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Abstract. This study applies Bayesian Inference to estimateevents (Froot, 2001). Insurers are reluctant to offer insurance
flood risk for 53 dyke ring areas in the Netherlands, andcoverage for a risk that is ambiguous, and for which suf-
focuses particularly on the data scarcity and extreme beficiently accurate premiums cannot be priced through actu-
haviour of catastrophe risk. The probability density curvesarial calculations (Jaffee and Russell, 1997; Kunreuther and
of flood damage are estimated through Monte Carlo simulaMichel-Kerjan, 2007). Moreover, insurers are risk-averse to
tions. Based on these results, flood insurance premiums areatastrophe risk, which implies that they refuse coverage or
estimated using two different practical methods that each acare only willing to offer catastrophe insurance if premiums
count in different ways for an insurer’s risk aversion and theare sufficiently above the expected loss (Duncan and Myers,
dispersion rate of loss data. This study is of practical rele-2000). Standard statistical methods and tools for flood risk
vance because insurers have been considering the introduestimation use historical data and other empirical informa-
tion of flood insurance in the Netherlands, which is currently tion (Behrens et al., 2004). This is often difficult due to a lack
not generally available. of empirical data, and the limited loss data available are not
always reliable and consistent, so they inaccurately represent
actual damage (Grossi and Kunreuther, 2005).

Several studies have applied flood assessment and hydro-
1 Introduction logical models to estimate (future) flood damage and its

probability for the Netherlands (Vrijling, 2001; Jonkman

The potential impacts of flooding in the Netherlands are largeet al., 2003, 2008; Van der Most and Wehrung, 2005;
because high values of economic assets and many people aguwer et al., 2010). Two relevant studies are “Veiligheid
situated in low-lying areas exposed to flooding (Klijn et al., Nederland in Kaart” (VNK), also known as the FLORIS
2007; Aerts and Botzen, 2011; de Moel and Aerts, 2011).study (TAW, 2000; Wouters, 2005) and “Aandacht voor Vei-
Although flood protection standards are high, new flood risk|igheid” (AVV) (Aerts et al., 2008; Aerts and Botzen, 2011).
management strategies are currently being discussed to agoth studies provide estimates of current and future flood
commodate projected trends that increase flood risk, suchrobabilities and damage under various scenarios of climate
as climate change and socio-economic growth (Kabat et al.ghange and economic development. A shortcoming of these
2005). An example is flood insurance, and since flood risk isstudies is that they only provide a single estimate of the flood
not generally covered by insurance in the Netherlands, quesprobability and potential flood damage, and not the complete
tions have been raised among insurers and policy makers grobability density function of damage. Moreover, because
to whether flood insurance is feasible (Botzen and van demextreme events such as catastrophe damage generally follow
Bergh, 2008). an asymmetric distribution process with a fat right-tail, the

One of the issues related to flood insurance in the Nethertosses located in this part of the damage distribution need to

lands is the uncertainty related to both the probability pe included in risk estimates and insurance premiums. The
and the consequences of extreme (low probability) flood
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average risk estimates from the VNK and AVV projects may by Kunreuther et al. (2011), which takes a modest rate for in-
therefore lead to either “upwards” or “downwards” biased surer’s aversion to (fat-tailed) catastrophe risk into account.
risk and premium estimates. As catastrophe risks are gener- The remainder of this paper is structured as follows. Sec-
ally assumed to follow a fat-tail distribution process, and risktion 2 describes the data and the statistical methods used to
estimation has to rely on limited empirical data, it is essentialestimate the parameters of the probability density functions
to take these two aspects into account in the risk assessmeaf flood damage, and the two methods used to calculate in-
process. Bayesian Inference (BI) is a useful statistical tool forsurance premiums. Section 3 presents the results of the flood
assessing risk, especially in applications with a lack of his-risk estimates and flood insurance premiums, and compares
torical information on risk, as is the case for low-probability these results with existing studies. Section 4 provides dis-
floods in the Netherlands (Coles and Powell, 1996; Cooley etusses our findings and Sect. 5 concludes.

al., 2007). Bl can be used to update the probability estimate

for a hypothesis (the “prior beliefs”, i.e. based on AVV flood

risk information) with additional empirical information (the 2 Data and methods

“likelihood”, i.e. based on VNK flood risk information), es- _
pecially when it is unreliable to make statistical inference Figure 1 shows the overall research methodology described

based on only a small amount of homogeneous data, such 43 detail from Sect. 2.1 to Sect. 2.4. I.n Sect. 2.1,_ the available
either VNK or AVV flood risk information. The updated out- data from AVV and VNK are described, and, if necessary,
come (the posterior statistics) can be used to simulate hazar§rther processed and adapted for use. In Sect. 2.2, the Bl is
events and fit a risk distribution, i.e. to estimate a new probaJntroduced and applied to estimate the tail (shape) parameter
bility density function for flood damage. The Bl method used Of the flood damage distribution under the assumption that
in this study deals with data scarcity and provides insightsﬂOOd damage follows a Pareto distribution process. Next, in
into uncertainties in the estimated flood damage. Sect. 2.3, a Monte Carlo simulation of flood damage is per-
Under the assumption that flood risk follows a Pareto formed using the updated tail parameters from Sect. 2.2, and
distribution with a right fat-tail, this study aims to apply subsequently probability density curves of flood damage are
Bayesian techniques combining the VNK and AVV data to fitted for all 53 dyke ring areas. These sections explain in de-
estimate the tail parameter of the flood damage distribution{@il the probability distributions that are used in these steps.
In the first phase, the tail parameter for flood damage is esEinally, in Sect. 2.4, the resulting simulated flood damage
timated using BI, in which the prior belief is assumed to information is used for deriving flood insurance premiums.
originate from a Gamma conjugatefamily while the ob- Premiums are estimated using two different methods that re-
servations are assumed to follow a Pareto distribution. SubSPectively use the variance of risk (derived from Sect. 2.3) in
sequently, in the second phase, flood damage is simulate@ different way, and take a different account of the insurer's
based on the estimated tail parameter, and the corresponéiSk aversion to catastrophic flood risk.
ing probability density functions are fitted for all 53 areas in
the Netherlands which are exposed to flooding (“dyke ring2
areas”). Kunreuther et al. (2009) propose that premiums th . . L .
reflect risks are an important condition for designing a na’[{i\ﬁ-gfj Ili)w-!ylng areast thle Nle t_herllangs arﬁ_ dr:wded ;tnto
ural disaster insurance system that is financially viable and|5 yke ring areas. Many low-lying lands (which are often

provides adequate incentives for risk mitigation. Although called "polders”) have been reclaimed from former lakes.

