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Abstract. Extreme weather conditions represent serious nat-
ural hazards to ship operations and may be the direct cause or
contributing factor to maritime accidents. Such severe envi-
ronmental conditions can be taken into account in ship design
and operational windows can be defined that limits hazardous
operations to less extreme conditions. Nevertheless, possi-
ble changes in the statistics of extreme weather conditions,
possibly due to anthropogenic climate change, represent an
additional hazard to ship operations that is less straightfor-
ward to account for in a consistent way. Obviously, there are
large uncertainties as to how future climate change will af-
fect the extreme weather conditions at sea and there is a need
for stochastic models that can describe the variability in both
space and time at various scales of the environmental con-
ditions. Previously, Bayesian hierarchical space-time models
have been developed to describe the variability and complex
dependence structures of significant wave height in space and
time. These models were found to perform reasonably well
and provided some interesting results, in particular, pertain-
ing to long-term trends in the wave climate. In this paper, a
similar framework is applied to oceanic windiness and the
spatial and temporal variability of the 10-m wind speed over
an area in the North Atlantic ocean is investigated. When the
results from the model for North Atlantic windiness is com-
pared to the results for significant wave height over the same
area, it is interesting to observe that whereas an increasing
trend in significant wave height was identified, no statisti-
cally significant long-term trend was estimated in windiness.
This may indicate that the increase in significant wave height
is not due to an increase in locally generated wind waves, but
rather to increased swell. This observation is also consistent
with studies that have suggested a poleward shift of the main
storm tracks.

1 Introduction

Ship operations are vulnerable to extreme weather conditions
and extreme seas may be a direct cause or contributing fac-
tor in ship accidents. Hence, such conditions need to be ac-
counted for in the design and operation of ships. A correct
understanding of the statistics of such extreme conditions is,
therefore, important to ship safety and there is a need for ad-
equate statistical descriptions of different environmental pa-
rameters such as significant wave height, wave period and
wind speed. However, it has been increasingly evident in re-
cent years that the climate may change due to increased an-
thropogenic forcing of the globe, i.e., that the globe is warm-
ing (IPCC, 2007, 2012). As a result of this, the dynamics of
the ocean-atmosphere system may be changing and projec-
tions of future climate change indicate that frequencies and
intensities of some extreme weather events are likely to in-
crease.

In order to investigate the impact of climate change on the
significant wave height, one of the most important sea state
parameters for ship operations, the framework of Bayesian
hierarchical space-time models (Wikle et al., 1998, 2001)
was applied to significant wave height data inVanem et al.
(2012b). Extensions of this model including a logarithmic
transformation of the data (Vanem et al., 2012d) and a re-
gression component on atmospheric levels of CO2 (Vanem
et al., 2012a) have also been investigated. Overall, these
models seemed to perform well in describing the spatial
and temporal variability in the significant wave height data
and for the area in the North Atlantic ocean an increas-
ing trend was extracted. The models were also applied to
the monthly maximum significant wave height and identi-
fied an even stronger trend in the monthly extremes (Vanem
et al., 2012c,a). Furthermore, inVanem and Bitner-Gregersen
(2012) it was demonstrated how projections of future wave
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climate could be included in load calculations of ship struc-
tures and it was indicated that the effect may not be negli-
gible. Thus, possible long-term trends in extreme seas due
to climate change represent additional hazards to ship opera-
tions.

Studies of trends in the ocean wave climate and future pro-
jections under climate change scenarios have also been re-
ported in e.g.,Caires et al.(2006); Wang and Swail(2001,
2002); Wang et al.(2004); Wang and Swail(2006); Kush-
nir et al. (1997); Grabemann and Weisse(2008); Debernard
and Røed(2008). See also a more comprehensive review in
Vanem(2011). The variability of estimated trends and future
projections is obviously great, but overall, the results from
the Bayesian hierarchical space-time models were found to
agree reasonably well with other studies. Furthermore, a
number of time-series trend analysis techniques on the sig-
nificant wave height data were found to yield similar long-
term trends (Vanem and Walker, 2013).

Although the physical mechanisms for wave generation
are complex and not completely understood, it is generally
accepted that the main physical mechanism for wave gener-
ation is transfer of energy from the atmosphere to the ocean
due to wind friction on the sea surface (see e.g.,Talley et al.,
2011). Waves that are generated by local wind fields are re-
ferred to as wind-sea, whereas swell is used to refer to waves
that remain after the wind has died out and that can travel
considerable distances. Hence, the origin of swell may be
very remote from where the waves are measured. In the open
ocean, waves of many different directions and frequencies
are present and wave spectra often display two distinctive fre-
quency modes associated with wind-sea and swell (bimodal
waves).

