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Abstract. A new methodology for the generation of
flood hazard maps is presented fusing remote sensing and
volunteered geographical data. Water pixels are identified
utilizing a machine learning classification of two Landsat
remote sensing scenes, acquired before and during the
flooding event as well as a digital elevation model paired with
river gage data. A statistical model computes the probability
of flooded areas as a function of the number of adjacent
pixels classified as water. Volunteered data obtained through
Google news, videos and photos are added to modify the
contour regions. It is shown that even a small amount of
volunteered ground data can dramatically improve results.

1 Introduction

The ability to produce accurate and timely flood assessments
is a critical safety tool for flood mitigation and response.
Several methodologies have been developed to assess the
risks associated with flooding by using ground measurements
such as precipitation, water flow or level (e.g.Richter et al.,
1998; Apel et al., 2006). Satellite remote sensing data
have been utilized for flood assessment because of their
high spatial resolution and capacity to provide information
for areas of poor accessibility or lacking in ground
measurements (Smith, 1997). High resolution satellite data
is particularly useful for the spatial analysis of water pixels.
When data before and after a flood event are available, it
is possible to classify land cover change, and thus identify
which areas are flooded.

The Landsat satellite program has been collecting data
about the Earth and its environment since the 1970s, and
has been employed to monitor and mitigate the impacts of

flooding (Sanyal and Lu, 2004). The use of Landsat data
for flood assessment can be highly effective.Frazier and
Page(2000) employed a supervised maximum-likelihood
classification to map water bodies with Landsat Thematic
Mapper (TM), with an overall accuracy of over 97 %.
Although effective for detecting water, the satellite’s orbit
revisit time can constrain data availability making it difficult
to create a comprehensive time series of a flood event. Cloud
and vegetative cover can obscure surface measurements
when utilizing optical data, often resulting in partial coverage
and incomplete flood assessment.

Numerous attempts have been proposed to overcome the
limitations of remote sensing data, often by supplementing
them with additional data to provide a more accurate
and comprehensive flood assessment.Laura et al.(1990),
Townsend and Walsh(1998) have proposed the use of
RADAR remote sensing data for the assessment of floods.
RADAR has the unique advantage of penetrating through
canopy and clouds, and can easily distinguish water bodies
from most other land cover types. However, RADAR data is
not widely available, and usually have limited swaths with
long revisit times. Efforts have been made toward increasing
RADAR’s availability and accessibility.Wang et al.(2002)
have proposed the integration of Landsat TM data with a
digital elevation model (DEM) and river gage data to create
a comprehensive assessment of flood depth under forest and
cloud canopy. Although river gage data is usually sparse and
not universally available, especially in more remote areas;
this methodology proved very robust and is routinely used
for flood assessment. The research described in this paper
is inspired by Wang’s methodology, where Landsat, DEM,
and river gage data are used collectively in an attempt to
improve flood analysis. The main difference consists in the
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fusing methodology employed in this study to integrate the
different data sources.

An emerging and quickly growing data source not
yet fully utilized with respect to natural hazards is
volunteered geographic information (VGI) (Goodchild,
2007). This general class of data, voluntarily contributed and
made available, contain temporal and spatial geographical
information. Data sources include pictures, videos, sounds,
text messages, etc. Due to the spread of the internet to mobile
devices, an unprecedented and massive amount of ground
data have become available, often in real-time. Some data
are geolocated automatically, while others can be geolocated
by analyzing content.

Although volunteered data is often published without
scientific intent, and usually carry little scientific merit,
it is still possible to mine mission critical information.
For example, during hurricane Katrina, geolocated pictures
and videos searchable through Google provided early
emergency response with ground-view information. These
data have been used during major events, with the capture
in near real-time the evolution and impact of major hazards
(De Longueville et al., 2009; Pultar et al., 2009; Heverin and
Zach, 2010; Vieweg et al., 2010; Acar and Muraki, 2011;
Verma et al., 2011; Earle et al., 2012; Tyshchuk et al., 2012).