! . . : : ach dyke ring area has its own closed flood protection sys-
we realize that flood insurance premiums in practice may no . .
) . . ) . tem of dykes, dams, and sluices that protect it from floods
be fully differentiated with respect to flood risk, our analysis

: . . ) ; caused by rivers and the sea. A dyke ring is an individ-
provides insights into the level of flood insurance premiums 7 . .
. I . : . .—ual administrative unit under the Water Embankment Act
as if the condition of risk-based premiums were applied in

the Netherlands. Using the loss information derived from theOf 1.995’ wh|ch guarantees a pqrncular level of protection
. . . . . . “against flood risk for each dyke ring area (Aerts and Botzen,
damage simulation and density functions, the risk-based in-

. . . .1 2011). For instance, a dyke ring with a safety standard of
surance premiums (Actuarial-equivalence (AE amount)) will o - :
: ) . . 1/1250 (a flood “return period” of once in 12509has been
be estimated for all 53 dyke ring areas. These premiums in- . . : .
. ; : constructed in such a way that it may withstand a flood with
clude an extra surcharge for insurer’s aversion to catastrophge

risk, as proposed by Kaas et al. (2004). Finally, the AE pre-a probability of 1/1250. Figure 2 shows a map of the Nether-

miums are compared with the Empirical method pro osec]Jands that depicts the 53 dyke ring areas and their safety stan-
P P prop dards, which range between 1/10000, and 1/1250. The data

.1 Data

2The return or recurrence period is an estimate of the average
lConjugacy can be defined as followsfFifis a class of sampling  time internal between two occurrences of an event, in particular, of a

density functiong (x|0) andP is a class of prior distributions fe, catastrophe, such as a flood, an earthquake or a peak river discharge.
then the clasg is conjugate forF if p(0|x) € p forall P(.|0) € F The probabilities provided by the VNK and AVV projects are an
andp(.) € P (Juneja et al., 2006). indication of the approximated return period of a dyke breach.
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Fig. 1. Conceptual model of the overall research methodology.

Flood damage &
premium estimation

Two methods: Actuarial Equivalent
(AE) and Empirical

used in this paper originate from two main studies, the AVV this paper, the AVV flood damage data represents prior
and VNK projects, on flood risk in the Netherlands. knowledge about the probability distribution of flood damage
The VNK project provides current flood risks, and the re- within the Bayesian framework, and the VNK flood damage
sults have been reported by Wouters (2005), and by Bouwedata represents the flood damage likelihood (See Fig. 1). Ta-
et al. (2009) (See Table 1). VNK estimated detailed floodble 1 provides the basic information provided by these two
damage according to various flood scenarios for dyke-ringsnain studies on flood risk in the Netherlands for three repre-
7, 14 and 36 (Fig. 2), while a more global approach was usedentative dyke ring areas. Dyke ring areas 7 and 36 are rep-
to estimate flood probabilities and potential flood damage forresentative for most of the dyke ring areas that have flood
the other dyke ring areas. The study included the assessmeptotection levels between 1/4000 and 1/1250 per year. The
of flood probability and damage from dyke failure mecha- dyke ring Zuid Holland (along with Noord Holland) is one
nisms, hydraulic pressure, and multiple dyke breach scenarsf the two dyke-rings with the lowest flood probability in the
ios (Wouters, 2005). The AVV study provides insights into Netherlands (1/10 000). This dyke ring is located along the
the potential effects of climate and socio-economic changedensely populated coastline, and has a high concentration of
on flood risk over a long time horizon, as compared with theeconomic assets.
current situation. The AVV project estimates current flood Data was processed (for details, see Appendix B) to derive
risk and future flood risk was simulated using (long-term) minimum and maximum damage per dyke ring area, which
land use and climate change scenarios of increased rivesire used in the flood damage simulations (Sects. 2.2 and
discharges and sea level rise (Aerts et al., 2008; Aerts an@.3). The assumption of a minimum and maximum amount
Botzen, 2011). Appendix A provides all the data from the of flood damage per dyke ring area is consistent with realty.
AVV and VNK projects, which have been used as input If there is a flood event in the Netherlands, then there will
for the Bayesian model and flood damage simulations. Thealways be a minimum amount of damage, while the maxi-
flood damage estimates from both projects are used for thenum theoretical damage cannot exceed the total economic
Bl method, while the AVV probabilities are used for the value that is exposed to flooding within a dyke ring area. The
estimation of annual flood risk and premiums. ThroughoutAVV and VNK data provide expected damage estimates for
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The Netherlands
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Fig. 2. Safety standards of dyke ring areas in the Netherlands (Source: TAW, 2000).

Table 1. Example of flood damage information for three dyke ring areas provided by the VNK and AVV flood risk studies in the Nether-
lands (damage in million euros).

Dyke ring area VNK AVV
number
Minimum flood Maximum Expected flood Expected flood Flood
damage flood damage  damage damage probability
7 593 5301 2000 2665 0.00025
14 5254 46 950.6 18500 23600 0.0001
36 1073 9592.2 2800 4822 0.0008

53 dyke ring areas based on the current probability of dykefactors are estimated using the minimum and the maximum

overtopping (the exceedance probability), and no minimumflood damage estimates for these 3 dyke-rings. These scal-
and maximum damage estimates, except for the three dyking factors are used to estimate the minimum and maximum

ring areas, 7, 14 and 36, by VNK. Since it is assumed thaflood damage for each dyke ring area under the assumption
flood damage is truncated on both sides, the minimum andhat these are proportional to the expected damage of each
the maximum damage for all dyke ring areas have been dedyke ring (see Appendix B).

rived using the VNK information about dyke ring areas 7,

14 and 36. For this, the weighted upscaling and downscaling
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2.2 Applying Bayesian Inference for estimation of the
tail parameter

Assume is an unknown parameterwhich reflects the state

of our knowledge about the flood damage data before we ob-
served this data- defined as an element of a sp&gavhich
denotes all possible states of an outcome, also called the pa-
rameter space. When experimenters aim to obtain more in-
formation about this unknown parameter, the flood damage
observationsyy, ...... x,, per flood return period are as-
sumed to be independent and identically distributed from a
Pareto process where the process scale paranites 4s-
sumed to be known, and the process tail (shape) parafmeter

741

Step 3.Combine the likelihood function from Step 1
with the prior distribution from Step 2 to determine the
posterior distribution. The posterior distribution quan-
tifies the joint probabilities of the values of unknown
parameters of the flood damage distribution using the
information from observations;

Step 4.Calculate the updated parameters of the proba-
bility density function of flood damage for each of the
53 dyke ring areas from the posterior distribution by re-
peating the previous steps. The mean of the parameter
(the parameter of interest) can be easily derived from
the posterior distribution by calculating the expectation.

