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Abstract. Mediterranean catchments in southern France arel  Introduction
threatened by potentially devastating fast floods which are
difficult to anticipate. In order to improve the skill of rainfall- Mediterranean catchments in southern France are exposed to
runoff models in predicting such flash floods, hydrologists intense rain events that may result in devastating flash floods
use data assimilation techniques to provide real-time updatesuch as the 2002 event in the Gard Department or that of
of the model using observational data. This approach seekthe Aude Department in 1999 (Gaume et al., 2009). In or-
to reduce the uncertainties present in different componentsler to better forecast these events, hydrologists may look to
of the hydrological model (forcing, parameters or state vari-rainfall-runoff models. These may be either physically based,
ables) in order to minimize the error in simulated dischargeslike MARINE (Borrell-Estupina et al., 2005) or CASC2D
This article presents a data assimilation procedure, the begO’Donnel, 2002), conceptual, reservoir-based (Kobold and
linear unbiased estimator (BLUE), used with the goal of Kay, 2004; Bailly-Comte et al., 2012; Tramblay et al., 2010;
improving the peak discharge predictions generated by afFleury et al., 2007) or “black box” type (Toukourou et al.,
event-based hydrological model Soil Conservation Service2009; Piotrowski et al., 2006). All these models are subject
lag and route (SCS-LR). For a given prediction date, selectedo a number of uncertainties tied either to their structure,
model inputs are corrected by assimilating discharge data obwhich implies a simplification of actual physical processes,
served at the basin outlet. This study is conducted on the Leor to the dataset used for external forcing or the calibration
Mediterranean basin in southern France. The key objectivesf parameters.
of this article are (i) to select the parameter(s) which allow A data assimilation procedure can be applied in order take
for the most efficient and reliable correction of the simulatedinto account such uncertainties. Within the framework of in-
discharges, (ii) to demonstrate the impact of the correctiorverse problem theory (Tarantola, 2004), this approach is in-
of the initial condition upon simulated discharges, and (iii) tended to combine two types of information — one coming
to identify and understand conditions in which this techniquefrom observations and the other from a numerical model —in
fails to improve the forecast skill. The correction of the ini- order to propose an improved estimation of the system state
tial moisture deficit of the soil reservoir proves to be the most(Bouttier and Courtier, 1999). First introduced in meteorol-
efficient control parameter for adjusting the peak dischargeogy (Daley, 1991) and oceanography (Ghil and Malanotte-
Using data assimilation, this correction leads to an averagdRizzoli, 1991), data assimilation techniques have become
of 12 % improvement in the flood peak magnitude forecastmore widespread in the geosciences, following the increased
in 75 % of cases. The investigation of the other 25 % of casesvailability of remote sensing data (McLaughlin, 2002; Re-
points out a number of precautions for the appropriate use oichle, 2008), as well as in hydrogeology (De Marsily et al.,
this data assimilation procedure. 1999) or hydraulics (Malaterre et al., 2010; Nelly et al., 2010;
Ricci et al., 2011). In hydrology, assimilation techniques are
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typically employed in flood forecasting and are referred to2 Model and data

as updating techniques. These techniques seek to correct the

components of a hydrological model (forcing, parameters,2.1 The hydrological model

state variables, or discharges) in order to improve the quality ) ) ) ) ] )

of discharge predictions (Refsgaard, 1997) as observational "€ Simulation of discharges for this study is performed with

data become available. The most widely used techniques ré?? €vent-based, distributed, parsimonious rainfall-runoff
main those relying on autoregressive (AR) models in ordefMdel. It has been implemented on a set of regular and
to correct the simulated discharge output by the model (Yangndependent grid cells (water does not flow between grid
and Michel, 2000; Xiong and O’Connor, 2002). This type cells, but rat_her is trapsported dlrectly to .the ou_tlet). This

of correction is based on the structure of the error betweerf"0del combines a Soil Conservation Service derived (SCS-

observed and simulated discharges but does not take int
account the source of uncertainty. Certain techniques focull

on

derived) runoff function with a “lag-and-route” routing func-
ion. SCS-LR model was presented in Coustau et al. (2012),

on correcting input variables (such as precipitations) (Khal@nd will be briefly summarized as follows:

and Nachtnebel, 2008), which often constitute the primary
source of uncertainty in operational forecasting. However,
this approach has only been infrequently used (Moore et al.,

2005). Other techniques emphasize correcting the hydrologi- ii.

cal model’s state variables either “empirically” (Weisse et al.,
2003) or more formally via a best linear unbiased estimator ii.
(BLUE) (Thirel et al., 2010) or a Kalman filter algorithm (Da
Ros and Borga, 1997; Aubert et al., 2003). In Moradhkani et
al. (2005) and Maradhkani and Hsu (2005) it was shown that

a dual state—parameter estimation using either an ensemble
Kalman filter or a particle filter properly accounted for uncer-
tainties in model inputs, outputs and parameters. Variational
techniques have also been used to correct hydrological model
parameters (Yang and Michel, 2000; Béssiet al., 2007).

The study presented here is aimed at improving, through
use of data assimilation, the discharge forecast produced by
an event-based hydrological model. Starting with the model
state for a given date, the procedure will seek to correct
model parameters using existing observations, in this case
discharges recorded at the basin outlet. This correction will
be calculated using a simplified Kalman filter algorithm,
known as best linear unbiased estimator (BLUE). The study
is conducted on a Mediterranean basin located in the South
of France. The objectives of this article are threefold: (i) to
select the parameter(s) that offer the most efficient correction
of the peak discharge to be forecasted; (ii) to demonstrate the
impact of the correction of the initial moisture deficit of the
soil reservoir on simulated discharges at the catchment outlet
using data assimilation; and (iii) to identify and understand
situations when the assimilation procedure leads to a degra-
dation of the simulated discharge. Section 2 presents the hy-

drological model as well as the assimilation method and hy- jy.

drological dataset used to simulate the flood events on which
the procedure is tested. Section 3 offers a sensitivity study of
model parameters, along with the results of the data assimila-
tion procedure implemented to correct the parameters, which
have the greatest impact on model results. Section 4 provides
an analysis of cases where the assimilation method was not
effective and proposes a number of precautions to be applied
when using this technique.
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. The catchment is divided into a mesh of regular and in-

dependent grid cells.

