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Abstract. This study applies Bayesian Inference to estimate
flood risk for 53 dyke ring areas in the Netherlands, and
focuses particularly on the data scarcity and extreme be-
haviour of catastrophe risk. The probability density curves
of flood damage are estimated through Monte Carlo simula-
tions. Based on these results, flood insurance premiums are
estimated using two different practical methods that each ac-
count in different ways for an insurer’s risk aversion and the
dispersion rate of loss data. This study is of practical rele-
vance because insurers have been considering the introduc-
tion of flood insurance in the Netherlands, which is currently
not generally available.

1 Introduction

The potential impacts of flooding in the Netherlands are large
because high values of economic assets and many people are
situated in low-lying areas exposed to flooding (Klijn et al.,
2007; Aerts and Botzen, 2011; de Moel and Aerts, 2011).
Although flood protection standards are high, new flood risk
management strategies are currently being discussed to ac-
commodate projected trends that increase flood risk, such
as climate change and socio-economic growth (Kabat et al.,
2005). An example is flood insurance, and since flood risk is
not generally covered by insurance in the Netherlands, ques-
tions have been raised among insurers and policy makers as
to whether flood insurance is feasible (Botzen and van den
Bergh, 2008).

One of the issues related to flood insurance in the Nether-
lands is the uncertainty related to both the probability
and the consequences of extreme (low probability) flood

events (Froot, 2001). Insurers are reluctant to offer insurance
coverage for a risk that is ambiguous, and for which suf-
ficiently accurate premiums cannot be priced through actu-
arial calculations (Jaffee and Russell, 1997; Kunreuther and
Michel-Kerjan, 2007). Moreover, insurers are risk-averse to
catastrophe risk, which implies that they refuse coverage or
are only willing to offer catastrophe insurance if premiums
are sufficiently above the expected loss (Duncan and Myers,
2000). Standard statistical methods and tools for flood risk
estimation use historical data and other empirical informa-
tion (Behrens et al., 2004). This is often difficult due to a lack
of empirical data, and the limited loss data available are not
always reliable and consistent, so they inaccurately represent
actual damage (Grossi and Kunreuther, 2005).

Several studies have applied flood assessment and hydro-
logical models to estimate (future) flood damage and its
probability for the Netherlands (Vrijling, 2001; Jonkman
et al., 2003, 2008; Van der Most and Wehrung, 2005;
Bouwer et al., 2010). Two relevant studies are “Veiligheid
Nederland in Kaart” (VNK), also known as the FLORIS
study (TAW, 2000; Wouters, 2005) and “Aandacht voor Vei-
ligheid” (AVV) (Aerts et al., 2008; Aerts and Botzen, 2011).
Both studies provide estimates of current and future flood
probabilities and damage under various scenarios of climate
change and economic development. A shortcoming of these
studies is that they only provide a single estimate of the flood
probability and potential flood damage, and not the complete
probability density function of damage. Moreover, because
extreme events such as catastrophe damage generally follow
an asymmetric distribution process with a fat right-tail, the
losses located in this part of the damage distribution need to
be included in risk estimates and insurance premiums. The
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average risk estimates from the VNK and AVV projects may
therefore lead to either “upwards” or “downwards” biased
risk and premium estimates. As catastrophe risks are gener-
ally assumed to follow a fat-tail distribution process, and risk
estimation has to rely on limited empirical data, it is essential
to take these two aspects into account in the risk assessment
process. Bayesian Inference (BI) is a useful statistical tool for
assessing risk, especially in applications with a lack of his-
torical information on risk, as is the case for low-probability
floods in the Netherlands (Coles and Powell, 1996; Cooley et
al., 2007). BI can be used to update the probability estimate
for a hypothesis (the “prior beliefs”, i.e. based on AVV flood
risk information) with additional empirical information (the
“likelihood”, i.e. based on VNK flood risk information), es-
pecially when it is unreliable to make statistical inference
based on only a small amount of homogeneous data, such as
either VNK or AVV flood risk information. The updated out-
come (the posterior statistics) can be used to simulate hazard
events and fit a risk distribution, i.e. to estimate a new proba-
bility density function for flood damage. The BI method used
in this study deals with data scarcity and provides insights
into uncertainties in the estimated flood damage.

Under the assumption that flood risk follows a Pareto
distribution with a right fat-tail, this study aims to apply
Bayesian techniques combining the VNK and AVV data to
estimate the tail parameter of the flood damage distribution.
In the first phase, the tail parameter for flood damage is es-
timated using BI, in which the prior belief is assumed to
originate from a Gamma conjugate1 family while the ob-
servations are assumed to follow a Pareto distribution. Sub-
sequently, in the second phase, flood damage is simulated
based on the estimated tail parameter, and the correspond-
ing probability density functions are fitted for all 53 areas in
the Netherlands which are exposed to flooding (“dyke ring
areas”). Kunreuther et al. (2009) propose that premiums that
reflect risks are an important condition for designing a nat-
ural disaster insurance system that is financially viable and
provides adequate incentives for risk mitigation. Although
we realize that flood insurance premiums in practice may not
be fully differentiated with respect to flood risk, our analysis
provides insights into the level of flood insurance premiums
as if the condition of risk-based premiums were applied in
the Netherlands. Using the loss information derived from the
damage simulation and density functions, the risk-based in-
surance premiums (Actuarial-equivalence (AE amount)) will
be estimated for all 53 dyke ring areas. These premiums in-
clude an extra surcharge for insurer’s aversion to catastrophe
risk, as proposed by Kaas et al. (2004). Finally, the AE pre-
miums are compared with the Empirical method proposed

1Conjugacy can be defined as follows: ifF is a class of sampling
density functionsp(x|θ) andP is a class of prior distributions forθ ,
then the classp is conjugate forF if p(θ |x) ∈ p for all P(.|θ) ∈ F

andp(.) ∈ P (Juneja et al., 2006).

by Kunreuther et al. (2011), which takes a modest rate for in-
surer’s aversion to (fat-tailed) catastrophe risk into account.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the data and the statistical methods used to
estimate the parameters of the probability density functions
of flood damage, and the two methods used to calculate in-
surance premiums. Section 3 presents the results of the flood
risk estimates and flood insurance premiums, and compares
these results with existing studies. Section 4 provides dis-
cusses our findings and Sect. 5 concludes.

2 Data and methods

Figure 1 shows the overall research methodology described
in detail from Sect. 2.1 to Sect. 2.4. In Sect. 2.1, the available
data from AVV and VNK are described, and, if necessary,
further processed and adapted for use. In Sect. 2.2, the BI is
introduced and applied to estimate the tail (shape) parameter
of the flood damage distribution under the assumption that
flood damage follows a Pareto distribution process. Next, in
Sect. 2.3, a Monte Carlo simulation of flood damage is per-
formed using the updated tail parameters from Sect. 2.2, and
subsequently probability density curves of flood damage are
fitted for all 53 dyke ring areas. These sections explain in de-
tail the probability distributions that are used in these steps.
Finally, in Sect. 2.4, the resulting simulated flood damage
information is used for deriving flood insurance premiums.
Premiums are estimated using two different methods that re-
spectively use the variance of risk (derived from Sect. 2.3) in
a different way, and take a different account of the insurer’s
risk aversion to catastrophic flood risk.