is unknown (See Sect. 22) Bl is a statistical teChnique WhiCh‘/\/e have made two main assumptions in this Study to app|y
attempts to estimate parameteby combining the prior be-  B|. First, it is assumed that flood loss data are independent
liefs (this means that we have some idea about it before weynd identically Pareto-distributed (bounded with a lower and

have seen the data) with the information observed from eX-upper thresho]d) continuous random numbers (See Eq 3in
periments or practice. This Bayesian technique can be represtep 1), with an unknown shape and the known scale pa-

sented by the Bayes theorem:

p(©)-p(x|6)
px) 7

wherep (6) on6 € @ is the prior distribution which includes
our prior knowledge about (the AVV information); p(x|6)

is the sampling or data distribution; apdx) is the marginal
distribution ofx. The observed data (the VNK information)
combined with the prior knowledge is given by the likeli-
hood functionL (6 | x1, ...... xn) = p(x|0), which can be re-
garded as a density with respectitpwherex is fixed to a

p@lx)= - 1)

particular value (the observation). The normalized product in

Eq. (1), which is the marginal distribution af that can be
represented ag(x) = [ p(6)L (¢ |x)db, integrates over all
possible values of for given x. Becausep (x) is a scalar
value and not a function, we can omit the denominator in
Eq. (1). The non-normaliz€dposterior distribution can be
given as one of proportionality:

p@1x)ccp®)-p(x]6)... 2)

rameter (see Appendix C). Second, for computational con-
venience we take the prior and posterior models from a con-
jugate family to estimate the shape-parameter. Conjugate in
our case means that the prior and posterior distributions are
from the same distribution family, which is the case in this
research. To briefly elaborate on this topic: even though the
Bayesian theorem is mathematically simple, due the normal-
izing factor (the denominator in Eq. 1) it can be a difficult
task to find an analytical or numerical solution. Because the
Bayesian theorem is a product of the prior and the likelihood
functions, it is not always guaranteed that this product can be
integrated over the relevant domain. One way to avoid this
problem is by using conjugate priors. Based on this concept
one can derive pairs of likelihood functions and prior distri-
butions with appropriate mathematical properties that result
in tractable closed-form solutions to the integrals (Arnold
and Press, 1983). Since conjugate priors have computational
advantages, we have chosen pairs of the likelihood func-
tion and the prior distribution from an informatieonjugate
family, as will be explained below.

Step 1: Data model and the likelihood function

The main steps in Bl to derive the posterior density (the up-

dated shape parameter for the flood damage density) for
(Eq. 1) are:

Step 1.Formulate the likelihood or data model for the

observations (the VNK damage data) and the corre;| risks”

sponding likelihood function for the unknown param-
eters of the flood damage distribution;

Step 2.Specify the prior density distribution (the AVV

damage data) to quantify the uncertainty about the val-

ues of the unknown parameters identified in Step 1;

3The normalizing factop (x) is a constant that makes the pos-
terior density integrate to 1. It is often omitted in practice since it is
generally difficult to calculate.

www.nat-hazards-earth-syst-sci.net/13/737/2013/

We first apply the Pareto method as it is useful for modelling
low-probability high-impact risks, because the total aggre-
gated damage is to a large extent determined by large losses
in the right-tail of the density, which are also called “right-
(Hsieh, 2004). For this application, we assume that
the VNK flood loss data (the data model), ...... X, are an
independent and identically distributed Pareto random loss
variable per flood return period that is defined with two main
parameters: namely, the process saglewhich is the min-
imum of x, and the process shape> 1. It is assumed that

4An informative prior expresses specific, definite information
about a variable, while a non-informative prior expresses vague gen-
eral information about a variable (prior) (see for more detail Juneja
et al., 2006).

Nat. Hazards Earth Syst. Sci., 13, 7894, 2013
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the first parameter is known and that the shape parameter @and (5) in Eq. (2) yields the following specification of the
unknown, which we aim to update using Bl in this study. The posterior flood damage density (see Appendix D):
Pareto distribution can be written as (Davis, 2001) ,

w1,-()
} =

(3) p(9|x)<xW e e ey, (6)

wherea =a+n and g =

6
)= Oxﬁ%l(x>xm) where X>Xm
0 otherwise
1
%+|n(]_[?:1x,-)—n-ln(xm) !

(Arnold et al., 1998).

and 8 <

whered > 1.5
The likelihood function associated with the unknown
shape parameter is (Bermudez and Kotz, 2010)

1
(n-InCxm)—In([ 7=y %))

Step 4: Estimation of the parameters of interest
LOIx1,......x0) @) P P

_ {e"xfn" M x @Y wherey; > xm} From the posterior distribution function specified in Step 3,
s

otherwise the parameter of interest (the mean) of the posterior distribu-

- . . tion of flood damage is given as follofis
The sufficient convenient statistfcare based on the num- g 9

ber of observations;, and the data product o0

) ezEmwun=/ﬁpwmw“.m.“.“. @)
Hi:1xi' o
Step 2: Prior density To estimate this parameter of interdst we first need to

o the dat del has b ified. th ior d .tsimulate the posterior distribution. As discussed by Gel-
nce the dala model has been speciiied, he prior density,, , (2004), this can be simulated in different ways. Because
function for the unknown model parameter needs to be spec,

. ) . ) ) the prior distribution in this paper is assumed to be from
ified. The prior density describes our beliefs about the uncer coeljugate family, we opt fgr g direct simulation method
tainty about the model parameters, without incorporating theWhiCh implies the oirawing of random numbers from the tar:
information from the observations. Since it is assumed thatget (i.e. posterior) distribution (Gelman et al., 204)

the model data follows a Pareto density with known scale
and unknown shape parameters, the conjugate pi@ris 2.3  Simulation of flood damage data and the fitting of

proportional to the Gamma density function. This Gamma probability density curves of flood damage
function of 9 is defined by the hyper-parametergshape)
andb (scale) and is given by (Fink, 1997): Once the updated tail parameters are estimated (the parame-
, ter of interest in Eq. 7), they are used, along with the updated
(9)%1% for 6 > 0anda. b > Oand scaling parameters for minimum and maximum damage (see
p0)= 0 Tforo <0 w3 appendix B), to simulate flood damage for all 53 dyke ring

areas for 250 000 flood return periods, as well as to estimate
gwe corresponding probability density curves of flood dam-
age. Assuming that the flood damage distribution follows the
Pareto distribution as in Sect. 2.2, the probability density for
each of the 53 dyke ring areas can be simulated with the fol-

Step 3: Posterior density lowing model:

wherea andb are, respectively, the shape and scale estimate
of the hyper-parameters, which are derived from the AVV
flood damage estimates (see Appendix C).

Because we have chosen a prior density that is conjugate fdrlooddamage= £~ (Q,XI,Xu) T (8)

the likelihood, the posterior density consists of a combination

of Egs. (4) and (5), and follows the same density as the priorWheref (x) is a bounded Pareto distribution (see Appendix E

namely: p (6 |x)=gammda, 8)= L(O|X) - p(©) (Vilar- for more details) with shape parametes E[P (6 |x)], the

Zanon and Lozano-Colomer, 2007). Substituting Eqgs. (4)lower bound scale parameter=min(x) and the upper-

bound scale paramete = max?x), which are estimated
SIn practice, in case of sufficient data, the shape parameter of the = - ]

data model can be estimated numerically from the VNK estimates  Althoughé can be estimated as the produeb, due to the

with the formula 9= 2.( leivwi)z/ [( ?zlxi-w,-)z—azll gﬁgfﬁgﬁgilame data we choose to simulétesing the posterior

with ( i"zlxi-wi)z—ffz > 0. The scale parameter can be estimated 8 For the exact procedure see Gelman (2004), pages 290—292.

with xm (scalg = inf(X), with X > m. (See Appendix C for more  One can also choose to estiméatas the product of the two hyper-

details). parameters. However, here we decided to simulal®y drawing
6A sufficient statistic has the property of sufficiency in terms of random numbers from the posterior distribution. Subsequently, we
the related statistical model and its unknown parameters. derive the expectancy éffrom the simulated data.