The rainfall is interpolated in each cell at each time step.

The total runoff is determined by using two reservoirs
(cf. Fig. 1 in Coustau et al., 2012) — both empty at the
beginning of the event. The cumulated rainfall reservoir
has an infinite capacity and determines the direct runoff
using a runoff coefficient derived from the SCS runoff
model, as used by Gaume et al. (2004):

0, if P(t) <0.28
C@) = (P(z)—ozs) (2 _ P(t)—O.ZS)’ if P(1) > 0.25. 1)

P(1)+0.85 P(1)+0.85

where P(r) denotes the cumulated rainfall at time
and S the runoff parameter. Th& parameter denotes
the maximal water storage capacity at the beginning of
the event. It acts as the initial condition of the event-
based model. The cumulated rainfall reservoir has a dis-
charge in order to take into account the reduction of
the runoff coefficient during pauses in the rainfall (ds
parameter) in the case of multi-peak events. An addi-
tional subsurface runoff is also considered, as a fraction
of the discharge of the cumulative infiltration reservoir
(w parameter). Because the runoff coefficient is related
to the cumulated rainfall (Eqg. 1) and, from a physical
point of view, to the cumulated infiltration reservoir,
the discharge coefficients, ds, of the two reservoirs are
the same in order to release the reservoirs in the same
proportions.

The runoff from a cell is then routed through the catch-
ment and produces an elementary hydrograph to the out-
let (cf. Fig. 2 in Coustau et al., 2012):

Xp(—t - (tl(;‘i‘ Tm)
m

iy (to) e

m

On(t) = )~A, @)
wherei, (ro) denotes the runoff from the cell at the time
to, A the catchment area, and

I

Ky = Ko~ Ty, With T,y = 7.

®)
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Table 1. Selected flood events @ Hp: discharge peak with an hourly time step3(sT1); rt: response time (the delay between rainfall peak
and discharge peak) (hy;: average cumulative rainfall (mm) calculated according to the Thiessen methpdhe value (mm) of the initial
condition after calibration; Nagh: the Nash value after calibration; Hy2the value of the Hu2 index used to initialize the initial condition

of the model. The values shown in bold correspond to simulations run with rainfall radar data.

Start/UTC Duration QHp P Number  Scg Nashg Hu2p;

(h)y @mis™ (mm) of peaks (mm) (%)
18 Oct 1994, 06:00 206 124 3 212 2 200 0.66 62.04
27 Oct 1994, 06:00 365 99.8 4 170 2 121 0.60 71.41
17 Dec 1996, 06:00 275 139 2 190 1 146 0.82 66.81
16 Dec 1997, 06:00 258 122 5 184 1 150 0.68 61.97
16 Jan 2001, 06:00 200 93.1 8 94 1 101 0.84 70.67
9 Oct 2001, 06:00 128 238 4 102 1 139 0.94 64.71
8 Sep 2002, 06:00 100 103 6 133 1 238 0.90 58.98
9 Dec 2002, 06:00 283 376 2 322 4 95 0.88 69.33
22 Sep 2003, 06:00 81 915 3 117 1 254 0.90 51.87
29 Nov 2003, 06:00 262 424 3 273 1 101 0.89 75.54
5 Sep 2005, 06:00 57 467 4 357 2 246 0.81 48.66
19 Oct 2008, 06:00 144 109 4 205 2 392 0.88 48.39

wherel,,is the distance between the celland the out- Radar rainfall data were used to simulate the events taking

let, V andKg are 2 routing parameters respectively act- place on October 2001, September 2003, September 2005
ing as the routing speed and the diffusion coefficient. and October 2008. Ground rainfall data were used for all
other events. Ground precipitation data are provided with an

v. The sum of the elementary hydrographs from all the ho 11y time step and recorded using 4 rain gauges — one lo-
cells of the catchment, at all the time steps of the eveniy,ied on the topographic basin and the other three within a
provides the complete hydrograph of the flood. radius of 5 to 10 km outside the basin (cf. Fig. 3 in Coustau

The complete hydrological model features a total of 5 pa_et aI.., 2012). Grognd precipitation data were interpolated ac-
rameterss, w, ds,V and Ko, which remain uniform over all cording to the Thiessen polygon method. Between 1994 and

catchment grid cells. This model was implemented using the?000; only the Prades rain gauge on the topographic basin de-
ATHYS modelling platform @www.athys-soft.ory termined the rainfall. Since 2000 the Saint-Martin and Mont-

pellier rain gauges have allowed for a better representation
of the rainfall, notably in the west and the south of the catch-
ment. The Mauguio rain gauge is used when a data gap oc-
This study was conducted on the Lez Mediterranean catcheurs for one of the other three rain gauges.
ment in southern France; this catchment covers an area of ' . o
114 kn? and is located upstream of the city of Montpellier. 2.3 Model calibration and initialization
Floods primarily occur during autumn and winter and are )
caused by intense rainfall events (sometimes reaching severaf'€ five parametersS( w, ds, v and Ko) of the model
hundreds of mm within a 24-h period), characterized by shortVe"® calibrated using 21 events (including the 12 events of
response times (on the order of 2 to 5 h) with high peak dis-Table 1) observed between 1994 and _2008 (Coustau et al.,
charge (up to 480 As~1 in September 2005). For this study 2012). These parameters are first calibrated separately for
12 flood events are selected between 1994 and 2008. All ofach event. Next, a global calibration procedure, which con-
these events display a peak discharge above®a0fwhich sists on averaging the value of each parameter over the entire
corresponds to a return period of 2 yr or more as displayed irs€t ©f events, was applied for all parameters, excepsfor
Table 1. which represents the initial water deficit at the beginning of