2.1 Data

The low-lying areas in the Netherlands are divided into
53 dyke ring areas. Many low-lying lands (which are often
called “polders”) have been reclaimed from former lakes.
Each dyke ring area has its own closed flood protection sys-
tem of dykes, dams, and sluices that protect it from floods
caused by rivers and the sea. A dyke ring is an individ-
ual administrative unit under the Water Embankment Act
of 1995, which guarantees a particular level of protection
against flood risk for each dyke ring area (Aerts and Botzen,
2011). For instance, a dyke ring with a safety standard of
1/1250 (a flood “return period” of once in 1250 yr)2 has been
constructed in such a way that it may withstand a flood with
a probability of 1/1250. Figure 2 shows a map of the Nether-
lands that depicts the 53 dyke ring areas and their safety stan-
dards, which range between 1/10 000, and 1/1250. The data

2The return or recurrence period is an estimate of the average
time internal between two occurrences of an event, in particular, of a
catastrophe, such as a flood, an earthquake or a peak river discharge.
The probabilities provided by the VNK and AVV projects are an
indication of the approximated return period of a dyke breach.
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Fig. 1.Conceptual model of the overall research methodology.

used in this paper originate from two main studies, the AVV
and VNK projects, on flood risk in the Netherlands.

The VNK project provides current flood risks, and the re-
sults have been reported by Wouters (2005), and by Bouwer
et al. (2009) (See Table 1). VNK estimated detailed flood
damage according to various flood scenarios for dyke-rings
7, 14 and 36 (Fig. 2), while a more global approach was used
to estimate flood probabilities and potential flood damage for
the other dyke ring areas. The study included the assessment
of flood probability and damage from dyke failure mecha-
nisms, hydraulic pressure, and multiple dyke breach scenar-
ios (Wouters, 2005). The AVV study provides insights into
the potential effects of climate and socio-economic change
on flood risk over a long time horizon, as compared with the
current situation. The AVV project estimates current flood
risk and future flood risk was simulated using (long-term)
land use and climate change scenarios of increased river
discharges and sea level rise (Aerts et al., 2008; Aerts and
Botzen, 2011). Appendix A provides all the data from the
AVV and VNK projects, which have been used as input
for the Bayesian model and flood damage simulations. The
flood damage estimates from both projects are used for the
BI method, while the AVV probabilities are used for the
estimation of annual flood risk and premiums. Throughout

this paper, the AVV flood damage data represents prior
knowledge about the probability distribution of flood damage
within the Bayesian framework, and the VNK flood damage
data represents the flood damage likelihood (See Fig. 1). Ta-
ble 1 provides the basic information provided by these two
main studies on flood risk in the Netherlands for three repre-
sentative dyke ring areas. Dyke ring areas 7 and 36 are rep-
resentative for most of the dyke ring areas that have flood
protection levels between 1/4000 and 1/1250 per year. The
dyke ring Zuid Holland (along with Noord Holland) is one
of the two dyke-rings with the lowest flood probability in the
Netherlands (1/10 000). This dyke ring is located along the
densely populated coastline, and has a high concentration of
economic assets.

Data was processed (for details, see Appendix B) to derive
minimum and maximum damage per dyke ring area, which
are used in the flood damage simulations (Sects. 2.2 and
2.3). The assumption of a minimum and maximum amount
of flood damage per dyke ring area is consistent with realty.
If there is a flood event in the Netherlands, then there will
always be a minimum amount of damage, while the maxi-
mum theoretical damage cannot exceed the total economic
value that is exposed to flooding within a dyke ring area. The
AVV and VNK data provide expected damage estimates for

www.nat-hazards-earth-syst-sci.net/13/737/2013/ Nat. Hazards Earth Syst. Sci., 13, 737–754, 2013
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Table 1. Example of flood damage information for three dyke ring areas provided by the VNK and AVV flood risk studies in the Nether-
lands (damage in million euros).

Dyke ring area
number

VNK AVV

Minimum flood
damage

Maximum
flood damage

Expected flood
damage

Expected flood
damage

Flood
probability

7 593 5301 2000 2665 0.00025
14 5254 46 950.6 18 500 23 600 0.0001
36 1073 9592.2 2800 4822 0.0008

53 dyke ring areas based on the current probability of dyke
overtopping (the exceedance probability), and no minimum
and maximum damage estimates, except for the three dyke
ring areas, 7, 14 and 36, by VNK. Since it is assumed that
flood damage is truncated on both sides, the minimum and
the maximum damage for all dyke ring areas have been de-
rived using the VNK information about dyke ring areas 7,
14 and 36. For this, the weighted upscaling and downscaling

factors are estimated using the minimum and the maximum
flood damage estimates for these 3 dyke-rings. These scal-
ing factors are used to estimate the minimum and maximum
flood damage for each dyke ring area under the assumption
that these are proportional to the expected damage of each
dyke ring (see Appendix B).

Nat. Hazards Earth Syst. Sci., 13, 737–754, 2013 www.nat-hazards-earth-syst-sci.net/13/737/2013/



Y. Paudel et al.: Estimation of insurance premiums for coverage against natural disaster risk 741

2.2 Applying Bayesian Inference for estimation of the
tail parameter

Assumeθ is an unknown parameter− which reflects the state
of our knowledge about the flood damage data before we ob-
served this data− defined as an element of a space2 which
denotes all possible states of an outcome, also called the pa-
rameter space. When experimenters aim to obtain more in-
formation about this unknown parameter, the flood damage
observations,x1, . . . . . .xn, per flood return periodn are as-
sumed to be independent and identically distributed from a
Pareto process where the process scale parameter (β̂) is as-
sumed to be known, and the process tail (shape) parameterθ̂

is unknown (see Sect. 2.2). BI is a statistical technique which
attempts to estimate parameterθ by combining the prior be-
liefs (this means that we have some idea about it before we
have seen the data) with the information observed from ex-
periments or practice. This Bayesian technique can be repre-
sented by the Bayes theorem:

p(θ |x) =
p(θ) · p(x|θ)

p(x)
. . . . . . . . . , (1)

wherep(θ) onθ ∈ 2 is the prior distribution which includes
our prior knowledge aboutθ (the AVV information);p(x|θ)

is the sampling or data distribution; andp(x) is the marginal
distribution ofx. The observed data (the VNK information)
combined with the prior knowledge is given by the likeli-
hood functionL(θ |x1, . . . . . .xn) = p(x|θ), which can be re-
garded as a density with respect tox, wherex is fixed to a
particular value (the observation). The normalized product in
Eq. (1), which is the marginal distribution ofx that can be
represented asp(x) =

∫
p(θ)L(θ |x)dθ , integrates over all

possible values ofθ for given x. Becausep(x) is a scalar
value and not a function, we can omit the denominator in
Eq. (1). The non-normalized3 posterior distribution can be
given as one of proportionality:

p(θ |x) ∝ p(θ) · p(x |θ) . . . . . . . . . . (2)

The main steps in BI to derive the posterior density (the up-
dated shape parameter for the flood damage density) forθ

(Eq. 1) are:

Step 1.Formulate the likelihood or data model for the
observations (the VNK damage data) and the corre-
sponding likelihood function for the unknown param-
eters of the flood damage distribution;

Step 2.Specify the prior density distribution (the AVV
damage data) to quantify the uncertainty about the val-
ues of the unknown parameters identified in Step 1;

3The normalizing factorp(x) is a constant that makes the pos-
terior density integrate to 1. It is often omitted in practice since it is
generally difficult to calculate.

Step 3.Combine the likelihood function from Step 1
with the prior distribution from Step 2 to determine the
posterior distribution. The posterior distribution quan-
tifies the joint probabilities of the values of unknown
parameters of the flood damage distribution using the
information from observations;

Step 4.Calculate the updated parameters of the proba-
bility density function of flood damage for each of the
53 dyke ring areas from the posterior distribution by re-
peating the previous steps. The mean of the parameter
(the parameter of interest) can be easily derived from
the posterior distribution by calculating the expectation.