Nat. Hazards Earth Syst. Sci., 13, 737754, 2013 www.nat-hazards-earth-syst-sci.net/13/737/2013/
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from the VNK data for dyke ring areas 7, 14 and 36 (for treme (catastrophic) nature of flood risk. The first method,
more details see Appendices A and B) (Kerman and GelmanAE, provides premium estimates based on the Modern Actu-
2007%. arial Risk Theory discussed in Kaas et al. (2004). The main
These models were implemented in the statistical softwaremphasis of this method is on the extreme nature of damage,

Matlab version 2012a to perform a Monte Carlo analysis ofbecause it takes the full loss variance into account in the pre-
flood damage for each dyke ring area for 250 000 flood re-mium calculation. Moreover, a moderate degree of insurer’s
turn periods. The resulting data are used to construct probrisk aversion rate is included in the premium, which is quite
ability density curves for flood damage and to estimate av-common for non-life insurance products, but may provide an
erage flood damage over all flood return periods for eachunderestimation in an application to heavy-tailed catastrophe
of the 53 dyke ring areas. The expected AE average amourlbsses, like those due to floods. The premium amautatbe
for flood damage (the average overall flood return periods)paid by the policyholder for insurance coverage for risk
can be represented with the standard expectancy expregiven the exponential utility function (x) = —ae™*" with

. 250000 the parameter of insurer risk aversi@a: 0.005, is given by
sion E[AE]return period= ng (xn.p (x),). The annual aver- (for details, see Kaas et al., 2004)
age flood damage per dyke ring area can be derived by divid- 1
ing the average E[AEdurn periodper dyke ring area with the 7 (W) = E [AE] annuart+ = ol (9)
return period of a dyke breach in years for the corresponding 2
dyke ring from AVV (as presented in column 2, Table ALl in where = (W) is the amount of premium necessary to in-

Appendix A), E [AE] annuai= %mr sure property valu®; E[X] is the loss expectancy that can
be deduced from the adjusted Pareto distribution (Eq. 8),
2.4 Estimation of flood insurance premiums o2 is the variance of the same adjusted Pareto distribu-

_ _ tion; r (w) = — - is the insurer’s risk aversion coefficient,
Since floods are rare events, the estimates for annual flood hich is in thi u (w lto. andw stands for th i
insurance premiums can be approximated by the annual e>2t’—v E)C sin dls ca;e equ?h ' ?Ft U;S atr_l S Ofrth € amoun
pected value of flood damage. Therefore, based on the si 0 be insured; and(.) is the utility function of the insurer.

ulated probability density curves, we can estimate averag q_ll_ﬁt'on 8) g’ dei:eg n Aﬁptendm F” the Empirical method
flood insurance premiums for each dyke ring area. A more € second metnod Is what we call the Empirical method,

refined premium differentiation on the household level is which he_ls been proposed by Kunreuther et al. (.20.11)' This
not possible, given the available information on flood risk. methgd mcludes a surcharge O.f the standard dewapon on t_he
Hence, the premiums are partially risk-based, since they difprelmlurT, V.Vh'cfh hfls tbeeE dgrlved from an (_axtenglv;aherr&pSl;
fer per dyke ring area, but not per individual insurance policy. ical ana ysélls ?Zza as ropcﬁ |ntSLJ7r§1ncKe prerT;]umstlnl 5009
Since floods are rare events, the estimates for annual floofp. 2 PEN0C Of 24y (see Chapt. 7in Kunreuther et al,, )

insurance premiums can be approximated by the annual ex—hIS method is a modified version of Eq. (9), and it takes

pected value of flood damage, and should consider the Ievethe insurer’s risk aversion toward the extreme nature of risk

of insurer’s risk aversion towards the extreme nature of theInto account by making the premium dependent on the stan-

risk. This risk aversion is reflected as a surcharge on the pregarg1 dgviﬁtlon (S[.)) of dargage.lAcic?rglng ;o”the I;mplrlcal
mium above the expected value of the loss. This surchargéne 0d, the premium can be calculated as Tollows.
depends on the variability (variance or standard deviation) ofn (W) =E[AE]annuart-0 -8 ...

the expected flood damage. A higher risk variance implies

a higher probable maximum loss, which leads to an extrayheres is the standard deviation of loss; afids the Em-
premium surcharge. In general, insurers charge a higher presirical insurer’s risk aversion rate for catastrophe risk. The

mium if the variability of losses is greater, because a rela-coefficients is equal to 0.55 (Kunreuther et al., 2011).
tively high variability indicates a high likelihood of suffer-

ing very large losses for which large cash reserves or rein-

surance coverage is needed, which is costly for the insured Results

This surcharge has the effect to increase the cash surplus of o o _ _

the insurer which protects the insurer against the possibilDescriptive statistics of the probability density functions for
ity of insolvency (Kunreuther et al., 2011). We apply two flood damage are prowde(_j for all 53 dyke ring areas (see Ta-
different methods for estimating premiums that address thdl€ 2). Columns 2 and 3 in Table 2 show, respectively, the

impact of the insurer's risk aversion attitude towards the ex-estimated minimum and maximum flood damage amounts;
columns 4, 5 and 6 are, respectively, the expected flood dam-

9The zero failure problem is avoided here by defining the flood @3€, the standard deviation of the simulated flood damage
loss datar per flood return period. This means that in case of a flood@nd the parameter of interest. Although differences between
event, which happens once over return period, there will always balyke ring areas in the shape parameters in column 6 appear
some flood damage with a magnitude that lies betweamd.x,. to be small, it should be noted that the distribution function

» (10)
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used is sensitive to such small differences. Column 4 in Ta<curves is less than 2 and positive, the tail on the right side is
ble 2 shows that expected flood damage amounts differ siglonger compared with the left side, and the bulk of the loss
nificantly between dyke ring areas. The expected flood damvalues lie to the left of the mean. Furthermore, the losses on
age provided by VNK and AVV (see Appendix A) is signif- both sides are truncated with the maximum and the mini-
icantly higher compared with our estimates. The reason fomum damage. This is consistent with the fact that flood dam-
this is that the damage estimates by AVV and VNK are ex-age cannot be infinitely large and justifies the data truncation.
pected flood damage amounts that are associated with whathe kurtosid?, which indicates the peakedness of a density
are called an “exceedance flood probability” of a very severefunction, is about 8, which is higher than the kurtosis of 3 of
flood, which do not include damage amounts that fall be-the standard normal density. The positive kurtosis shows that
low this extreme level. Our expected flood damage amountshe flood damage amounts are peaked and not flat compared
are lower than the AVV and VNK expected flood damage with the standard normal density.

amounts, because our estimates are based on the full proba-

bility density functions of damage between the specified min-Flood insurance premiums for all dyke ring areas

imum and maximum amounts, which include several small )
damage amounts. Table 4 shows the number of houses (column 2) per dyke ring

