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Abstract. Satellite Application Facility on Support to Op-
erational Hydrology and Water Management (H-SAF) is
a EUMETSAT (European Organisation for the Exploita-
tion of Meteorological Satellites) program, designed to de-
liver satellite products of hydrological interest (precipitation,
soil moisture and snow parameters) over the European and
Mediterranean region to research and operations users world-
wide. Six satellite precipitation algorithms and concomitant
precipitation products are the responsibility of various agen-
cies in Italy. Two of these algorithms have been designed
for maximum accuracy by restricting their inputs to mea-
surements from conical and cross-track scanning passive mi-
crowave (PMW) radiometers mounted on various low Earth
orbiting satellites. They have been developed at the Ital-
ian National Research Council/Institute of Atmospheric Sci-
ences and Climate in Rome (CNR/ISAC-Rome), and are pro-
viding operational retrievals of surface rain rate and its phase
properties. Each of these algorithms is physically based,
however, the first of these, referred to as the Cloud Dynamics
and Radiation Database (CDRD) algorithm, uses a Bayesian-
based solution solver, while the second, referred to as the
PMW Neural-net Precipitation Retrieval (PNPR) algorithm,
uses a neural network-based solution solver. Herein we first
provide an overview of the two initial EU research and ap-
plications programs that motivated their initial development,

EuroTRMM and EURAINSAT (European Satellite Rainfall
Analysis and Monitoring at the Geostationary Scale), and the
current H-SAF program that provides the framework for their
operational use and continued development. We stress the
relevance of the CDRD and PNPR algorithms and their pre-
cipitation products in helping secure the goals of H-SAF’s
scientific and operations agenda, the former helpful as a sec-
ondary calibration reference to other algorithms in H-SAF’s
complete mix of algorithms. Descriptions of the algorithms’
designs are provided including a few examples of their per-
formance. This aspect of the development of the two algo-
rithms is placed in the context of what we refer to as the
TRMM era, which is the era denoting the active and ongoing
period of the Tropical Rainfall Measuring Mission (TRMM)
that helped inspire their original development. In 2015, the
ISAC-Rome precipitation algorithms will undergo a trans-
formation beginning with the upcoming Global Precipitation
Measurement (GPM) mission, particularly the GPM Core
Satellite technologies. A few years afterward, the first pair
of imaging and sounding Meteosat Third Generation (MTG)
satellites will be launched, providing additional technologi-
cal advances. Various of the opportunities presented by the
GPM Core and MTG satellites for improving the current
CDRD and PNPR precipitation retrieval algorithms, as well
as extending their product capability, are discussed.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Since the introduction of the Satellite Application Facility
on Support to Operational Hydrology and Water Manage-
ment (H-SAF) in 2005 (see Bizzarri et al., 2005; Mugnai
et al., 2006), the Italian National Research Council/Institute
of Atmospheric Sciences and Climate in Rome (CNR/ISAC-
Rome) has developed two of the official H-SAF satellite pre-
cipitation retrieval algorithms. (A total of six such algorithms
are underway at various Italian institutions; Bizzarri et al.,
2008 and Mugnai et al., 2013.) The two ISAC-Rome al-
gorithms provide retrievals of surface precipitation and its
phase properties from conically and cross-track scanning
passive microwave (PMW) radiometers mounted on avail-
able low Earth orbiting (LEO) satellites. Both algorithms are
physically based although they differ in their use of the re-
trieval solution solvers. The first is referred to as the Cloud
Dynamics and Radiation Database (CDRD) algorithm – it
is based on a Bayesian solution solver. This approach is ap-
propriate for applications with measurements from conically
scanning radiometers in which the atmospheric path is held
invariant across the scan passage, and thus the instantaneous
field-of-view (IFOV) of a given channel is held constant. The
second is referred to as the PMW Neural-net Precipitation
Retrieval (PNPR) algorithm – it is based on a neural network
solution solver. This approach is appropriate for applications
with measurements from cross-track scanning radiometers in
which the atmospheric path is changing across the scan pas-
sage, and thus so are the IFOVs.

The main intent behind the CDRD and PNPR algorithms
is, by restricting inputs to only PMW measurements, to pro-
duce the most accurate estimates of satellite rainfall possible,
given the available PMW radiometers flying over the Euro-
pean and Mediterranean region. In so doing, they are helpful
as secondary calibration reference algorithms to the other H-
SAF precipitation algorithms, in which three of the others
combine PMW radiometer measurements with infrared (IR)
measurements obtained from geostationary (GEO) satellites,
typically Meteosat Second Generation (MSG) satellites. The
advantage of the combined algorithms is that they provide re-
trievals continuously every MSG Earth scan (15 or 30 min),
their disadvantage being that IR measurements are insensi-
tive to the presence of rainfall, meaning the algorithms de-
pend on the correlation of cloudiness with rainfall with sta-
tistical linkage to PMW estimates only available twice per
day for any given sun-synchronous satellite platform. Herein
we describe the CDRD and PNPR algorithms and a few ex-
amples of their performance, all within the context of their
historical development.

The PMW measurements for H-SAF are obtained from
a collection of radiometers on US and EUMETSAT (Eu-
ropean Organisation for the Exploitation of Meteorological
Satellites) satellites. These consist of: (1) the Special Sen-
sor Microwave Imager (SSM/I) and (2) Special Sensor Mi-
crowave Imager-Sounder (SSMIS) conical scanners flown

on US Dept. of Defense (DOD) Defense Military Satel-
lite Program (DMSP) satellites; and (3) the Advanced Mi-
crowave Sounding Unit A (AMSU-A) in tandem with (4) the
Microwave Humidity Sounder (MHS) cross-track scanners
flown on US Dept. of Commerce (DOC) National Oceanic
and Atmospheric Administration (NOAA) Polar Orbiting
Environmental Satellites (POESs), referred to as NOAA-18
and NOAA-19, and EUMETSAT’s two Meteorological Op-
erational satellites METOP-A/B. All such satellites are LEOs
in sun-synchronous over-the-pole orbits.

The development and progress of the CDRD and PNPR
algorithms has taken place during what we refer to as the
TRMM era, which is the era denoting the active and ongoing
period of the Tropical Rainfall Measuring Mission (TRMM)
and its underlying experiment to understand precipitation in
weather and climate (see Simpson et al., 1996 for TRMM
background information). As of now, the term TRMM ac-
tually describes a period of history as well as a particular
satellite mission. The TRMM mission and experiment, orig-
inally consisting of a joint agreement and research program
between the US and Japanese space agencies to launch the
5-instrument TRMM observatory and analyze its data, was
the mission that propelled the measurement of rainfall from
space into the 21st century with modern instruments and
up-to-date high quality rainfall retrieval algorithms. In turn,
the mission motivated and triggered a number of research
and operational programs worldwide to place greater empha-
sis on hydrological remote sensing and use of retrieved hy-
drological products in data assimilation and weather/climate
prediction. Three such proactive programs were developed
within the European Union (EU), introduced in the next two
paragraphs and described with overviews in Sect. 2.

In 1998, not too long after the launch of the TRMM satel-
lite in November 1997, a program was formed within the EU
called EuroTRMM, supported by both the European Com-
mission (EC) and the European Space Agency (ESA); see
ECMWF (2001). This program was designed to enable EU
remote sensing specialists and their colleagues in related ar-
eas to contribute to the TRMM experiment, and by doing
so, assist the EU with their own problem solving involving
new research and applications in the areas of satellite precip-
itation retrieval, hydrological model development and espe-
cially weather forecast model data assimilation. After the Eu-
roTRMM program matured, and had motivated a turn within
the EU to seize better advantage of measurements produced
by PMW radiometers being flown, or to be flown, on a num-
ber of research and operational satellites by American, Eu-
ropean and Japanese space agencies, a 2nd applications ori-
ented precipitation-centric program was created by the EC
in 2001, designed to use both LEO and GEO satellites for
acquisition of rainfall and related information. This was the
European Satellite Rainfall Analysis and Monitoring at the
Geostationary Scale (EURAINSAT) program; see Levizzani
et al. (2007).

Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013 www.nat-hazards-earth-syst-sci.net/13/887/2013/
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The EuroTRMM and EURAINSAT research and applica-
tions programs rapidly galvanized a growing community of
precipitation remote sensing specialists, hydrological mod-
eling specialists and data assimilation specialists, as well as
specialists in other areas involving precipitation measuring
by rain gauges and radar sets, ground validation (GV) anal-
ysis, and mathematical/statistical problem solving essential
for geophysical modeling and data assimilation. This com-
munity, in turn, became the origin of scientific expertise that
helped evolve the formation of the H-SAF. In fact, it was
during the EuroTRMM and EURAINSAT programs that the
CDRD and PNPR algorithms began. The H-SAF program
now represents the past, present and future in the use of hy-
drological retrieval products from space across the EU – for
research, for applications and for operations. It has been the
outcome of a remarkable process of scientist dedication and
scientific networking that can take a novel scientific incentive
and produce a creative scientific application across an entire
continental sphere and beyond. To help understand this pro-
cess, see Mugnai et al. (2013) for an account of the H-SAF
precipitation products program and the range of its partici-
pating institutions.

In the course of the next three years, the current ISAC-
Rome precipitation algorithms, which are described in
Sect. 3, will greatly mature. In the 2015 time frame, a new
era will begin, the era of the Global Precipitation Measure-
ment (GPM) mission, which is described in Sect. 4. This
new mission has been designed as a constellation of satel-
lites involving six to ten research and operational members,
depending on the time frame. These constellation members
will be referenced to what is called the GPM Core Satellite,
an observatory that will carry an advanced Dual-frequency
Precipitation Radar (DPR) system and an advanced multi-
channel PMW radiometer referred to as the GPM Microwave
Imager (GMI). Accordingly, the CDRD and PNPR algo-
rithms will begin a transformation over to the newer era,
the newer space platforms, the newer instrument technolo-
gies and the newer measurements. Not too many years after-
ward, the first pair of imaging and sounding Meteosat Third
Generation (MTG) satellites will be launched (i.e., sometime
in the 2017–2019 time frame). These GEO platforms will
provide additional advances that will be seized upon by the
community of hydrological remote sensing scientists, includ-
ing those at ISAC-Rome. A number of new opportunities will
be presented by the GPM mission and MTG satellites for im-
proving the current CDRD and PNPR retrieval algorithms, as
well as extending their product capability.

2 Overviews of EuroTRMM, EURAINSAT and H-SAF
programs

2.1 EuroTRMM program

The EuroTRMM program was initiated in February 1998
after planning meetings between a group of European and
American scientists.1 The meetings concerned the means to
involve the EC and the European Space Agency (ESA) with
TRMM research and how to identify and form a science
team of EU specialists in remote sensing, precipitation re-
trieval, hydrological modeling and data assimilation. It was
deemed important that the team’s collective research skills
would resonate with the goals of the TRMM experiment and
the rapidly developing requirements in the EU for better pre-
cipitation retrieval products and better methods to entrain
these data into new hydrological models and data assimi-
lation systems under development at the EU’s operational
weather forecast centers. Following the initial meetings and
through the efforts of the main founders, the EC and ESA
supported this program over 1998–2003.

Two of the overriding objectives of the EuroTRMM pro-
gram were to develop a set of physical and statistical precip-
itation retrieval algorithms that could be analyzed for com-
parison and contrast, and to place much greater emphasis on
PMW channel brightness temperature (TB) observation er-
rors and forward model error characteristics, than was be-
ing given to these issues by the Japanese and US TRMM
science teams. (Note in this context, forward models essen-
tially referred to the radiative transfer equation (RTE) mod-
els needed by the physically-based precipitation retrieval al-
gorithms to relate hydrometeor information along the ra-
diometer measurement paths to observed TBs – denoting the
physical algorithms intrinsically involved an inversion pro-
cess.) This research was needed to address one of the funda-
mental needs of data assimilation systems being used at the
operational weather forecast centers, such as the European
Centre for Medium-Range Weather Forecasts (ECMWF). In
essence, before the required error covariance matrices in the
data assimilation systems could be defined to enable the as-
similation of the newer satellite precipitation data, the errors
and their covariant relationships stemming from both the ra-
diometers and the forward models needed to be thoroughly
understood and defined. This was the type of research that
was needed to make improved precipitation retrievals rele-
vant to weather forecasting (see ECMWF, 2001). As part of
this research, it was also decided to develop a better heritage
for the forward models (e.g., see Smith et al., 2002).