We have made two main assumptions in this study to apply
BI. First, it is assumed that flood loss data are independent
and identically Pareto-distributed (bounded with a lower and
upper threshold) continuous random numbers (See Eq. 3 in
Step 1), with an unknown shape and the known scale pa-
rameter (see Appendix C). Second, for computational con-
venience we take the prior and posterior models from a con-
jugate family to estimate the shape-parameter. Conjugate in
our case means that the prior and posterior distributions are
from the same distribution family, which is the case in this
research. To briefly elaborate on this topic: even though the
Bayesian theorem is mathematically simple, due the normal-
izing factor (the denominator in Eq. 1) it can be a difficult
task to find an analytical or numerical solution. Because the
Bayesian theorem is a product of the prior and the likelihood
functions, it is not always guaranteed that this product can be
integrated over the relevant domain. One way to avoid this
problem is by using conjugate priors. Based on this concept
one can derive pairs of likelihood functions and prior distri-
butions with appropriate mathematical properties that result
in tractable closed-form solutions to the integrals (Arnold
and Press, 1983). Since conjugate priors have computational
advantages, we have chosen pairs of the likelihood func-
tion and the prior distribution from an informative4 conjugate
family, as will be explained below.

Step 1: Data model and the likelihood function

We first apply the Pareto method as it is useful for modelling
low-probability high-impact risks, because the total aggre-
gated damage is to a large extent determined by large losses
in the right-tail of the density, which are also called “right-
tail risks” (Hsieh, 2004). For this application, we assume that
the VNK flood loss data (the data model)x1, . . . . . .xn are an
independent and identically distributed Pareto random loss
variable per flood return period that is defined with two main
parameters: namely, the process scalexm, which is the min-
imum of x, and the process shapeθ > 1. It is assumed that

4An informative prior expresses specific, definite information
about a variable, while a non-informative prior expresses vague gen-
eral information about a variable (prior) (see for more detail Juneja
et al., 2006).

www.nat-hazards-earth-syst-sci.net/13/737/2013/ Nat. Hazards Earth Syst. Sci., 13, 737–754, 2013



742 Y. Paudel et al.: Estimation of insurance premiums for coverage against natural disaster risk

the first parameter is known and that the shape parameter is
unknown, which we aim to update using BI in this study. The
Pareto distribution can be written as (Davis, 2001)

p(x)=

{
θ

xθ
m

xθ+1 I (x > xm) where xi ≥xm

0 otherwise

}
. . . . . . . . . . . . , (3)

whereθ > 1. 5

The likelihood function associated with the unknown
shape parameter is (Bermudez and Kotz, 2010)

L(θ |x1, . . . . . .xn) (4)

=

{
θnxθn

m
∏n

i=1x
−(θ+1)
i wherexi ≥ xm

0 otherwise

}
. . . . . . . . . . . . .

The sufficient convenient statistics6 are based on the num-
ber of observations,n, and the data product∏n

i=1
xi .

Step 2: Prior density

Once the data model has been specified, the prior density
function for the unknown model parameter needs to be spec-
ified. The prior density describes our beliefs about the uncer-
tainty about the model parameters, without incorporating the
information from the observations. Since it is assumed that
the model data follows a Pareto density with known scale
and unknown shape parameters, the conjugate priorp(θ) is
proportional to the Gamma density function. This Gamma
function of θ is defined by the hyper-parametersa (shape)
andb (scale) and is given by (Fink, 1997):

p(θ) =

 (θ)a−1 e

(
−

θ
b

)
ba0(a)

for θ ≥ 0 anda,b > 0and

0 for θ < 0

 . . . . . . . . . . . . , (5)

wherea andb are, respectively, the shape and scale estimates
of the hyper-parameters, which are derived from the AVV
flood damage estimates (see Appendix C).

Step 3: Posterior density

Because we have chosen a prior density that is conjugate for
the likelihood, the posterior density consists of a combination
of Eqs. (4) and (5), and follows the same density as the prior,
namely: p(θ |x)= gamma(α,β)= L(θ |X) · p(θ) (Vilar-
Zanon and Lozano-Colomer, 2007). Substituting Eqs. (4)

5In practice, in case of sufficient data, the shape parameter of the
data model can be estimated numerically from the VNK estimates

with the formula θ= 2·
(∑n

i=1xi·wi

)2/{(∑n
i=1xi·wi

)2
−σ2

}
,

with
(∑n

i=1xi·wi

)2
−σ2 > 0. The scale parameter can be estimated

with xm (scale)= inf(X),with X > m. (See Appendix C for more
details).

6A sufficient statistic has the property of sufficiency in terms of
the related statistical model and its unknown parameters.

and (5) in Eq. (2) yields the following specification of the
posterior flood damage density (see Appendix D):

p(θ |x)∝
(θ)α−1e

−

(
θ
β

)
βα 0(α)

. . . . . . . . . . . . , (6)

where α = a + n and β =
1

1
b
+ln(

∏n
i=1xi)−n·ln(xm)

, and β <

1
(n·ln(xm)−ln(

∏n
i=1xi))

(Arnold et al., 1998).

Step 4: Estimation of the parameters of interest

From the posterior distribution function specified in Step 3,
the parameter of interest (the mean) of the posterior distribu-
tion of flood damage is given as follows7:

θ̂ = E[p(θ |x) ] =

∞∫
−∞

θ p(θ |x)dθ . . . . . . . . . . . . . (7)

To estimate this parameter of interestθ̂ , we first need to
simulate the posterior distribution. As discussed by Gel-
man (2004), this can be simulated in different ways. Because
the prior distribution in this paper is assumed to be from
a conjugate family, we opt for a direct simulation method,
which implies the drawing of random numbers from the tar-
get (i.e. posterior) distribution (Gelman et al., 2004)8.

2.3 Simulation of flood damage data and the fitting of
probability density curves of flood damage

Once the updated tail parameters are estimated (the parame-
ter of interest in Eq. 7), they are used, along with the updated
scaling parameters for minimum and maximum damage (see
Appendix B), to simulate flood damage for all 53 dyke ring
areas for 250 000 flood return periods, as well as to estimate
the corresponding probability density curves of flood dam-
age. Assuming that the flood damage distribution follows the
Pareto distribution as in Sect. 2.2, the probability density for
each of the 53 dyke ring areas can be simulated with the fol-
lowing model:

Flooddamage= f −1
(
θ̂ ,xl,xu

)
. . . . . . . . . , (8)

wheref (x) is a bounded Pareto distribution (see Appendix E
for more details) with shape parameterθ̂ = E [P (θ |x)], the
lower bound scale parameterxl = min(x) and the upper-
bound scale parameterxu = max?(x), which are estimated

7 Although θ̂ can be estimated as the producta·b, due to the
limited available data we choose to simulateθ̂ using the posterior
distribution.

8 For the exact procedure see Gelman (2004), pages 290–292.
One can also choose to estimateθ as the product of the two hyper-
parameters. However, here we decided to simulateθ by drawing
random numbers from the posterior distribution. Subsequently, we
derive the expectancy ofθ from the simulated data.
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from the VNK data for dyke ring areas 7, 14 and 36 (for
more details see Appendices A and B) (Kerman and Gelman,
2007)9.