Due to space limitations, it is unfeasible to discuss the@rea; the Empirical, AE and AVV estimates of flood insur-

detailed results of all 53 dyke ring areas, which is why the@nce premiums (respectively, in columns 3, 4 and 5) and their
results for three representative dyke ring areas — the No!atios (columns 6 and 7). The premiums that have been esti-
ordoostpolder (7), Zuid Holland (14), and Land van Heus- Mated with the Empirical and AE methods (see Sect. 2.4) are
den/de Maaskant (36) — are discussed here in more detail. compared with the premiums that Aerts and Botzen (2011)
Figures 3, 4 and 5 show, respectively, the resulting probave estimated for all dyke-rings. This comparison is of inter-
ability densities of flood damage for the three selected dyke2St, since Aerts and Botzen (2011) have estimated the flood
ring areas. The corresponding statistics are provided in Talnsurance premiums using only the AVV data of a single esti-
ble 3 below. The three markers in the figures indicate somdnate of the flood probability and potential damage per dyke
representative data percentiles (the 50 per cent, the mean, afld area (premium= probability*damage), while the Em-
the 97.5 per cent percentiles). The loss densities are truncateifical and AE estimates are based on the mean damage that
on the left and right sides, in accordance with the estimate@fe estimated from the complete probability density of flood
of minimum and maximum flood damage (see Appendix B).damage that has been derived with Bl, and account for the
The probability of observing a damage amount is depicted orinsurer’s risk aversion to the catastrophe risk (see Sect. 2.4).
the left vertical axis, and flood frequencies for 250 000 flood The data are presented in descending order with respect to
return periods are shown on the right vertical axis, while thethe ratio of the AE and AVV premiums.
damage amounts are shown on the horizontal axis in millions The annual Empirical premium estimates (column 3) take
of euros. The frequency densities show that the majority ofthe standard deviation of damage and the insurer’s risk aver-
loss observations in each dyke ring area are concentrated g¥on rate for catastrophe risk into consideration by means of
the left-side of the curve, while every frequency curve has a@ surcharge on the expected flood risk that has been derived
long fat right-tail, which indicates a high dispersion of the from actual insurance markets (Kunreuther et al., 2011). The
loss data. As an illustration, the statistical mean of all threeEmpirical premiums are generally close to 70 per cent of the
probability density functions of flood damage are locatedAVV premiums (column 6), which indicates that the Em-
around the 67.9 per cent data percentile, which indicates thaRirical method results in a scaling of the AVV premiums.
the loss data behave asymmetrically. This is consistent witht N empirical premiums are lower, even though these in-
our selection of the Pareto distribution which is fat-tailed andclude a surcharge for the rate of risk aversion which is not
asymmetrical and corresponds with practical experience tha@ccounted for in the AVV premium estimate by Aerts and
flood damage is an extreme event. Botzen (2011). The mean damages per dyke ring used as in-
Table 3 summarizes the descriptive statistics of the sim{Put for the AE premiums are significantly lower compared
ulated flood damage for the three selected dyke ring areadVith the AVV mean damages (see Table Al in Appendix A),
and the AVV and VNK flood damage estimates. The coef-While the AE premiums are higher for some dyke ring areas.
ficient of variability© (also calledR?) is about 68 per cent, This can be explained by the premium surcharge of the risk
which suggests that the simulated flood damage has a higRversion rate which depends on the risk variance. The AE
variance. Since the corresponding skewhessr all three

skewness of zero, and any data that has an asymmetric distribution
has a skewness that differs from zero.
10The RZ is a normalized measure of the dispersion of a proba- 12The kurtosis measures whether the data are peaked or flat with
bility distribution, which is defined as the ratio of the standard de- respect to the normal distribution. The kurtosis of the standard nor-
viation to the statistical mean. mal distribution is 3 (in the case of “excess kurtosis”, it is 0); a posi-
11The skewness measures the asymmetry of a distribution or santive kurtosis indicates a peaked distribution; and a negative kurtosis
ple data relative to the standard normal distribution, which has aimplies a flat distribution.
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Table 2. Main flood risk statistics for all 53 dyke ring areas (in million euros).

Dyke ring Minimum Maximum Mean SD of simulated  Parameter of
areanumber damagef damaggx,) damage EX] damagedq) interest §)
1 25 227 58 40 1.5668

2 85 757 195 133 1.5649

3 56 505 129 88 15716

4 6 50 13 9 1.5626

5 650 5806 1488 1012 1.5701
6 169 1515 389 265 1.5679

7 593 5301 1360 927 1.5675
8 1977 17670 4533 3089 1.5704
9 749 6689 1720 1174 1.5669
10 424 3786 971 662 1.5700
11 339 3029 778 531 1.56454
12 876 7825 2005 1366 1.56516
13 1017 9087 2332 1594 1.56477
14 5254 46951 12060 8216 1.56801
15 1441 12874 3300 2251 1.5671
16 6017 53766 13802 9420 1.56986
17 2853 25495 6537 4451 1.56912
18 141 1262 323 220 1.56481
19 395 3534 907 616 1.57236
20 2542 22718 5827 3980 1.56801
21 904 8078 2071 1413 1.57037
22 2542 22718 5837 3980 1.56599
23 17 151 39 26 1.56681
24 678 6058 1557 1060 1.56456
25 593 5301 1359 925 1.56129
26 706 6311 1620 1107 1.57408
27 367 3281 843 574 1.56565
28 113 1010 259 177 1.56372
29 2260 20194 5179 3532 1.56357
30 1497 13378 3437 2342 1.56739
31 678 6058 1552 1058 1.56715
32 254 2272 584 398 1.57184
33 4 38 10 7 1.57096
34 1582 14136 3637 2480 1.56833
35 989 8835 2266 1547 1.56906
36 1073 9592 2460 1676 1.56347
37 1 8 2 1 1.56903
38 791 7068 1809 1229 1.56798
39 8 76 19 13 1.56445
40 11 101 26 18 1.56402
41 1469 13126 3372 2299 1.57265
42 282 2524 649 442 1.56675
43 3898 34834 8956 6116 1.56662
44 1554 13883 3570 2434 1.56855
45 1525 13631 3497 2382 1.57249
46 28 252 65 44 1.56787
47 198 1767 454 309 1.56719
48 1384 12369 3179 2171 1.56773
49 113 1010 259 177 1.56819
50 508 4544 1167 796 1.56561
51 85 757 194 132 1.56641
52 593 5301 1362 931 1.56693
53 1525 13631 3502 2386 1.56909
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Noordoostpolder (7): flood probability mass function

0.12 ; : - 30 g

0.1 {= Mean- 13505 - 25 S
: 5 d 5

H : H -
; : i - 0§
E: 0.08 i H 20 g3
=) H ’ : el

e 500 H 15
£ 006 1 30% - 9.3 975% 4197.7 : - 15 2 7
= : H : O =
= H H = =
S 004 10 S °E
El & 2
=) Zc
= 002 i -5 § 5
; z 3
H ==

0 : 0o

M O r < 00O N3 o W~ oMW o [=]

G~ 00 0O M SO0 O A Wm0 O e

MO ONIRAaMIRGTE0gNT R SM =

L I T T I T O A I I o I 0 I o = S S = N S N |

Flood damage (in million euros)

Fig. 3. Simulated flood damage density for the dyke ring Noordoostpolder (7).