It has been demonstrated that, in the Lez Basin, radar rainth® €vent. Thuss varies from one event to another. The op-
fall at the beginning of autumn is of higher quality than at the imal S value (denotedca in Table 1) is determined for each
end of autumn or during winter. Since the basin is located afVeNt Py maximizing the Nash criterion
a distance of approximately 60 km from the radar station, the S (Qsim(®) — O ()2
limited vertical extension of clouds coupled with the low el- Nash= 1 — Sim Zobst

Y Qobs(t) — Qob9)?

evation of the 0C isotherm during winter results in a poor
quality of the measurements (Coustau et al., 2012). where Qsim(1) are the simulated discharge@gps(7) the
observed discharges an@qps the average of observed

2.2 Available data

(4)
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Table 2. Values of the parameteisand V before (background) and after (analysis) correction with discharge assimilation and number of
data assimilatedsb, vb: background value$?, V& analysis value.

Peak Number of Background Correction  Correction Correction on
assimilated values of onVv bothS andV
data points ~ SP vb s ya sa  ya

(mm) (msd (mm) (ms1H  (mm) (ms

Oct 94 Peak 1 9 184 1.30 178 1.23 176 121

Oct 94 Peak 2 24 184 1.30 186 1.29 185 1.29

Nov 94 Peak 1 0 101 1.30 101 1.30 101 1.30

Nov 94 Peak 2 20 101 1.30 131 1.25 131 1.33

Nov 94 Peak 3 34 101 1.30 130 1.22 130 1.28

Dec 9 Peak 12 141 1.30 145 1.26 145 1.29

Dec 97 Peak 20 184 1.30 172 1.28 165 1.16

Jan 01 Peak 7 107 1.30 109 1.30 109 1.31

Oct 01 Peak 1 160 1.30 131 1.44 128 151

Sep 02 Peak 5 211 1.30 243 1.13 225 1.17

Dec 02 Peak 1 5 119 1.30 121 1.29 121 1.29

Dec 02 Peak 2 26 119 1.30 113 1.33 114 1.31

Dec 02 Peak 3 37 119 1.30 91 1.64 98 1.56

Dec 02 Peak 4 91 119 1.30 88 1.31 88 1.29

Sep 03 Peak 1 273 1.30 266 1.31 266 1.31

Dec 03 Peak 41 64 1.30 111 0.97 91 111

Sep 05 Peak 1 5 302 1.30 210 1.84 224 1.39

Sep 05 Peak 2 10 302 1.30 205 1.52 199 1.25

Oct 08 Peak 1 0 304 1.30 304 1.30 304 1.30

Oct 08 Peak 2 8 304 1.30 346 1.35 355 1.45

discharges. For the 12 events selected for data assimile&8 Data assimilation

tion experiments, the Nash values (denoted Nash Ta-

ble 1), obtained witl$c5 and the batch-calibrated parameters 3.1  The data assimilation method

(ds=0.28day?; w=101mm;V=1.3ms?!; andKo=0.3), o o _

range between 0.60 and 0.94 with a median value of 0.86The data assmllatlc_)n method u_sed in thls_ study is the best
Thus, using an optimal initialization, the model is shown to Ilnealr.unblased estimator algorithm. In this case, the mo;t
satisfactorily reproduce the 12 selected flood events. HowSeNsitive parameters of the model are corrected using the dis-
ever, theSc value cannot be determined while the event is f:harge observations f"‘t the _catch_ment outlet. The correction
going on and, in an operational situation, tealue has to is calculated over a single t|n"_|e wm_dow and not cycl_ed. Be-
be set with external predictors of the initial wetness state ofc@use of the non-linear relationship between the simulated
the basin. Thesea values are correlated with various predic- discharges and the most sensitive parameters of the hydro-
tors including the root-layer humidity output by the Safran- 109ical model, an outer loop was necessary to overcome this
Isba-Modcou (SIM) distributed hydrometeorological model difficulty. S _

(Habets et al., 2008; Quintana Ségt al., 2009) (denoted ~_ 1he variational assimilation method (Bouttier and
Hu2ni in Table 1) and the piezometric level, both taken at Court_|er, 1999) cons_lsts of minimizing the cost fun.ctlon,
the beginning of the event. Linear regressions established bel (¥) in order to obtain the optimal values of the variables
tween these predictors arsdy are used to estimate a value Stored in a control vectox;:

of §, denotedSreg, and allow for the initialization of the 1 N o1 b

event-based model in an operational framework (Coustau e{ *) = 3 (x -X ) B (x -X )

al., 2012). For exampleSreg is calculated from Hug ac- 1, ., T 1/ 0

cording to the following equatiorSreq= —8.84 HuZyi + 732 +3 (= H@®) R (¥ - H). ®)
(R2=0.69). The values 0freg used for the model initializa- ] ]

tion are presented in Table 2. They correspond to the back] he control vector, length, contains the set of variables to

ground values® used by the data assimilation method. be optimi.zed. These variables may correspond to the forcing,
state variables, or model parametex8.is the background

vector of lengthn, which contains the a priori values of the
control vector variablesy® is a vector of lengthp, which