This work is based on a specific subset of this general
class of data, namely photos, videos, and news. Volunteered
photos about natural hazards have emerged as a data source
during crisis and hazardous events.Liu et al. (2008);
Hyvärinen and Saltikoff(2010); McDougall (2011); Zhang
et al.(2012) show how photos from Flickr have been used to
derive local meteorological information, capture and record
the physical features of an event, and identify and document
flood height.

Recently, volunteered data have been evaluated for
estimating flood inundation depth and for mapping flood
extent (Poser and Dransch, 2010; McDougall, 2011).
These potentially valuable, real-time data have yet to be
regularly applied in large scale disaster relief situations
for multiple reasons, including difficulties of authentication
and confirmation, questions of quality and reliability,
and difficulties associated with harvesting data from
heterogeneous and non-structured sources (Flanagin and
Metzger, 2008; Schlieder and Yanenko, 2010; Tapia et al.,
2011).

This paper proposes a new methodology that leverages
data freely obtained from the internet to improve flood
hazard estimation. Combining the high spatial resolution
and reliability of satellite imagery with the high temporal
resolution of ground data takes advantage of the strengths of
both data types while allowing for mutual data confirmation.

Despite the non-scientific nature of volunteered
information, the integration of these data with traditional
data sources offers an opportunity to include new and
additional information in flood extent mapping. It is
assumed that ground truth data is not available, and therefore

the quantitative analysis of the results discusses the changes
introduced by fusing the different data layers. The novelty
of this study is the development of a methodology that takes
advantage of “citizens as sensors”, as discussed inGoodchild
(2007), to fuse observations culled from social media with
satellite and topographic data for flood assessment.

A case study is presented for the May 2011 flooding of
the Mississippi River. This was one of the worst floods since
the Great Flood of 1927. In Memphis, TN the Mississippi
River crested at 14.6 m, the highest crest since 1937,
which caused the evacuation of approximately 1300 homes.
The methodology was implemented using the R statistical
package1.

2 Data

2.1 Volunteered data

The data used in this study have been downloaded using the
Google search engine through their photos, videos and news
portal. They included sources from Flickr, YouTube, Weather
Underground, Wikipedia, and abc24.com. In particular,
videos (n = 6) and photos (n = 8) from the first two weeks
of May 2011 which documented the flooding were selected.
A list of Memphis road closures on 12 May 2011 (n = 37)
was collected from an on-line news source. Some of the
data contained geolocation information, while others were
geolocated using the Google API.

2.2 Remote sensing data

Full-resolution GeoTIFF Multispectral Landsat ETM+
images for 2 January and 10 May 2011 are used. The
data were downloaded from the USGS Hazards Data
Distribution System (HDDS). Landsat data are comprised
of seven spectral bands: optical (0.45–0.52, 0.52–0.60, 0.63–
0.69 µm), near-IR (0.77–0.90 µm), mid-IR (1.55–1.75, 2.09–
2.35 µm) and thermal-IR (10.40–12.50 µm) with a spatial
resolution of 30 m. The images were georeferenced to UTM
coordinates in ArcGIS and an area encompassing Memphis
and its greater metropolitan area was selected at a scale of
1:145 000.

2.3 Digital elevation model data

A USGS Seamless Data Warehouse DEM with a 30 m
resolution was used in this study. The DEM is georeferenced
to UTM coordinates in ArcGIS and exported at the same
1:145 000 scale as the Landsat data (Fig.1).

2.4 Meteorological data

Meteorological data relative to maximum daily precipitation
rate and total daily precipitation were obtained from the

1www.r-project.org
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Figure 1: Digital Elevation Model for the region of study.