An important outcome of the EuroTRMM research pro-
gram was to look beyond the PMW measurements them-

1A. Mugnai (CNR/Institute of Atmospheric Physics – at the
time) and E. A. Smith (Florida State University – at the time) were
main participants in this group, which was led by Pedro Poiares
Baptista (ESA-ESTEC) and Jacques Testud (CNRS/Centre for Ter-
restrial and Planetary Studies – at the time).

www.nat-hazards-earth-syst-sci.net/13/887/2013/ Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013
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selves, and begin experimenting with how alternative meteo-
rological parameters coming from the cloud resolving mod-
els that were being used to underpin various physical re-
trieval algorithms (i.e., dynamical, thermodynamical and hy-
drological prognostic and diagnostic model variables) could
be used to aid the retrieval solvers. In fact, it was this type of
methodology that later evolved into the CDRD Bayesian al-
gorithm, designed for use with conical-scan radiometer mea-
surements. EuroTRMM also placed emphasis on developing
better GV networks and extending the use of PMW mea-
surements for retrieval of snowfall, recognizing that both of
these topics required considerable time periods to complete
the necessary research.

2.2 EURAINSAT program

In 2001, as part of the 5th Framework program for European
research and technological development, the EC founded the
EURAINSAT program to place greater emphasis on how
GEO satellite data could be better applied for retrieval of
precipitation at GEO spatiotemporal scales. Various of EU-
RAINSAT’s participating research groups had already rec-
ognized that time-lapse IR images from GEO platforms pro-
vided “practically useful” information in conjunction with
the PMW measurements. Also, various Japanese and US
groups within the joint TRMM science team had recog-
nized the possibilities for combining LEO-PMW and GEO-
IR measurements for continuous precipitation information,
although it was also recognized that this type of combined
algorithm was vulnerable to greater uncertainties than the
PMW-only type algorithms. It was obvious at the time, that
more research was needed.

In the course of the next five years, a number of combi-
nation PMW-IR algorithms evolved and matured in Europe,
Japan and the US. Descriptions of most of these schemes can
be found in the EURAINSAT book (Levizzani et al., 2007).
The algorithm methodologies can be divided into blending
schemes and morphing schemes. In blending schemes (e.g.,
Levizzani et al., 1996; Turk et al., 1999; Sorooshian et al.,
2000; Marzano et al., 2004; Turk and Miller, 2005; Huff-
man et al., 2007; Torricella et al., 2007), the first few statisti-
cal moments of spatially aligned PMW and IR measurement
probability distribution functions (pdfs) from coincident data
segments are matched so that the recoverable PMW pdf rain
rates can be directly assigned to the associated adorned IR
pdf TBs, thus producing an IR-based “direct” rain rate pdf –
but only limited to the coincidence times (twice per day for
any sun-synchronous LEO satellite or more for the non-sun-
synchronous TRMM satellite). In intervening times when
only GEO IR data are available, the nearest-in-time moment
matching factors (pdf transform factors) are used to trans-
form unadorned IR pdf TBs to an IR-based “indirect” rain
rate pdf. Thus by compiling multiple data segments making
up overpasses, it is possible to provideroughapproximations
of rainfall at the GEO imaging rate (15 or 30 min), through-

out the course of a day. The termrough is emphasized be-
cause the equivalences forced between the PMW and IR pdfs
do not provide guarantees that the IR-based rain rates are ac-
tually equivalent to the PMW-derived rain rates when taken
one measurement at a time.

The morphing technique (e.g., Grose et al., 2002; Joyce
et al., 2004; Wimmers and Velden, 2007) is more sophisti-
cated than blending, although it also suffers from the basic
physics-driven uncertainties that precipitation is not actually
detected at IR wavelengths. In morphing, semi-continuous
GEO IR images between two PMW overpasses are used to
produce position velocity vectors and IR-TB tendency vec-
tors that serve as linear (or if allowed, nonlinear) interpola-
tion factors that are used to create synthetic PMW images at
all GEO IR image times. A PMW-only retrieval algorithm is
then applied to the synthetic image sequence. Morphing has
distinct advantages over blending, but not complete superior-
ity (Ebert et al., 2007). Notably, the H-SAF program supports
both a blending algorithm and a morphing algorithm, pro-
vided by ISAC-Bologna, as further sources for the H-SAF
precipitation product mix.

Among other goals, EURAINSAT considered research
problems pertaining to: (a) technique development in GV,
(b) simple methods to use both visible wavelength and IR
measurements to approximate cloud-top microphysics and
aerosol effects on precipitation, (c) methodologies to use
lightning data to better understand precipitation, particularly
convective precipitation and the formation of large ice hy-
drometeors, and (d) experimentation with neural networks to
seek alternatives to algebraic inversion, relaxation, optimal
estimation, Bayesian or regression solvers in physical and/or
statistical retrieval algorithms. In fact, it was the latter focus
area that led to the development of the second of the ISAC-
Rome retrieval schemes, i.e., the PNPR algorithm, designed
for use with PMW cross-track scanners.

2.3 H-SAF program

Within the EU, EUMETSAT is the agency responsible for
managing operational meteorological satellites (top portion
of Fig. 1). EUMETSAT’s application ground segments are
divided into a centralized facility at its headquarters in Darm-
stadt, Germany, and a number of decentralized facilities
distributed as consortia made up by EUMETSAT member
states. The consortia are referred to as Satellite Application
Facilities (SAFs). Eight SAFs are now in place, which in-
clude the H-SAF (Hydrology SAF) developed in 2005 to
support hydrology operations and research (bottom portion
of Fig. 1); see Bizzarri et al. (2005). There are two web sites
which provide detailed information concerning H-SAF.2 The
development of the Hydrology SAF was a response to a

2 See two URLs: (1)www.eumetsat.int/Home/Main/Satellites/
GroundNetwork/ApplicationGroundSegment/SAFs/SAFProjects/
SP2010061112220732and (2) hsaf.meteoam.it (registration
required for second site).

Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013 www.nat-hazards-earth-syst-sci.net/13/887/2013/

www.eumetsat.int/Home/Main/Satellites/GroundNetwork/ApplicationGroundSegment/SAFs/SAFProjects/SP_2010061112220732
www.eumetsat.int/Home/Main/Satellites/GroundNetwork/ApplicationGroundSegment/SAFs/SAFProjects/SP_2010061112220732
www.eumetsat.int/Home/Main/Satellites/GroundNetwork/ApplicationGroundSegment/SAFs/SAFProjects/SP_2010061112220732
hsaf.meteoam.it


A. Mugnai et al.: CDRD and PNPR satellite passive microwave precipitation retrieval algorithms 891 

 

 1 

 2 
 3 
 4 
 5 
 6 

Fig. 1. Above are elements of EUMETSAT’s satellite applications facilities, while below are elements of EUMETSAT’s decentralized 7 
applications ground segment. 8 

9 

Fig. 1. Above are elements of EUMETSAT’s satellite applications facilities, while below are elements of EUMETSAT’s decentralized
applications ground segment.

growing interest within the EU to the steadily improving:
(a) quality of operational and research satellite data, (b) ca-
pabilities in hydrological remote sensing science, (c) perfor-
mances of hydrological models and the hydrological compo-
nents of weather and climate prediction models and (d) tech-
niques for assimilating hydrological observations into pre-
diction models, particularly satellite retrieval observations.
Table 1 provides a summary of the institutional composi-
tion of H-SAF consortium by country. It is evident that the
H-SAF program has caught on aggressively across the EU.
(Note that although the ECMWF is not a country, it is con-
sidered a separate entity within the H-SAF consortium and
thus is included in the summary.)

The objectives of the H-SAF are threefold. First, H-SAF
is to provide for new satellite-derived products from existing
and future satellites, with sufficient time and space resolu-
tion to satisfy the needs of operational hydrology, and fo-
cused on three areas of hydrological retrieval: (1) rainfall
(rates, accumulation, phase), (2) snowfall (cover, melt-state,
water-equivalent) and (3) soil moisture (near-surface, root-
layers). Second, H-SAF is to underwrite the capability to
perform independent GV of the usefulness of the new prod-
ucts for mitigating against damage due to floods, landslides
and avalanches, and in evaluating water resources, including
the activities of (1) downscaling/upscaling modeling from
observed and predicted fields to basin level, (2) fusion of
satellite-derived measurements with data from radar and rain
gauge networks, (3) assimilation of satellite-derived products
in hydrological models for model performance evaluation,
and (4) assessment of the impact of the new satellite-derived
products on the spectrum of hydrological applications. Third,
H-SAF is to provide a central data distribution facility which

offers a straightforward and effective means for public ac-
cess to the new satellite precipitation products. This activity
is being conducted by the Centro Nazionale di Meteorolo-
gia e Climatologia Aeronautica (CNMCA) of the Italian Air
Force in Pratica di Mare (near Rome, Italy) which also serves
as the H-SAF host institute.

The H-SAF GV network for precipitation measurements
is extensive. It includes approximately 4575 rain gauges dis-
tributed throughout seven countries including the non-EU na-
tion state of Turkey, and an 81-site C-band and Ka-band radar
network distributed over Western and Eastern Europe also in-
cluding Turkey (Puca et al., 2013). Notably, the H-SAF GV
network is the most extensive of its kind in the world, and
will possibly become the greatest resource to the GPM mis-
sion for wide area GV of its rainfall retrieval products.

3 ISAC-Rome’s H-SAF PMW precipitation algorithms
in TRMM era

It is a tautology that a collection of different methodologies
to solve the same problem would be better off if one such
methodology could serve as a calibration reference to all oth-
ers in gauging the performance of the individual members of
the collection. One of the oddities of satellite precipitation re-
trieval algorithms over past decades is that the community of
scientists involved in their development has never agreed on a
calibration reference algorithm, although it is fair to say that
the TRMM experiment has made some progress along those
lines with the facility TRMM Precipitation Radar (PR) algo-
rithm 2a25-v7 (Iguchi et al., 2000, 2009) and the Combined
PR – TRMM Microwave Imager (TMI) algorithm 2b31-v7
(Marzano et al., 1994, 1999; Farrar, 1997; Haddad et al.,

www.nat-hazards-earth-syst-sci.net/13/887/2013/ Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013
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Table 1.Institutional composition of H-SAF Consortium by country. (Note ECMWF is not a country, but is shown in country column because
it is an H-SAF consortium entity.)

Country Contributing Institutions
(responsible unit in bold)

Austria Zentral Anstalt f ür Meteorologie und Geodynamik
Technische Univ. Wien, Inst. Photogrammetrie & Fernerkundung

Belgium Institut Royal M étéorologique

Bulgaria National Institute of Meteorology and Hydrology

ECMWF European Centre for Medium-Range Weather Forecasts

Finland Finnish Meteorological Institute
Helsinki Technical University, Laboratory of Space Technology
Finnish Environment Institute

France Météo-France
CNRS Centre d’Etudes Spatiales de la BIOsphere
CNRS Centre d’́etudes des Environnements Terrestre et Planétaires

Germany Bundesanstalt f̈ur Gewässerkunde

Hungary Hungarian Meteorological Service

Italy Servizio Meteorologico dell’Aeronautica
Dipartimento Protezione Civile, Presidenza Consiglio Ministri
CNR Istituto di Scienze dell’Atmosfera e del Clima (Bologna & Rome units)
Universit̀a di Ferrara, Dipartimento di Fisica

Poland Institute of Meteorology and Water Management

Slovakia Slovensḱy Hydrometeorologický Ústav

Turkey Turkish State Meteorological Service
Middle East Technical University, Civil Engineering Department
Istanbul Technical University, Meteorological Department
Anadolu University

1997; Smith et al., 1997). These two algorithms have often
invited other algorithm developers, particularly those based
on PMW radiometer measurements alone, to gauge the per-
formance of their algorithms against the two facility algo-
rithms, which have the advantage of using data based on ac-
tive power radar signals.