These models were implemented in the statistical software
Matlab version 2012a to perform a Monte Carlo analysis of
flood damage for each dyke ring area for 250 000 flood re-
turn periods. The resulting data are used to construct prob-
ability density curves for flood damage and to estimate av-
erage flood damage over all flood return periods for each
of the 53 dyke ring areas. The expected AE average amount
for flood damage (the average overall flood return periods)
can be represented with the standard expectancy expres-

sionE[AE]return period=
250000∑
n=1

(xn.p (x)n). The annual aver-

age flood damage per dyke ring area can be derived by divid-
ing the average E[AE]return periodper dyke ring area with the
return period of a dyke breach in years for the corresponding
dyke ring from AVV (as presented in column 2, Table A1 in

Appendix A),E [AE]annual=
E[AE]returnperiod
returnperiods inyr.

2.4 Estimation of flood insurance premiums

Since floods are rare events, the estimates for annual flood
insurance premiums can be approximated by the annual ex-
pected value of flood damage. Therefore, based on the sim-
ulated probability density curves, we can estimate average
flood insurance premiums for each dyke ring area. A more
refined premium differentiation on the household level is
not possible, given the available information on flood risk.
Hence, the premiums are partially risk-based, since they dif-
fer per dyke ring area, but not per individual insurance policy.

Since floods are rare events, the estimates for annual flood
insurance premiums can be approximated by the annual ex-
pected value of flood damage, and should consider the level
of insurer’s risk aversion towards the extreme nature of the
risk. This risk aversion is reflected as a surcharge on the pre-
mium above the expected value of the loss. This surcharge
depends on the variability (variance or standard deviation) of
the expected flood damage. A higher risk variance implies
a higher probable maximum loss, which leads to an extra
premium surcharge. In general, insurers charge a higher pre-
mium if the variability of losses is greater, because a rela-
tively high variability indicates a high likelihood of suffer-
ing very large losses for which large cash reserves or rein-
surance coverage is needed, which is costly for the insurer.
This surcharge has the effect to increase the cash surplus of
the insurer which protects the insurer against the possibil-
ity of insolvency (Kunreuther et al., 2011). We apply two
different methods for estimating premiums that address the
impact of the insurer’s risk aversion attitude towards the ex-

9The zero failure problem is avoided here by defining the flood
loss datax per flood return period. This means that in case of a flood
event, which happens once over return period, there will always be
some flood damage with a magnitude that lies betweenxl andxu.

treme (catastrophic) nature of flood risk. The first method,
AE, provides premium estimates based on the Modern Actu-
arial Risk Theory discussed in Kaas et al. (2004). The main
emphasis of this method is on the extreme nature of damage,
because it takes the full loss variance into account in the pre-
mium calculation. Moreover, a moderate degree of insurer’s
risk aversion rate is included in the premium, which is quite
common for non-life insurance products, but may provide an
underestimation in an application to heavy-tailed catastrophe
losses, like those due to floods. The premium amountπ to be
paid by the policyholder for insurance coverage for riskX,
given the exponential utility functionu(x) = −αe−αw with
the parameter of insurer risk aversionα= 0.005, is given by
(for details, see Kaas et al., 2004)

π (W) = E [AE]annual+
1

2
· σ 2

· r . . . . . . . . . , (9)

where π (W) is the amount of premium necessary to in-
sure property valueW ; E [X] is the loss expectancy that can
be deduced from the adjusted Pareto distribution (Eq. 8),
σ 2 is the variance of the same adjusted Pareto distribu-

tion; r (w)= −
u

′′
(w)

u
′
(w)

is the insurer’s risk aversion coefficient,

which is in this case equal toα, andw stands for the amount
to be insured; andu(.) is the utility function of the insurer.
Equation (8) is derived in Appendix F.

The second method is what we call the Empirical method,
which has been proposed by Kunreuther et al. (2011). This
method includes a surcharge of the standard deviation on the
premium, which has been derived from an extensive empir-
ical analysis of catastrophe insurance premiums in the USA
for a period of 24 yr (see Chapt. 7 in Kunreuther et al., 2009).
This method is a modified version of Eq. (9), and it takes
the insurer’s risk aversion toward the extreme nature of risk
into account by making the premium dependent on the stan-
dard deviation (SD) of damage. According to the Empirical
method, the premium can be calculated as follows:

π (W)=E[AE]annual+σ · δ . . . . . . . . ., (10)

whereσ is the standard deviation of loss; andδ is the Em-
pirical insurer’s risk aversion rate for catastrophe risk. The
coefficientδ is equal to 0.55 (Kunreuther et al., 2011).

3 Results

Descriptive statistics of the probability density functions for
flood damage are provided for all 53 dyke ring areas (see Ta-
ble 2). Columns 2 and 3 in Table 2 show, respectively, the
estimated minimum and maximum flood damage amounts;
columns 4, 5 and 6 are, respectively, the expected flood dam-
age, the standard deviation of the simulated flood damage
and the parameter of interest. Although differences between
dyke ring areas in the shape parameters in column 6 appear
to be small, it should be noted that the distribution function
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used is sensitive to such small differences. Column 4 in Ta-
ble 2 shows that expected flood damage amounts differ sig-
nificantly between dyke ring areas. The expected flood dam-
age provided by VNK and AVV (see Appendix A) is signif-
icantly higher compared with our estimates. The reason for
this is that the damage estimates by AVV and VNK are ex-
pected flood damage amounts that are associated with what
are called an “exceedance flood probability” of a very severe
flood, which do not include damage amounts that fall be-
low this extreme level. Our expected flood damage amounts
are lower than the AVV and VNK expected flood damage
amounts, because our estimates are based on the full proba-
bility density functions of damage between the specified min-
imum and maximum amounts, which include several small
damage amounts.

Due to space limitations, it is unfeasible to discuss the
detailed results of all 53 dyke ring areas, which is why the
results for three representative dyke ring areas – the No-
ordoostpolder (7), Zuid Holland (14), and Land van Heus-
den/de Maaskant (36) – are discussed here in more detail.

Figures 3, 4 and 5 show, respectively, the resulting prob-
ability densities of flood damage for the three selected dyke
ring areas. The corresponding statistics are provided in Ta-
ble 3 below. The three markers in the figures indicate some
representative data percentiles (the 50 per cent, the mean, and
the 97.5 per cent percentiles). The loss densities are truncated
on the left and right sides, in accordance with the estimates
of minimum and maximum flood damage (see Appendix B).
The probability of observing a damage amount is depicted on
the left vertical axis, and flood frequencies for 250 000 flood
return periods are shown on the right vertical axis, while the
damage amounts are shown on the horizontal axis in millions
of euros. The frequency densities show that the majority of
loss observations in each dyke ring area are concentrated on
the left-side of the curve, while every frequency curve has a
long fat right-tail, which indicates a high dispersion of the
loss data. As an illustration, the statistical mean of all three
probability density functions of flood damage are located
around the 67.9 per cent data percentile, which indicates that
the loss data behave asymmetrically. This is consistent with
our selection of the Pareto distribution which is fat-tailed and
asymmetrical and corresponds with practical experience that
flood damage is an extreme event.

Table 3 summarizes the descriptive statistics of the sim-
ulated flood damage for the three selected dyke ring areas,
and the AVV and VNK flood damage estimates. The coef-
ficient of variability10 (also calledR2) is about 68 per cent,
which suggests that the simulated flood damage has a high
variance. Since the corresponding skewness11 for all three

10TheR2 is a normalized measure of the dispersion of a proba-
bility distribution, which is defined as the ratio of the standard de-
viation to the statistical mean.