Zuid-Holland (14): flood probability mass function
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Fig. 4. Simulated flood damage density for the dyke ring Zuid Holland (14).

premiums (column 4) include a surcharge on the expectedo these findings; and the main implications of the results for
flood risk that is based on the full loss variance of the floodinsurers.

damage density (instead of the SD in the Empirical method),

which results in substantial differences compared with the, 1 Main differences between the flood insurance

AVV estimates for some dyke ring areas. The differences be-
tween the AE and AVV premiums are largest for the dyke

ring areas with a high expected damage and corresponding| . . . :
high variance (e.g. dyke-rings 14, 16, and 43). ¥he estimated flood damage densities per dyke ring area lie at

the core of the estimations of the flood insurance premiums.
Overall, the average flood damage per dyke ring, obtained
through Bayesian statistical modelling, is lower if compared
4 Discussion with the expected flood damage estimates obtained in the
AVV and VNK projects (Wouters, 2005; Aerts et al., 2008).
The estimates of flood insurance premiums in Table 4 will beThis can be attributed to using the full probability distribu-
discussed with respect to three main aspects: the main diffetion from our Bl approach as compared with, for example,
ences between the premiums; how the Bl method contribute#VV-based premiums that only use a single probability and

premiums
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Heusden/de Maaskant (36): flood probability mass
function
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Fig. 5. Simulated flood damage density for the dyke ring Land van Heusden/de Maaskant (36).

Table 3. Descriptive statistics (damage is in million euros) of the simulated flood damage densities for dyke ring areas Noordoostpolder (7),
Zuid Holland (14) and Heusden/de Maaskant (36).

Statistics Noordoostpolder (7)  Zuid Holland (14) Heusden/de Maaskant
Skewness 1.94 1.94 1.94
Kurtosis 6.57 6.59 6.6

Coeff. of variability 0.6819 0.6812 0.6815
Hyper-parameter shape)( 0.521 0.505 0.517
Hyper-parameter scalé) 1 1 1
Posterior-parameter shape) ( 1.53 1.524 1.529
Posterior-parameter scalg)( 1 1 1

Flood damage simulation shape 1.5675 1.56801 1.56347
Flood damage simulation scale parametey)l( 593.23 5.254.29 1.073.45
Flood damage simulation scale parameterg ( 5301 46951 9592

50 % data percentile 994.27 8.848.48 1.804.63
97.5 % data percentile 4.197.32 37187.01 7.614.53
VNK damage mean (model data) 2.000.0 18500 2.800
AV-damage mean (prior information) 2.665 23600 4,822

an extreme flood scenario with high flood damage as a basiappears to be approximately constant for all dyke ring areas.
Furthermore, other factors, such as the choice of the densityhis implies that the impact of using the loss standard de-
functions of the prior and likelihood information modelling, viation as a surcharge, on top of the risk-based premiums,
parameter uncertainty, and the Monte Carlo simulations useiks not very large if the Empirical method is used. In con-
to fit the loss-probability curves, might also partially con- trast, the AE method for calculating premiums adds a risk-
tribute to the difference in results of flood damage estimatesaverse surcharge to the expected flood risk that is based on
Along with the differences in flood damage estimates,the loss variance, which results in much higher premiums (up
there are also significant differences in the premiums that aréo 178 per cent) for some dyke ring areas compared with the
estimated using the AE and Empirical methods. For instanceEmpirical and the AVV methods. Hence, these large differ-
the Empirical method emphasizes the insurer’s risk aversiorences, which particularly occur in those dyke ring areas with
attitude to catastrophe risk by adding a surcharge to the exa large amount of expected damage (the first 8 dyke-rings in
pected flood risk in the premium estimate based on the stan¥able 4), can be explained by the corresponding large vari-
dard deviation, while this is not applied in the AVV-based ances of flood damage. Such a large surcharge does not occur
premiums (column 5 of Table 4). The Empirical premiums when the standard deviation is used for modelling insurer’s
are approximately 70 per cent of the AVV premiums, which risk aversion as the Empirical method does. The surcharge
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Table 4. Results of annual flood insurance premiums per homeowner per dyke ring, according to the Empirical method, the Actuarial
Equivalence (AE) method, and the AVV method.

Dyke ring Number  Annual premium (in euros) Premium ratio
Nr. of houses Empirical AE AWV EmpiricallAVV  AE/AVV
16 82340 87 219 123 70% 178 %
14 1659248 1 2 1 75% 174 %
43 120526 61 122 87 71% 140 %
17 165235 10 17 15 68 % 116 %
20 62823 24 39 34 71% 115%
22 47243 64 104 91 70% 114%
29 49060 27 42 39 70% 108 %
8 99069 12 17 17 70% 103 %
44 292938 10 14 14 2% 99 %
41 109400 25 34 36 71% 95%
45 103282 28 38 40 70% 95 %
53 86300 34 46 48 70% 95 %
30 29532 30 41 43 70% 95%
48 59881 44 58 62 71% 94 %
15 79164 22 29 31 70% 93%
36 165555 12 15 17 2% 90%
35 37524 31 38 44 71% 87 %
21 32152 33 40 47 71% 85%
12 8274 63 75 89 70% 84 %
38 16781 89 104 127 70% 82%
9 33556 42 49 60 71% 82%
24 18287 44 50 62 71% 81%
7 22234 16 18 22 2% 80 %
32 48501 3 3 4 78% 80%
26 14655 29 33 41 70% 80%
31 7087 57 65 81 70% 80 %
5 5331 72 82 103 70% 79%
52 42040 27 30 38 71% 79%
25 18064 19 22 28 69 % 78%
50 18320 53 58 75 70% 7%
19 5696 16 18 23 2% 76 %
10 11128 45 49 64 70% 76 %
27 9060 24 26 34 71% 75%
11 18610 22 23 31 70% 74%
47 37179 10 10 14 72% 73%
42 5611 96 99 136 70% 73%
13 412013 1 1 1 59 % 72%
28 3353 20 20 28 71% 71%
18 2054 16 16 23 1% 71%
33 26 100 96 137 73% 70%
37 12 137 133 190 72% 70%
51 4532 35 35 50 71% 70%
2 1345 75 74 106 71% 70%
49 7836 27 27 39 70% 70%
4 214 31 30 44 71% 69 %
3 801 83 82 119 70% 69 %
23 115 175 170 248 71% 69 %
40 458 117 114 166 71% 69 %
1 494 61 59 87 70% 68 %
46 3227 17 16 24 69 % 68 %
39 169 93 90 135 69 % 67 %
34 160741 12 16 50 23% 32%
6 468014 O 0 1 21% 22%
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on the AE premium is smaller for the last 45 dyke ring areas,inferences for damage beyond a certain level. Fourth, the BI
shown in Table 4. This is caused by the higher weight thatprocedure applied in this study allowed for the derivation of
the AE method places on the flood damage variance, whictthe full probability density of flood damage, its mean and
is smaller for the last 45 dyke ring areas. In agreement withstandard deviation, which are all important inputs for the cal-
Friedman (1974), the AE premium estimates confirm that in-culation of flood insurance premiums. Even though simula-
surers are considerably risk-averse to damage with a higtion provides useful information that is needed to estimate
loss variance, and they see this type of risk either as uninsurflood insurance premiums, it also has its limitations. For ex-
able or as a gamble that needs a significantly high expectedmple, a simulation attempts to mimic the damage of a flood
return. event based on known facts and assumptions by means of a
It should be noted that Kunreuther et al. (2011) calculatedconceptual computational environment, which results in un-
the risk aversion surcharge, used in the Empirical methodgcertainties (Robert and Casella, 2011). Large uncertainties
based on historical surcharge information that US insurersassociated with rare events are, in our application, somewhat
have charged for providing coverage against hurricane damnarrowed by truncating the loss data at the best estimates of
age. However, this surcharge may not completely reflect riskminimum and maximum flood losses per dyke ring area.
aversion to extreme flood events in the Netherlands, which
can have a catastrophic character and result in very hig4.3 Implications for insurers
losses which could ruin the insurer. A higher surcharge for
risk aversion to the high amounts at stake may be applied foFrom the findings of this study it becomes clear that insur-
such events. This, for example, is done in the AE methodance for flood risk is a complex product to price because of
but we have no empirical data specific for the Netherlandsthe extremely low flood frequency that entails large uncer-
on which this surcharge could be based, since empirical estainties. This study is the first in-depth study of the pricing of
timates of insurer’s risk aversion to providing coverage for flood insurance in the Netherlands that uses the full probabil-