Nat. Hazards Earth Syst. Sci., 13, 58396, 2013 www.nat-hazards-earth-syst-sci.net/13/583/2013/
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contains thep observations to be assimilated. The cost func- 1

tion J(x) quantifies both the distance between the controlK| = H] R (B_l +H/ R_lHI) (10)
vectorx and the backgrouna®, and the distance between o b

the control vector projected in the observation space and 41 =¥~ — [H (x1) + Hi (x - xl)]~ (11)
the observationg®, weighted respectively by the error co- ) ) _

variance matrice® andR. B, with a size ofn x n, andR,  The error covariance matrix of? is expressed as

of size p x p, are both symmetric positive definite matrices Al = (I — K|H)) B. (12)

containing the covariances of the error in the backgratthd

and in the observationg’, respectively. The errors it and  \when calculating the BLUE analysisf, the incremental ap-

y° are assumed to be independent, Gaussian and unb""‘seﬁjroximationJi”c(ax) is minimized rather than the true cost
H is the observation operator: it maps the control space Ont‘?unction,](x). In order to approximate the minimum of the
the observation space and is usually non-linear. As a consez o cost function, as done so with the 3D-VAR approach,
quence, the cost functiof(x) is not quadratic and hence dif- 5 outer loop is applied to the BLUE algorithm. This loop
ficult to.mmlmlze.' To overcome this difficulty, (x) |slocglly iteratively updates the linearization point value by setting
approximated using an incremental approach (Courtier et alyg nackground equal to the analysis of the previous itera-
1994) which leads to a quadratic cost functigifi*(dx) that g (y, =x?). During the first iteration of this outer loop,

Is easier to minimize: the linearization step is performed around the background
x1=xP, whereas during subsequent iterations the lineariza-
tion occurs around the analysis from the previous iteration.
This approach accounts for some of the non-linearities in the
observation operatoH .

, 1
J"C (%) = 5 sx'B Lox

+% <y° — H(x) — H ((Sx + xP — x|>)T

-1 b
R (J’O — H(x) - H (5" +x" - x|)), (6) 3.2 sensitivity study to model parameters
wheresx =x —xP andHj is derived from the linearization The assimilation procedure uses discharge observations at
of the observation operator about a reference vegio, the catchment outlet in order to correct hydrological model
is approximated here by the forward finite difference for a parameters after the calibration and initialization steps. A
small perturbatiosx = (..., dx;, ...) such that itg-th column  sensitivity study of simulated discharges to various model pa-

reads rameters was carried out; this study serves to identify those
ol o Lo I parameters which most heavily influence the flood discharge
H ;= > (i + 8, o) - o) (7)  arrival time and magnitude as well as those most suitable for

ax; 8x; correction with the data assimilation algorithm.

The sensitivity study was conducted on the October 2001
event, which is representative of major flood events occurring
in the study catchment (Fig. 1). The observed hydrograph
(blue curve) indicates a single flood peak of approximately
240 s~1. The simplicity of the hydrograph shape makes
' it possible to accurately identify the influence of each model
In order to solvev J"°(sx{) =0 for 6x}, an iterative process parameter on discharges at the outlet. A “free run” (black
that can be applied using a minimizer or the solution can becurve) was integrated with the calibrated parameter values
derived analytically as in the best linear unbiased estimatofiw, ds, V and K, in addition toSyeg= 160 mm, derived from
(BLUE) algorithm. Since the size of the error covariance ma-the linear regression established with the Hu2 indicator. This
tricesB andR is small in the present case, the direct inver- simulation shows an underestimation of the peak flow, which
sion of the BLUE algorithm (Gelb, 1974; Talagrand, 1997; can be explained by various errors: uncertainty in the rainfall
Bouttier and Courtier, 1999, Sect. 4) was chosen to find theestimation, error in the initialization or error in the model
minimum of the cost function/|"(8x). This minimum can  structure. Despite an underestimation of the flood peak, this
be calculated as simulation provides a satisfactory depiction of discharges ob-

served at the outlet with a Nash criterion value of 0.88.

Starting from the free run, five “perturbed” simulations
were conducted by perturbing each of the five parameters,
' one at a time, by +10 % with respect to its calibrated value.

This functionJ}”C(ax) is minimum when its gradient is zero:
vJinC(sx) =B tsx — R7IH,
(y°— Han —Hi(5x + 2 —x1)) = 0. ®)

(9)

whereK is the gain matrix (Eq. 10) (Bouttier and Courtier

x|a: xb+ K d,

1999),d, is the innovation vector (Eq. 14) representing the
difference between the observation vecp8rand the linear

approximation of the control vector in the observation spaceAQ between the free run and each of the 5

H(x))+Hi(x — x)):

www.nat-hazards-earth-syst-sci.net/13/583/2013/

In order to quantify the influence of these parameters on dis-
charges at the catchment outlet, the differences in discharge,
perturbed” sim-
ulations were calculated.
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Fig. 1. Sensitivity tests conducted on parametérand S for the Fig. 2. Observed hydrograph (blue curve), assimilated discharge
October 2001 eveni2qps (blue line) is the observed hydrograph, (blue cross), background discharge with= 160 mm (black curve)
Oret (black line with circles) is the “free run"Qpert is the “per- and analysis discharge wittf =131 mm (red curve) for the Octo-
turbed” simulation done with a +10 % perturbationSofdashed red  ber 2001 event.

