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Abstract. Extreme weather conditions represent serious natl  Introduction
ural hazards to ship operations and may be the direct cause or

contributing factor to maritime accidents. Such severe envi- hi i | ble to ext th diti
ronmental conditions can be taken into account in ship desigr? Ip operations are vulnérablé to extreme weather conditions

and operational windows can be defined that limits hazardouélnd extreme seas may be a direct cause or contributing fac-

operations to less extreme conditions. Nevertheless, possF—Or in ship accidents. Hence, such conditions need to be ac-

ble changes in the statistics of extreme weather conditions(,:ounteol for_ in the desugn a_nd operation of ships. A_gorregt
nderstanding of the statistics of such extreme conditions is,

possibly due to anthropogenic climate change, represent al

additional hazard to ship operations that is less straightfor-therefore’ important to ship safety and there is a need for ad-

ward to account for in a consistent way. Obviously, there aretduate statistical descriptions of different environmental pa-

large uncertainties as to how future climate change will af_rameters such as significant wave height, wave period and

fect the extreme weather conditions at sea and there is a neé’&md speed. However, it has been increasingly evident in re-

for stochastic models that can describe the variability in bothCeNt years that the climate may change due to increased an-

space and time at various scales of the environmental Cont_hropogenlc forcing of the globe, i.e., that the globe is warm-

ditions. Previously, Bayesian hierarchical space-time modeldN9 (IPCC 2007 2012). As a result of this, the dynamics of

have been developed to describe the variability and comple>t(he ocean-atmosphere system. may be changing anq projec-
ns of future climate change indicate that frequencies and

dependence structures of significant wave height in space an;

time. These models were found to perform reasonably WeIImtensities of some extreme weather events are likely to in-
and provided some interesting results, in particular, pertain-crease' . . . .
In order to investigate the impact of climate change on the

ing to long-term trends in the wave climate. In this paper,a . .~ ; )
similar framework is applied to oceanic windiness and the3|gn|f|cant wave height, one of the most important sea state

spatial and temporal variability of the 10-m wind speed Overpgram(arltg rsl for shm;operatlc(;nlsévyhle fr?mlewlogg oleggyegan
an area in the North Atlantic ocean is investigated. When théuerarc Il(?ad ?pa(_:e-_lfr_ne rtno € h«ehet da'E Vam8 tJ)I
results from the model for North Atlantic windiness is com- V&S appiied 1o significant wave height datavanem et al.

pared to the results for significant wave height over the sam 20120. Extensions of this model including a logarithmic

area, it is interesting to observe that whereas an increasing‘"‘ns‘f.0 rmation of the data/gnem et. al.20129 and a re-
trend in significant wave height was identified, no statisti- ression component on atmospherlc. levels of,(@anem

cally significant long-term trend was estimated in windiness. &t @ 20123 have also been mvgstlgated_. _Overall, thege
This may indicate that the increase in significant wave heightmOOIeIS seemed to perform well in describing the spatial

is not due to an increase in locally generated wind waves, bu‘i’md temporal variability in the significant wave height data

rather to increased swell. This observation is also consisten?nd for the area in the North Atlantic ocean an Increas-
ng trend was extracted. The models were also applied to

with studies that have suggested a poleward shift of the mair] ) N : . .
the monthly maximum significant wave height and identi-
storm tracks. : :
fied an even stronger trend in the monthly extremé&smém
et al, 2012¢a). Furthermore, ivanem and Bitner-Gregersen

(2012 it was demonstrated how projections of future wave
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climate could be included in load calculations of ship struc-part of the model. In a historic perspective, it is noted that
tures and it was indicated that the effect may not be negli-for a long time following the scientific revolution in the 16th
gible. Thus, possible long-term trends in extreme seas dueentury, the predominant world-view was deterministic. It
to climate change represent additional hazards to ship operavas believed that if exact knowledge of initial conditions
tions. and causal laws governing a system were available, the exact

Studies of trends in the ocean wave climate and future prostate of the system could be determined at any later point in
jections under climate change scenarios have also been réime. In such a mechanistic world, randomness would not ex-
ported in e.g.Caires et al(2006; Wang and Swai{2001, ist and failure to precisely predict future events would be en-
2002; Wang et al.(2004; Wang and Swai(2006; Kush- tirely due to incomplete knowledge of initial states and uni-
nir et al. (1997; Grabemann and Weis¢2008; Debernard  versal laws. However, in the late 19th and early 20th century,
and Rged2008. See also a more comprehensive review in new scientific discoveries cast serious doubts on a strictly
Vanem(2011). The variability of estimated trends and future deterministic world-view. Chaos theory explained how even
projections is obviously great, but overall, the results from an infinitesimally small perturbation of initial conditions of
the Bayesian hierarchical space-time models were found t@ purely deterministic nonlinear system can lead to large
agree reasonably well with other studies. Furthermore, achanges in the development of the system (the butterfly ef-
number of time-series trend analysis techniques on the sigfect). Furthermore, the development of quantum mechanics
nificant wave height data were found to yield similar long- and the formulation of the Heisenberg uncertainty principle
term trends {Yanem and Walker2013. demonstrated that reality, at least at atomic scales, does not