2.5. River Gage Data
River gage data for the Mississippi River in Memphis2

was collected from the US Army Corps of Engineers
RiverGages3 website. The data used for this study4

were collected from gage MS126 located at longitude:
90.07667000 W, latitude: 35.12306000 N. Data were6

selected in elevation (meters) format so they could
effectively be used in conjunction with the DEM.8

Figure 3 shows the height information for MS126
for the entire year 2011. The acquisition time for the10

January and May Landsat data are indicated, and they
correspond, respectively, to the almost minimum and12

maximum water heights for the entire year. The river gage
height information is paired with the DEM to derive the14

approximate flood extent.

3. Methodology16

3.1. Overview
The proposed methodology is based on the data fusion18

of different layers generated from different data sources.
Figure 4 illustrates this integration of multiple layers,20

which may have varying resolutions or sparse data. The
output is shown in the bottom most layer, where a22

flood hazard map is generated. The input consists of
different layers generated using remote sensing data, DEM,24

ground information etc, as normally discussed in the
literature. The novelty of the proposed methodology, is26

the introduction of volunteered data as an additional layer,
and their use in refining the hazard map. Therefore,28

although in this paper we used specific remote sensing and

3www.rivergages.com

Figure 2: Maximum daily precipitation rate and and accumulated
precipitation for the period ranging from 1 April to 31 May 2011.

DEM data, the methodology is not limited by these data30

types and can easily be extended to integrate additional
or different sources. It is crucial for obtaining the32

most accurate measurements that the correct classification
methodology is applied to each data type when creating34

the flood extent layer(s).
The ground data used is not a verified “ground truth”,36

but can be utilized as reliable information to assess the
presence or absence of water in specific locations. It38

compensates for the potential miss classification of remote
sensing data due to resolution, satellite orbit limitation,40

cloud cover, or data acquisition problems. Furthermore,
the volume of the data alone as a function of time can be42

an indication of the geospatial rate of progression of the
event, and can help prioritize response to specific areas.44

The methodology consists of a three step process:

1. Identification of Flood Extent.46

2. Generation of flood hazard maps.
3. Ground data integration.48

3.2. Identification of Flood Extent
Different methodologies can be used to identify the50

extent of water over the geographical region of interest.
The goal of this step is to generate one or more maps52

using the input layers which identify regions where water is
detected. The task is method-independent, and it can use54

any method that is best suited for a particular combination
of data and location.56

In this article, two different methods are employed to
identify flood extent. The first involves the use of remote58

sensing data and machine learning classification, and the
second the use of a DEM and river gage data.60

3.3. Generation of Flood Hazard Maps
After one or more flood extent maps are generated, a62

flood hazard map is created by computing the probability

3

Fig. 1.Digital Elevation Model for the region of study.

NCEP CPC Morphed Precipitation Model (Joyce et al.,
2004) and Weather Underground2 (WU), respectively.
Figure2 shows the NCEP daily precipitation rate (bars) and
the WU accumulated precipitation (solid line) for the period
ranging from 1 April to 31 May 2011. The acquisition time
for the May Landsat data is shown, and it occurs after the
period of intense rainfall during the end of April. These
meteorological data are used to identify appropriate dates
for the remote sensing data. It is desirable that a scene is
selected after a period of intense rainfall in order to identify
the maximum flood extent.

2.5 River gage data

River gage data for the Mississippi River in Memphis
were collected from the US Army Corps of Engineers
RiverGages3 website. The data used for this study
were collected from gage MS126 located at longitude:
90.07667000◦ W, latitude: 35.12306000◦ N. Data were
selected in elevation (m) format so they could effectively be
used in conjunction with the DEM.

Figure 3 shows the height information for MS126 for
the entire year 2011. The acquisition time for the January
and May Landsat data are indicated, and they correspond,
respectively, to the almost minimum and maximum water
heights for the entire year. The river gage height information
is paired with the DEM to derive the approximate flood
extent.

2www.weatherunderground.com
3www.rivergages.com
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Fig. 2. Maximum daily precipitation rate and and accumulated
precipitation for the period ranging from 1 April to 31 May 2011.