As discussed in Sect. 3.1.4, we have done just that for
a year of data within the region for which the CDRD
database has been designed to apply, that is the Euro-
pean/Mediterranean Basin region. As will be discussed, we
obtain nearly equivalent performance over water surfaces but
significantly better performance for land surfaces relative to
the TRMM TMI algorithm, i.e., TRMM facility algorithm
2a12-v7 (Kummerow et al., 2011; Munchak and Kummerow,
2011), when using the TRMM PR 2a25-v7 algorithm as the
reference. This provides additional insight in understanding
why we stated earlier in the paper that the CDRD algorithm
would be the more accurate of the set of H-SAF precipita-
tion algorithms. Moreover, it provides an incentive to use the
CDRD algorithm as a secondary calibration standard for the
H-SAF mix.

3.1 Cloud Dynamics and Radiation Database (CDRD)
algorithm

Table 2 provides a brief summary of the attributes of the
CDRD and PNPR algorithms, including descriptors pertain-
ing to the official H-SAF algorithm version codes, H-SAF al-
gorithm names, ISAC-Rome algorithm names, products and
data sources, methodologies and finally the current status
of each algorithm in terms of H-SAF nomenclature. The
PR-OBS-1 algorithm represents a modified and improved
methodology applied to the now conventional Cloud Ra-
diation Database (CRD) methodology originally developed
by Smith et al. (1992, 1994a, b) and Mugnai et al. (1993),
and applied repeatedly since that time, e.g., see Pierdicca et
al. (1996), Bauer et al. (2000, 2001, 2005), Kummerow et
al. (2001), Chen and Staelin (2003), Di Michele et al. (2003,
2005), Tassa et al. (2003, 2006), Grecu et al. (2004), Mugnai
et al. (2008) and Surussavadee and Staelin (2008a, b) as cases
in point. In physical terms, the new methodology is referred
to as a Cloud Dynamics and Radiation Database (CDRD)
algorithm; see the series of papers by Sanò et al. (2013),
Casella et al. (2013) and Smith et al. (2013) which explain
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Table 2. Summary of two CNR/ISAC-Rome PMW satellite algorithm attributes, which includes official H-SAF algorithm version codes,
H-SAF algorithm names, ISAC-Rome algorithm names, products and data sources, methodologies and current statuses. (All Italian H-SAF
satellite precipitation products are routinely generated at Centro Nazionale di Meteorologia e Climatologia Aeronautica (CNMCA), which
also manages associated precipitation product data services for H-SAF user community.)

Algorithm H-SAF ISAC-Rome Algorithm Product Description Algorithm Current
Version Code Name Name (Satellite/Model Data Sources) Methodology Status

H-01 PR-OBS-1 CDRD Precipitation Rate at Surface with Indication of Phase
(LEO/PMW Conical Scanners)

Bayesian CDRD Operational

H-02 PR-OBS-2 PNPR Precipitation Rate at Surface with Indication of Phase
(LEO/PMW Cross-track Scanners)

Neural Network Operational

the attributes of the new methodology and its performance
when used in an applied retrieval setting. Figure 2 shows the
algorithm flow diagram.

The CDRD algorithm has been designed for flexibility in-
sofar as its application with a variety of conically scanning
PMW radiometers flying on current and future satellites. Ta-
ble 3 provides a summary of five such instruments, including
information about their host satellite platforms, their channel
frequencies and their channel polarization states. The studies
of Kummerow et al. (1998), SSM/I (2000), SSMIS (2002),
Kawanishi et al. (2003) and GMI (2010) provide technical
information concerning the TMI, SSM/I, SSMIS, Earth Ob-
serving System (EOS) Advanced Scanning Microwave Ra-
diometer (ASMR-E) and GMI radiometers. The information
includes off-nadir viewing angles, Earth-viewing incidence
angles, across-scan sweep angles, scan track lengths, beam
sizes according to channel frequencies, beam-to-beam sepa-
ration lengths and the down-track/along-track IFOV spatial
resolutions, i.e., given according to ovate areal dimensions
due to the imposed angular viewing geometries. All of these
geometric factors are a function of satellite height, so that the
published values are with respect to nominal satellite heights,
quantities which also can be found in Table 3.

3.1.1 Inclusion of optimal meteorological parameters as
solution constraints

The modifications and improvements of the CDRD method-
ology over the CRD-type methodology arise by combining
meteorological parameter constraints derived from synthetic
dynamical-thermodynamical-hydrological (DTH) meteoro-
logical profile variables, together with concomitant multi-
hydrometeor microphysical profiles and multispectral PMW
brightness temperature (TB) vectors into a specialized a
priori knowledge database underpinning and guiding the
algorithm’s Bayesian retrieval solver. The meteorological-
microphysical knowledge variables are produced by a high
resolution, nonhydrostatic model run in cloud resolving
model (CRM) mode while the associated knowledge TBs are
produced by an elaborate TB manifold-calibrated PMW Ra-
diative Transfer Equation (RTE) Model System (RMS) that
relates CRM environments to expected top-of-atmosphere

satellite-view TBs. By applying the RMS to numerous
meteorological-microphysical situations simulated by the
CRM for 60 numerical storms that occurred within the Euro-
pean/Mediterranean Basin region, and then marshalling into
a specialized database some 2.5 million modeled DTH and
microphysical profiles (from which optimal meteorological
constraint parameters are then derived) with linked modeled
TBs – it has become possible to use the database for Bayesian
interpretation of analogous measured TBs and meteorologi-
cal constraint parameters.

The CRM itself is the regional/mesoscale Nonhydro-
static Modeling System (NMS) originally developed by
Tripoli (1992) and recently upgraded by Tripoli and
Smith (2013a, b). The heart of the model, insofar as its appli-
cation with the CDRD algorithm, is its 2-water/4-ice micro-
physical parameterization scheme. The model simulates ver-
tical hydrometeor profiles for all six microphysical species,
which in turn represent the atmospheric cloud-precipitation
media that largely determine the values of TB vectors simu-
lated by the RMS within storm environments. The six cate-
gories consist of cloud droplets, rain drops, pristine crystals,
snow pellets/flakes, ice aggregates and graupel/hail particles.
The hydrometeor profiles are represented as liquid/ice water
content (LWC/IWC) elements at each model level, i.e., mix-
ing density vectors. See Casella et al. (2013) for an expanded
discussion of the CDRD algorithm’s NMS and RMS model-
ing system framework and Smith et al. (2013) for the analysis
used to identify, on an a priori basis, an optimal set of six me-
teorological variables from which a subset of four are used as
the current CDRD algorithm’s constraint parameters.

The main objective in transforming from the CRD to
CDRD design has been to reduce nonuniqueness effects that
have plagued CRD-type schemes. Such schemes restrict in-
terpretation of observed TBs by ignoring observable DTH
information that helps constrain the influence microphysi-
cal profile subsets (i.e., the associated hydrometeors, their
phases, habits, size distributions and related vertical distri-
butions) that determine the Bayesian retrievals. In the un-
derlying analysis required for developing the CDRD algo-
rithm, we have found that optimal meteorological variables
serve, in a generally quasi-orthogonal fashion with respect to
the initial TB-based Bayesian microphysical profile solution
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Fig. 2. Flow diagram for CDRD algorithm. 4 
5 Fig. 2.Flow diagram for CDRD algorithm.

subsets, to quarantine candidate profiles which are incongru-
ent with ambient environmental conditions for given obser-
vational situations; see Casella et al. (2013). This then serves
to mitigate against the ambiguities that would otherwise arise
in the solutions. The advantages of the Bayesian solution
method for precipitation retrieval are well known (e.g., Evans
et al., 1995; Marzano et al., 1999).

3.1.2 RMS calibration through simulation–observation
database manifold matching

Besides corroborating the success of meteorological guid-
ance in conditioning Bayesian retrieval solutions, Casella
et al. (2013) have demonstrated the high reliability of the
coupled CRM-RMS modeling system’s simulated TB man-
ifold, quantified by the close agreement to its observed
counterpart. See Panegrossi et al. (1998), Casella (2010)
and Casella et al. (2013) for explanations of simulation–
observation database TB manifolds. This agreement is tan-
tamount to the consistency required in data assimilation be-
tween modeled and observed influence variables. A further
result is a proof-of-concept that the underlying theory behind
use of meteorological guidance in a precipitation retrieval
framework for removal of solution ambiguity is valid. This
is obtained by combining subdivisions of the invoked opti-
mal meteorological parameter ranges of values and showing
that such partitioning associates itself with distinct micro-
physical profiles. It is then shown in an analogous manifold

framework how ambiguity is variably distributed over a TB
manifold without first isolating congruent microphysical pro-
files vis-̀a-vis any given observed TB vector.

This analysis defends the essential ambiguity criticism of
a CRD-type algorithm used without meteorological exten-
sions, and the means to overcome nonuniqueness given such
constraints. Notably, the main contributor to the success of
the RMS, and its role in being able to attain the CDRD algo-
rithm’s accurate results, is achieving more realistic renditions
of the optical properties of the multiple hydrometeor types
inherent to precipitation, particularly for frozen hydromete-
ors, and the adjustment of Mie theory to account for, in an
unembellished fashion, the properties of nonsphericity asso-
ciated with specific ice habits.

3.1.3 Precipitation screening

An integral part of the CDRD algorithm is a precipitation
screening scheme used to determine if precipitation exists in
a given IFOV before the Bayesian solver is invoked. This is
done to avoid an outcome of the solver producing nonzero
positive values of surface precipitation rate – even if precipi-
tation does not actually exist in the IFOV. This would other-
wise be a necessary outcome since the algorithm’s database
is designed such that its microphysical profile entries, se-
lected from the 60 NMS simulations, must be associated with
nonzero surface precipitation rates. Precipitation screening
is often used in PMW algorithms to prevent false positive
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Table 3. Summary of five current and future conical scanning PMW radiometers with information indicating their host satellites, nominal
satellite heights, channel frequencies and channel polarization states. (H, V and RC polarization indicate horizontal, vertical and right-hand
circular.)

SSMIS SSM/I AMSR-E [failed 4 Oct 2011]

Host Satellite [nominal satellite height]

DMSP Block 5D-3 [833 km] DMSP Block 5D-3 [833 km] NASA/AQUA [705 km]
F16/F17/F18 F15

Channel Frequency in GHz/Channel Polarization State(s)

1 19.35/H–V 19.35/H–V 6.9/H–V
2 22.235/V 22.235/V 10.65 (10.7)/H–V
3 37/H–V 37/H–V 18.7/H–V
4 50.3/H 85.5/H–V 23.8/V
5 52.8/H 36.5/H–V
6 53.596/H 50.3/H (AMSR only)
7 54.4/H 52.8/H (AMSR only)
8 55.5/H 89/H–V

9 57.29/RC TMI GMI

10 59.4/RC Host Satellite [nominal satellite height]

11 60.792668± 0.357892/RC NASA-JAXA/TRMM Observatory NASA-JAXA/GPM Core Observatory [407 km]
12 60.792668± 0.357892± 0.002/RC [350 km at launch; 402.5 km after August 2001]

13 60.792668± 0.357892± 0.0055/RC Channel Frequency in GHZ/ Channel Polarization State(s)

14 60.792668± 0.357892± 0.016/RC 10.65/H-V 10.65/H-V
15 60.792668± 0.357892± 0.05/RC 19.35/H-V 18.7/H-V
16 63.283248± 0.285271/RC 21.3/V 23.8/V
17 91.655± 0.9/H-V 37/H-V 36.5/H-V
18 150± 1.25/H 85.5/H-V 89/H-V
19 183.31± 1/H 166/H-V
20 183.31± 3/H 183.31± 3/V
21 183.31± 6.6/H 183.31± 7/V

results. Since the CDRD algorithm could produce false pos-
itives but not false negatives without some guarantee of pre-
cipitation being present, to prevent a one-sided bias in false
results, a screening scheme is applied. We are intermittently
refining this scheme to yield minimization in the generation
of false positives and negatives, and a reasonable balance be-
tween the two, as we gain more understanding from GV case
studies.

The overall procedure for the current screening scheme is
separated into two parts according to available channels for
a given radiometer. The first part is for the conically scan-
ning radiometers which have a set of relatively low chan-
nel frequencies between∼18–95 GHz, for which four instru-
ments can be identified in Table 3. The second part is for
the radiometers which have a set of relatively high channel
frequencies between∼150–183 GHz, in which at least two
of the frequencies around 183 GHz are separated by at least
2000 MHz. This applies only to the SSMIS radiometer in Ta-
ble 3. The explicit screening procedures for both low-end
frequencies and high-end frequencies are described in Ap-
pendix A.