Although the physical mechanisms for wave generationseem to be absolutely deterministic, suggesting a more prob-
are complex and not completely understood, it is generallyabilistic understanding of the world.
accepted that the main physical mechanism for wave gener- Regardless of whether the world is fundamentally prob-
ation is transfer of energy from the atmosphere to the oceambilistic or if it is deterministic, but with uncertain knowl-
due to wind friction on the sea surface (see eiglley et al, edge of the underlying physical laws, physical environmen-
2011). Waves that are generated by local wind fields are re-tal processes inevitably display some seemingly causal rela-
ferred to as wind-sea, whereas swell is used to refer to wavesonships along with a considerable degree of randomness.
that remain after the wind has died out and that can traveHence, it is argued that it would make sense to describe
considerable distances. Hence, the origin of swell may besuch phenomena probabilistically, i.e., using probability the-
very remote from where the waves are measured. In the opeary and statistics to model physical processes as stochastic
ocean, waves of many different directions and frequencieprocesses where there are several possible ways for a sys-
are present and wave spectra often display two distinctive fretem to evolve. The model presented in this paper is such a
quency modes associated with wind-sea and swell (bimodastochastic model for describing the statistics of the North At-
waves). lantic windiness.

In the significant wave height data used in the Bayesian The remaining part of this paper is structured as follows:
hierarchical space-time models, it was not distinguished befirst, the wind data and the area selected for investigation
tween the wind-sea and the swell contributions and the modwill be described and a crude initial data analysis will be
els were not able to distinguish the origin of the waves con-performed. Then, in Sect. 3 the Bayesian hierarchical space-
tributing to the significant wave height. Therefore, it could time model will be outlined, including a description of the
not determine whether the estimated increase in significantnain model and some model alternatives. In Sect. 4 the im-
wave height was due to increased wind-sea or increased swgtlementation of the model by way of Markov chain Monte
or both. In order to investigate this, this paper applies a simi-Carlo simulations is presented and Sect. 5 presents the re-
lar stochastic model on the wind speed over the same area isults for the various model components. Finally, Sects. 6 and
the North Atlantic ocean. It will then be argued that if a sim- 7 provide some discussion and a conclusion with some final
ilar increasing trend is estimated for wind speed as for sig-remarks. The posterior distributions of the different model
nificant wave height, the increase in significant wave heightparameters are presented in a table in Appendix A.
can be attributed, at least in part, to an increase in wind-sea.

Conversely, if there are no detectable trends or even decreas-

ing trends in the windiness over the same area, the estimate@l Data description and area of study

increase should be ascribed to increasing swell. Furthermore,

it is believed that investigating the spatial and temporal vari-2.1  Area description

ability of North Atlantic windiness is of interest in itself and

that it will be interesting to explore how the Bayesian hierar- For the purpose of this study, an area in the mid-latitudes of
chical modelling framework performs for wind speed. the North Atlantic ocean was selected for investigation. One

The model presented in this paper is a stochastic modelimportant reason for selecting an area in the North Atlantic
a probabilistic counterpart to physical models that are moreocean is that North Atlantic conditions are normally used as
deterministic, with treatment of uncertainties as an integrala basis for ship design, so this area is particularly interesting
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The ERA-40 data contain the two parametérsand V
for the 10 m wind speed, i.e., the wind speed at height 10 m
above the sea surfac#. refers to the wind velocity com-
ponent in the east-west direction, wherdagefers to the
north-south component of the wind velocity, both in terms of
metres per second (m¥). Jointly, U and V, therefore, de-
scribe both the magnitude of the wind speed and the wind

.,E.afd‘ Km.gm direction. This study, however, is restricted to analysis of the
i wind speed, and the wind direction will not be considered.
Hence, the parameter of interest in this study, for which the
Bayesian hierarchical space-time model has been applied, is
the absolute value of the wind speét;

Fig. 1. The areas in the North Atlantic ocean for analysing windi-
ness (dark green) and significant wave height (light grey).
( g ) g ght (light grey) w=U2+v2. 1)

The temporal resolution of the data is six hours. However,
with regards to ship operations. Ideally, the selected aredor the purpose of this study, the monthly maximum wind
should be identical to the area used for analysing signifi-speed in each spatial location is analysed, in line with the
cant wave height. However, for the significant wave height,analyses reported Manem et al(2012¢a). This corresponds
a corrected dataset with resolution51x 1.5° was used to time series of 540 monthly maxima, corresponding to the
whereas the dataset for wind speed that is downloadable froft5 yr of data, at each spatial location. It is noted that in the
the European Centre for Medium-Range Weather Forecastéw data there are scale factors to be multiplied and offsets to
(ECMWF) website has a spatial resolution ab2x 2.5° be added that are different for different months in the ERA-
degrees. Thus, the areas are not entirely identical, but the$0 data for wind speed, and care should be taken to always
are largely overlapping and this is assumed to be satisfacinclude the correct factors and offsets. The actual values of
tory. The area included in this study ranges fron? 50  these correction factors and offsets for each month are in-
62.5 N and 322.5 to 347.3 E corresponding to a grid of cluded in the actual data.