line) or V (dashed green line}A Q is the difference between the

“perturbed” simulation and the “free run” fdf (in dashed red line

with circles) orV’ (dashed green line with circles). fr/globc/PALM_WEBY). This software was originally devel-
oped for the implementation of data assimilation in oceanog-
raphy for the MERCATOR project. PALM allows for the
The drainage coefficient, ds, and the parametevhich  coupling of independent code components with a high level
controls the contribution of drainage to delayed flow, exert aof modularity in the data exchanges and treatment while pro-
negligible influence on flood discharges. The discharge dif-viding a straightforward parallelization environment (Fouil-
ferences between the “reference” and “perturbed” rung, loux and Piacentini, 1999; Buis et al., 2006).
lie below 2n¥s1, less than 1% of the peak discharge value  The objective here is to improve flood peak forecasting
in the “free run”. The discharge is also relatively insensitive using a record of past flood events. Observed discharges are
to the Ko parameter as the maximum differeneed) equals  assimilated during an assimilation window (“assimilation pe-
6 m®s~! (approximately 3% of the free run peak discharge). riod”) that extends from the beginning of the event until time
This parameter has a relatively small impact on the slope of, 3h prior to the flood peak (Fig. 2), in order to correct
the hydrograph during the rising and recession limbs. As themodel parameters. This lead time arbitrarily fixed 3h be-
value of parametek o increases the slopes of the hydrograph fore the peak represented a compromise between the use-
flatten. For the transfer velocity, (Fig. 2), the maximum  fulness of the lead time for forecasters and the frequency
AQ equals 47 ris™! (approximately 23% of the free run  of discharge observations available for the data assimilation
peak discharge). This parameter influences the flood peak atechnique. The corrected parameters are then used to inte-
rival time. As the velocityV increases, the flood peak arrives grate the hydrological model over the “assimilation period”
earlier. The sensitivity of the model to paramesgeis also  and beyond, until the end of the event (“forecast period”).
significant (Fig. 2) in that a 10% perturbation in its value During the “forecast period”, the simulated discharges are
causes a maximum perturbation of 28sn* (approx. 12%  calculated with a known future rainfall (observed rainfall is
of the “free run” peak discharge). This parameter mainly ysed to force the model in order to “forecast” a past event).
influences the peak flood intensity. Asgrows larger, the  This choice allowed for the assessment of the performance of
catchment’s initial moisture deficit is increased, lowering the the data assimilation method without being masked by uncer-
flood peak intensity. This parameter corresponds to the initiatainties in the forecasted rainfall. However, this methodology
catchment wetness state, with respect to which event-basegid not allow us to test the performance of the hydrological
models are known to be highly sensitive (Zehe andsBhl,  model coupled with the data assimilation method in a real-
2004; Berthet et al., 2009). Because simulated discharges afime framework which is beyond the scope of this paper.
most sensitive te§ and V, the data assimilation technique  Following from the results of the sensitivity study, the con-

will focus on correcting these two parameters. trol vectorx = (S, V)T contains the two most influential pa-
rametersS andV . Their a priori values are stored in the back-
3.3 Implementation of the assimilation technique ground vectorx?=(sP, vP)T. sP is given by the linear re-

gression with Hu2 (Sect. 2.2) aiéP is the transfer velocity
The assimilation algorithm (Sect. 3.1) was implemented forobtained by the global calibration over the 21 events. The
use with the hydrological model (Sect. 2.1) using the Open-background vector is used to compute the background sim-
PALM dynamic coupling software (Lagarde, 2000; Lagarde ulated hydrograph. The standard deviation of the errai®in
et al., 2001), developed at CERFACHtp://www.cerfacs.  was fixed at 19 % ofP. This percentage corresponds to the
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http://www.cerfacs.fr/globc/PALM_WEB/
http://www.cerfacs.fr/globc/PALM_WEB/

M. Coustau et al.: Benefits and limitations of data assimilation for discharge forecasting 589

ratio of the average linear regression residuals to the aver- ¢
age of the calibrated values. To estimate this percentage, s
the mean deviation between Sreg and Scal was estimated an
then divided by the mean value of Scal. The background vec-
tor is used to compute the background simulated hydrograph.
The standard deviation of the error & was fixed at 19 % S°
of SP. This percentage corresponds to the ratio of the aver- «
age linear regression residuals to the average of the calibrate: 5
S values. The standard deviation of the erronif was set
to 0.2ms1, which is the standard deviation value obtained
following an event-by-event calibration. The errors$rand

7-

oL

1

VP are assumed to be uncorrelated. In the following exper- % 60 8 100 120 140 160
iments, data assimilation is tested with a control vector that X
contains (i) onlys, (ii) only V or (iii) both S and V. Fig. 3. Cost function/ (x) (black curve) for the October 2001 event

The observations used and stored in the observation vecand its incremental apprOXImatloﬂ%nc(Sx) (blue curve) for the

tor y© correspond to the first observed discharges since first outer loop, and/)"°(sx) (red curve) for the second one. The
the beginning of an event at the catchment outlet. The ery e (respectively red) cross indicates the backgratpd x? for
rors in the observed discharges are also assumed to be Ugke first (respectively second) outer loop, and the circles indicate
correlated, leading to a diagonal matRx The observation  the minima of the functions. The dashed lines represent the tangent
error standard deviation is set to 28811 for discharges  of the incremental approximations in blue for the first outer loop
lying between 20 and 300%s ™! (Sect. 3.4). Observations and in red for the second one.
above 300 s~ are not assimilated due to potentially sig-
nificant error resulting from the extrapolation of the rating
curve. Observations below 2Cs 1 are not assimilated due period (Fig. 2, red curve). Since the analysis parameters are
to significant error in this range since the hydrological modelused to compute the discharge over both the assimilation and
was calibrated using flood discharges. forecast periods, the correction$feads to a monotonic cor-
The observation operatall is the hydrological model rection of the discharge over the flood event. Since the back-
forced by rainfall inputs. Applied t® this operator produces ground discharges are underestimated over the entire event,
arecord of simulated discharges H (x). The computation  the assimilation of one observation allows for an improve-
of the Jacobian matrixd, (associated with the non-linear ment of the entire flood simulation, especially the peak dis-
observation operatoH), using a finite difference scheme, charge. For the background run, the peak discharge was un-
requires several runs of the hydrological model, namely: ~ derestimated by 16 %, whereas after assimilation the peak is
overestimated by 7 %. The error in the flood peak estimation
— One run with the reference parameters was thus reduced by 9% compared to the observed value. If
the difference between the background simulated discharges
and the observations is not monotonic, the correction calcu-
lated by data assimilation is insufficient (when the sign of
the difference is constant) or, worse, leads to a degradation
The dS and & values were chosen to be of the same orderof the discharge simulation (when the sign of the difference
of magnitude as the difference between the background and@hanges during the flood event). This last case is discussed in
the analysis. Furthermore, the hydrological model (H§.  Sect. 4.
remains almost linear over theSdand dv intervals. To Figure 3 provides an illustration of how the outer loop op-
guarantee that the linear assumption is respected, we chegkates. For each iteration of the outer loop, the non-quadratic
that H (S + dS) and its linear approximatiof (S) +HdS are ~ cost functionJ (x) (black curve) is approximated at the ref-
nearly the same. For events where the correction (i.e. the inerence poink; (blue cross for the first iteration, red for the
terval between the background and the analysis parameteiecond) by a quadratic incremental cost functifff (sx)
values) is notable, an outer loop is used. Using the Open{blue curve for the first iteration, red for the second), which
PALM coupler, the computation cost of calculating the Jaco-has the same gradient dgx) at the reference point. The
bian was limited by running these model runs in parallel.  initial approximation Of](x) by Ji"°(sx) is calculated about
When the discharge observation (Fig. 2, blue cross) exthe background:; =xP (blue cross). Next, the BLUE algo-
ceeds the corresponding discharge simulated with the backithm gives the minimumx$ (blue circle) ofJ,"¢(8x). This
ground control vector (Fig. 2, black curve), the correction es-minimum serves as the linearization paint=x{ (red cross)
timated by the data assimilation algorithm tends to decreaseluring the next outer-loop iteration. As seen in Figx$,
the initial deficit of the soil moisture reservoir in order to in- provides a better approximation of the minimum bfx)
crease the analysis discharge simulated over the assimilaticihan the one given by{. In the tests conducted, only five

