbus events analyzed, the CM
identified 48 correctly. Only four cases were considered non-
convective, none of which produced hail precipitation. In ad-
dition, only one cumulonimbus-free event (cirrostratus) out
of 26 such events included in the verification database was
erroneously classified as cumulonimbus. This was later cor-
rectly filtered by the HM. It can therefore be said that the CM
does not filter out any hail event.

Table 8 shows average likelihoods of the two algorithms
for the 26 events of each type included in the verification

database. For the CM, greater likelihoods were obtained
for the cumulonimbus events, with a likelihood near 100 %
for hail events. The HM revealed great sensitivity, with a
large difference between hail and hail-free cumulonimbus
events. The two algorithms gave very low likelihoods for the
cumulonimbus-free events. Once it was shown that none of
the cumulonimbus-free events were classified as hail, the ver-
ification focused on convective episodes.

A contingency table was then built (Table 9) with results
of the global application of the HDT for the 2011 cumu-
lonimbus events. Note that only four events were wrongly
classified as hail events. Of these, two corresponded to
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well-developed convective clouds generating intense rainfall
(greater than 30 dBz radar reflectivity). Moreover, six hail
events were wrongly classified as nonhail events.

Skill scores were computed using data from the contin-
gency table to investigate different aspects of model validity.
Table 10 shows a POD of 76.9 % and FAR of 16.7 %, both
satisfactory values. Heidke’s skill score (HSS) and true skill
score (TSS) were also computed. For both indices, a value of
1 is considered a perfect forecast.

These results are slightly worse than those achieved by the
radar-based hail-detection algorithms. However, the advan-
tages of using satellite data instead of radar data make this
approach valuable for monitoring hailstorms.

6.3 Application of the HDT: case study on
12 August 2011

The model was applied to the case study at 14:00 UTC on 12
August 2011. The synoptic situation showed a low pressure
center at 500 hPa with strongly convergent flow at the sur-
face. This center moved from the southwest of the Iberian
Peninsula to the northeast. There was an isolated cold air
mass in the upper tropospheric layers (−10◦C at 500 hPa),
with strong warm and moist advection in lower layers. These
meteorological conditions favored development of intense
storms over the peninsula. In fact, the initial storms to the
west-southwest of the peninsula were detected around noon.
Shortly afterward, more storms developed over the Iberian
and Central Mountain systems. Figure 5 shows areas with
high likelihoods of accumulated hail as derived by radar dur-
ing the day in the MEV. The Iberian range was the area most
widely affected by hail.

At 14:00 UTC there were several convective cells over the
central peninsula, in different stages of development. In the
north, nearly transparent cirrus and nimbostratus clouds were
detected over the eastern coast. In the southwest of the penin-
sula there were stratus clouds (Fig. 2). The radar in the MEV
showed a number of storm cells with high hail likelihood
over the province of Teruel (Fig. 5). To the west of the Iberian
Mountain system, lower likelihoods of hail were evident, but
this might be a result of poor radar coverage because of the
long distance .

The result of applying the CM and HM to the case study
is shown in Fig. 6. The HDT results are shown on a proba-
bility scale, and are obtained by applying the HM to pixels
identified as cumulonimbus by the CM (using a threshold of
50 %). Convective cells were detected with high hail like-
lihood in the southern Iberian Mountain system and around
the Central Mountain system. These areas also agree with the
radar for hailstorm presence (Fig. 7).

Fig. 7.14:00 UTC on 12 August 2011. Color scale: HDT outputs in
terms of hail probability. Black contours: radar-based hail precipi-
tation. Circled area shows the 110 km radar range.

7 Conclusions

A daytime HDT was introduced for the summer months, us-
ing MSG data and applying two logistic regression models.
The stepwise method was used to input variables for algo-
rithm definition, with first-order interaction between the pre-
dictive variables. The CM identifies convective cloud pixels,
whereas the HM discriminates pixels with hail precipitation
from other convective cloud pixels.

The following conclusions can be drawn.

– The CM includes nine explanatory variables. Meteoro-
logical interpretation of these variables reveals that the
“ingredients” required to discriminate cumulonimbus
clouds from other cloud types are as follows: WV in
the troposphere (assessed by the WV channels), ther-
modynamic phase of particles at cloud top and cloud-
top temperature (assessed by the NIR channels and
channel 8.7 µm), and cloud thickness and size of parti-
cles at cloud top (assessed by channel 0.8 µm and NIR
channels).

– The HM includes four explanatory variables. Meteoro-
logical interpretation of these variables reveals that the
“ingredients” required to distinguish hail areas within
a cumulonimbus cloud are as follows: the presence of
elevated OT (as shown by the visible channels), WV
in the upper troposphere and updraft speed, based on
smallRe (derived from the NIR).
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– Preliminary application of the CM is crucial to filter
cloud tops formed by liquid water. The reason is that
the HM is very sensitive to values from the NIR chan-
nels. Cloud tops formed by liquid water have smallRe
values and high reflectances in the NIR, so they would
eventually be classified as hail.

– Analysis of the cloud physical properties indicated that
cumulonimbus clouds are characterized by high LWP
and OT values, plus varyingRe values, depending on
the stage of cell development. The occurrence of hail
within cumulonimbus clouds is linked to lowerRe val-
ues (30–50 µm) of particles at cloud top. Also, OT and
LWP were not particularly useful parameters for iden-
tifying hail within a convective structure.

– Validation of the HDT, using independent data from
2011, gave a POD of 76.9 % and FAR of 16.7 %.

Although these results are slightly worse than those char-
acterizing hail detection from ground-based radars, the HDT
is recommended for application to areas with spatially lim-
ited radar coverage . The HDT will be used for tracking and
nowcasting of hailstorms in real time, using radar data to im-
plement the system. Finally, the effective spatial and tempo-
ral coverage of this tool will allow recording of hailstorms in
the Iberian Peninsula in a database, for in-depth investigation
of regional hail climatology.
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Appendix A

Acronym list

BT: brightness temperature
CM: convective mask
FAR: false alarm ratio
GFA: Atmospheric Physics Group
HDT: hail detection tool
HM: hail mask
HRV: high resolution visible
LWP: liquid water path
MEV: middle Ebro Valley
MSG: Meteosat Second Generation
NIR: near-infrared
NMDH: nowcasting model for detection of hailstorms
OT: optical thickness
POD: probability of detection
Re: effective radius
RGB: red-green-blue
SEVIRI: Spinning Enhanced Visible and InfraRed Imager
TITAN: Thunderstorm Identification, Tracking Analysis and Nowcasting
VISST: visible infrared solar-infrared split-window technique
WV: water vapor
−2LL: −2·log likelihood
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