6 x 11= 66 data points. Due to the reduced spatial resolu- The ERA-40 10m wind speed data have been compared
tion, the distance between the grid points are larger than foto satellite and buoy measurement¥\allcraft et al.(2009.

the dataset used in the significant wave height modelling evefomparison of monthly means indicates good agreement be-
though the areas are essentially overlapping. It is assumetiveen the ERA-40 wind speeds and the satellite measure-
that the different spatial resolution of the wind data comparedments, with high correlations and low root-mean-square val-

to the wave data does not influence the overall results fronies for wind speed difference, although ERA-40 tends to un-
the models and particularly that any long-term trends wouldderestimate the monthly mean wind speed. Comparison on
not be very sensitive to the difference in spatial resolution.shorter time scales, i.e., comparing with daily satellite winds,

The selected area is illustrated in Figwhere also the area reveals larger differences, but it is assumed that the ERA-40

for the significant wave height analysis is indicated. wind speed data for monthly maximum values are reason-
able. Also the KNMI/ERA-40 wave atldstates that the 10-
2.2 Wind data m wind speeds compare quite well with observations. It is

noted that the results from the modelling, presented in this

This study exploits the ERA-40 reanalysis data for wind Paper, are conditional on the data and no attempt has been
speed Uppala et al. 2005, which covers most of the en- made to correct possible biases. Therefore, it is reassuring
tire globe and a period of 45 yr at six-hourly resolution (from that the monthly mean 10 m wind speeds from ERA-40 agree
September 1957 until August 2002). It is important to note Well with satellite data.

that the ERA-40 wind data is from the same re-analysis study Before applying the Bayesian hierarchical space-time
as the ERA-40 significant wave height data that was usednodel on the data, a crude data inspection will be car-
in the previous models for significant wave heighaigem ried out and some main features of the raw data pertain-
et al, 2012hd). These significant wave height data were se-ing to the selected area will be presented. The highest wind
lected based on its spatial and temporal resolutions. HencéPeed recorded in the monthly maximum data overall is just
the datasets should be consistent and allow for comparisoAPove 32ms' and the minimum value in the dataset is
of results for waves and winds. The data are freely avail-2bout 8.6 ms'. The estimation of possible long-term trends

able for research purposes and may be downloaded from thi one of the main motivations for applying the stochas-
ECMWE websité. tic model, and a very crude approach to see if there are

any likely trends is to fit a straight line to the raw data. In

lhttp://data-portal.ecmvvf.int/ 2http://www.knmi.nI/waveatIas
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Fig. 2. Fitting a straight line to the raw data indicates a negative Fig. 3. The seasonality of the raw data.
trend.

data. Hence, this probabilistic model is proposed as a com-

Fig. 2, the spatially averaged data are shown with a straightyjement and an alternative to more deterministic, geophysics
line fitted to it. It is observed that this line has a negative y55ed models.

slope 0f—0.0008171 m3s! per month with an intercept of

18.64ms?, corresponding to slightly decreasing monthly 3.1  Main model specification

maximum wind speeds of about 0.44 mtoverall through-

out the period. Itis also interesting to observe the seasonalityt the first level, the observation or data equation (Ep.

in the raw wind data as illustrated by Fig. where the spa- models the maximum windiness at locatioand monthr as

tially averaged data for the first ten years are shown. a latent (or hidden) proced$, corresponding to an under-
lying wind speed process that may normally be construed as
the true process, and some random naigg,which may be

3 The stochastic model construed as measurement error or data uncertainty.

The Bayesian hierarchical space-time model resembles th® (x,7) = H(x,1) +ew(x,1) Vx,t.  (2)
model for significant wave heightvanem et al. 2012h

; g . L It is noted that in Eq.4) and in the following (Eqs4—
and the spatiotemporal data is indexed in a similar way by . ;
oL : ) . 2. ’8), all the noise terms in the model are assumed mutually
two indices; an index to denote the spatial location, with

¥=12.., X=66 and an index to denote time (e, s oRRCE Sl TER e S bt e
month), where = 1,2, ..., T =540, andt = 1 corresponds -

to September 1957 and= T =540 corresponds to Au- tical variance. With generic_ notationy Sy N(O, a|\2,). Fur-
gust 2002. The maximum windiness at locatiom monthz thermore, all system equatlons are a§sumed to apply for all
is expressed by (x, 7). The structure of the main model will 10cations and months (i.&/x, r) as applicable. o

be outlined below, and a few alternative models that were, 1 N€ underlying process for monthly maximum windiness
also explored will be described. A brief discussion of the IS modelled by the state or system model which is split
prior distributions applied to the model parameters will also NtC & time-independent pagi(x), a short-term temporally
be given, and this fully specifies the model. It is noted that theand spatially dependent paitr, 7) and tW_O spatially inde-
derivation of the full conditionals used in the Gibbs sampler pendent partsM_(t) and7 (¢) for seasonality and long-term
is completely analogous to the significant wave height modefrends. respectively (EQ).

and reference is made Yanem et al(2012h for details; see _

alsoNatvig and Tvetg¢2007). e AL @)