— An additional run for each perturbed parameter:
x;+ds, 0)7 for the perturbation applied ts, and
x1+0, dv)T for the perturbation applied t@.
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outer-loop iterations were performed due to computation cost As expected, th& correction modifies the flood peak in-
constraints. Nevertheless, this number of iterations still astensity but not the peak arrival time as show in Fig. 4a and d.
sures that the minimum of the incremental cost functionThe assimilation improves the flood peak estimation by an
J\"“(8x) (red and blue circles) converges to the cost func-average of 12 % over 14 of the simulated peaks (events pos-
tion minimum J (x) (black circle). In our case the compu- itive values in Fig. 4a). For 2 peaks (events with no bar in
tational cost constraints with 5 iterations are low (few min- Fig. 4a), there are no observations above 2@m during
utes) in comparison with the observation frequency (1 obserthe assimilation period, thus no data points are assimilated.
vation/h). In the case of a sliding time window, many more For 4 peaks (events with negative values in Fig. 4a), the
model integrations would be necessary and one would wanéssimilation procedure leads to the degradation of the peak

to reduce the number of iterations to three. simulation for reasons that will be discussed in Part 5.
o S The parametel correction has a less pronounced effect
3.4 Efficiency of the data assimilation method on the flood peak intensity (Fig. 4b and e). For 9 of the

. o .20 peaks tested, thé correction improved the peak inten-

To assess the efficiency of the datg ass!mn.atm.n me_thod. ity by 8% on average (negativeE o, in Fig. 4b). For the
forecasting the peak flow, the following criterion is defined: ipar'g peaks, the peak intensity was unchanged following

osim _ (obs the V correction (zeroAEgp in Fig. 4b), and for the last
Egp = p P_|, (13) 2 peaks the correction degraded the quality of the flood peak
Qgps estimation (positiveA E g in Fig. 4b). As expected, the cor-
_ rection of this parameter also modified the flood peak arrival
where ngs is the observed peak discharge, a@f™ the  time (non-zera\ E,p). For 13 of the 20 peaks tested, the peak
simulated peak dischargégpdenotes the relative deviation  arrival time remained unchanged (zexd,, in Fig. 4e). For
with respect to the observed peak discharge; it can be cal? of the peaks, the time offset between the simulated and ob-
culated either before as;similatiorEZp computed with the  served peaks was reduced by 1 h (negativg, in Fig. 4e),

background peak dischar@g) or after (EZ computed with ~ and for the 5 remaining peaks, the offset increased by 1h

the analysis peak discharge?). If AEop=E2 — E2 <0 (positive AE;p in Fig. 4€). The correction oV by assimi-
yoIs peat B op-op 0P = T lating disch t the beginning of the flood tended to de-
then the assimilation procedure has improved the peak dis®®'Nd diScharges at the beginning ot the Tiood tended o de
charge simulation. grade rather than improve the simulated peak arrival time.
The criterionE,, allows for the evaluation of the impact of This is because ro.od discharges at the start of the event cor-
the data assimilation procedure on the peak discharge arrivdfSPond to the arrival of runoff located near the catchment
time and is defined by outlet. The transfer effect is thus limited for these initial dis-
charges, and the difference between simulated and observed
(14) discharges stems from the runoff production. Because it is
’ not the source of uncertainty in this case, correcting a trans-
. . ) , fer function parameter with the initial flood discharges may
obs
V\;Frlnerezp s the observed peak discharge arrival time andjni o ,ce major errors into the discharge forecast. A correc-
" the simulated peak discharge arrival time. This offsettion of the value of the threshold that triggers the direct runoff

can be calculated before assimilatioﬁ,bF( computed using could be more efficient. This threshold has an influence on
the background peak discharge arrival tiffipor after (£3,  the first discharges of the rising limb.

computed using the analysis peak discharge arrival tg)]e CorrectingS and V simultaneously allows for the modi-
If AE,=E2 — EP <0, then the assimilation technique has fication of both the flood peak intensity and arrival time as
p p ’

reduced the time offset between the simulated and observeesented in Fig. 4c and f. For 14 of the 20 peaks, the correc-
tion of bothS andV serves to improve the flood peak estima-