3.1.4 Algorithm verification and performance
evaluation against TRMM 2a12-v7 algorithm

The retrieval algorithm’s final output products consist of
Bayesian interpretations of the six hydrometeor vertical pro-
files, as well as integrated liquid/ice water path (LWP/IWP)
scalars, the surface precipitation rate and a precipitation
phase flag discriminating four classes of precipitation, viz.,
liquid, frozen, mixed and unknown. In addition, we are ex-
perimenting with a method to provide a liquid to total water
ratio for the mixed phase case, based on values of the ele-
ments at the lower levels of the LWC/IWC profile vectors.

The new CDRD algorithm has been tested and verified
against its CRD predecessor on various precipitation case
studies over Italy’s Lazio region that were observed with
both SSM/I and SSMIS radiometers, using near-coincident
precision polarimetric radar measurements as the verifica-
tion standard, i.e., from the Polar 55C Doppler C-band radar
system operated at CNR/ISAC-Rome (Sanò et al., 2013).
(In the CDRD framework, measured optimal meteorological
constraint parameters are obtained from NOAA’s National
Centers for Environmental Prediction (NCEP) Global Fore-
cast System (NCEP-GFS) operational meteorological data
sets.) These retrievals prove highly accurate with respect
to their ground radar rainfall counterparts; for convective
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Fig. 3.Map coverage of TRMM intercomparison area over Southern Mediterranean region [25◦–36◦ N/25◦ W–45◦ E].

and stratiform precipitation cases, Sanò et al. (2013) find
shift biases of no more than∼1 %, slope biases between
6.5 % and 1.5 % and correlations between 0.84–0.88. The
radar results are obtained from a differential phase prop-
agation (DPP) self-consistency algorithm, which intrinsi-
cally eliminates residual radar calibration errors by remov-
ing mismatched measured–derived specific differential phase
shift on propagation (KDP); see Gorgucci et al. (2001) and
Gorgucci and Baldini (2009).

Retrievals from the CDRD algorithm have also been com-
pared against corresponding retrievals from the TRMM TMI
facility algorithm 2a12-v7 (also called GPROF). Retrievals
from both algorithms have been obtained throughout an an-
nual cycle (2010) for the Southern Mediterranean region
[25◦–36◦ N/25◦ W–45◦ E] as shown in Fig. 3. A summary
of the intercomparison results is shown in Fig. 4. The re-
sults indicate that in a root mean square error (rmse) monthly
framework, with respect to TRMM PR facility algorithm
2a25-v7: (1) the CDRD and GPROF algorithms are nearly
equivalent insofar as oceanic rainfall, whereas (2) for conti-
nental rainfall (nonsnowing surface conditions), the CDRD
algorithm produces significant improvements of between 10
to 55 % depending on mean rainfall accumulations for the
given months of the year, with an overall annual improve-
ment of 16 %. Moreover, on an annual basis, the CDRD al-
gorithm relative to the GPROF algorithm exhibits moderate
improvements in correlation coefficient (r) with respect to
PR retrievals for both oceanic and continental rainfall (0.65
vs. 0.60 and 0.59 vs. 0.54, respectively). Finally, insofar as
mean error (̄µ) with respect to the PR, the CDRD algorithm
for continental rainfall over the annual cycle exhibits only
a small difference of 0.17 mm h−1 relative to 0.78 mm h−1

for GPROF – a factor of 4.6 improvement. Thus it is appar-
ent that the CDRD algorithm is competitive with GPROF for
ocean applications, and provides a significant improvement
for continental applications. More exhaustive tests are un-
derway to corroborate this result.

3.1.5 Near future improvements

As with any algorithm, the standing rule is that there are al-
ways avenues for improvement, and the CDRD algorithm
stands as no exception to this rule. We envision continued
experiments with more exact implementation of the five op-
timal tags that we are using in the algorithm’s constraint for-
mulation (four meteorological constraints and terrain height
as a geophysical constraint), also noting that the Smith et
al. (2013) study identifies two additional optimal meteoro-
logical constraint tags that we have not yet studied. As also
alluded to in Sect. 3.2.4 concerning the PNPR algorithm,
for certain surfaces (mostly coastal, arid and snow/ice land-
scapes), the a priori precipitation screening component of
both ISAC-Rome algorithms can represent a tricky prob-
lem. Therefore, we will continue to examine refinements to
the CDRD and PNPR algorithms’ screening schemes. In a
related issue, tied in with the CDRD algorithm’s solution
solver, is the matter of assigning phase to the surface pre-
cipitation, i.e., unknown, rainfall, snowfall or mixed, and if
mixed – at what liquid to total water ratio. In its present ver-
sion the phase flag determination is based on the findings of
Grody et al. (2000), Rosenkranz (2003), and Surussavadee
and Staelin (2009). In these studies snowfall is detected by
use of the 20.3, 50.3 and 89 GHz TBs, including combina-
tions of these channels. Phase identification involves compar-
ing the selected TBs and their combination quantities with
various thresholds to distinguish between liquid or frozen
precipitation, including detection of falling snow over snow
or ice backgrounds. We anticipate more research is needed
for this element of the CDRD algorithm, mostly in how to
best determine the ratio for the mixed phase case from the
lower elements of the hydrometeor LWC/IWC mixing den-
sity vectors.

We intend to examine how we might include lightning
sensor observations, since we currently have modeling ca-
pability to simulate lightning activity in convectively active
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Fig. 4.Results of algorithm intercomparisons based on annual cycle (2010) of all TRMM level 2 data over the Southern Mediterranean region
in which CDRD and GPROF-v7 (2a12) TMI-based rain retrievals are independently compared to PR-v7 (2a25) radar retrievals. (Statistics
for mean error (̄µ), root mean square error (rmse) and correlation coefficient (r) are given for both CDRD and GPROF algorithms, as well
as PR mean value – for both land and ocean.)

environments (Formenton et al., 2013). Lightning data are
now readily available and deserve attention in precipitation
retrieval algorithms. Also, we are exploring the possibility of
extending the area of application of the algorithm to cover the
reference MSG satellite full-disk region. Whereas generating
further representative NMS simulations for the oceanic areas
of this region does not represent any concern, producing an
effective set of NMS simulations for the African continent
does have some issues, but only in the sense that an effec-
tive spatiotemporal distribution of representative storms will
be needed. We are currently examining a strategy to deter-
mine this. In addition, we will need to extend the viability of
the database to the higher northern latitudes where light rain,
light snow and light mixed phase precipitation is prevalent.
Although generating the necessary simulations for extend-
ing the database is straightforward, screening for light liquid
or frozen precipitation is a seriously difficult problem and
not one for which we would expect a great deal of progress
in using current PMW instrument technology. Not until the
next generation of PMW radiometers are in space during the
GPM era, can we expect significant progress to be made on
this problem. However, this issue does draw attention to our

intent to continue with case studies for which high quality
H-SAF GV network data are available. Finally, in expanding
coverage we will be generating a number of new NMS sim-
ulations for the tropics and subtropics. Therefore we intend
to use retrievals from the three main TRMM algorithms for
GV studies. In this vein, we anticipate that once the extended
database is completed, we will examine how to better de-
velop it as a common database in conjunction with the PNPR
algorithm.

3.2 PMW Neural-net Precipitation Retrieval (PNPR)
algorithm

The H-SAF PR-OBS-2 neural network algorithm, referred to
at ISAC-Rome as the PNPR algorithm, has been motivated
by the investigations of Surussavadee and Staelin (2008a, b).
They developed an Artificial Neural Network (ANN) based
precipitation retrieval algorithm for applications with mea-
surements from AMSU-A/MHS (or/AMSU-B, i.e., MHS’s
ancestor instrument on an earlier generation of NOAA POES
satellites). They trained their algorithm through a database
generated from CRM precipitation simulations. They used as
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their CRM basis, the Pennsylvania State University/National
Center for Atmospheric Research (PSU/NCAR) Mesoscale
Model-5 (MM5), described by Dudhia (1993) and Grell et
al. (1994), with which they produced multiple simulations at
a number of locations on the globe.

The PNPR algorithm is based on a new optimal three-layer
ANN, which has derived its training database from the same
60 NMS simulations and the same RMS that are used for
the CDRD algorithm, as described in Casella et al. (2013).
The motivation for using a neural network algorithm solution
solver stems from the PNPR’s applications with cross-track
scanning radiometer measurements. These are less manage-
able for a Bayesian solver because the changing view angle
across a scan passage, and the concomitantly changing atmo-
spheric path, introduce view angle-dependent errors in the
RMS calculations. This is unlike the case for conical scan-
ners where RMS-generated errors are consistent across the
scan passage and thus detectable as systematic errors when
conducting validation checks. When view-angle dependent
errors enter retrievals, they complicate how systematic error
should be expressed and impose a reduced confidence in for-
mulating Bayesian probabilities. It is this confidence issue
that motivates a turn to a neural network approach when us-
ing cross-track scanner data. We find that an ANN is able
to overcome some of the view angle-dependent uncertain-
ties – at the expense of moving away from a pure physics-
based solution. We point out that the view angle-dependent
error problem, insofar as using a pure RTE physics-based ap-
proach with PMW cross-track scanner measurements, was
first explained by Kidder (1976), based on use of data from
the first PMW precipitation radiometer, the cross-track scan-
ning 19.35 GHz Electrical Scanning Microwave Radiome-
ter (ESMR); see Wilheit (1972).

3.2.1 Training database

H-SAF seeks to support precipitation algorithms for cross-
track scanning radiometers as consistent as possible with
those for conically scanning radiometers, as well as precipi-
tation algorithms optimized for the European/Mediterranean
Basin region. This explains why we have developed the train-
ing database for the PNPR algorithm based on the same phys-
ical foundation used for the CDRD algorithm – including the
same NMS simulations and RMS methodology. While the
CDRD algorithm uses its database repeatedly to obtain a pri-
ori potential solution profiles for its Bayesian solver for re-
trieval situations at the times they occur, the PNPR algorithm
uses its database only once during the training process, to de-
velop the functional relationships needed between the inputs
(i.e., TBs, geographical/seasonal factors, pixel view angle)
and the outputs (i.e., surface precipitation rate, phase flag).

In order to calculate surface emissivities needed by the
RMS’s embedded Surface Emissivity Module (SEM) (see
Smith et al., 2013), for each AMSU and MHS channel fre-
quency, according to the polarization state and varying lo-

cal zenith angle (θ), emissivities are first calculated for the
horizontally/vertically orthogonal polarization (H-pol/V-pol)
states (εp, εq), then combined to calculate an effective emis-
sivity ( εeff) using the relationship discussed in Prigent et
al. (2005), i.e.,εeff(θ) = εp(θ) cos2(θ) + εq(θ) sin2(θ). In
this expression,p represents either H-pol or V-pol depend-
ing on a given channel’s polarization state at nadir, whileq

represents the opposing state.
The fifteen channel frequencies of the AMSU-A in-

strument are 23.8, 31.4, 50.3, 52.8, 53.6, 54.4, 54.94,
55.5, 57.29, 5 at 57.29± 1F ± 1f and 89 GHz (where
±1F ± 1f represents either double or quadruple sym-
metric sideband frequency positions along the 57.29 GHz
O2 line’s wing – necessary for temperature sounding),
while the five frequencies of the MHS radiometer are 89,
157, 183.31± 1, 183.31± 3 and 183.31± 7 GHz. This
information is summarized in Table 4 and accessible in
more detail from AMSU-A (2009) and MHS (2009). The
IFOV resolutions/shapes are a function of the radiome-
ter, the view angle and the height of the satellite, where
shape is expressed in terms of cross-track (CT) and down-
track (DT) elliptic dimensions. Both the AMSU-A and MHS
radiometers use their own common beam sizes, specific
to each radiometer, unvarying with respect to channel
frequency, i.e., the IFOV resolutions are independent of the
frequency dependent diffraction limits. For example, for
the AMSU-A radiometer at a nominal satellite height of
833 km, the nadir and scan edge IFOV resolutions/shapes,
respectively, are 49.33-CT× 48.17-DT km2 /near-circular
and 179.89-CT× 80.8-DT km2/extreme-ovate, while for
the MHS radiometer at the same satellite height, the
nadir and scan edge IFOV resolutions/shapes, respec-
tively, are 20.36-CT× 16.59-DT km2/mild-ovate and
67.14-CT× 27.91-DT km2/extreme-ovate. Refer to Ben-
nartz (2000) for the analytical expressions that we employ
for the IFOV resolutions.