Itis emphasised that this model is a stochastic model rather The time-independent part is modelled as a first-order
than a physics-based model and the physical mechanismglarkov Random Field (MRF), conditional on its nearest
in the atmosphere responsible for generating wind are noheighbours in all cardinal directions, and with different de-
explicitly included in the model. It is rather the complex pendence parameters in lateral and longitudinal direction, as
stochastic dependence structures, in space and time at vashown in Eq. 4). For the remainder of this paper, the follow-
ious scales, in the wind data itself that have been modelleding notation is used for neighbouring locationsvdh space:
However, it is argued that all the physics are undeniably in-x” =the location of the nearest grid point in directidn
herent in the data, so all the relevant physical mechanism&om x, whereD €{N, S, W, E} and N= North, S= South,
are implicitly taken into account by the model, by way of the W =West and E= East. Ifx is at the border of the area, the

Nat. Hazards Earth Syst. Sci., 13, 54%57, 2013 www.nat-hazards-earth-syst-sci.net/13/545/2013/
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value at the corresponding neighbouring grid point outside Another model alternative that is introduced in order to
the data area is taken to be zero. Hence, no particular adjus&ccount for possible heteroscedastic features of the data and

ment is made to account for edge effects. possible stronger trends in the extremes compared to the
N N s s means is to take the logarithmic transformation of the data.
n(x) = po(x) +ag {M(x ) = po(x™) + pu(x™) — polx )} By taking this log-transform, the model effectively changes
£ E W W into the model in Eq.X0), whereH (x, ¢) is still modelled as
Ta {“(x ) = #o(x™) + pwx™) — polx )} in Egs. B)—(8), see alsd/anem et al(20124.
+ep(X). @) vy, =InW, 0 = Hx, 1) +ey(x,0). (10)

In the equation aboveio(x) is the Markov Random Field An equivalent representation of this model alternative on
mean at grid point anda, anda, are spatial dependence pa- the original scale is
rameters in lateral (i.e., North—South) and longitudinal (i.e., ) 00a M) T ey (60)
East—West) direction, respectivelyi is the homogeneous Wiz, 1) =e"e _e _e ¢ o (11)
Markov Random Field noise variance. The spatially specificwhere now the contributions from the individual components
mean,uo(x), is modelled as having a quadratic form with to the wind speed have become multiplicative factors rather
an interaction term in latitude and longitude, as shown inthan additive contributions. This gives a different interpreta-
Eq. (). Lettingm(x) andn(x) denote the longitude and lati- tion of the model components.

tude of locationt, respectively, it is assumed that In principle, there are some identifiability problems with
5 respect to the two temporal noise termsander and there
po(x) = po,1+ po2m(x) + o3 (x) + po,am(x) is no way for the model to distribute the temporal noise be-
+uo,5n(x)2+uo,6m(x)n(x) (5) tween these two terms. It turns out that when both terms

. . : are included in the model, the temporal noise is evenly dis-
The spatiotemporal dynamic teiix, ¢) is modelled as a tributed between the two terms, and it should be acknowl-

ygctor al_Jtoregresswe r_nodel of qrder one, _condlt_|ona_lly SpecEedged that this is somewhat arbitrary. One way around this
ified on its nearest neighbours in all cardinal directions, as. . -
. Is to merge the terma/(r) and T'(r) into a joint temporal
shown in Eq. §). . : .
term with only one temporal noise term. However, it turns
O(x,t) = bof(x,t —1)+bnOGN, 1 — 1) + b (xF, 1 — 1) out that doing this does not really influence the overall re-
+bs0(xS,t — 1) +bwOxW, 1 — 1) +ep(x,1) (6)  Sults and the identifiability problems seem to be isolated to
. ~ thetwo noise terms. The other model parameters and, hence,
The seasonal component is modelled as a combination ofe model results do not seem to be sensitive to these differ-
an annual and a semi-annual seasonal contribution, where thénces. Hence, for the purpose of this study only results from
seasonal contribution is assumed independent of space, s@e model with two noise terms are reported. Similar con-
59- (7). The period of the seasonal cycle is one yeawse  clusions were also arrived at for the significant wave height
15 for monthly maximum data, and both the first and secondmodel, and invanem et al(2012hd) results for both alter-

harmonics are included. natives were presented_
M (t) = ccos(wt) + d sin(wt)
+ f cos(2wt) + g Sin(2wt) + &, (¢) @)

3.3 Prior distributions

. . . In Bayesian hierarchical models, uncertainties of the model
The long-term trend is modelled as a simple Gaussian pro- Y

. . : : parameters are included in the model by way of prior dis-
cess with a linear trend, as shown in E8), @nd is perhaps . " . e S
! o tributions. Thus, specifying prior distributions for all model
the component of most interest in this study.

parameters completes the specification of the model. The pri-

T@)=yt+er(t). (8) ors adopted in this study are summarised in Tahlend
_ the rationale for assigning these priors are similar as for the
3.2 Alternative models significant wave height model, as discusse&/amem et al.

] o (20121. 1G(, B) denotes the inverse gamma distribution
Two model alternatives have also been explored in this studyyii, parameters andg andN (i, o2) denotes the Gaussian
First, a model where the trend component has been removegisiribution with meanu and variance 2.

is applied, and this model is simply identical to the model
in Egs. @) and @) with T'(r) =0 and all other components
unchanged, as presented in E9). (

It is noted that the final results are not very strongly de-
pendent on the particular hyper-parameters in the prior dis-
tributions, and this is reasonable in light of the large amount
Wx,t) = H(x,t)+ew(x, 1) of data; priors tend to become asymptotically irrelevant as

the amount of data increases. A few simulations have also
=A@ +00 1)+ MO +ewlx, 1). ©) been run with non-informative priors on the noise variances,

This model would then explain the data under the assumpbut the overall results did not seem to be notably affected by
tion of no trend. this.

www.nat-hazards-earth-syst-sci.net/13/545/2013/ Nat. Hazards Earth Syst. Sci., 13, 53854 2013
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e model parameters.