(Sim _ tobs

Ep =t p

peaks. tion by an average of 14 % (negativeF o, in Fig. 4c). For
2 peaks the correction had no impact (z&rB gp in Fig. 4c).
4 Results For 4 peaks th& andV corrections deteriorated the estima-
tion of the peak onset (positiv& E g in Fig. 4c). The flood
4.1 Statistical interpretation of the § and/or V peak arrival timeAE,, was also affected. In the majority of
correction cases (for 5 events out of the 6 with an altered arrival time fol-

lowing assimilation), the time offset between the simulated

The assimilation procedure was applied to 12 flood events, 4 ghserved peaks increased (posith,p in Fig. 4f), as
containing 20 flood peaks in order to correct: (i) param&ter presented in Fig. 4e.

alone, (ii) the transfer velocity, alone, and iii) botfs andV To summarize the results presented in Fig. 4, in more than
simultaneously. Table 2 presents the value of the pa_lrameter§5% of cases, regardless of the corrected parameter, data
§ andV’ before (background value) and after (analysis value),ggimilation improves the estimation of the peak discharge

correction by the data assimilation method. indicated by the negative value ofE gp. Nevertheless, the
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Fig. 4. Histograms that represent the correction efficiency on the estimation of the peak discharge value — higggflansnd(c) — and
on the estimation of the peak discharge arrival time — histog(dinge) and(f) — for respective correction afy vV and bothS andV.

correction ofV on its own or accompanied by ttfecorrec- o8 T T ‘ ]

tion actually hinders simulation quality, increasing the offset o4 . ,

between the simulated and observed peak arrival times. Itis . . . . . |
thus preferable to avoid correctingand to correct alone. 0 S .

4.2 Sensitivity to the ratio of the matrix B to the W °’B ﬁ ﬁ E E mEnl=REn=—=R

matrix R ot LI T T Ly v 1

04l - - 4 - i

The efficiency of the assimilation procedure depends on the 4/ ' i

ratio of the matrixB to the matrixR. The data assimilation osl ¢ ’ |
procedure was applied while varying the observation error oo o1 1 10 2 30 40 5 6 70 8 9 100

standard deviation between 0.01 and 180sm' and keep-
ing the background error standard deviation equal to 19 % ofig. 5. Value of theAE gy, criterion for the 20 flood peaks tested
the S component okP. This experiment aims at demonstrat- for various observation error standard deviatios Red crosses

ing the validity of the data assimilation procedure as well ascorrespond to extreme values, red lines represent the median, hori-
confirming that the value selected for the observation errorzontal blue lines represent the lower and upper quartiles and black
standard deviatiow in this study is in agreement with a lines represent the lower and upper deciles.

physically reasonable valueg indicates the relative error in

the river discharge observations.

Figure 5 shows that, as expected, data assimilation has the effects of the data assimilation method are the most im-
larger impact when the observation error standard deviatiorportant. These three boxplots present the same shape with
is smaller, meaning that the analysis is significantly differentthe same negative median value (mediar3-02), the same
from the background since more confidence is given to thdargest spread (first quartile=0.21 and third quartile = 0.02)
observations. For a standard deviation of 3lsm' and be-  and the same two positive outliers (red crosses) correspond-
low, the observations are assumed to be almost perfect anitig to the second peak of September 2005 and October 2001.
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When the observation error standard deviatignincreases 200
above 1mMs1, the confidence given to the observations is
reduced, and the effect of the assimilation algorithm grad-
ually decreases. Wheany increases, the boxplot median
tends toward zero and the boxplot spread becomes narrower;
While the third quartile is equal to zero fetz greater than § roor
10 P s~1, the first quartile becomes less and less negative. §
When oy is equal to 10ms™1, the flood peak simula-
tion is degraded for the October 2001 and September 200¢
peaks, which are always both positive outliers. The deterio- t inter
ratlon prOduced by data aSSImllatlon Can be explalned by an 16/1206:00 16/1218:00 17/12 06:00 17/12‘18:00 1;/12‘06:00 18/12‘18:00 19/12‘06:00 19/12‘15:00 20/12 06:00
underestimation of the observation error standard deviation fime
for October 2001 and by a difference in the rainfall estima- rig. 6. Data assimilation results for the December 1997 event. The
tion between the 2 peaks for September 2005. For a starblue curve corresponds to observations; the black curve is the back-
dard deviation of 20 fhs™1, only the September 2005 peak ground simulated hydrograph (before assimilation), and the red
is considerably degraded, which represents the only positiveurve is the simulated analysis hydrograph (after assimilation). Blue
outlier (red cross). The third quartile value is lower than for crosses represent the assimilated data points.
10 m? s~1, while the first quartile value remains high (relative
to the other tests). For these reasons this standard deviation
value (20 i s~1) was chosen for data assimilation. the difference between the background and observed dis-
charges changes during these events. As seen with the De-
cember 1997 event (Fig. 6), the model without assimilation
5 Discussion (black curve) underestimates the discharge at the beginning
of the flood rise (before_inter), while it overestimates the
The correction ofS leads to a monotonic correction of the discharge at the end of the rise (afteinter). This situa-
flood discharge over the flood event. If the difference be-tion can be deconstructed by noting that during the flood
tween the background simulated discharges and the obsefising phase, the observed and simulated hydrographs inter-
vations is not monotonic, the correction calculated by datasect. Since the assimilation period includes a large number
assimilation is negligible (when the sign of the difference of discharges underestimated by the model, the assimilation
is constant) or, in the worst case, leads to a degradatiotechnique tends to compensate for this underestimation by
of the discharge simulation (when the sign of the differ- lowering theS value. This correction exacerbates the peak
ence changes between the assimilation and forecast periodjischarge overestimation (see Fig. 6, red curve: hydrograph
This section details situations in which the data assimilationafter assimilation). In these 4 problem cases, an assimila-
procedure leads to a degradation of the flood peak simulation that uses observations well before the peak discharge
tion as observed for the following events: the October 1994(i.e. prior to the intersection of the rising limbs of the hy-
(1st peak), December 1997, December 2002 (4th peak), andrographs) uses excessively high discharge observations in
September 2005 (2nd peak). Two situations were identifiedcomparison with the simulated discharges that serve to am-
as leading to a deterioration in estimation quality: (i) the plify the flood peak overestimation.
model does not reproduce the rising limb of the hydrograph In order to improve the assimilation results for these test
as quickly as it occurs in the observations (a situation en-ases, we increase the value of the threshold above which ob-
countered in all four problem cases); and (i) in the case ofserved discharges are assimilated so as to only assimilate dis-
floods with multiple peaks (i.e. the fourth December 2002 charges positioned after the intersection of the rising limbs.
peak and the second September 2005 peak), model error idence, this threshold has been raised from 20 to §Th
the peak discharge estimation differs from one peak to thgTable 3).
next. The threshold increase from 20 to 68 a1 limits the de-
The purpose of this discussion section is to analyze theséerioration of the fourth December 2002 peakHgp, de-
two situations, provide a solution to improve results and tocreases from +0.17 for the threshold at 2bsm! to +0.13 for
develop a set of limits for the use of this data assimilationthe threshold at 60 #5~1) and improves the December 1997