flood risk in the Netherlands are not available. ity density of flood damage in all 53 dyke-areas. Therefore,
it provides a useful basis for insurers who are considering in-
4.2 Bayesian Inference (BI) method troducing flood insurance in the Netherlands. Our premium

estimates show that flood insurance premiums can be con-
For several reasons, it can be argued that the Bl methodiderably above the expected value of the flood loss in some
applied in this study is more suitable for estimating flood dyke ring areas because of the risk aversion of the insurer
insurance premiums in the Netherlands compared with thdor the catastrophic nature of flood risk. Because the risks lo-
methods that only use a single estimate of the flood probabilcated on the right-tail of the damage density are much more
ity and potential damage (the AVV and the VNK projects). expensive to insure compared with the risks of lower dam-
First, Bl provides statistical estimates of flood risk that take age on the left side, insurers may be reluctant to provide in-
its stochastic and extreme nature into account by derivingsurance for extreme flood losses in some high-risk areas un-
the complete probability density of flood damage, and mod-less they can charge sufficiently high premiums. Neverthe-
elling the tail of this density (Bayarri and Berger, 2004). Sec-less, our estimated flood insurance premiums are lower than
ond, Bl is a suitable method for representing probabilistichousehold willingness-to-pay (WTP) for flood insurance in
relationships between different sources of information, suchmost dyke ring areas. Botzen and van den Bergh (2012) es-
as the AVV and VNK data (Heckerman, 2008). However, in timate that average individual WTP for flood insurance in
some BI applications there may be concerns about the reliathe current situation of flood risk is abo&250 per year,
bility of the prior and likelihood data sources, and how this which is higher than our estimated flood insurance premiums
influences the results (Raftery et al., 1997; Malakoff, 1999;in most dyke ring areas (Botzen and van den Bergh, 2012).
Hajek, 2007; Gelman, 2008; Chaudhuri and Ghosh, 2011)However, actual flood insurance premiums are in practice
For example, the inclusion of prior information does not al- likely to be higher than the premiums provided in this paper
ways lead to better results, especially when it is based omlue to administrative costs and a profit margin for insurers,
subjective beliefs. To overcome this issue, only objective datavhich are not included in our estimate.
are used in this study that share similar statistical features as Our study follows the proposal by Kunreuther et al. (2009)
input. Third, the damage estimations in this study are basedo determine flood insurance premiums on the basis of es-
on extensive data simulations, which enable more detailedimate of actual flood risks. Nevertheless, we realize that
statistical information to be provided for the flood damagein practice flood insurance premiums may not be fully dif-
assessments. Simulation is the only way to incorporate probferentiated with respect to actual flood risk, for example,
abilistic scenarios in the estimation of risk of low-probability because bundled coverage is provided or because it entails
floods, where there is little historical information available on costs for insurers to determine and charge different premiums
such floods (Juneja et al., 2006). In contrast, VNK and AVV, for every specific policy. Our analysis provides insights into
as well as other flood damage studies, do not consider théhe level of flood insurance premiums as if they were risk-
probabilistic nature of risk and cannot provide any statisticalbased and assesses flood risks and flood insurance premiums
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for the Netherlands on a dyke ring level, which provides ain models by truncating loss data at below a predetermined
relatively simple basis for premium differentiation. Overall, threshold, which results in more realistic premiums.
the estimated flood insurance premiums show large differ- Further in-depth research is necessary to explore and anal-
ences between dyke ring areas in the Netherlands, which igse different aspects of Bayesian techniques tailored for rare
mainly due to the difference in dyke failure probabilities be- events. This study has provided insights into uncertainty of
tween these areas. This suggests that premiums should lestimated flood damage, while it should be acknowledged
differentiated at least on a dyke ring level if an insurancethat another important source of uncertainty is the flood fre-
system with risk-based premiums were to be introduced. In-quency. In this respect, future research could focus on obtain-
surance costs would differ considerably between the differentng better insights into uncertainties of the real probability
low-lying areas in the Netherlands if flood insurance premi-of dyke failure. Furthermore, as it allows the integration of
ums were to reflect risk. expert judgment and other third party information, it would
be advisable to refine the prior assessment process carefully
by integrating subjective information that may be of great
value. Controversy arises because prior information is gen-
5 Conclusions and recommendations erally assumed to be subjective, and can have a significant
impact on the final results. However, this can partly be com-
This study has applied Bayesian Inference to assess thpensated with a cross-validation of the information, as long
stochastic nature of flood risk and provide estimates of theas it is properly carried out. The risk aversion rate used for
probability density of flood damage for all 53 dyke ring areasthe premium calculation should reflect the actual risk in the
in the Netherlands. Subsequently, these probability densitiegdyke ring areas rather than those estimated for different ar-
of flood damage have been used to estimate flood insuranceas. Therefore, more research will be necessary on insurer’s
premiums for these areas. While previous studies have derisk aversion to catastrophe risk in the context of flood risk
rived a single estimate of the flood probability and expectedin the Netherlands.
flood damage for the low-lying areas in the Netherlands, our
study has estimated the full probability density of flood dam- )
age, which allows for a more accurate estimation of ﬂoodAppenOIIXA
insurance premiums. In particular, the premiums estimated )
in this study account for the insurer’s risk aversion to the ex—AVV and VNK input data
treme nature of flood risk. This study is of practical relevance

. LT ! . Table Al provides the flood risk estimates from the VNK and
for insurers who are considering introducing flood insuranc

in the Netherland Cavv projects per dyke ring area which have been used as in-
in the Netheriands. put data in the Bayesian model. Column 2 provides the flood