Normal Q-G Plot

Parameters Prior distributions =
a&v,aﬁ,agz,a,,% anda% IG (3,2)
ag, ay N(0.2,0.25) m
bo, bN, bs, be andbyy N(0.2,0.25 =
poifori=2,...,6 N(0,9) g
10,1 N(20,9) ﬂ
c.d, f.g N(0,4) 3
% N(0,0.1) @
6(x,0), Vx N(0,15
=+ 1 2
! T T T T T
4 2 0 2 4

4 MCMC simulations

Theoretical Quantiles

_L_etting ® dgnote the_model parameters, the model as specl-:ig_ 4. Normal probability plot of the residuals.
ified above is essentially on the form of a product of an ob-
servation modelf(W|H, ®), a state modef (H|®) and a
parameter modef (©): specifications completes in about 5h on a computer with an
Intel Core i5-2500 CPU @ 3.30 GHz processor.

A normal probability plot of the residuals is investigated
Now, the conditional model of the latent process and thein order to check the main model assumption of normality at

model parameters given the data, referred to as the posteriépe observation level, qnd .th'S is shown in Mg.'Th'S indi-
distribution, can be found from Bayes’ theorem cates that the assumption is reasonable. The figure shows the

residuals for the main model with a linear trend, but normal
f(WIH,®)f(H|0)f(0) 13 probability plots of the residuals for the model without trend
f(H,OlW) = F(W) (13) and also for the model applied to log-transformed data look

. . . o ) equally reasonable.
and it is from this posterior distribution all inference and pre-

dictions on the procesH and the paramete® are made.
The high dimension o makes this posterior distribution 5 Results
difficult to compute analytically, but using Markov chain ] ) )
Monte Carlo (MCMC) methods it is possible to simulate In this sectlon,.t_he results fpr the different model aIterng-
samples from it. In order to simulate from the model in tives and pertaining to the different model components will
this study, Markov chains are constructed using the GibbLe reported. The estimat_ed_ marginal posterior_ distribution_s
sampler with additional Metropolis-Hastings steps for the (Mean and standard deviation) are presented in the table in
ags anda; parameters. The Gibbs sampler requires the fullAppendix A (Table Al). It is noted that the parameter esti-
conditionals for all the parameters involved, and since theMates for the log-transformed data are not directly compara-
model has been specified conditionally these are mostly quit®!€ to the estimates pertaining to the original model.
straightforward to deriveManem et al.2012h. The pseudo-
distribution of the(ay,a))-pair was used as proposal for
the Metropolis-Hastings step, as explainedvanem et al.
(2012h.

The MCMC simulations performed in this study used a

Jf(W.H,0)=f(W|H,0)f(H|O)f(©). 12)

5.1 Results from the main model

First, the results for the various components for the main
model, including a linear long-term trend component will be

, ) , resented. Overall, this model seems to perform well and the
burn-in period of 100000 samples and a batch size of 2

! X ) : esults appear stable; running a few control simulations pro-
(i.e., keeping every 20th sample after the burn-in period) cor-;jag very similar results.

responding to a total of 120 000 simulations to obtain a col-

lection of 1000 samples of the multi-dimensional parame-5.1.1 Spatial component

ter vector. The Metropolis-Hastings steps were repeated six

times to obtain an overall acceptance rate of about 70 %The parameterso . together withay anda, determine the
The burn-in period is much longer than what was used forcontribution from the time-independent spatial figldx).

the significant wave height model, and it ensures that theOver the area, the mean of this contribution varies between
Markov chain converges. The assumption that the chain con17.0 and 19.2 ms! and this component, thus, explains some
verges within the burn-in period is confirmed by trace plots of the spatial variation in the wind speed data. The mean es-
and a few control runs. A simulation according to thesetimated posterior fielgk (x) is illustrated in Fig.5 and it is

Nat. Hazards Earth Syst. Sci., 13, 54%57, 2013 www.nat-hazards-earth-syst-sci.net/13/545/2013/
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Time independent part (mean) Mean se;asonal component -
first ten years
8 ™
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g = =+ _J
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Lengitude Manth
Fig. 5. The spatial fielg (x). Fig. 6. The posterior mean seasonal contribution.
Yearly trend component
observed that there is variability in both north-south and in
east-west directions, with generally higher wind speeds to S _
the east and the north of the area. =TT
5.1.2 Short-term dynamic component = T~
E— [} T~ i
™ (= =
The space-time dynamic componéitk, ¢) is described by E_ ' Tee Ll
the b. parameters, and the mean of this component is found + | T~
to vary between-1.63 to 1.88 ms?! over all times (except ? Tt~
t = 0) and locations. Hence, a notable part of the variability b

of wind speeds are captured by this component. The mean S 4 | | |

contribution of this component, averaged over all times, are 0 10 20 ao 40

zero, meaning that this component is stationary over long

time scales as it should, not contributing to the long-term

trend part of the model. Fig. 7. The posterior mean long-term trend component with 90 %
credible interval ofy¢; green line corresponds to no trend.