10

Rainfall (mm)

approach. peak forecastA Epp, decreases from +0.06 for the thresh-
old at 20n¥s ! to —0.04 for 60 ¥ s1). However, as the
5.1 Model error in the simulation of the rising limb threshold is increased there are no more observations left to

assimilate for the October 1994 (1st peak) event. The case
For the four study peaks which were degraded following of September 2005 (2nd peak) will be discussed in Sect. 5.2.
assimilation, the model did not reproduce the flood riseln order to adjust the observation threshold, the observed hy-
as quickly as the observations. Consequently, the sign ofirograph must be described up to the flood peak, which limits
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Table 3. Comparison of the number of assimilated data points and  *

AEgp criteria for an observed discharge threshold set at either
20 or60n¥sL. o
-50

Threshold at 20 s~

Threshold at 60 s~

w

<]

S
T

Discharge (ma/s)

£
£
Event No. of AEgp No. of AEgp 5
assimilated assimilated ook 3
data points data points
Oct 1994, Peak 1 9 0.04 0 0 ol
Dec 1997 20 0.06 5 —0.04
Dec 2002, Peak 4 91 0.17 29 0.13
Sep 2005’ Peak 2 10 0'41 8 0'41 05/09 18:00 06/09'06.00 07/09'06.00

.
06/09 18:00
Time

Fig. 7. Data assimilation results for the September 2005 event.
the use of this solution to past events only. Please note thathe blue curve corresponds to observations; the black curve is the
such an increase in the threshold value is acceptable as a sepckground simulated hydrograph (before assimilation), and the red
sitivity test but not for real-time applications. If this higher €U"V€ Is the analysis simulated hydrograph (after assimilation). Blue
threshold limits the effects of the data assimilation method®'0SSes represent the assimilated data points.
for these four problematic peaks, the results would be proba-

bly less positive for all other peaks. An alternative approach ) L
compatible with real-time forecasting would be to carry out ¢@S€: the discharge data from all peaks were assimilated to-

the data assimilation analysis using a sliding time window, 9€ther in a “grouped” manner, while in the second case the
including observations as they become available to correcfiat@ from each peak were assimilated “separately”.

the catchment wetness state over time. This sequential ap- The separate assimilation was tested on both the fourth
proach assumes that the uncertainty results not only from th?€cember 2002 peak and second September 2005 peak. For
estimation of the initial condition of the model given by the the Iattef, separate assimilation st_lll deteriorated the flood
wetness state indicators, but also stems from the evolutioff€ak estimationd Egp =+0.17), albeit to a lesser extent than

of the wetness state given by the model equations during thi€ grouped assimilation\E o, = +0.42). For the fourth De-

event. With such an implementation, each observation woulcFember 2002 peak, the separate assimilation approach im-

be used once. At each time step, the analysis from the preproved the flood peak estimation £gp =—0.14), whereas

vious window becomes the background for the current win-t€ grouped approach still degraded the flood peak estima-

dow and theB matrix is evolved in time by the Kalman filter 10N AE0p=+0.17). The fact that the assimilation is unable
equations.

to improve both peaks reveals that model errors do not result
solely from an inaccurate specification$fOther sources of
errors have to be considered and corrected by the data assim-
ilation technique such as the threshold that triggers the runoff
or the rainfall that force the model. The correction of this last
Among the four peaks for which assimilation degraded sim-component is within the scope of Harader et al. (2012). In the
ulation quality, two of them occurred following an initial dis- case of the second or subsequent peaks in multi-peak events,
charge peak. The loss of model quality observed after datguch as December 2002 or September 2005, uncertainties in
assimilation may thus be explained not only by a problem inthe parameters or variables which control the shape of the
representing the flood rise, but also by an error in the estimafalling limb, such as ds and or stoc¢), could be also taken
tion of the rainfall peak, which differs from one peak to the into account.

next. Such is the case for the second September 2005 peak

which displays 2 successive flood peaks (Fig. 7). The model

without assimilation (black curve) underestimated the first6 Conclusions

observed flood peak (blue curve), while overestimating the

second. If the error is not monotonic over the 2 peaks, therHydrological model calibration is essential for ensuring that
assimilating the discharge data from the first peak in order tesimulations are coherent with observations. The global cal-
correct the second could lead to significant errors. To identifyibration approach is insufficient as certain model parame-
the consequences of errors resulting from data assimilatiorters (as well as their errors) are event dependent. Within the
the discharge data were then assimilated in two ways: (i) datéramework of data assimilation, these parameters can be cal-
from both the first discharge peak and the beginning of theibrated using observational data as they become available in
second peak were assimilated (“grouped assimilation”); andrder to forecast the flood peak. In this study flood forecast-
(ii) only discharge data from the beginning of the seconding is done using known future rainfall, while acknowledg-
peak were assimilated (“separate” assimilation). In the firsting that this would not be the case in a real-time framework.

5.2 Challenges in representing multiple peak episodes
presented by a sample case
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