The methodologmal process follqwed in this paper to esti- eturn period per dyke ring area and columns 3 and 4 show,
mate premiums for damage emerging from rare events, suc[m

; . pectively, the expected flood damage that corresponds to
as catastrophic and man-made disasters, appears to be_ t?E:ste return periods.

great relevance, as it is able to cope with the lack of empiri-
cal evidence on the corresponding expected damage. Using a

practical example, this paper showed that the widespread unAppendix B

certainties about flooding should be included in premium cal-

culations by taking into account the relevant risk indicators, Data truncation: the derivation of minimum and

such as risk variance and insurer’s aversion against catastrganaximum damage

phe risk insurance. Furthermore, as we notice from the pre-

mium results, the choice of a particular method appears te®VV and VNK provide expected damage estimate for
make a significant difference for their levels. Therefore, it is 53 dyke-rings areas, based on the current probability of dyke
important that the method used to estimate insurance premiovertopping (the exceedance probability), and no minimum
ums should correctly represent the real-world problem, ancand maximum amount, except for the three dyke ring areas,
thus reflect the true nature of the corresponding risk. Data/, 14 and 36, by VNK. Since it is assumed that flood damage
pre-processing with respect to consistency, reliability, andis truncated on both sides, the minimum and maximum dam-
completeness is a vital part in the risk-estimation process beage amount must be derived from VNK information. There-
cause, regardless of the type of method used, the soundnefye, we first calculated the weighted upscaling and down-
of results can, for a large part, be assigned to input. Usually, iscaling factors using the available information for dyke ring
is assumed that the consequences of catastrophic events aeeas 7, 14 and 36, which were used to derive the same infor-
unlimited. However, in practice the damage is usually lim- mation for the other dyke ring areas on a proportional basis.
ited, and lies between two extremes. In such cases, the range
of possible outcomes of rare events can be somewhat nar-
rowed if unnecessary and unrealistic information is excludedMn(AVV) = DF- E (exceedancedamage: --- --- -, (B2)

X(AVV) = UF. E (exceedancedamage: --- --- ---, (B1)
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Table Al. The flood risk estimates from the VNK and AVV projects that were used as input data for the Bayesian model.

Dyke ring Dyke failure VNK expected damage AVV expected damage
area number Return period AVV  in millions & in millions of €
1 2000 114 114

2 2000 500 381

3 2000 254 254

4 2000 25 25

5 4000 2000 2918
6 4000 400 761

7 4000 2000 2665
8 4000 7500 8882

9 1250 5300 3362
10 2000 1200 1903
11 2000 1200 1523
12 4000 1000 3933
13 10000 2900 4568
14 10000 18500 23600
15 2000 5000 6471
16 2000 9500 27026
17 4000 8000 12815
18 10000 634 634

19 10000 1776 1776
20 4000 9000 11420
21 2000 4000 4060
22 2000 9000 11420
23 2000 200 76

24 2000 2400 3045
25 4000 1900 2665
26 4000 2500 3172
27 4000 1300 1649
28 4000 400 508

29 4000 8000 10151
30 4000 5300 6725
31 4000 1700 3045
32 4000 700 1142
33 4000 19 19

34 2000 3000 7105
35 2000 2000 4441
36 1250 2800 4822
37 1250 4 4

38 1250 1300 3553
39 1250 38 38

40 500 51 51

41 1250 3195 6598
42 1250 850 1269
43 1250 9000 17510
44 1250 5440 6979
45 1250 1825 6852
46 1250 127 127

47 1250 780 888

48 1250 3360 6217
49 1250 380 508

50 1250 1820 2284
51 1250 275 381

52 1250 1595 2665
53 1250 4400 6852

Source: TAW (2000); Wouters (2005); Aerts et al. (2008).
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where
Upscaling factokUF) (B3)

_(Max(VnK)) (Max(VnK)) (Max(an())
E(VNK) ] dyke ring7 E(VNK) ] dyke ring 14 E(VNK) ) dyke ring 36

F(x)

Downscaling factofDF) (B4)

‘(Min(VnK)) +<Min(VnK)) +(Min(VnK))
E(VNK) ) dyke ring7 E(VnK) ] qyke ring14 EVNK) ) dyke ring36

>
3 Minimum Maximum

damage Flood damage X damage

min(X)=m=DF-AVV,; .-+ -« . ... | (B5)

Fig. E1. A conceptual sketch of cumulative bounded distribution
max(X)=m=DF-AVV; ... ... ... ..., (B6)

function.

Appendix C

Equation (6) can be obtained by substituting Eqgs. (5) and
Estimation of hyper-parameters and sufficient statistics (D2) in Eq. (D1):

The estimation of hyper-parameters needs to be conductedip (g | x) oc0”x" [ T" 1 E+D

two steps because the estimation of hyper-parametarsl =1

b of the prior distribution is based on information ab@yt e(*%)

while 6 itself needs to be estimated from the flood damage* (0)“~ bar‘( J (D3)
datax (from AVV). First, we estimate the weighted average
of 0, and create several data points using flood damage in-

. 2 (9)0‘_16_(%)
: . i1 Xiw;? ApO|X)X—————— .. .. .. .. (D4)
formation from AVV as follows:6 = , Where p( BT (a) ’

Oyx;. w;

> r_1xi.w; is the weighted average of our prior beliefs about 1
flood damage estimated from AVV flood damage data, withWhere o =a+n, and f = r-rar—o—me, and f <
Yiqwi =1, i =1,2,3, which are the three dyke ring areas ’ .
for which detailed damage information (i.e. expected, mini- (n-lnxm)— ln(H —1%i)) |
mum, and maximum amounts) is available; and, is the
standard deviation of damage estimated from the minimum,
maximum, and expected damage (see Appendix B).
' Second, based on the information abéwbtained in.the The bounded Pareto distribution
first step, the necessary hyper-parameters can be estimated as
= EZ:';le”"f?}zandb -1 Equation (E1) gives the formula of a bounded Pareto dis-

% tribution (Weisz and Brown, 2001), and Fig. E1 provides a

conceptual sketch of such a distribution, which is bounded

Appendix E

Appendix D with a minimum and maximum amount of flood damage.
Deriving the posterior distribution from the Pareto 0 'xlé x—@+D
likelihood and Gamma prior f) = AR (E1)

(2
The posterior density is derived from the prior and likelihood :
functions (Arnold, 1998): Flood damage can be simulated by drawing random num-
bers from Eq. (E1). Equation (8) can be written in a shorter
L©O|X)- D1
p@lx) o LOIX)-p®) ’ (b1) form as follows:
wherep (0) is a Gamma distribution with two parameters

andg (see Sect. 2.2 about the prior distribution). Flooddamager) = f~* (X: 0. x. xu) ~~~~~~
The likelihood function for damage observation is given yith v, < x; < x, (E2)
by S

L@y =0 TT" =+ Where,é, x|, xy are respectively, the shape parameter (ob-
mlli=1 tained from Eq. 7) and two scale parameters (the lower and
forx € [xm;4oo |- v cee oen (D2)  upper boundaries). Equation (E1), which is used to simulate
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