Year (since 1957)

5.1.3 Seasonal component

The estimated seasonal contribution according to the mode$.1.4 Long-term trend component

is illustrated in Fig.6, and it is seen that this captures the o
seasonal characteristics of the raw data quite well. It is noted "€ long-term trend contribution is perhaps the one of most

that the figure only shows the seasonal contribution for thelnterest, and a linear trend was assumed in the main model.
first ten years, but the contribution is valid for the com- The linear trend in the model is determined by the parameter

plete time span of the data, and all data have been usey @nd the mean posterigris estimated te-0.000345ms?

in estimating the seasonal contribution. The seasonal comPe" month. This corresponds to an overall decrease of about
ponent was modelled as a combination of an annual and §-19Ms* over the whole period which is slightly less than
semi-annual part and is described by the parametetsf the straight line fitted to the raw dgta in FB).The e_sumgted
andg. The estimated parameters correspond to a first harMe&n long-term trend together with a 90 % credible interval
monic with mean amplitude; = vc2 + d2 ~ 3.5ms L and of the mean are illustrated in Fig. The estlmateq trend cor-

a second harmonic with mean amplitude = /12 + g2 ~ responds to a mean decrease of about 19¢mth a 90 %

0.48msL corresponding to a seasonal contribution varying credible interval ranging from negative to positive trends in
between 3.0 mst in February and about3.9ms in Au- the monthly maximum wind speed over the whole period.

gust. It is observed that the annual contribution is dominat-1€NCe, even though the data indicate that there might be a
ing, but the contribution from the semi-annual componentS“ght decreasing trend in the wind data no statistically sig-

is not negligible. The mean sampled seasonal contributior{1ificant trend in the wind speed is estimated by the model.

M (t) has an overall minimum 0£4.66 and a maximum of
4.75ms?,
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Fig. 8. Results from the model without trend; the mean spatial field and seasonal contribution.

5.2 Results from alternative models between factors of 0.80 for calm seasons and 1.2 for windy
seasons. The mean factor reflecting the contribution from
Two alternative models were also tried out, one without athe short-term dynamic componert,[¢?*-)] varies be-
long-term trend and one on the log-transformed data. Thaween 0.79 and 1.2 for all locations and times exaept0.
estimated posterior distributions of these simulations are alsa is noted that the figures display the results on the re-
included in Table A1, and the results will be briefly presentedtransformed original scale, and bias corrections have been

in the following. applied when necessary, see eMgnem et al(20129; Fer-
. guson(1986; Beauchamp and Olsofl973; Stow et al.
5.2.1 Without trend (2008 for more detalils.

i ) i The estimated long-term trend factor is illustrated in
The mpdel was also tried without any long-term trends ("e"Fig. 10. The mean long-term trend is found to be decreas-
by letting 7'(r) = 0), and apart from the absence of any j o bt the 90 % credible interval ranges from decreasing to
trends, the results were very similar to the results from thelncreasing trends. The mean estimated trend for the whole
main model. The values of the estimated spatial field ar€ye joq corresponds to a factor of 0.98. The 90% credible
compara_ble, although Perhaps slightly lower, W'thO_Ut aYinterval for the expected trend factor ranges from 0.94 to
trend, with values ranging from 17.0 to 19.0mtswhich 1 45 “hance, the decreasing trend is not significant at the
seems reasonable. The contributions from the short-tern@o% level. For a typical monthly maximum wind speed of

) 1 : )

dynamic 1(mearm 0.00ms ™ and ranging from—1.671to about 18 ms! the estimated mean trend corresponds to a
1.92ms”) and seasonal (ranging from3.9 10 3.0MS%))  jecrease of about 36 cmsover the whole period, but for
components are very similar, as can also be seen from COM10re extreme wind speeds, say 30Thsthe trend factor
paring the estimates in Table Al. The estimated mean Spatiaéorresponds to a decrease of 60 crhsHence. the model
field and seasonal contribution are illustrated in FigThe e jog-transformed data yields larger trends for extremes
fact that the models with a linear trend and without any trendcompared to averages.

are similar is not surprising, especially since the model with Comparing the results from the model for log-transformed
a trend component failed tq identify a statistically significant data to the results pertaining to the original data, it is ob-
trend. Hencg, for.all practical purposes the models can bgeyeq that a slightly more decreasing mean trend is esti-
regarded as identical. mated, but both models fail to identify any significant trends.
Hence, the results generally agree. It is questionable whether
the log-transform represents an improvement, and the results
indicate that the original model might perform better. For ex-
ample, short-term prediction losses are smaller for the origi-

5.2.2 With a logarithmic data transformation

When the model was run with a logarithmic transformation
of the data, the results are not directly comparable, but sim
ilar main features are identified. The estimated mean spatiarI]al model.

field now varies between 16.9 and 19.1mswith the con-

tributions from the short-term dynamic, seasonal and long-5-3 Results pertaining to another ocean area

term trend parts now being multiplicative factors. The esti-

mated spatial field and the seasonal contribution are illusit seems obvious that the identified increase in significant
trated in Fig.9. The estimated seasonal contribution varieswave height cannot be explained by the absence of any
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Fig. 9. Results from the model with log-transform of the data: spatial field and seasonal factor

Yearly trend component zeroms* over the area and entire period; the seasonal con-
tribution varies between-4.47 and 2.93 ms'. The results
8| for the spatial field and the seasonal contribution are illus-
trated in Fig.11.