Figure 3: Year 2011 water height profile for Mississippi River at
Memphis, TN.

for each pixel to be flooded. This probability map
is generated by applying a kernel density smoothing2

operation over the 2D data, and then by normalizing the
result. Let (w1x1, w1x2, . . . , w1xn) be weighted samples4

drawn from a distribution with an unknown density f , the
goal is to estimate the shape of this function. The general6

kernel density estimator is

f(x) =
1
nh

n∑
i=1

K(
w(x− xi)

h
) (1)8

where K is the kernel function, h is the bandwidth,
and w is a user selected weighting scalar. The weight10

w describes the importance of a particular observation,
or the confidence associated with the flood extent map.12

In this application, using a weighted kernel function
is paramount because ground observations cannot be14

considered “ground truth” proper, since volunteered
geographical data carry intrinsic uncertainties due to their16

generally non-scientific nature. Therefore, using different
w values properly assigns levels of confidence to the various18

observations.
The identification of w weights is problem specific and20

domain dependent, but most importantly, it is dependent
on data quality. The w weights are used to include the22

concept of “significance” of the data in the algorithm
and the analysis. It is assumed when working with24

such heterogeneous data, the information might vary
significantly, and therefore decisions should be made, when26

possible, using better data.
Quantitative measures to define the w weights can be28

established. For example, when using satellite data the
pixels along the center of the swath or those that are cloud30

free, are preferred in the analysis. Most satellite products
have a quality index associated with each pixel that can32

be used to set the appropriate w weight.

For volunteered data, the w weight may vary depending34

on the characteristics of the source. For example, the
volume of the data can be used to assign higher w36

weight to data with dense spatial coverage and numerous
observations. Higher w weight can also be dependent on38

the source itself. For example, observations published by
local news are assumed to have been validated more than40

points volunteered anonymously. Finally, there is also
a subjective component that can be taken into account,42

assigning different w weight to specific users or regions.
The output of the kernel smoothing is a map with44

contour lines illustrating the probability that specific
regions are flooded. The specific methodology used for46

Kernel smoothing and its R implementation used in this
study is described by Wand and Jones (1995).48

3.4. Ground Data Integration
The last step consists of modifying the flood hazard50

map by the integration of the ground data. The nature
of this data is different from the data used to generate52

the previous flood extent maps. It is usually comprised of
sparse point data, identifying the presence or absence of54

flooding in a specific region.
For this study, weight w values are assigned experi-56

mentally. They are first equally assigned and then ad-
justed based on characteristics and confidence in the data58

source. By assuming the machine learning tree induction
and the DEM/river gage approach are equally adept at60

classifying water, their weight w values are kept constant
while values of the volunteered ground data are adjusted.62

The flooded roads documented by local news sources are
assumed more reliable than the sparse, point data of the64

videos and the pictures. Based on this assumption, the
weights were set to 3 for the news data, and to 2 for the66

pictures and videos. Equal w values of 1 were assigned for
both the the DEM and Landsat data.68

4. Results

4.1. Flood Classification Using DEM and River Gage Data70

A DEM and river gage data are used to classify water
pixels for 2 January and 10 May 2011. Pixels in the DEM72

with a height less than or equal to the river gage height are
set as water pixels. Specifically, heights of 56m and 70m74

are used for January and May, respectively. Figure 5a,c
show the areas identified as water for January and May76

dates, imposed over the DEM. The scale information is
the same as in Figure 1.78

4.2. Flood Classification Using Machine Learning Tree
Induction80

Water pixels are identified in both the January and
May Landsat images by using a machine learning tree82

induction classifier. Ripley (2008) describes the general
rule induction methodology and its implementation in the84

R statistical package used in this study.

4

Fig. 3. Year 2011 water height profile for Mississippi River at
Memphis, TN.