11The skewness measures the asymmetry of a distribution or sam-
ple data relative to the standard normal distribution, which has a

curves is less than 2 and positive, the tail on the right side is
longer compared with the left side, and the bulk of the loss
values lie to the left of the mean. Furthermore, the losses on
both sides are truncated with the maximum and the mini-
mum damage. This is consistent with the fact that flood dam-
age cannot be infinitely large and justifies the data truncation.
The kurtosis12, which indicates the peakedness of a density
function, is about 8, which is higher than the kurtosis of 3 of
the standard normal density. The positive kurtosis shows that
the flood damage amounts are peaked and not flat compared
with the standard normal density.

Flood insurance premiums for all dyke ring areas

Table 4 shows the number of houses (column 2) per dyke ring
area; the Empirical, AE and AVV estimates of flood insur-
ance premiums (respectively, in columns 3, 4 and 5) and their
ratios (columns 6 and 7). The premiums that have been esti-
mated with the Empirical and AE methods (see Sect. 2.4) are
compared with the premiums that Aerts and Botzen (2011)
have estimated for all dyke-rings. This comparison is of inter-
est, since Aerts and Botzen (2011) have estimated the flood
insurance premiums using only the AVV data of a single esti-
mate of the flood probability and potential damage per dyke
ring area (premium= probability*damage), while the Em-
pirical and AE estimates are based on the mean damage that
are estimated from the complete probability density of flood
damage that has been derived with BI, and account for the
insurer’s risk aversion to the catastrophe risk (see Sect. 2.4).
The data are presented in descending order with respect to
the ratio of the AE and AVV premiums.

The annual Empirical premium estimates (column 3) take
the standard deviation of damage and the insurer’s risk aver-
sion rate for catastrophe risk into consideration by means of
a surcharge on the expected flood risk that has been derived
from actual insurance markets (Kunreuther et al., 2011). The
Empirical premiums are generally close to 70 per cent of the
AVV premiums (column 6), which indicates that the Em-
pirical method results in a scaling of the AVV premiums.
The empirical premiums are lower, even though these in-
clude a surcharge for the rate of risk aversion which is not
accounted for in the AVV premium estimate by Aerts and
Botzen (2011). The mean damages per dyke ring used as in-
put for the AE premiums are significantly lower compared
with the AVV mean damages (see Table A1 in Appendix A),
while the AE premiums are higher for some dyke ring areas.
This can be explained by the premium surcharge of the risk
aversion rate which depends on the risk variance. The AE

skewness of zero, and any data that has an asymmetric distribution
has a skewness that differs from zero.

12The kurtosis measures whether the data are peaked or flat with
respect to the normal distribution. The kurtosis of the standard nor-
mal distribution is 3 (in the case of “excess kurtosis”, it is 0); a posi-
tive kurtosis indicates a peaked distribution; and a negative kurtosis
implies a flat distribution.
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Table 2.Main flood risk statistics for all 53 dyke ring areas (in million euros).

Dyke ring Minimum Maximum Mean SD of simulated Parameter of
area number damage (xl) damage(xu) damage E [X] damage (σ ) interest (̂θ )

1 25 227 58 40 1.5668
2 85 757 195 133 1.5649
3 56 505 129 88 1.5716
4 6 50 13 9 1.5626
5 650 5806 1488 1012 1.5701
6 169 1515 389 265 1.5679
7 593 5301 1360 927 1.5675
8 1977 17 670 4533 3089 1.5704
9 749 6689 1720 1174 1.5669
10 424 3786 971 662 1.5700
11 339 3029 778 531 1.56454
12 876 7825 2005 1366 1.56516
13 1017 9087 2332 1594 1.56477
14 5254 46 951 12 060 8216 1.56801
15 1441 12 874 3300 2251 1.5671
16 6017 53 766 13 802 9420 1.56986
17 2853 25 495 6537 4451 1.56912
18 141 1262 323 220 1.56481
19 395 3534 907 616 1.57236
20 2542 22 718 5827 3980 1.56801
21 904 8078 2071 1413 1.57037
22 2542 22 718 5837 3980 1.56599
23 17 151 39 26 1.56681
24 678 6058 1557 1060 1.56456
25 593 5301 1359 925 1.56129
26 706 6311 1620 1107 1.57408
27 367 3281 843 574 1.56565
28 113 1010 259 177 1.56372
29 2260 20 194 5179 3532 1.56357
30 1497 13 378 3437 2342 1.56739
31 678 6058 1552 1058 1.56715
32 254 2272 584 398 1.57184
33 4 38 10 7 1.57096
34 1582 14 136 3637 2480 1.56833
35 989 8835 2266 1547 1.56906
36 1073 9592 2460 1676 1.56347
37 1 8 2 1 1.56903
38 791 7068 1809 1229 1.56798
39 8 76 19 13 1.56445
40 11 101 26 18 1.56402
41 1469 13 126 3372 2299 1.57265
42 282 2524 649 442 1.56675
43 3898 34 834 8956 6116 1.56662
44 1554 13 883 3570 2434 1.56855
45 1525 13 631 3497 2382 1.57249
46 28 252 65 44 1.56787
47 198 1767 454 309 1.56719
48 1384 12 369 3179 2171 1.56773
49 113 1010 259 177 1.56819
50 508 4544 1167 796 1.56561
51 85 757 194 132 1.56641
52 593 5301 1362 931 1.56693
53 1525 13 631 3502 2386 1.56909
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Fig. 3.Simulated flood damage density for the dyke ring Noordoostpolder (7).

20 
 

 

Figure 3: Simulated flood-damage density for the dyke-ring Noordoostpolder (7) 

 

 

Figure 4: Simulated flood-damage density for the dyke-ring Zuid-Holland (14) 

 

 

Fig. 4.Simulated flood damage density for the dyke ring Zuid Holland (14).

premiums (column 4) include a surcharge on the expected
flood risk that is based on the full loss variance of the flood
damage density (instead of the SD in the Empirical method),
which results in substantial differences compared with the
AVV estimates for some dyke ring areas. The differences be-
tween the AE and AVV premiums are largest for the dyke
ring areas with a high expected damage and correspondingly
high variance (e.g. dyke-rings 14, 16, and 43).

4 Discussion

The estimates of flood insurance premiums in Table 4 will be
discussed with respect to three main aspects: the main differ-
ences between the premiums; how the BI method contributes

to these findings; and the main implications of the results for
insurers.

4.1 Main differences between the flood insurance
premiums

The estimated flood damage densities per dyke ring area lie at
the core of the estimations of the flood insurance premiums.
Overall, the average flood damage per dyke ring, obtained
through Bayesian statistical modelling, is lower if compared
with the expected flood damage estimates obtained in the
AVV and VNK projects (Wouters, 2005; Aerts et al., 2008).
This can be attributed to using the full probability distribu-
tion from our BI approach as compared with, for example,
AVV-based premiums that only use a single probability and
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Fig. 5.Simulated flood damage density for the dyke ring Land van Heusden/de Maaskant (36).

Table 3.Descriptive statistics (damage is in million euros) of the simulated flood damage densities for dyke ring areas Noordoostpolder (7),
Zuid Holland (14) and Heusden/de Maaskant (36).