Caution is taken to mitigate against nonhomogeneous
IFOV beam filling affecting the retrievals (i.e., variability in
precipitation cover within a given IFOV produces errors in
retrievals because of the underlying nonlinear relationship
between TBs and precipitation rates), an effect referred to
as nonuniform beam filling (NUBF) error. This is critical for
larger IFOV footprints. To reduce NUBF errors, the initial
simulated TBs for the database, initially taken at the CRM’s
2-km resolution, are spatially averaged (convolved) using
the AMSU-A/MHS Gaussian antenna pattern functions out
to ±1σ widths, these functions varying with view angle. In
replicating the characteristics of the AMSU-A and MHS ra-
diometers, the RMS makes calculations at 45 beam centers
(θs) using steps of 1.1◦, equivalent to the number of me-
chanical scan stops used on the MHS instrument, scanning
to either side of nadir over a tilt angle from nadir beam cen-
ter to edge beam center of 48.33◦ for a1/2 scan angular view
field of 49.5◦. Therefore, each possible NMS cloud structure
must be associated to 45 different TB vectors (for each of the
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Table 4.Same as Table 3 except for three cross-track scanning PMW radiometers. (R polarization indicates rotation-with-scan).

AMSU-A AMSU-B MHS

Host Satellite [nominal satellite height]

1 NOAA-18/19 POES [833 km] Pre-NOAA-18 POES Platforms [833 km] NOAA-18/19 POES [833 km]
2 METOP-A/B [817 km] METOP-A/B [817 km]

Channel Frequency in GHz/Polarization:Polarization State at Nadir

1 23.8/R : V 89± 0.9/R : V 89/R : V
2 31.4/R : V 150± 0.9/R : V 157/R : V
3 50.3/R : V 183.31± 1/R : H 183.311± 1/R : H
4 52.8/R : V 183.31± 3/R : H 183.311± 3/R : H
5 53.596± 0.115/R : H 183.31± 7/R : V 183.311± 7/R : V
6 54.4/R : H
7 54.94/R : V
8 55.5/R : H
9 57.29/R : H

10 57.29± 0.217/R : H
11 57.29± 0.3222± 0.048/R : H
12 57.29± 0.3222± 0.022/R : H
13 57.29± 0.3222± 0.01/R : H
14 57.29± 0.3222± 0.0045/R : H
15 89/R : V

45 view angles), noting a complete MHS instrument scan in-
volves 91 steps, but with angular symmetry around the center
step. (Note the AMSU-A instrument uses a 3.3◦ angular step
at 15 beam centers from nadir to either scan edge, again for
a 1/2 scan angular view field of 49.5◦.)

In the PNPR database, the correspondence between TB
vectors, along with their associated hydrometeor structures
and surface precipitation rates, is complicated by the depen-
dence of spatial resolution along a radiometer scan due to
the varying view angle. In order to produce unique relation-
ships between the TB vectors for the individual viewing an-
gles and the associated surface precipitation rates, a variable
sensor resolution (VSR) is defined according to the nominal
MHS resolution, varying from 16× 16 km2/circular at nadir
to 26× 52 km2/ovate at scan edge.3 Thus, the surface pre-
cipitation rates must be averaged for 45 VSRs with precip-
itation products delivered to the H-SAF product data center
tagged accordingly. This means that the PNPR database has
45 times greater density in precipitation structure entries than
the CDRD database, which itself contains some 2.5 million
entries for the European/Mediterranean Basin region.

3.2.2 Precipitation screening

As noted in Sect. 3.1.3, both the PNPR and CDRD algo-
rithms use screening schemes to detect precipitating condi-

3 For the CDRD algorithm, an invariant mean sensor resolu-
tion (MSR) is defined according to the resolution of the SSMIS
91.655 GHz channels (13.2× 15.5 km2); this resolution is used for
all CDRD precipitation products.

tions within a given radiometer IFOV. These schemes pre-
cede the application of the retrieval solution solvers for ei-
ther algorithm in order to ensure that the solvers are acting
only on precipitating pixels. Since the PNPR algorithm is
used with the AMSU-A/MHS and /AMSU-B radiometers,
it uses the high-end frequencies screening procedure follow-
ing Chen and Staelin (2003) as described in detail in Ap-
pendix A.

3.2.3 Determination of optimal artificial neural
network (ANN)

Like the human brain, ANNs are repeatedly exposed to in-
puts, responding by varying the strength of the connections
between its neurons based on the inputs (see Haykin, 1998,
2009). Thus, learning for ANNs is accomplished by use of
an iterative process, similar to say, relaxation-based inver-
sion but unlike single step-based schemes such as use of re-
gression equations or accumulations according to Bayesian
probabilities. By the same token, a simplifying feature of
the PNPR algorithm is that it uses a unique ANN that re-
trieves the surface precipitation rate for all types of surface
backgrounds represented in its database, i.e., land, ocean, ice,
snow or coast. This prevents different precipitation estimates
being inconsistent when an observed precipitation system ex-
tends over two or more types of surfaces. Note the PNPR out-
puts consist of both the surface precipitation rate and a phase
flag indicating liquid, frozen, mixed or unknown conditions.
The PNPR algorithm cannot provide the liquid–total ratio for
the mixed phase case because, unlike the CDRD algorithm,
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Fig. 5. Flow diagram for PNPR algorithm. 4 
5 Fig. 5.Flow diagram for the PNPR algorithm.

it does not retrieve vertical hydrometeor profiles for the six
microphysical species.

As input data, the PNPR algorithm incorporates TBs mea-
sured by the AMSU-A and MHS radiometers. It considers
three AMSU-A channels (50.3± 50, 52.8± 105, 53.596±
115 GHz), all five MHS channels (89± 0.9, 150± 0.9,
183.31± 1, 183.31± 3, 183.31± 7 GHz) and various addi-
tional channel-derived variables. In order to reduce ambi-
guity, other geophysical inputs (i.e., latitude, terrain height,
surface type, season) guide the algorithm towards selecting
database members that are most representative of an ob-
served scene. The pixel number along the scan is an addi-
tional principal input parameter used to determine the degree
to which limb smearing is to be reduced, the effect produced
by changing atmospheric path length along the scan (Gold-
berg et al., 2001). The ANN itself performs the limb correc-
tion.

In the process of finding the ANN most suitable for obtain-
ing actual retrievals of surface precipitation rates, the training
database is divided into two pieces, the first being used for
the actual training (ground truth piece) and the second for
providing the synthetic TBs used in a subsequent verifica-
tion analysis (GV piece). Different ANN configurations have
been tested, varying the number of layers and perceptrons
(i.e., weighted linear predictor functions) at each layer. The
iterative method considers both reduction of the rmse and

enlargement of ther between the synthetic surface precipi-
tation rates in the ground truth piece of the database and the
ANN retrievals associated with the corresponding synthetic
TBs, and the avoidance of overfitting, i.e., the tendency for
a given ANN to tilt toward perfection in the retrievals from
the ground truth piece of the database, yet unable to adapt to
differing situations. Notably, both pieces must be represen-
tative of all precipitation events contained within the collec-
tive database. The choices for size and specific members of
each piece are thus crucial in obtaining an effective evalua-
tion of the final ANN’s performance, and thus for each piece,
database members in 45-entry sets from 60 original simula-
tions are selected randomly. A maximum threshold for rmse
and minimum threshold forr are used for optimal perfor-
mance.

The result of the training process is an optimal three-layer
ANN. In the 1st layer, the number of perceptrons equals the
number of TB+ TB-derived inputs. For the 2nd and 3rd
layers, twenty and eight perceptrons are selected, respec-
tively. The use of the additional layers is necessary to pre-
vent: (1) overfitting, measured by small values of rmse dur-
ing the learning procedure followed by large values during
the verification analysis, and (2) too little variability in pre-
cipitation rates along with an inability to identify consistently
heavy precipitation. Once the optimal ANN is created, a fi-
nal check of the retrievals is conducted to determine their
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stability to varying input, accomplished by perturbing the in-
put TBs with random noise within allowed errors, followed
by retrieval calculations. The perturbation retrievals are then
compared to those obtained from the original TBs to ob-
tain corresponding differences. Since these comparisons do
not reveal significant differences, the stability of the opti-
mal ANN is confirmed, enabling its effective implementation
within the PNPR algorithm.

Figure 5 shows a flow diagram of the PNPR algorithm.
First, the input TBs undergo a quality check to replace oc-
casionally corrupted TBs with synthetic values created by
the ANN using neighboring TBs at the same and different
channel frequencies. Additionally, two maps of geographical
and seasonal information are created for the observed scene.
Then, four different procedures are carried out: (1) screening
tests for detection of surface precipitation areas, (2) identifi-
cation of areas where the algorithm is known to be less ac-
curate, (3) creation of a map of initial quality indices based
on procedure 2 and to be associated with the final surface
precipitation retrievals, and (4) creation of an initial place-
holder map of the phase flag of the final precipitation re-
trievals. Now the optimal ANN itself is applied, generating
the final retrieved values of surface precipitation rate and as-
sociated phase flag. A separate element of the ANN controls
the TB inputs for assigning the phase flag, based on findings
in Grody et al. (2000), Rosenkranz (2003) and Surussavadee
and Staelin (2009). To complete the retrieval process, the
quality index is updated, accounting for the magnitudes of
the retrieved surface precipitation rates. Thus, besides the
surface precipitation rate and its phase flag, the quality in-
dex for each pixel is also output, assigned as poor, fair, good
or unknown.

Since both CDRD and PNPR algorithms have been devel-
oped using the same physical basis, mainly differing in their
choice of solution solvers (averaging over a priori Bayesian
probabilities for CDRD versus neural network training based
relationships for PNPR), it is reasonable to expect a certain
degree of consistency in their precipitation retrievals when
the algorithms are applied to close-in-time measurements ac-
quired by conical and cross-track scanning radiometers for
the same rainfall event. Figure 6 shows a comparison of re-
trieved surface rain rates for the two algorithms, based on
DMSP/SSMIS and METOP-A/AMSU-A/MHS overpasses
during the 20 October 2011 flash flood event in Rome, Italy,
noting the METOP-A overpass only lags the DMSP overpass
by 11 min. The intercomparison reveals close correspon-
dence in rain rates for the flood event, noting that the AMSU-
A/MHS scan is not centered on the main precipitation event,
instead viewing the scene at the outer left scan edge where
spatial resolution undergoes its greatest deterioration. Over-
all, even given the 11-min time difference in overpasses and
the deteriorated resolution in the cross-track scanner mea-
surements, the intercomparison results effectively corrobo-
rate the capabilities of the two algorithms in reporting similar
rainfall results from very different retrieval solution method-

ologies using greatly different radiometer scanning technolo-
gies.

3.2.4 Near future improvements

Most of the issues discussed in Sect. 3.1.5 concerning the
CDRD algorithm will also be addressed in terms of near-
term improvements to the PNPR algorithm. However, our
foremost concerns will be refinement of the algorithm’s pre-
cipitation screening scheme and the determination of a phase
flag as consistent as possible with that of the CDRD algo-
rithm (neglecting the liquid–total ratio for the mixed phase
case). To make these refinements, the PNPR algorithm will
undergo additional verification tests based on H-SAF GV
radar data, with particular emphasis given to case studies
around coastlines, arid regions, and at high latitudes expe-
riencing light rain or snow. Notably, the latter situation is the
most difficult, involving detection of stratiform precipitation
over snow and/or ice surfaces which can occur in any of the
three phases. As noted earlier, insofar as progress with the
screening scheme, these results will have application to the
CDRD algorithm in applications with SSMIS data.

4 Future opportunities for algorithm development in
GPM era

Because water cycling and the availability of fresh water re-
sources, including their predicted states, are of such imme-
diate concern to most nations, and because precipitation is
fundamental to all environmental water issues, developing a
space-based, globally-inclusive precipitation measuring sys-
tem has become a pressing issue for a large body of nations.