3 Methodology

3.1 Overview

The proposed methodology is based on the data fusion
of different layers generated from different data sources.
Figure4 illustrates this integration of multiple layers, which
may have varying resolutions or sparse data. The output is
shown in the bottom most layer, where a flood hazard map
is generated. The input consists of different layers generated
using remote sensing data, DEM, ground information, etc.,
as normally discussed in the literature. The novelty of the
proposed methodology, is the introduction of volunteered
data as an additional layer, and their use in refining the
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Volunteered Data

DEM

Landsat Band 1

Landsat Band 2

Landsat Band 3

Landsat Band 4

Landsat Band 5

Landsat Band 6

Landsat Band 7

Flood Hazard Map

Figure 4: The proposed methodology fuses several layers to generate
a flood hazard map.

For the machine learning classification, 4 control
areas of roughly the same size are identified, 2 over the2

Mississippi river as examples of water pixels and 2 over
different regions with no water pixels as counter-examples.4

Landsat multispectral data relative to these regions are
used as training events by the decision tree classifier. The6

learned tree is then used to classify the remaining water
pixels in the scene. This process is repeated for both the8

January and May scene, and is illustrated in Figure 5b,d.
About 1% of the total number of pixels are used10

as training pixels (events), and the remaining 99% are
classified according to the induction tree generated.12

4.3. Flood Hazard Maps and Ground Data Integration
The methodology described in Section 3.3 is employed14

to generate flood hazard maps using both the DEM and
Landsat pixel classifications. The goal is to assign each16

pixel a probability of being part of the flooded area.
Figure 6a,c show the probability contour lines for January18

and May, respectively.
Additional data with ground information is then20

used to refine the January and May flood hazard maps
(Figure 6b,d). The images show both the location and22

type of the ground information (Video, Photos, News),
and the resulting probabilities when these data are taken24

into account. The data are imposed on both the January
and May hazard maps, although all ground data are26

collected from the May flood. The image generated for
the May flood, (Figure 6d), shows modifications to the28

flood hazard map after the incorporation of the ground
data. The ground data are also incorporated with the30

Januray (non-flood) image (Figure 6b) to illustrate how
a preliminary hazard map could be generated if current32

satellite data are not available. In both instances, the
addition of supplemental information in the form of34

volunteered ground data alters the flood map by expanding
the area of possible inundation and by adjusting pixel36

values.
The pixel classifications are summarized in Table 1 and38

by a histogram in Figure 7. As expected, when generally
comparing flood versus non-flood scenes as in Figure 6a,c,40

more pixels have a higher probability (60-100%) of being
flooded and less pixels have a lower probability (0-40%) of42

being flooded in the May (flooded) image as compared to
the January (non-flooded) image.44

When the ground data are incorporated into the
hazard maps (Figure 6b,d), a spatial analysis shows46

noteworthy changes. The incorporation of ground data
yields enhancements to the May flood hazard map48

(Figure 6d) which are evident by the progression of
contour lines and reclassifications of pixels. Higher50

value contour lines, indicating a greater probability of
a region being flooded, progress toward the northeast,52

where the majority of ground information are located.
Examining the differences between the two May scenes54

in Table 1, the percentage of pixels classified as having a
low probability (0 - 20%) of being flooded as well as the56

pixels classified as having a high probability (80-100%)
of flooding decreases or increases 6 percentage points,58

respectively, after the incorporation of ground data. These
changes illustrate that although both the DEM/river60

gage and Landsat classification techniques can be highly
accurate in identifying flooded areas, the addition of real-62

time on the ground data, verifying the presence of water
in a specific area, can augment an inundation map.64

Applying the layer of ground data to the January
Hazard Map(Figure 6b) illustrates how a small amount66

of real-time volunteered ground data could be integrated
with an historical image to identify possible flooded68

regions. The number of non-water pixels (0-20%) is
reduced by 7 percentage points and reclassified to higher70

probability classes (Table 1).
Figure 6b,d shows while volunteered ground data does72

modify the flood hazard maps, the amount of modification
is limited by the spatial distribution of the ground data.74