It is interesting to observe that the model picks up a sig-
nificantly positive long-term trend when applied to this area
north of Iceland. The estimated trend is illustrated in E@).
and the mean estimated trend corresponds to an increase
in monthly maximum wind speed of about 0.75M ver
the period. The 90 % credible interval of the expected trend
ranges from 0.37 to 1.1 nt$ and is, hence, entirely positive.

| | | | | Therefore, even though there seems to have been an insignif-
0 10 20 30 40 icant decrease in wind speeds in the area first investigated,
Year (since 1957) this area more north seems to have experienced an overall in-
crease in wind speeds. It is noted, however, that even though
Fig. 10. The estimated trend factor for the log-transformed data, the increase was found to be statistically significant, an in-
with 90 % credible interval. crease of 0.75 3 is not necessarily practically significant
with respect to wave generation and the effects on the signif-
icant wave height.

Trend
098
|

0.94
|

increase or even a slighecreasdalthough not statistically

significant) in wind speed over the area. Hence, the increas-

ing significant wave height might be a result of increased6 Discussion

swell from increased windiness in other areas. In order to

investigate this, another area to the north of the initially in- The Bayesian hierarchical space-time model applied to

vestigated area is analysed. The spatial resolution and temparonthly maximum wind speeds over an area in the mid-

ral span are the same as for the initial area. The coordinatelatitude North Atlantic has identified a possible slightly neg-

of this other area are from 67.%0 77.5 N and from 3458 to ative trend for the initial area in the North Atlantic, albeit not

357.5 W, corresponding to a grid with:66 = 30 grid points  statistically significant. When significant wave height data

north of Iceland. The lowest and highest values for monthlywere modelled with a similar model for the same area, an

maximum wind speed in this area are 6.8 and 30.5m®- increase in monthly maximum significant wave height was

spectively, somewhat less than for the area initially studied. discovered, and the results from the analysis of the wind data
The results for the new area look reasonable for the spaindicate that this increase is not due to increased wind sea. If

tial field, the short-term spatiotemporal part and the seathe increases in significant wave height are to be explained

sonal component. The mean spatial field varies between 13.By increased wind sea, it would necessarily need to be ac-

and 16.6 ms! over the area with a mean contribution of companied by an increase in local wind speeds.

15.7ms; the short-term dynamic paft(x,) varies be- The increase in significant wave height could then be

tween —3.69ms?! and 3.53m3s! with a mean of about explained by increased swell, i.e., remains of wind sea
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g. 11.Results from the model applied to an alternative area: spatial field and seasonal factor.

be in agreement with other studies that have described such
an effect, i.e., that the storm tracks have experienced a pole-
ward shift as a result of climate change, see &ig.(2005;
Gastineau and SodgR2009; Bender et al(2019. Such a
poleward shift of storm tracks is associated with a poleward
shift in surface winds, which would be in agreement with the
results presented hereBader et al(2011) presents a review

of recent studies and states that an observed poleward shift of
mid-latitude storms is the most agreed on result. Hence, it is
reassuring that the Bayesian hierarchical space-time model
arrives at similar results and is able to pick up this signal in
‘, , | | the data.

0 10 20 a0 40 It is noted that this model only analyses the trend in the
monthly maximum wind speed, and this alone might not be
a sufficient measure of the wave generating forces. If, for ex-
Fig. 12. The estimated mean trend for the area north of Island withample’ the duration of extreme W'r.]d Speeds_ '”Cfeas‘?s this
90 % credible intervals. would lead to larger waves even without an increase in the
wind speed itself. Such effects would not be picked up by the
model when applied to monthly maximum wind speeds. An-

generated by wind forces outside the area and propagate?]Iher effect_c_ould be the frequenpies of strong winds. If there
into the area that has been analysed. This assumption f@re not su_fnmently long calm periods between storms for_the
substantiated by the results obtained when the wind speefiea to .qwet d(_)wn, waves coullc_j aggreggte t(.) Iarger_ heights
model was applied to an area further north. For this area, gven vx_nthout higher wind velog|t|es. Possibly, increasing fre-
significant increase of monthly maximum wind speeds wasduencles and prolqnged duration of sjtorms W.OUId not neces-
detected which would possibly lead to increased wind seasar'ly be reflected in the monthly maximum W'n_d Spe?d dat_a
in this alternative area. This increased wind sea could therf"fmld ;‘u;thefr arrl]alyses dwogld kr)]e neededr:o IOQZ'ZE.O th'.s‘ T_h|s
possibly propagate as increased swell to the initial area antp eft for furt er study. Furt erm%re,.tded\./vm . |reﬁt|on 'S
explain, at least partly, the observed increase in significant)mport"’mt orwave generation, and wind directions have not
wave height here. It should be noted, however, that only wind een analysed in the .present s.tudy.'A ppssuble extension of
speeds have been analysed and the direction of swell propébe model could be to include wind direction as well as mag-

gation would obviously be highly dependent on wind direc- nitude. It is also assumed that possible effects of changes in
tion fetch due to Arctic ice reduction is negligible.
The absence of a long-term trend (or possibly a slight de- It has already been emphasised that even though the gov-
erning physics are not explicitly included in the model pre-

creasing trend) in windiness in one area together with an in- dinth dvitis undeniably i dinth gel
crease in windiness in an area further north indicate that ther§€Nt€d In this study itis undenia .ylnc.orporat.e Int € mode
y way of the data. The Bayesian hierarchical model is a

might have been a change in the main storm tracks, wit o L
storm tracks generally moving more to the north. This would purely probabilistic model and as such it is different from

Yearly trend component

1.0

Trend (m/s)
02 04 0B 08

-0.2

Year (since 1957)
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Table Al. Posterior marginal distributions (mean; standard deviation).