4.1 Advent of GPM era

The goal of the GPM mission is the development of a next
generation, space-based measuring system which will ful-
fill the requirements for global, frequent and accurate pre-
cipitation measurements. The GPM mission is being de-
veloped as an international collaboration of space agen-
cies, weather and hydrometeorological forecast services, re-
search institutions, and individual scientists. It will serve as
the flagship space mission for a number of water-related
research and applications programs. These include inter-
national research programs involved with the global wa-
ter and energy cycle (GWEC), particularly the World Cli-
mate Research Program (WCRP)/Global Energy and Wa-
ter Cycle Experiment (GEWEX), and will support ba-
sic research, applications-oriented research, and operational
environmental forecasting throughout individual nations and
consortiums of nations. A principal contributor in this con-
text is expected to be the EUMESAT Hydrology SAF.

The design and development of the GPM mission is
an outgrowth of valuable knowledge and published find-
ings enabled by TRMM. Given the TRMM experience and
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Fig. 6. Comparison of retrieved surface rain rates for 20 October 2011 flash flood event in Rome, Italy.  Left panel shows results for CDRD 4 
algorithm applied to measurements from DMSP/SSMIS-F18 conical scanner while right panel shows results for PNPR algorithm applied to 5 
measurements from METOP-A/AMSU-A & MHS cross-track scanners.  Note lag of 11 minutes between DMSP and METOP-A satellite 6 
overpasses and difference in spatial resolutions due to difference in instrument scanning designs. 7 
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Fig. 6.Comparison of retrieved surface rain rates for the 20 October 2011 flash flood event in Rome, Italy. Left panel shows results for CDRD
algorithm applied to measurements from DMSP/SSMIS-F18 conical scanner while right panel shows results for PNPR algorithm applied
to measurements from METOP-A/AMSU-A & MHS cross-track scanners. Note lag of 11 min between DMSP and METOP-A satellite
overpasses and difference in spatial resolutions due to difference in instrument scanning designs.

from a consideration of the basic physical principles asso-
ciated with direct sensing of precipitation from space, it is
now recognized that the GPM mission requires a constel-
lation of satellites, some dedicated, and some conveniently
available through other experimental and operational mis-
sions supported by various of the world’s space agencies,
i.e., “satellites of opportunity”; see Smith et al. (2007) and
http://pmm.nasa.gov/.

The heart of the GPM constellation will be the GPM Core
Satellite, under joint development by NASA and the Japan
Aerospace Exploration Agency (JAXA). As with TRMM,
the basic work-share arrangement between NASA and JAXA
is that NASA provides the radiometer, the satellite bus and
the ground segment, while JAXA provides the radar sys-
tem, the launch vehicle and the launch operations. The Core
Satellite is the central rain measuring observatory equipped

with a pair of radars (called the DPR for Dual-frequency
Precipitation Radar) at Ku-/Ka-band frequencies (see Iguchi
et al., 2002; Nakamura et al., 2005; andhttp://www.jaxa.jp/
pr/brochure/pdf/04/sat04.pdf), and a high resolution, multi-
channel PMW rain radiometer called the GPM Microwave
Imager (GMI)4. The GPM Core Satellite is required to serve
as the calibration reference system and the fundamental mi-
crophysics sensor package supporting an integrated satellite
measuring system made up of six to ten constellation satel-
lites, depending on the time frame. Each constellation satel-
lite is required to carry one or more precipitation sensing
instruments, with a minimum requirement of one PMW ra-

4 The 2nd author of this paper developed the scientific require-
ments for the GMI and was one of four principals of the design
team that produced the instrument’s engineering specifications; see
Bidwell et al. (2005) and Newell et al. (2010).
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diometer equipped with an appropriate set of precipitation
channels.

The GPM mission will have the capability to provide
physically-based retrievals on a global basis, with∼3-h sam-
pling assured at any given Earth coordinate∼90 % of the
time. Such frequent diurnal sampling is made possible by a
mixed non-sun-synchronous/sun-synchronous satellite orbit
architecture. Nonetheless, regardless of the overall mission
design and implementation plan, the quality of the rainfall
estimates will still come down to the quality of the algo-
rithms conducting the retrievals and producing the precipita-
tion products. This is where the CDRD and PNPR algorithms
become relevant. As noted, they will be able to improve upon
the standing TRMM era capabilities for mid-latitude Euro-
pean applications, for three very specific reasons that will
be made possible by the onset of the GPM era: (1) much
greater spatial resolution of GMI radiometer measurements
compared to the TRMM TMI (made possible by the much
larger GMI 1.22 m antenna compared to the TMI 0.6 m an-
tenna) over a frequency spectrum twice that of TMI, encom-
passing thirteen channels at 10.65, 18.7, 23.8, 36.5, 89, 165
and 183± 3/± 7 GHz, in which all but the 23.8 and 183 fre-
quencies incorporate H-pol and V-pol orthogonal polariza-
tion separation (the latter three frequencies only requiring V-
pol channels) (see Table 3); (2) much better hydrometeor size
distribution resolving capability due to the inclusion of the
two-frequency Ku-band (13.6 GHz)/Ka-band (35 GHz) DPR
in place of the single-frequency Ku-band (13.8 GHz) PR; and
(3) an improved GV program. Each of these new capabilities
of the GPM mission has direct bearing on the anticipated im-
provement of the CDRD and PNPR algorithms, for reasons
given in the next three paragraphs.

Reason 1:The longest standing barrier preventing sig-
nificant improvement in PMW precipitation retrieval
stems from the small antennas used on the radiometers.
For example, the best of these radiometers, the TRMM
satellite’s TMI, only uses a 0.6 m antenna. The antenna
size along with satellite height, define the diffraction
limited IFOV at any given channel frequency, unless
otherwise decreased through engineering-imposed de-
fault resolutions. The problem with PMW retrieval has
always been that the relatively large IFOVs, determined
by the use of relatively small radiometer antennas, au-
tomatically bring about nonlinear errors in the retrievals
due to NUBF. The GPM Core Satellite’s antenna size
is 1.22 m, i.e., over twice that of the TMI. As pointed
out in the analysis given by Smith et al. (2007) based
on representative spatial scales of precipitation elements
in modeled clouds, such a geometric doubling will re-
move much of the NUBF error problem at lower fre-
quencies because of the relatively smaller GMI IFOVs.
In fact, one more doubling at characteristic LEO satel-
lite heights will reduce much of the NUBF error in the
18–23 GHz frequency range, and one more doubling af-

ter that would be similarly effective in reducing NUBF
error at the 10.7 GHZ frequency – effectively freeing
PMW precipitation retrieval from serious NUBF error
problems. (It is important to note that, for the most
part, maximum PMW radiometer antenna sizes have
been limited by the front bay dimensions of the rockets
used to launch the relatively bulky instruments always
in conjunction with other instruments, and the unwill-
ingness to use somewhat risky antenna unfolding mech-
anisms that would increase allowable antenna dimen-
sions.) Thus, the engineering design of the GMI’s an-
tenna will enable significant improvement in the CDRD
and PNPR algorithms’ retrieval accuracy. Moreover, the
GMI frequency range from 10.7–183 GHz, a first for
a spaceborne PMW radiometer, will enable improve-
ments in retrieval accuracy across a wider spectrum
of surface precipitation rates, and thus will extend the
CDRD and PNPR algorithms’ utility to high latitudes
where light rates of surface rainfall/snowfall are preva-
lent; Mugnai et al. (2007).

Reason 2:Because the GPM Core Satellite will be fly-
ing a 2-frequency radar system and the satellite’s incli-
nation will be 65◦, the anticipated use of differential
frequency techniques will enable learning a great deal
about hydrometeor size distribution characteristics up
to high latitudes, that is will be able to diagnose at least
two moments of the size distributions up to the high-
est latitudes deemed important by the H-SAF program.
This knowledge will be helpful in improving the RMS
used by the CDRD and PNPR algorithms, particularly
the RMS components pertaining to hydrometeor opti-
cal properties and the associated single scatter proper-
ties of the six liquid/frozen hydrometer categories un-
derlying the algorithms’ physics. For this reason alone,
the GPM era should bring about significant strides in
precipitation retrieval, some which can be anticipated,
others which will reveal themselves as the GPM era
unfolds. By the same token, since the swath widths of
the two GPM Core Satellite’s radars (120 and 245 km
cross-track for Ka-band and Ku-band, respectively) are
significantly smaller than the swath width of the GMI
(904 km conical-track), it will be necessary to use either
physically-based similarity techniques or statistically-
based correlative techniques to acquire radar-quality re-
trievals in the radiometer swath areas outside the views
of the two radars. Thus, this issue represents a future
topic of research.

Reason 3:Effective GV analysis of a precipitation re-
trieval algorithm is an almost sacrosanct requirement
before such an algorithm can be taken seriously. In the
development of the CDRD and PNPR algorithms we
have made significant progress in GV analyses; e.g.,
see Casella et al. (2012), Sanò et al. (2013), Puca et
al. (2013) and the results presented in prior Sects. 3.1.4
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and 3.2.3. In the GPM era there will be a significant
expansion of GV networks, GV capabilities and GV
accuracies in the acquired data. All of such expansion
will contribute to the improvement of the CDRD and
PNPR algorithms, through case study analyses, inter-
comparisons with GPM facility precipitation retrieval
algorithms and improved understanding of the physics
of precipitation and methods required to bring about a
given precipitation retrieval algorithm’s optimal perfor-
mance.

4.2 Precipitation algorithm opportunities with MTG

Soon after the advent of the GPM era, the first pair of Me-
teosat Third Generation (MTG) GEO satellites are now antic-
ipated for launch in the 2017–2019 time frame. By this point,
the CDRD and PNPR algorithms will have been flourishing
within the H-SAF program (or its next generation follow-up).
MTG satellites will use 3-axis stabilization instead of spin
stabilization, as is being used with the Meteosat First Gener-
ation (MFG) and MSG platforms, with the advantage that the
MTGs’ onboard instruments will point to the Earth 100 % of
the time with longer dwell times. This feature is now consid-
ered necessary for a sounding instrument, which the MTG-S
sounder platforms will carry (although sounders have been
flown on spin-stabilized GOES satellites in the past). MTG
satellites will continue to carry imaging instruments, the so-
called Flexible Combined Imager (FCI) on dedicated imag-
ing platforms (MTG-I), which will provide solar and infrared
observations in 16 channels (5 visible, 3 near-infrared at 1-
km resolution, and 8 infrared at 2-km resolution, in which
these channels have allocated at 2 H2O, 1 O3, 1 CO2 and 4
window frequencies). All of these measurements will have
better spatial, temporal and radiometric resolutions, com-
pared to the predecessor measurements on MFG/MSG satel-
lites. The FCI will image in two modes, a Full-Disk-Scan
(FDS) mode with a 10-min repetition cycle, and a European
Regional-Rapid-Scan (RRS) mode, which will scan1/4 of
the full disk with a repetition cycle of 2.5 min. In RSS mode,
two solar channels provide measurements at 0.5-km resolu-
tion while two infrared channels provide measurements at
1-km resolution.

MTG-S platforms will carry the Infrared Sounder (IRS),
an interferometer with hyper-spectral resolution in the ther-
mal spectrum, and the high resolution Sentinel-4 Ultraviolet
Visible Near-infrared (UVN) spectrometer. Both MTG-I and
MTG-S platforms will also carry the Lightning Imager (LI)
instrument, which will measure total lightning over the entire
observed hemisphere containing the European and African
continents. These instruments will be in direct synergy to the
Geostationary Lightning Mapper (GLM) instruments to be
flown on the next generation GOES-R and GOES-S satel-
lites. As noted, one of the short-term goals for improving the
CDRD and PNPR algorithms is to incorporate lightning in-

formation into the simulation databases, support that will be
provided by LI and GLM measurements.

However, the most important aspect of the new MTG satel-
lite will be the high spatiotemporal resolution FCI measure-
ments and their capacity to make higher quality and better
accuracy information on clouds and cloud processes near
the cloud tops. The MTG measurements will be used to ac-
quire parameters concerning cloud cover, cloud-top height,
shortwave and longwave spectrum optical depths, cloud-top
bulk microphysics concentrations and additional details con-
cerning aerosol contents. With the advent of these new re-
trieval capabilities, and considering the possibilities for us-
ing these measurements with the CDRD and PNPR algo-
rithms, three levels of improvement can be anticipated. To
assess these three issues, it is necessary to recognize that the
CDRD and PNPR algorithms are divided into three differ-
ent data components (setting aside their distinct algorithm
solvers): (I) meteorological observations from operational
global forecast models; (II) satellite PMW satellite observa-
tions from conical and cross-track scanning radiometers; and
(III) simulated PMW observations residing in the algorithms’
databases.