The evolution of the contour lines, or areas of change, in
both images are restricted to regions where the volunteered76

data are located. This illustrates while the incorporation
of volunteered ground data does affect a change in both78

flood hazard maps, the areas of change are controlled by
the quantity and distribution of the volunteered data.80

5

Fig. 4. The proposed methodology fuses several layers to generate
a flood hazard map.

hazard map. Therefore, although in this paper we used
specific remote sensing and DEM data, the methodology is
not limited by these data types and can easily be extended
to integrate additional or different sources. It is crucial for
obtaining the most accurate measurements that the correct
classification methodology is applied to each data type when
creating the flood extent layer(s).

The ground data used is not a verified “ground truth”, but
can be utilized as reliable information to assess the presence
or absence of water in specific locations. It compensates
for the potential misclassification of remote sensing data
due to resolution, satellite orbit limitation, cloud cover, or
data acquisition problems. Furthermore, the volume of the
data alone as a function of time can be an indication of
the geospatial rate of progression of the event, and can help
prioritize response to specific areas.

The methodology consists of a three step process:

1. Identification of flood extent.

2. Generation of flood hazard maps.

3. Ground data integration.

3.2 Identification of flood extent

Different methodologies can be used to identify the extent
of water over the geographical region of interest. The goal
of this step is to generate one or more maps using the input

layers which identify regions where water is detected. The
task is method independent, and it can use any method that is
best suited for a particular combination of data and location.

In this article, two different methods are employed to
identify flood extent. The first involves the use of remote
sensing data and machine learning classification, and the
second involves the use of a DEM and river gage data.

3.3 Generation of flood hazard maps

After one or more flood extent maps are generated, a flood
hazard map is created by computing the probability for
each pixel to be flooded. This probability map is generated
by applying a kernel density smoothing operation over
the 2-D data, and then by normalizing the result. Let
(w1x1,w1x2, . . . ,w1xn) be weighted samples drawn from
a distribution with an unknown densityf , the goal is to
estimate the shape of this function. The general kernel
density estimator is

f (x) =
1

nh

n∑
i=1

K

(
w(x − xi)

h

)
, (1)

whereK is the kernel function,h is the bandwidth, andw
is a user selected weighting scalar. The weightw describes
the importance of a particular observation, or the confidence
associated with the flood extent map. In this application,
using a weighted kernel function is paramount because
ground observations cannot be considered “ground truth”
proper, since volunteered geographical data carry intrinsic
uncertainties due to their generally non-scientific nature.
Therefore, using different values ofw properly assigns levels
of confidence to the various observations.

The identification of weightw is problem specific and
domain dependent, but most importantly, it is dependent on
data quality. A weight is used to include the concept of
“significance” of the data in the algorithm and the analysis. It
is assumed when working with such heterogeneous data, the
information might vary significantly, and therefore decisions
should be made, when possible, using better data.

Quantitative measures to define the weight can be
established. For example, when using satellite data the pixels
along the center of the swath or those that are cloud free
are preferred in the analysis. Most satellite products have a
quality index associated with each pixel that can be used to
set the appropriate weight.

For volunteered data, the weight may vary depending on
the characteristics of the source. For example, the volume
of the data can be used to assign higher weight to data
with dense spatial coverage and numerous observations.
Higher weight can also be dependent on the source itself.
For example, observations published by local news are
assumed to have been validated more than points volunteered
anonymously. Finally, there is also a subjective component
that can be taken into account, assigning different weight to
specific users or regions.
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The output of the kernel smoothing is a map with
contour lines illustrating the probability that specific regions
are flooded. The specific methodology used for Kernel
smoothing and its R implementation used in this study are
described byWand and Jones(1995).