Statistics Noordoostpolder (7) Zuid Holland (14) Heusden/de Maaskant

Skewness 1.94 1.94 1.94
Kurtosis 6.57 6.59 6.6
Coeff. of variability 0.6819 0.6812 0.6815
Hyper-parameter shape (a) 0.521 0.505 0.517
Hyper-parameter scale (b) 1 1 1
Posterior-parameter shape (α) 1.53 1.524 1.529
Posterior-parameter scale (β) 1 1 1
Flood damage simulation shapeθ̂ 1.5675 1.56801 1.56347
Flood damage simulation scale parameter 1(xl ) 593.23 5.254.29 1.073.45
Flood damage simulation scale parameter 2 (xu) 5301 46951 9592
50 % data percentile 994.27 8.848.48 1.804.63
97.5 % data percentile 4.197.32 37 187.01 7.614.53
VNK damage mean (model data) 2.000.0 18 500 2.800
AV-damage mean (prior information) 2.665 23 600 4,822

an extreme flood scenario with high flood damage as a basis.
Furthermore, other factors, such as the choice of the density
functions of the prior and likelihood information modelling,
parameter uncertainty, and the Monte Carlo simulations used
to fit the loss-probability curves, might also partially con-
tribute to the difference in results of flood damage estimates.

Along with the differences in flood damage estimates,
there are also significant differences in the premiums that are
estimated using the AE and Empirical methods. For instance,
the Empirical method emphasizes the insurer’s risk aversion
attitude to catastrophe risk by adding a surcharge to the ex-
pected flood risk in the premium estimate based on the stan-
dard deviation, while this is not applied in the AVV-based
premiums (column 5 of Table 4). The Empirical premiums
are approximately 70 per cent of the AVV premiums, which

appears to be approximately constant for all dyke ring areas.
This implies that the impact of using the loss standard de-
viation as a surcharge, on top of the risk-based premiums,
is not very large if the Empirical method is used. In con-
trast, the AE method for calculating premiums adds a risk-
averse surcharge to the expected flood risk that is based on
the loss variance, which results in much higher premiums (up
to 178 per cent) for some dyke ring areas compared with the
Empirical and the AVV methods. Hence, these large differ-
ences, which particularly occur in those dyke ring areas with
a large amount of expected damage (the first 8 dyke-rings in
Table 4), can be explained by the corresponding large vari-
ances of flood damage. Such a large surcharge does not occur
when the standard deviation is used for modelling insurer’s
risk aversion as the Empirical method does. The surcharge
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Table 4. Results of annual flood insurance premiums per homeowner per dyke ring, according to the Empirical method, the Actuarial
Equivalence (AE) method, and the AVV method.

Dyke ring Number Annual premium (in euros) Premium ratio

Nr. of houses Empirical AE AVV Empirical/AVV AE/AVV

16 82 340 87 219 123 70 % 178 %
14 1 659 248 1 2 1 75 % 174 %
43 120 526 61 122 87 71 % 140 %
17 165 235 10 17 15 68 % 116 %
20 62 823 24 39 34 71 % 115 %
22 47 243 64 104 91 70 % 114 %
29 49 060 27 42 39 70 % 108 %
8 99 069 12 17 17 70 % 103 %
44 292 938 10 14 14 72 % 99 %
41 109 400 25 34 36 71 % 95 %
45 103 282 28 38 40 70 % 95 %
53 86 300 34 46 48 70 % 95 %
30 29 532 30 41 43 70 % 95 %
48 59 881 44 58 62 71 % 94 %
15 79 164 22 29 31 70 % 93 %
36 165 555 12 15 17 72 % 90 %
35 37 524 31 38 44 71 % 87 %
21 32 152 33 40 47 71 % 85 %
12 8274 63 75 89 70 % 84 %
38 16 781 89 104 127 70 % 82 %
9 33 556 42 49 60 71 % 82 %
24 18 287 44 50 62 71 % 81 %
7 22 234 16 18 22 72 % 80 %
32 48 501 3 3 4 78 % 80 %
26 14 655 29 33 41 70 % 80 %
31 7087 57 65 81 70 % 80 %
5 5331 72 82 103 70 % 79 %
52 42 040 27 30 38 71 % 79 %
25 18 064 19 22 28 69 % 78 %
50 18 320 53 58 75 70 % 77 %
19 5696 16 18 23 72 % 76 %
10 11 128 45 49 64 70 % 76 %
27 9060 24 26 34 71 % 75 %
11 18 610 22 23 31 70 % 74 %
47 37 179 10 10 14 72 % 73 %
42 5611 96 99 136 70 % 73 %
13 412 013 1 1 1 59 % 72 %
28 3353 20 20 28 71 % 71 %
18 2054 16 16 23 71 % 71 %
33 26 100 96 137 73 % 70 %
37 12 137 133 190 72 % 70 %
51 4532 35 35 50 71 % 70 %
2 1345 75 74 106 71 % 70 %
49 7836 27 27 39 70 % 70 %
4 214 31 30 44 71 % 69 %
3 801 83 82 119 70 % 69 %
23 115 175 170 248 71 % 69 %
40 458 117 114 166 71 % 69 %
1 494 61 59 87 70 % 68 %
46 3227 17 16 24 69 % 68 %
39 169 93 90 135 69 % 67 %
34 160 741 12 16 50 23 % 32 %
6 468 014 0 0 1 21 % 22 %
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on the AE premium is smaller for the last 45 dyke ring areas,
shown in Table 4. This is caused by the higher weight that
the AE method places on the flood damage variance, which
is smaller for the last 45 dyke ring areas. In agreement with
Friedman (1974), the AE premium estimates confirm that in-
surers are considerably risk-averse to damage with a high
loss variance, and they see this type of risk either as uninsur-
able or as a gamble that needs a significantly high expected
return.

It should be noted that Kunreuther et al. (2011) calculated
the risk aversion surcharge, used in the Empirical method,
based on historical surcharge information that US insurers
have charged for providing coverage against hurricane dam-
age. However, this surcharge may not completely reflect risk
aversion to extreme flood events in the Netherlands, which
can have a catastrophic character and result in very high
losses which could ruin the insurer. A higher surcharge for
risk aversion to the high amounts at stake may be applied for
such events. This, for example, is done in the AE method,
but we have no empirical data specific for the Netherlands
on which this surcharge could be based, since empirical es-
timates of insurer’s risk aversion to providing coverage for
flood risk in the Netherlands are not available.

4.2 Bayesian Inference (BI) method

For several reasons, it can be argued that the BI method
applied in this study is more suitable for estimating flood
insurance premiums in the Netherlands compared with the
methods that only use a single estimate of the flood probabil-
ity and potential damage (the AVV and the VNK projects).
First, BI provides statistical estimates of flood risk that take
its stochastic and extreme nature into account by deriving
the complete probability density of flood damage, and mod-
elling the tail of this density (Bayarri and Berger, 2004). Sec-
ond, BI is a suitable method for representing probabilistic
relationships between different sources of information, such
as the AVV and VNK data (Heckerman, 2008). However, in
some BI applications there may be concerns about the relia-
bility of the prior and likelihood data sources, and how this
influences the results (Raftery et al., 1997; Malakoff, 1999;
Hájek, 2007; Gelman, 2008; Chaudhuri and Ghosh, 2011).
For example, the inclusion of prior information does not al-
ways lead to better results, especially when it is based on
subjective beliefs. To overcome this issue, only objective data
are used in this study that share similar statistical features as
input. Third, the damage estimations in this study are based
on extensive data simulations, which enable more detailed
statistical information to be provided for the flood damage
assessments. Simulation is the only way to incorporate prob-
abilistic scenarios in the estimation of risk of low-probability
floods, where there is little historical information available on
such floods (Juneja et al., 2006). In contrast, VNK and AVV,
as well as other flood damage studies, do not consider the
probabilistic nature of risk and cannot provide any statistical

inferences for damage beyond a certain level. Fourth, the BI
procedure applied in this study allowed for the derivation of
the full probability density of flood damage, its mean and
standard deviation, which are all important inputs for the cal-
culation of flood insurance premiums. Even though simula-
tion provides useful information that is needed to estimate
flood insurance premiums, it also has its limitations. For ex-
ample, a simulation attempts to mimic the damage of a flood
event based on known facts and assumptions by means of a
conceptual computational environment, which results in un-
certainties (Robert and Casella, 2011). Large uncertainties
associated with rare events are, in our application, somewhat
narrowed by truncating the loss data at the best estimates of
minimum and maximum flood losses per dyke ring area.