Within this framework, the greatest advantages that could
be provided by future MTG measurements, over and above
current geostationary measurements, will come from the
higher quality and more accurate observations of cloud prop-
erties,. Used carefully, these cloud parameters could possi-
bly: (1) provide direct observations within the component I
parts of the algorithms, i.e., additional meteorological cloud
parameters with which to constrain possible algorithm so-
lutions from the simulation database, (2) provide additional
sensor data within the component II parts of the algorithms,
i.e., additional sensor cloud measurement leverage concern-
ing direct top-of-atmosphere information that would be sim-
ulated in parallel with the algorithms’ underlying RMS, and
(3) provide direct data insertions within the component III
parts of the algorithms, i.e., additional microphysical proper-
ties outside of what could be simulated by the CRM, which in
turn, could be incorporated into RMS calculations of PMW
TBs. Obviously research will have to be carried out con-
cerning these possible uses of MTG data for improving the
CDRD and PNPR algorithms’ methodologies, but given the
anticipated quality of the cloud parameters, the future bodes
well for improvement.

5 Conclusions

Three conclusions deserve mention. First, the ISAC-Rome
CDRD and PNPR algorithms were developed over a pe-
riod of years that required the coming together of the Eu-
roTRMM, EURAINSAT and H-SAF programs in sequence.
A period of maturation was required because in seeking ac-
curate and precision algorithms, many solutions to physics
problems and model simulations are needed. Thus, a great
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deal of research and testing was required before stable algo-
rithms could be produced. Second, the CDRD algorithm is
gradually emerging as a secondary calibration reference for
the set of H-SAF precipitation algorithms, partly because it
uses the best possible PMW measurements coming from the
conically scanning radiometers without contamination from
lesser measurements, and partly because of preliminary inter-
comparisons to the TRMM PR algorithm over the southern
portion of the European/Mediterranean Basin region, a re-
gion for which the algorithm is relevant. Specifically, a com-
parison of retrieval results against the TRMM PMW facility
algorithm indicates performance behavior on par with or bet-
ter than the 2a12-v7 counterpart. This is a significant step
forward for the H-SAF program. Third, it is apparent that
in addition to a number of near-term improvements that will
be made, but are not expected to greatly improve the CDRD
and PNPR algorithms’ accuracies and precisions, the GPM
era will offer a number of avenues for improvement that are
anticipated to be significant.

Appendix A

Low-end frequency precipitation screening procedure

There are two kinds of screening tests that are invoked for
the two retrieval algorithms. The first is a “quality-control”
test aimed at rejecting telemetry errors that result in non-
physical antenna temperatures. For this, a check is carried
out on the brightness temperatures. Any pixels out of reason-
able physical limits (i.e., 50–310 K) are rejected. The second
is a “detection-of-rainfall” test, and may or may not be linked
to the type of surface involved (water, land or coast), depend-
ing on which type of channel frequency (ν) set is being used;
low-end channel frequency screening (availableν range be-
tween∼18 and∼95 GHz) requires knowledge of the type
of surface within view whereas high-end channel frequency
screening (availableν range between∼150 and∼183 GHz)
does not require such knowledge.

A1 Screening using low-end frequencies (availableν
range between∼18–95 GHz)

Detection-of-rainfall screening can involve emission-based
tests, scattering-based tests, or both. For low-end screening
over water, which has a relatively low and invariant emis-
sivity, screening is not complex and an emission-based test
using the lower frequencies of the low-end frequency set are
used to determine if rainfall is present in the atmospheric col-
umn. For land, surface emissivities are much more variable
and generally larger, all of which tends to obscure the emis-
sion signature of the water content in an atmospheric col-
umn – which is directly related to rainfall – creating a more
complex screening process. Over coasts, a measurement in-
volves a mixture of a radiometrically cold water surface and

a radiometrically warm land surface, producing even more
complexities than associated with land. In essence, rainfall
screening for either land or coastal surfaces is designed to de-
tect TB depressions due to scattering in the upper portions of
the clouds, requiring use of the higher frequencies within the
low-end frequency set in conjunction with a mix of emission-
and scattering-based tests.

A1.1 Screening over water

A water surface’s emissivity is generally between 0.4–0.5.
Thus, any precipitation over water generally augments the to-
tal radiation stream by emission and thus rain appears warm
against a cold background. Each channel frequency responds
differently to cloud liquid water depending on the droplet
size. An 18–19 GHz channel frequency is the most respon-
sive direct measurement of columnar liquid water for rain-
bearing clouds; that is, its response generally will not satu-
rate for typical satellite spatial resolutions (see Grody, 1993),
that is until the rainfall becomes very intense and the drops
become very large or the resolution becomes very small. By
the same token, a 37 GHz channel frequency is more sensi-
tive to nonprecipitating clouds with a smaller drop sizes. For
low-lying thin stratus clouds with the least amount of liquid
water, an 85–90 GHz channel offers the highest sensitivity;
it is, however, strongly affected by scattering from precipita-
tion sized ice particles (Weng et al., 1977).

Assuming a channel frequency set for the SSM/I or TMI
radiometers (see Table 3), and noting that similar frequencies
for the AMSR-E radiometer are effectively interchangeable
with their proximate SSM/I or TMI counterparts, the starting
point for screening over water is to test if the LWP is above
a threshold, which depends on the estimated freezing level
height (HFL). The LWP estimate depends on log10 transfor-
mations of the TB22V and TB37V measurements, modifying
an emission-based approach originally suggested by Weng
and Grody (1994). If the initial test indicates a sufficiently
large LWP, further screens are necessary to eliminate the pos-
sibility of a rain-free path in the presence of strong surface
winds, surface ice, a clear ocean beneath a dry atmosphere,
or finally the possibility of an ambiguity (see Sanò, 2010).
The complete screening procedure is described in Fig. A1a.

A1.2 Screening over land

As noted, the complexity in detecting the presence of rainfall
over land is due to the large and variable emissivity of the sur-
face, with dependence on the type of surface, e.g., vegetation,
snow, ice, desert, semi-arid soil, etc. Typically, these surfaces
exhibit relatively large emissivities, ranging from 0.6 to 0.95
depending on their water content (see Grody, 1988). Such el-
evated emissivities tend to obscure emission signatures stem-
ming from liquid water in the atmospheric column, conse-
quently requiring the use of scattering-based tests for the de-
tection of rainfall.
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Fig. 7a. Over-water screening procedure for low-end channel frequency set.  [Ambiguous denotes “high probability of rain” for data assimilation 4 
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Fig. A1a.Over-water screening procedure for low-end channel frequency set. (Ambiguous denotes “high probability of rain” for data
assimilation purposes).
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Fig. 7b. Same as Fig. 7a, except for over-land. 13 
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Fig. A1b. Same as(a) except for over land.
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Fig. 7c. Same as Fig. 7a, except for over-coast. 12 

Fig. A1c.Same as(a) except for over coast.

Notably, TBs at a given polarization or vertical–horizontal
(V–H) TB polarization differences are dependent on channel
frequency and surface type. In general, the scattering signa-
ture of rain is identified by a decrease in the V-polarized TB
with an increase in frequency, although a snow surface may
also indicate this property. Alternatively, for most surfaces,
V–H TB polarization differences are greater at lower than
at higher frequencies, whereas precipitation exhibits a some-
what flat V–H TB polarization difference with respect to fre-
quency. Desert surfaces generally indicate the greatest V–H
TB polarization differences when considering all land sur-
faces, although certain snow surfaces can exhibit such large
differences.

It is important to recognize that the use of a single V- or
H-polarized TB at a fixed frequency or a single V–H TB po-
larization difference at a fixed frequency cannot identify the
rain signature, given the variety of surface types with their
varied behaviours of these quantities. In essence, two tests
are necessary; (1) the possible detection of the scattering sig-
nature of rain and (2) the confirmation of its existence over
different scattering surfaces. Drawing from a body of litera-
ture that has addressed this issue over land (see Neale et al.,
1990; Grody, 1991; Hollinger, 1991; Ferraro et al., 1994a, b,
1998; Kniveton et al., 1994; Grody and Basist, 1996), a num-
ber of scattering-based tests including frequency-dependent
V- and H-polarized TB and V–H TB polarization difference
tests are used to differentiate when rain is present or whether
a scattering surface itself is giving rise to the scattering sig-

nature (see Sanò, 2010). The complete screening procedure
is described in Fig. A1b.

A1.3 Screening over coast

Rainfall screening over coasts is an important component of
the overall process because coastal zones contribute a great
deal of rainfall by virtue of land–water differential heating,
on-shore frictional driven convergence and sea breezes. Be-
cause coastal measurement footprints represent a mixture
of radiometrically cold water surfaces and radiometrically
warm land surfaces, the associated screening schemes are, by
nature, more complex than for either surface independently.
The main problem originates from the fact that by combining
opposite surfaces, a result is generated akin to adding the ef-
fects of rainfall whether rainfall is present or not. In essence,
when land is in a footprint, the combining of surface wa-
ter reduces the TB similar to how rainfall scattering creates a
TB depression. Alternatively, when surface water is in a foot-
print, the combining of land increases the TB, similar to how
rainfall emission creates a TB warming. Thus, detecting the
presence of rain can involve ambiguities without a carefully
designed sequence of emission-based and scattering-based
tests.

Carefully weighing a number of principles laid out in a
body of literature that has addressed coastal screening (see
Ulaby et al., 1986; Adler et al., 1993; Ferraro, 1997; Kidd,
1998; Smith et al., 1998; Bennartz, 1999), and using the
85 GHz polarization corrected temperature (PCT) technique
developed by Spencer et al. (1989), along with a battery
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of emission/scattering-based tests and frequency-dependent
V- and H-polarized TB and V–H TB polarization difference
tests, it is possible to effectively differentiate rainfall from a
mixed surface signature. The complete screening procedure
is described in Fig. A1c.

It is noted in this figure that the2 and PCTTH parame-
ters, used in conjunction with the 85 GHz PCT test, are sea-
sonally dependent constants. The PCTTH is essentially a no
rain/rain threshold for the PCT with2 (also dependent on
the no rain/rain threshold in which2 increases as the thresh-
old increases) governing how much polarization is added to
the TB85V value, with the required range of2 between 0 and
1. Note that as2 increases, pixels with low TB85Vs but high
polarization (such as water) will exhibit increasing PCTs at
a greater rate than pixels with high TB85Vs but low polar-
ization (such as land surfaces). Therefore, a point is reached
where the PCTs of the low TB85V/high polarization pixels
exceed the PCTs of the high TB85V/low polarization pixels.
Since rain appears at lower PCT values due to the scattering
of the upwelling radiation stream, it is critical that the2 and
PCTTH parameters are sensitive to the value where the PCTs
divide between no rain and rain, and the degree to which po-
larization is allowed to contribute in differentiating between
rain and a coastal background. The physical background to
this procedure is described in Sanò (2010).

A2 Screening using high-end frequencies (availableν
range between∼150–183 GHz)

The high-end frequency screening procedure follows the al-
gorithm of Chen and Staelin (2003), which they developed
for the AMSU-A/MHS and/AMSU-B radiometers. For the
CDRD algorithm, this procedure is adapted for applications
with the SSMIS radiometer whereas for the PNPR algorithm,
it is adapted for applications with the AMSU-A/MHS ra-
diometer. This process requires taking into account differ-
ences in IFOV scales and polarizations of the 53.6H GHz,
183± 3H and 183± 7H GHz channels related to differences
between the designs of the SSMIS and AMSU-A/MHS in-
struments. These differences are addressed by calibrating the
observed SSMIS TBs involved in the screening procedure to
the observed AMSU TBs, taking into account the different
spatial resolution of the two sensors.