555

Main model No trend Log-transform Alternative area
y —0.00034; 0.084 - —4.9%107°,48x 1072 0.0014; 0.00042
10,1 20; 3.0 20;3.0 3.1;2.0 20;5.2
140.2 —0.41;0.13 —-0.42;0.13 —0.026; 0.076 —0.56; 0.37
140.3 2.6,0.77 2.7,0.79 0.16; 0.45 29,23
/104 0.00093;0.00033 0.00094; 0.00034 5.107°; 0.00019 0.0012; 0.0010
nos  —0.010;0.0047  —0.011;0.0047 —0.00089; 0.0024 —0.012; 0.0076
1o —0.0043;0.0019 —0.0044; 0.0020 —0.00018;0.0010  —0.0038; 0.0062
ag 0.17; 0.080 0.17; 0.082 0.12; 0.079 0.14; 0.093
a 0.29; 0.084 0.28; 0.089 0.13;0.081 0.19;0.11
c —2.7;0.078 —2.7,0.077 —0.15; 0.011 —3.0; 0.094
d 2.2;0.078 2.2,0.076 0.12; 0.012 2.1;0.095
f —0.0037;0.078  —0.0078; 0.073 —0.0023; 0.011 —0.13; 0.093
g 0.48;0.078 0.48; 0.073 0.035; 0.010 0.80; 0.093
b 0.30; 0.016 0.30; 0.016 0.018; 0.0048 0.20; 0.018
by 0.056; 0.020 0.051; 0.021 0.010; 0.0055 0.84; 0.040
bg 0.24;0.018 0.24;0.017 0.012; 0.0048 0.20; 0.019
bs —0.14; 0.027 —0.15; 0.030 —0.0011; 0.0052 —0.041; 0.010
bw 0.26; 0.019 0.26;0.017 0.018; 0.0048 0.16; 0.016
02 3.2;0.030 3.2;0.031 0.0057; 0.00015 2.7,0.032
a\él 0.11;0.022 0.11;0.022 0.062; 0.011 0.25; 0.063
o 0.25;0.018 0.26;0.017 0.0057: 0.00015 0.055; 0.0073
o2 0.77;0.25 1.5; 0.090 0.017; 0.0013 1.2;0.47
o? 0.72;0.24 - 0.017;0.0013 1.0;0.46

many meteorological and geophysical models based on demodels for analysing environmental processes such as wind
terministic relationships such as the Navier-Stokes equationspeed in space and time.

for describing the climate and the atmospheric circulation A similar model has previously been applied to extreme
and for projecting climate change. Physical models remainvave climate over the same area and identified inter alia, in-
the primary approach for investigating the impacts of cli- creasing trends in the monthly maximum significant wave
mate change and ensemble studies are carried out in ordéeight. Previous studies have also demonstrated that such in-
to quantify uncertainties, where different climate models andcreasing trends may have an impact on ship structural loads
small perturbations of the initial conditions give different re- and that it, therefore, represents an additional hazard to ship
sults. However, it has been acknowledged that there are nmperations. The results from the wind speed models do not
table statistical challenges related climate change projectionsuggest any corresponding increases in the monthly maxi-
based on such ensemble studies, seeBebaldi and Knutti  mum wind speeds. On the contrary, a slight decreasing trend
(2007); Stephenson et af2012; Collins et al.(2012. The  was estimated although this was not statistically significant.
models presented in this paper offer an alternative approachience, the results indicate that the roughening of the wave
to modelling the impacts of climate change on the wind cli- climate could not be explained by increases in locally gener-
mate with a more direct approach to modelling of uncertain-ated wind sea. Possibly, the increased significant wave height
ties, and it should rather be regarded as a complement to thean be explained by increased swell in the area. The monthly
efforts made in developing physical models than a competi-maximum wind speed was also analysed for another ocean
tor. area further north and in this area a significant positive trend
in the 10 m wind speed was identified. These results agree
with various previous studies that suggest that the North At-
lantic storm tracks shift polewards due to a warming climate

) ] ) ) ) and could also explain, at least partly, an increase in swell
This paper has presented a Bayesian hierarchical spatioteny; ihe griginal area. Thus, the results presented in this paper

poral model for 10m wind speeds over an area in the Northy,ggest that the observed increased significant wave height
Atlantic ocean. Overall, the model seems to perform well in might be mostly due to increased swell.

capturing the dominating spatial and temporal dependence
structures in the wind speed data. Hence, this paper sug-
gests this modelling framework as an alternative to physical

7 Conclusions
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