4.3 Implications for insurers

From the findings of this study it becomes clear that insur-
ance for flood risk is a complex product to price because of
the extremely low flood frequency that entails large uncer-
tainties. This study is the first in-depth study of the pricing of
flood insurance in the Netherlands that uses the full probabil-
ity density of flood damage in all 53 dyke-areas. Therefore,
it provides a useful basis for insurers who are considering in-
troducing flood insurance in the Netherlands. Our premium
estimates show that flood insurance premiums can be con-
siderably above the expected value of the flood loss in some
dyke ring areas because of the risk aversion of the insurer
for the catastrophic nature of flood risk. Because the risks lo-
cated on the right-tail of the damage density are much more
expensive to insure compared with the risks of lower dam-
age on the left side, insurers may be reluctant to provide in-
surance for extreme flood losses in some high-risk areas un-
less they can charge sufficiently high premiums. Neverthe-
less, our estimated flood insurance premiums are lower than
household willingness-to-pay (WTP) for flood insurance in
most dyke ring areas. Botzen and van den Bergh (2012) es-
timate that average individual WTP for flood insurance in
the current situation of flood risk is aboutC250 per year,
which is higher than our estimated flood insurance premiums
in most dyke ring areas (Botzen and van den Bergh, 2012).
However, actual flood insurance premiums are in practice
likely to be higher than the premiums provided in this paper
due to administrative costs and a profit margin for insurers,
which are not included in our estimate.

Our study follows the proposal by Kunreuther et al. (2009)
to determine flood insurance premiums on the basis of es-
timate of actual flood risks. Nevertheless, we realize that
in practice flood insurance premiums may not be fully dif-
ferentiated with respect to actual flood risk, for example,
because bundled coverage is provided or because it entails
costs for insurers to determine and charge different premiums
for every specific policy. Our analysis provides insights into
the level of flood insurance premiums as if they were risk-
based and assesses flood risks and flood insurance premiums
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for the Netherlands on a dyke ring level, which provides a
relatively simple basis for premium differentiation. Overall,
the estimated flood insurance premiums show large differ-
ences between dyke ring areas in the Netherlands, which is
mainly due to the difference in dyke failure probabilities be-
tween these areas. This suggests that premiums should be
differentiated at least on a dyke ring level if an insurance
system with risk-based premiums were to be introduced. In-
surance costs would differ considerably between the different
low-lying areas in the Netherlands if flood insurance premi-
ums were to reflect risk.

5 Conclusions and recommendations

This study has applied Bayesian Inference to assess the
stochastic nature of flood risk and provide estimates of the
probability density of flood damage for all 53 dyke ring areas
in the Netherlands. Subsequently, these probability densities
of flood damage have been used to estimate flood insurance
premiums for these areas. While previous studies have de-
rived a single estimate of the flood probability and expected
flood damage for the low-lying areas in the Netherlands, our
study has estimated the full probability density of flood dam-
age, which allows for a more accurate estimation of flood
insurance premiums. In particular, the premiums estimated
in this study account for the insurer’s risk aversion to the ex-
treme nature of flood risk. This study is of practical relevance
for insurers who are considering introducing flood insurance
in the Netherlands.

The methodological process followed in this paper to esti-
mate premiums for damage emerging from rare events, such
as catastrophic and man-made disasters, appears to be of
great relevance, as it is able to cope with the lack of empiri-
cal evidence on the corresponding expected damage. Using a
practical example, this paper showed that the widespread un-
certainties about flooding should be included in premium cal-
culations by taking into account the relevant risk indicators,
such as risk variance and insurer’s aversion against catastro-
phe risk insurance. Furthermore, as we notice from the pre-
mium results, the choice of a particular method appears to
make a significant difference for their levels. Therefore, it is
important that the method used to estimate insurance premi-
ums should correctly represent the real-world problem, and
thus reflect the true nature of the corresponding risk. Data
pre-processing with respect to consistency, reliability, and
completeness is a vital part in the risk-estimation process be-
cause, regardless of the type of method used, the soundness
of results can, for a large part, be assigned to input. Usually, it
is assumed that the consequences of catastrophic events are
unlimited. However, in practice the damage is usually lim-
ited, and lies between two extremes. In such cases, the range
of possible outcomes of rare events can be somewhat nar-
rowed if unnecessary and unrealistic information is excluded

in models by truncating loss data at below a predetermined
threshold, which results in more realistic premiums.

Further in-depth research is necessary to explore and anal-
yse different aspects of Bayesian techniques tailored for rare
events. This study has provided insights into uncertainty of
estimated flood damage, while it should be acknowledged
that another important source of uncertainty is the flood fre-
quency. In this respect, future research could focus on obtain-
ing better insights into uncertainties of the real probability
of dyke failure. Furthermore, as it allows the integration of
expert judgment and other third party information, it would
be advisable to refine the prior assessment process carefully
by integrating subjective information that may be of great
value. Controversy arises because prior information is gen-
erally assumed to be subjective, and can have a significant
impact on the final results. However, this can partly be com-
pensated with a cross-validation of the information, as long
as it is properly carried out. The risk aversion rate used for
the premium calculation should reflect the actual risk in the
dyke ring areas rather than those estimated for different ar-
eas. Therefore, more research will be necessary on insurer’s
risk aversion to catastrophe risk in the context of flood risk
in the Netherlands.

Appendix A

AVV and VNK input data

Table A1 provides the flood risk estimates from the VNK and
AVV projects per dyke ring area which have been used as in-
put data in the Bayesian model. Column 2 provides the flood
return period per dyke ring area and columns 3 and 4 show,
respectively, the expected flood damage that corresponds to
these return periods.

Appendix B

Data truncation: the derivation of minimum and
maximum damage

AVV and VNK provide expected damage estimate for
53 dyke-rings areas, based on the current probability of dyke
overtopping (the exceedance probability), and no minimum
and maximum amount, except for the three dyke ring areas,
7, 14 and 36, by VNK. Since it is assumed that flood damage
is truncated on both sides, the minimum and maximum dam-
age amount must be derived from VNK information. There-
fore, we first calculated the weighted upscaling and down-
scaling factors using the available information for dyke ring
areas 7, 14 and 36, which were used to derive the same infor-
mation for the other dyke ring areas on a proportional basis.

max(AVV ) = UF · E(exceedancedamage) · · · · · · · · · · · · , (B1)

min(AVV ) = DF · E(exceedancedamage) · · · · · · · · · · · · , (B2)
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Table A1. The flood risk estimates from the VNK and AVV projects that were used as input data for the Bayesian model.