3.4 Ground data integration

The last step consists of modifying the flood hazard map by
the integration of the ground data. The nature of this data is
different from the data used to generate the previous flood
extent maps. It is usually comprised of sparse point data,
identifying the presence or absence of flooding in a specific
region.

For this study, weight values are assigned experimentally.
They are first equally assigned and then adjusted based
on characteristics and confidence in the data source. By
assuming the machine learning tree induction and the
DEM/river gage approach are equally adept at classifying
water, their weight values are kept constant while values of
the volunteered ground data are adjusted. The flooded roads
documented by local news sources are assumed more reliable
than the sparse, point data of the videos and the pictures.
Based on this assumption, the weights were set to 3 for the
news data, and to 2 for the pictures and videos. Equal values
of 1 were assigned for both the DEM and Landsat data.

4 Results

4.1 Flood classification using DEM and river gage data

A DEM and river gage data are used to classify water pixels
for 2 January and 10 May 2011. Pixels in the DEM with
a height less than or equal to the river gage height are set
as water pixels. Specifically, heights of 56 m and 70 m are
used for January and May, respectively. Figure5a, c show the
areas identified as water for January and May dates, imposed
over the DEM. The scale information is the same as in Fig.1.

4.2 Flood classification using machine learning tree
induction

Water pixels are identified in both the January and May
Landsat images by using a machine learning tree induction
classifier.Ripley (2008) describes the general rule induction
methodology and its implementation in the R statistical
package used in this study.

For the machine learning classification, 4 control areas of
roughly the same size are identified, 2 over the Mississippi
river as examples of water pixels and 2 over different
regions with no water pixels as counter-examples. Landsat
multispectral data relative to these regions are used as
training events by the decision tree classifier. The learned
tree is then used to classify the remaining water pixels in the
scene. This process is repeated for both the January and May
scene, and is illustrated in Fig.5b, d.

About 1 % of the total number of pixels are used as
training pixels (events), and the remaining 99 % are classified
according to the induction tree generated.

4.3 Flood hazard maps and ground data integration

The methodology described in Sect. 3.3 is employed to
generate flood hazard maps using both the DEM and Landsat
pixel classifications. The goal is to assign each pixel a
probability of being part of the flooded area. Figure6a, c
show the probability contour lines for January and May,
respectively.

Additional data with ground information is then used to
refine the January and May flood hazard maps (Fig.6b, d).
The images show both the location and type of the
ground information (video, photos, news), and the resulting
probabilities when these data are taken into account. The
data are imposed on both the January and May hazard maps,
although all ground data are collected from the May flood.
The image generated for the May flood, (Fig.6d), shows
modifications to the flood hazard map after the incorporation
of the ground data. The ground data are also incorporated
with the January (non-flood) image (Fig.6b) to illustrate
how a preliminary hazard map could be generated if current
satellite data are not available. In both instances, the addition
of supplemental information in the form of volunteered
ground data alters the flood map by expanding the area of
possible inundation and by adjusting pixel values.

The pixel classifications are summarized in Table1 and
by a histogram in Fig.7. As expected, when generally
comparing flood versus non-flood scenes as in Fig.6a, c,
more pixels have a higher probability (60–100 %) of being
flooded and less pixels have a lower probability (0–40 %) of
being flooded in the May (flooded) image as compared to the
January (non-flooded) image.

When the ground data are incorporated into the
hazard maps (Fig.6b, d), a spatial analysis shows
noteworthy changes. The incorporation of ground data yields
enhancements to the May flood hazard map (Fig.6d)
which are evident by the progression of contour lines
and reclassifications of pixels. Higher value contour lines,
indicating a greater probability of a region being flooded,
progress toward the northeast, where the majority of ground
information are located. Examining the differences between
the two May scenes in Table1, the percentage of pixels
classified as having a low probability (0–20 %) of being
flooded as well as the pixels classified as having a high
probability (80–100 %) of flooding decreases or increases
6 percentage points, respectively, after the incorporation of
ground data. These changes illustrate that although both the
DEM/river gage and Landsat classification techniques can be
highly accurate in identifying flooded areas, the addition of
real-time on the ground data, verifying the presence of water
in a specific area, can augment an inundation map.
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Table 1.Number of pixels classified as water.