To start, any TB183±7H less than the threshold
TBTH

183±7H = 0.667(TBmax
∼53H− 248) − 252+ 6cos(θ),

has its associated microphysical information packet flagged
as potentially precipitating, where in the threshold expres-
sion TBmax

∼53H is obtained in two different ways insofar as
the PNPR and CDRD screening procedures. For PNPR,
TBmax

∼53H, is a spatially filtered 53.6H GHz AMSU-A TB
(TB53.6H) found by selecting the warmest TB value from
within a 7× 7 centered grid of a given array of measure-
ments. For CDRD, it is the warmest TB (also from a 7× 7
centered grid) associated with the calibrated 52.3H GHz
SSMIS channel (TB52.3Hcal). The function used to ob-

tain a calibrated TB52.3Hcal value allied with the most
probable TB53.6H value is based on a linear correlation
analysis between near-coincident AMSU-A and SSMIS
measurements (near in space and within 30 min), and is
given by TB52.3Hcal = 38.68+ 0.835× TB52.3H. In case
the observed scene corresponds to a very dry and cold
atmosphere and the TB183±7H value might be degraded by
contamination from surface emissivity, a 2nd check needs
to be conducted, first testing if a second near-183H GHz
frequency (TB183±3H) is less than another threshold given
by TBTH

183±3H = 242.5+ 5cos(θ). If so, then the information
packet is flagged as potentially precipitating if the TB53.6H
values of AMSU-A (or the TB52.3Hcal values of SMMIS)
are less than 248 K. If this test is positive, a third check is
required to determine if the same TB values are less than
242 K. A resultant positive test here means rejecting the
possibility of precipitation.
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A., Saǹo, P., Di Paola, F., Betz, H.-D., Price, C., and Yair, Y.: Us-
ing a cloud electrification model to study relationships between
lightning activity and cloud microphysical structure, Nat. Haz-
ards Earth Syst. Sci. Discuss., in press, 2013.

GMI: NASA Global Precipitation Measurement (GPM) Microwave
Imager (GMI) Level 1B (L1B) Algorithm Theoretical Basis
Document (ATBD) [version 0.01 draft], NASA/Goddard Space
Flight Center, Greenbelt, Maryland, USA, 2010.

Goldberg, M. D., Crosby, D. S., and Zhou, L.: The limb adjustment
of AMSU-A observations: Methodology and validation, J. Appl.
Meteor., 40, 70–83, 2001.

Gorgucci, E. and Baldini, L.: An examination of the validity of the
mean raindrop-shape model for dual-polarization radar rainfall
retrievals, IEEE Trans. Geosci. Remote Sens., 47, 2752–2761,
2009.

Gorgucci, E., Scarchilli, G., Chandrasekar, V., and Bringi, V. N.:
Rainfall estimation from polarimetric radar measurements: com-
posite algorithms immune to variability in raindrop shape-size
relation, J. Atmos. Ocean. Technol., 18, 1773–1786, 2001.

Grecu, M., Olson, W. S., and Anagnostou, E. N.: Retrieval of pre-
cipitation profiles from multiresolution, multifrequency active
and passive microwave observations, J. Appl. Meteor., 43, 562–
575, 2004.

www.nat-hazards-earth-syst-sci.net/13/887/2013/ Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013

http://dx.doi.org/10.1109/IGARSS.2005.1526109
http://dx.doi.org/10.1029/2002RS002636


910 A. Mugnai et al.: CDRD and PNPR satellite passive microwave precipitation retrieval algorithms

Grell, G., Dudhia, J., and Stauffer, D. R.: A Description of the Fifth
Generation Penn State/NCAR Mesoscale Model (MM5), NCAR
Techical Note NCAR/TN-398+STR, National Center for Atmo-
spheric Research, Boulder, Colorado, USA, 121 pp., 1994.

Grody, N. C.: Surface identification using satellite microwave ra-
diometer, IEEE Trans. Geosci. Remote Sens., 26, 850–859, 1988.

Grody, N. C.: Classification of snow cover and precipitation using
the Special Sensor Microwave Imager, J. Geophys. Res., 103,
7423–7435, 1991.

Grody, N. C.: Remote sensing of the atmosphere from satellite us-
ing microwave radiometry, in: Atmospheric Remote Sensing by
Microwave Radiometry, edited by: Jannsen, M. A., John Wiley
and Sons, 259–314, 1993.

Grody, N. C. and Basist, A.: Global identification of snow cover
using SSM/I measurements, IEEE Trans. Geosci. Remote Sens.,
34, 237–249, 1996.

Grody, N., Weng, F., and Ferraro, R.: Application of AMSU for ob-
taining hydrological parameters, in: Microwave Radiometry and
Remote Sensing of the Earth’s Surface and Atmosphere, edited
by: Pampaloni, P. and Paloscia, S., VSP 2000, 339–352, 2000.

Grose, A. M. E., Smith, E. A., Chung, H.-S., Ou, M.-L., Sohn, B.-
J., and Turk, F. J.: Possibilities and limitations for quantitative
precipitation forecasts using nowcasting methods with infrared
geosynchronous satellite imagery, J. Appl. Meteor., 41, 763–785,
2002.

Haddad, Z. S., Smith, E. A., Kummerow, C. D., Iguchi, T., Farrar,
M. R., Durden, S. L., Alves, M., and Olson, W. S.: The TRMM
“Day-1” radar/radiometer combined rain-profiling algorithm, J.
Meteor. Soc. Jpn, 75, 799–809, 1997.

Haykin, S. O.: Neural Networks: A Comprehensive Foundation,
2nd Edn., Prentice Hall, 842 pp., 1998.

Haykin, S. O.: Neural Networks and Learning Machines, 3rd Edn.,
Prentice Hall, 906 pp., 2009.

Hollinger, J.: DMSP SSM/I Calibration Validation, Final Report
Parts I–II, Naval Research Laboratory, Monterey, California,
USA, 419 pp., 1991.

Huffman, G. J, Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J.,
Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The
TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-
global, multiyear, combined-sensor precipitation estimates at
fine scales, J. Hydrometeorol., 8, 38–55, 2007.

Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K.:
Rain-profiling algorithm for the TRMM Precipitation Radar, J.
Appl. Meteor., 39, 2038–2052, 2000.

Iguchi, T., Oki, R., Smith, E. A., and Furuhama, Y.: Global Pre-
cipitation Measurement program and the development of dual-
frequency precipitation radar, J. Comm. Res. Laboratory, 49, 37–
45, 2002.

Iguchi, T., Kozu, T., Kwiatkowski, J., Meneghini, R., Awaka, J.,
and Okamoto, K.: Uncertainties in the rain profiling algorithm
for the TRMM Precipitation Radar, J. Meteor. Soc. Japan, 87A,
1–30, 2009.

Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.: CMORPH: A
method that produces global precipitation estimates from passive
microwave and infrared data at high spatial and temporal resolu-
tion, J. Hydrometeorol., 5, 487–503, 2004.

Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido,
Y., Shibata, A., Miura, M., Inahata, H., and Spencer, R. W.: The
Advanced Microwave Scanning Radiometer for the Earth Ob-

serving System (AMSR-E): NASDA’s contribution to the EOS
for global energy and water cycle studies, IEEE Trans. Geosci.
Remote Sens., 41, 184–194, 2003.

Kidd, C.: On rainfall retrieval using polarization-corrected temper-
atures, J. Remote Sens., 19, 981–996, 1998.

Kidder, S. Q.: Tropical oceanic precipitation frequency from Nim-
bus 5 microwave data, Atmospheric Science Paper 248, Colorado
State University, Fort Collins, Colorado, USA, 50 pp., 1976.

Kniveton, D. R., Motta, B. C., Goodman, H. M., Smith, M., and
LaFontaine, F. J.: The first Wetnet precipitation intercomparison
project: Generation of results, Remote Sens. Rev., 11, 243–302,
1994.

Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.:
The Tropical Rainfall Measuring Mission (TRMM) sensor pack-
age, J. Atmos. Ocean. Technol., 15, 809–817, 1998.

Kummerow, C., Hong, H., Olson, W. S., Yang, S., Adler, R. F., Mc-
Collum, J., Ferraro, R., Petty, G., Shin, D.-B., and Wilheit, T.
T.: The evolution of the Goddard Profiling Algorithm (GPROF)
for rainfall estimation from passive microwave sensors, J. Appl.
Meteor., 40, 1801–1820, 2001.

Kummerow, C. D., Ringerud, S., Crook, J., Randel, D., and Berg,
W.: An observationally generateda priori database for mi-
crowave rainfall retrievals, J. Atmos. Ocean. Technol., 28, 113–
130, 2011.

Levizzani, V., Porc̀u, F., Marzano, F. S., Mugnai, A., Smith, E. A.,
and Prodi, F.: Investigating a SSM/I microwave algorithm to cali-
brate METEOSAT infrared instantaneous rainrate estimates, Me-
teorol. Appl., 3, 5–17, 1996.

Levizzani, V., Bauer, P., and Turk, F. J. (Eds.): Measuring Precip-
itation from Space: EURAINSAT and the Future, Advances in
Global Change Research, Volume 28, Springer, Dordrecht, The
Netherlands, 748 pp., 2007.

Marzano, F. S., Mugnai, A., Smith, E. A., Xiang, X., Turk, F. J., and
Vivekanandan, J.: Active and passive remote sensing of precipi-
tating storms during CaPE, Part II: Intercomparison of precipita-
tion retrievals from AMPR radiometer and CP-2 radar, Meteorol.
Atmos. Phys., 54, 29–51, 1994.

Marzano, F. S., Mugnai, A., Panegrossi, G., Pierdicca, N., Smith,
E. A., and Turk, F. J.: Bayesian estimation of precipitating
cloud parameters from combined measurements of spaceborne
microwave radiometer and radar, IEEE Trans. Geosci. Remote
Sens., 37, 596–613, 1999.

Marzano, F. S., Palmacci, M., Cimini, D., Giuliani, G., and Turk,
F. J.: Multivariate atatistical integration of satellite infrared and
microwave radiometric measurements for rainfall retrieval at
the geostationary scale, IEEE Trans. Geosci. Remote Sens., 42,
1018–1032, 2004.

MHS: Microwave Humidity Sounder (MHS), in: NOAA KLM
User’s Guide, Section 3.9, NOAA National Environmental Satel-
lite, Data, and Information Service, National Climatic Data Cen-
ter, available at:http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/
docs/klm/cover.htm, 2009.

Mugnai, A., Smith, E. A., and Tripoli, G. J.: Foundations for sta-
tistical – physical precipitation retrieval from passive microwave
satellite measurements, Part II: Emission source and generalized
weighting function properties of a time dependent cloud – radia-
tion model, J. Appl. Meteor., 32, 17–39, 1993.

Mugnai A., Bizzarri, B., Di Paola, F., Dietrich, S., Levizzani, V.,
and Torricella, F.: Unified framework for precipitation retrieval

Nat. Hazards Earth Syst. Sci., 13, 887–912, 2013 www.nat-hazards-earth-syst-sci.net/13/887/2013/

http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/cover.htm
http://www.ncdc.noaa.gov/oa/pod-guide/ncdc/docs/klm/cover.htm


A. Mugnai et al.: CDRD and PNPR satellite passive microwave precipitation retrieval algorithms 911

and analysis by means of multisensor satellite observations and
cloud model simulations: Application to H-SAF, Proceedings of
the EUMETSAT Meteorological Satellite Conference (keynote
presentation), Helsinki, Finland, 12–16 June 2006, EUMETSAT
P.48, 10 pp., 2006.

Mugnai, A., Di Michele, S., Smith, E. A., Baordo, F., Bauer, P.,
Bizzarri, B., Joe, P., Kidd, C., Marzano, F. S., Tassa, A., Testud,
J., and Tripoli, G. J.: Snowfall measurements by proposed Eu-
ropean GPM mission, in: Measuring Precipitation from Space:
EURAINSAT and the Future, edited by: Levizzani, V., Bauer, P.,
and Turk, F. J., Advances in Global Change Research, Volume
28, Springer, Dordrecht, The Netherlands, 655–674, 2007.

Mugnai, A., Smith, E. A., Tripoli, G. J., Dietrich, S., Kotroni, V.,
Lagouvardos, K., and Medaglia, C. M.: Explaining discrepancies
in passive microwave cloud-radiation databases in microphysi-
cal context from two different cloud-resolving models, Meteo-
rol. Atmos. Phys., 101, 127–145,doi:10.1007/s00703-007-0281-
4, 2008.

Mugnai, A., Casella, D., Cattani, E., Dietrich, S., Laviola, S., Lev-
izzani, V., Panegrossi, G., Petracca, M., Sanò, P., Di Paola, F.,
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