In the significant wave height data used in the Bayesian
hierarchical space-time models, it was not distinguished be-
tween the wind-sea and the swell contributions and the mod-
els were not able to distinguish the origin of the waves con-
tributing to the significant wave height. Therefore, it could
not determine whether the estimated increase in significant
wave height was due to increased wind-sea or increased swell
or both. In order to investigate this, this paper applies a simi-
lar stochastic model on the wind speed over the same area in
the North Atlantic ocean. It will then be argued that if a sim-
ilar increasing trend is estimated for wind speed as for sig-
nificant wave height, the increase in significant wave height
can be attributed, at least in part, to an increase in wind-sea.
Conversely, if there are no detectable trends or even decreas-
ing trends in the windiness over the same area, the estimated
increase should be ascribed to increasing swell. Furthermore,
it is believed that investigating the spatial and temporal vari-
ability of North Atlantic windiness is of interest in itself and
that it will be interesting to explore how the Bayesian hierar-
chical modelling framework performs for wind speed.

The model presented in this paper is a stochastic model,
a probabilistic counterpart to physical models that are more
deterministic, with treatment of uncertainties as an integral

part of the model. In a historic perspective, it is noted that
for a long time following the scientific revolution in the 16th
century, the predominant world-view was deterministic. It
was believed that if exact knowledge of initial conditions
and causal laws governing a system were available, the exact
state of the system could be determined at any later point in
time. In such a mechanistic world, randomness would not ex-
ist and failure to precisely predict future events would be en-
tirely due to incomplete knowledge of initial states and uni-
versal laws. However, in the late 19th and early 20th century,
new scientific discoveries cast serious doubts on a strictly
deterministic world-view. Chaos theory explained how even
an infinitesimally small perturbation of initial conditions of
a purely deterministic nonlinear system can lead to large
changes in the development of the system (the butterfly ef-
fect). Furthermore, the development of quantum mechanics
and the formulation of the Heisenberg uncertainty principle
demonstrated that reality, at least at atomic scales, does not
seem to be absolutely deterministic, suggesting a more prob-
abilistic understanding of the world.

Regardless of whether the world is fundamentally prob-
abilistic or if it is deterministic, but with uncertain knowl-
edge of the underlying physical laws, physical environmen-
tal processes inevitably display some seemingly causal rela-
tionships along with a considerable degree of randomness.
Hence, it is argued that it would make sense to describe
such phenomena probabilistically, i.e., using probability the-
ory and statistics to model physical processes as stochastic
processes where there are several possible ways for a sys-
tem to evolve. The model presented in this paper is such a
stochastic model for describing the statistics of the North At-
lantic windiness.

The remaining part of this paper is structured as follows:
first, the wind data and the area selected for investigation
will be described and a crude initial data analysis will be
performed. Then, in Sect. 3 the Bayesian hierarchical space-
time model will be outlined, including a description of the
main model and some model alternatives. In Sect. 4 the im-
plementation of the model by way of Markov chain Monte
Carlo simulations is presented and Sect. 5 presents the re-
sults for the various model components. Finally, Sects. 6 and
7 provide some discussion and a conclusion with some final
remarks. The posterior distributions of the different model
parameters are presented in a table in Appendix A.

2 Data description and area of study

2.1 Area description

For the purpose of this study, an area in the mid-latitudes of
the North Atlantic ocean was selected for investigation. One
important reason for selecting an area in the North Atlantic
ocean is that North Atlantic conditions are normally used as
a basis for ship design, so this area is particularly interesting
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Fig. 1. The areas in the North Atlantic ocean for analysing windi-
ness (dark green) and significant wave height (light grey)

a corrected dataset with resolution 1.5◦ × 1.5◦ was used
whereas the dataset for wind speed that is downloadable from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) website has a spatial resolution of 2.5◦×2.5◦ de-180

grees. Thus, the areas are not entirely identical, but they are
largely overlapping and this is assumed to be satisfactory.
The area included in this study ranges from 50◦ to 62.5◦

North and 322.5◦ to 347.5◦ East corresponding to a grid of 6
× 11 = 66 data points. Due to the reduced spatial resolution,185

the distance between the grid points are larger than for the
dataset used in the significant wave height modelling even
though the areas are essentially overlapping. It is assumed
that the different spatial resolution of the wind data compared
to the wave data does not influence the overall results from190

the models, and particularly that any long-term trends would
not be very sensitive to the difference in spatial resolution.
The selected area is illustrated in Fig. 1 where also the area
for the significant wave height analysis is indicated.

2.2 Wind data195

This study exploits the ERA-40 reanalysis data for wind
speed (Uppala et al., 2005), which covers most of the entire
globe and a period of 45 years at six-hourly resolution (from
September 1957 until august 2002). It is important to note
that the ERA-40 wind data is from the same re-analysis study200

as the ERA-40 significant wave height data that was used
in the previous models for significant wave height (Vanem
et al., 2012b,d). These significant wave height data were se-
lected based on its spatial and temporal resolutions. Hence,
the data sets should be consistent and allow for comparison205

of results for waves and winds. The data are freely avail-
able for research purposes and may be downloaded from the
ECMWF website1.