Dyke ring Dyke failure VNK expected damage AVV expected damage
area number Return period AVV in millions ofC in millions of C

1 2000 114 114
2 2000 500 381
3 2000 254 254
4 2000 25 25
5 4000 2000 2918
6 4000 400 761
7 4000 2000 2665
8 4000 7500 8882
9 1250 5300 3362
10 2000 1200 1903
11 2000 1200 1523
12 4000 1000 3933
13 10 000 2900 4568
14 10 000 18 500 23 600
15 2000 5000 6471
16 2000 9500 27026
17 4000 8000 12 815
18 10 000 634 634
19 10 000 1776 1776
20 4000 9000 11 420
21 2000 4000 4060
22 2000 9000 11 420
23 2000 200 76
24 2000 2400 3045
25 4000 1900 2665
26 4000 2500 3172
27 4000 1300 1649
28 4000 400 508
29 4000 8000 10 151
30 4000 5300 6725
31 4000 1700 3045
32 4000 700 1142
33 4000 19 19
34 2000 3000 7105
35 2000 2000 4441
36 1250 2800 4822
37 1250 4 4
38 1250 1300 3553
39 1250 38 38
40 500 51 51
41 1250 3195 6598
42 1250 850 1269
43 1250 9000 17 510
44 1250 5440 6979
45 1250 1825 6852
46 1250 127 127
47 1250 780 888
48 1250 3360 6217
49 1250 380 508
50 1250 1820 2284
51 1250 275 381
52 1250 1595 2665
53 1250 4400 6852

Source: TAW (2000); Wouters (2005); Aerts et al. (2008).
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where

Upscalingfactor(UF) (B3)

=


(

Max(V nK)
E(VnK)

)
dyke ring7

+

(
Max(V nK)
E(VnK)

)
dyke ring 14

+

(
Max(V nK)
E(VnK)

)
dyke ring 36

3

 · · · ,

Downscalingfactor(DF) (B4)

=


(

Min(V nK)
E(VnK)

)
dyke ring7

+

(
Min(VnK)
E(V nK)

)
dyke ring14

+

(
Min(V nK)
E(VnK)

)
dyke ring36

3

 · · · .

min(X) = m = DF · AVV i · · · · · · · · · · · · , (B5)

max(X) = m = DF · AVV i · · · · · · · · · · · · , (B6)

Appendix C

Estimation of hyper-parameters and sufficient statistics

The estimation of hyper-parameters needs to be conducted in
two steps because the estimation of hyper-parametersa and
b of the prior distribution is based on information aboutθ ,
while θ itself needs to be estimated from the flood damage
datax (from AVV). First, we estimate the weighted average
of θ , and create several data points using flood damage in-

formation from AVV as follows:θ =

{∑n
i=1xi·wi

?
σxi·wi

}2

, where∑n
i=1xi·wi

is the weighted average of our prior beliefs about
flood damage estimated from AVV flood damage data, with∑n

i=1wi = 1, i = 1,2,3, which are the three dyke ring areas
for which detailed damage information (i.e. expected, mini-
mum, and maximum amounts) is available; andσxi·wi

is the
standard deviation of damage estimated from the minimum,
maximum, and expected damage (see Appendix B).

Second, based on the information aboutθ obtained in the
first step, the necessary hyper-parameters can be estimated as

a =

{∑n
i=1 θi·wi

?
σθ

}2
andb = 1.

Appendix D

Deriving the posterior distribution from the Pareto
likelihood and Gamma prior

The posterior density is derived from the prior and likelihood
functions (Arnold, 1998):

p(θ |x) ∝ L(θ |X) · p(θ) . . . . . . . . . . . . , (D1)

wherep(θ) is a Gamma distribution with two parametersα

andβ (see Sect. 2.2 about the prior distribution).
The likelihood function for damage observation is given

by

L(θ |x) = θnxθn
m

∏n

i=1
x−(θ+1)

forx ∈
[
xm;+∞

]
. . . . . . . . . . . . . (D2)

36 
 

Appendix E: The bounded Pareto distribution 

Equation E0 gives the formula of a bounded Pareto distribution (Weisz, 2001), and Figure E1 provides a 

conceptual sketch of such a distribution which is bounded with a minimum and maximum amount of 

flood damage. 
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Figure E1: A conceptual sketch of cumulative bounded distribution function  

 

Flood damage can be simulated by drawing random numbers from Equation E0. Equation 1.7 can be 

written in a shorter form as follows:   
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where,  ̂       are respectively, the shape parameter (obtained from Equation 1.6) and two scale 

parameters (the lower and upper boundaries). Equation E1, which is used to simulate flood damage for 

each of the 53 dyke-ring areas using the bounded Pareto distribution, can be rewritten as:  
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where U is a uniformly distributed random number between 0 and 1.  
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Fig. E1.A conceptual sketch of cumulative bounded distribution
function.

Equation (6) can be obtained by substituting Eqs. (5) and
(D2) in Eq. (D1):

p(θ |x) ∝ θnxθn
m

∏n

i=1
x

−(θ+1)
i

×(θ)a−1 e

(
−

θ
b

)
ba0(a)

. . . . . . . . . . . . , (D3)

≈ p(θ |x)∝
(θ)α−1e

−

(
θ
β

)
βα 0(α)

. . . . . . . . . . . . , (D4)

where α = a + n, and β =
1

1
b
+ln(

∏n
i=1xi)−n·ln(xm)

, and β <

1
(n·ln(xm)−ln(

∏n
i=1xi))

.

Appendix E

The bounded Pareto distribution

Equation (E1) gives the formula of a bounded Pareto dis-
tribution (Weisz and Brown, 2001), and Fig. E1 provides a
conceptual sketch of such a distribution, which is bounded
with a minimum and maximum amount of flood damage.

f (x) =
θ̂ · x θ̂

l · x−(θ̂+1)

1−

(
xl
xu

)θ̂
. . . . . . . . . , (E1)

Flood damage can be simulated by drawing random num-
bers from Eq. (E1). Equation (8) can be written in a shorter
form as follows:

Flooddamage(x) = f −1
(
x; θ̂ , xl, xu

)
. . . . . .

withxl ≤ xi ≤ xu, (E2)

where, θ̂ , xl, xu are respectively, the shape parameter (ob-
tained from Eq. 7) and two scale parameters (the lower and
upper boundaries). Equation (E1), which is used to simulate
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flood damage for each of the 53 dyke ring areas using the
bounded Pareto distribution, can be rewritten as

xi =

(
−

U · x θ̂
u − U · x θ̂

l − x θ̂
u

x θ̂
u · x θ̂

l

)−
1
θ̂

. . . . . . . . . , (E3)

whereU is a uniformly distributed random number between
0 and 1.

Appendix F

Derivation of the AE premium

Given a utility functionu(x), an insured valuew and damage
X, the maximum premium charged by an insurer (π+) can be
approximated as has been described in Kaas et al. (2004).
The maximum insurance premiumπ+ can be derived by
equating the expected utility in the absence of insurance with
the expected utility with insurance:

E [u(w − X)] = [u
(
w − π+

)
] . . . , (F1)

σ 2 and[X] are, respectively, the risk variance and mean of
damageX. Using the first term of Taylor series expansion of
u(x) in w − E[X], we obtain

a. Utility in terms of the premium:

u
(
w − π+

)
≈ u(w − E [X]) +

(
E [X] − π+

)
u

′

(w − E [X]) . . . . . . . . . , (F2)

b. Utility in terms of the damage:

u(w − X) ≈ u(w − E [X]) + (E [X] − X)u
′

(w − E [X])

+
1

2
(E [X] − X)2u

′′

(w − E [X]) (F3)

Taking expectation of both sides of Eqs. (F2) and (F3) and
substituting this in (F1) gives

π+
≈ E [X] −

1

2
σ 2u

′′

(w − E [X])

u
′
(w − E [X])

. . . . . . . . . (F4)

By defining the risk-version coefficientr(w) asr = −
u

′′
(w)

u
′
(w)

,

(F4) can be rewritten as

π+
≈ E [X] +

1

2
σ 2r(w − E [X]) . . . . . . . . . (F5)

The expression (F5) is the same as Eq. (9) if E[X] is substi-
tuted with E[AE]annual.
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