P(w) Jan Jan + Ground May May + Ground

0–20 % 126 567 (51 %) 108 932 (44 %) 114 104 (46 %) 99 368 (40 %)
20–40 % 53 718 (21 %) 57 475 (23 %) 40 190 (16 %) 30 373 (12 %)
40–60 % 21 136 (08 %) 27 601 (11 %) 21 235 (08 %) 26 997 (11 %)
60–80 % 12 660 (05 %) 18 969 (08 %) 23 260 (09 %) 29 368 (12 %)

80–100 % 35 919 (14 %) 37 023 (15 %) 51 211 (20 %) 63 894 (26 %)

(a) Water Classification using DEM for Jan 2011 (b) Water Classification using Landsat for Jan 2011

(c) Water Classification using DEM for May 2011 (d) Water Classification using Landsat for May 2011

Fig. 5.Water pixel classification using the DEM (a andc) and Landsat (b andd) and for January (top) and May (bottom) data. The background
(b andd) is from Landsat band 3.
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(a) DEM + Landsat Jan 2011 (b) DEM + Landsat + Ground Jan 2011

(c) DEM + Landsat May 2011 (d) DEM + Landsat + Ground May 2011

Fig. 6. Flood hazard map indicating the probability of flood in percentage using DEM, Landsat, and ground data for January 2011 (a andb)
and for May 2011 (c andd).

Applying the layer of ground data to the January Hazard
Map (Fig. 6b) illustrates how a small amount of real-
time volunteered ground data could be integrated with
an historical image to identify possible flooded regions.
The number of non-water pixels (0–20 %) is reduced by
7 percentage points and reclassified to higher probability
classes (Table1).

Figure 6b, d show while volunteered ground data does
modify the flood hazard maps, the amount of modification
is limited by the spatial distribution of the ground data.
The evolution of the contour lines, or areas of change, in
both images are restricted to regions where the volunteered
data are located. This illustrates while the incorporation of
volunteered ground data does affect a change in both flood
hazard maps, the areas of change are controlled by the
quantity and distribution of the volunteered data.
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P(w) Jan Jan+Ground May May+Ground

0-20% 126567 (51%) 108932 (44%) 114104 (46%) 99368 (40%)
20-40% 53718 (21%) 57475 (23%) 40190 (16%) 30373 (12%)
40-60% 21136 (08%) 27601 (11%) 21235 (08%) 26997 (11%)
60-80% 12660 (05%) 18969 (08%) 23260 (09%) 29368 (12%)
80-100% 35919 (14%) 37023 (15%) 51211 (20%) 63894 (26%)

Table 1: Number of pixels classified as water.

Figure 7: Number of pixels classified as water.

5. Conclusions

This paper presents a new methodology to fuse2

volunteered geographical data with remote sensing and
DEM data for the creation of hazard maps. It is shown4

that even a small amount of ground data points can change
the flood assessment when compared to satellite and DEM6

data alone. The spatial distribution of the volunteered
data limits the areas where change is detected.8

The methodology is particularly useful when satellite
data is limited or of poor quality. Additionally, the ground10

data can add a time component which can help determine
the change occurring between remote sensing observations.12
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Fig. 7.Number of pixels classified as water.

5 Conclusions

This paper presents a new methodology fusing volunteered
geographical data with remote sensing and DEM data for the
creation of hazard maps. It is shown that even a small amount
of ground data points can change the flood assessment when
compared to satellite and DEM data alone. The spatial
distribution of the volunteered data limits the areas where
change is detected.

The methodology is particularly useful when satellite data
is limited or of poor quality. Additionally, the ground data
can add a time component which can help determine the
change occurring between remote sensing observations.
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