The ERA-40 data contain the two parameters U and V for
the 10 meter wind speed, i.e. the wind speed at height 10210

meters above the sea surface. U refers the the wind velocity
component in the east-west direction whereas V refers to the

1URL: http://data-portal.ecmwf.int/

north-south component of the wind velocity, both in terms
of meters per second (m/s). Jointly, U and V therefore de-
scribe both the magnitude of the wind speed and the wind215

direction. This study, however, is restricted to analysis of the
wind speed, and the wind direction will not be considered.
Hence, the parameter of interest in this study, for which the
Bayesian hierarchical space-time model has been applied, is
the absolute value of the wind speed, W :220

W =
√
U2 +V 2. (1)

The temporal resolution of the data is six hours. How-
ever, for the purpose of this study, the monthly maximum
wind speed in each spatial location is analysed, in line with
the analyses reported in Vanem et al. (2012c,a). This corre-225

sponds to time series of 540 monthly maxima, corresponding
to the 45 years of data, at each spatial location. It is noted
that in the raw data there are scale factors to be multiplied
and offsets to be added that are different for different months
in the ERA-40 data for wind speed, and care should be taken230

to always include the correct factors and offsets. The actual
values of these correction factors and offsets for each month
are included in the actual data.

The ERA-40 10 meter wind speed data have been com-
pared to satellite and buoy measurements in Wallcraft et al.235

(2009). Comparison of monthly means indicates good agree-
ment between the ERA-40 wind speeds and the satellite mea-
surements, with high correlations and low root mean square
values for wind speed difference, although ERA-40 tend to
underestimate the monthly mean wind speed. Comparison on240

shorter time scales, i.e. comparing with daily satellite winds,
reveals larger differences, but it is assumed that the ERA-40
wind speed data for monthly maximum values are reason-
able. Also the KNMI/ERA-40 wave atlas2 states that the 10-
meter wind speeds compare quite well with observations. It245

is noted that the results from the modelling presented in this
paper are conditional on the data and no attempt has been
made to correct possible biases. Therefore, it is reassuring
that the monthly mean 10 meter wind speeds from ERA-40
agree well with satellite data.250

Before applying the Bayesian hierarchical space-time
model on the data, a crude data inspection will be carried
out and some main features of the raw data pertaining to
the selected area will be presented. The highest wind speed
recorded in the monthly maximum data overall is just above255

32 m/s and the minimum value in the data set is about 8.6
m/s. The estimation of possible long-term trends is one of
the main motivations for applying the stochastic model, and
a very crude approach to see if there are any likely trends is
to fit a straight line to the raw data. In Fig. 2, the spatially260

averaged data are shown with a straight line fitted to it. It is
observed that this line has a negative slope of -0.0008171 m/s
per month with an intercept of 18.64 m/s, corresponding to
slightly decreasing monthly maximum wind speeds of about

2URL: http://www.knmi.nl/waveatlas

Fig. 1. The areas in the North Atlantic ocean for analysing windi-
ness (dark green) and significant wave height (light grey).

with regards to ship operations. Ideally, the selected area
should be identical to the area used for analysing signifi-
cant wave height. However, for the significant wave height,
a corrected dataset with resolution 1.5◦

× 1.5◦ was used
whereas the dataset for wind speed that is downloadable from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) website has a spatial resolution of 2.5◦

× 2.5◦

degrees. Thus, the areas are not entirely identical, but they
are largely overlapping and this is assumed to be satisfac-
tory. The area included in this study ranges from 50◦ to
62.5◦ N and 322.5◦ to 347.5◦ E corresponding to a grid of
6× 11= 66 data points. Due to the reduced spatial resolu-
tion, the distance between the grid points are larger than for
the dataset used in the significant wave height modelling even
though the areas are essentially overlapping. It is assumed
that the different spatial resolution of the wind data compared
to the wave data does not influence the overall results from
the models and particularly that any long-term trends would
not be very sensitive to the difference in spatial resolution.
The selected area is illustrated in Fig.1 where also the area
for the significant wave height analysis is indicated.

2.2 Wind data

This study exploits the ERA-40 reanalysis data for wind
speed (Uppala et al., 2005), which covers most of the en-
tire globe and a period of 45 yr at six-hourly resolution (from
September 1957 until August 2002). It is important to note
that the ERA-40 wind data is from the same re-analysis study
as the ERA-40 significant wave height data that was used
in the previous models for significant wave height (Vanem
et al., 2012b,d). These significant wave height data were se-
lected based on its spatial and temporal resolutions. Hence,
the datasets should be consistent and allow for comparison
of results for waves and winds. The data are freely avail-
able for research purposes and may be downloaded from the
ECMWF website1.

1http://data-portal.ecmwf.int/

The ERA-40 data contain the two parametersU and V

for the 10 m wind speed, i.e., the wind speed at height 10 m
above the sea surface.U refers to the wind velocity com-
ponent in the east-west direction, whereasV refers to the
north-south component of the wind velocity, both in terms of
metres per second (m s−1). Jointly,U andV , therefore, de-
scribe both the magnitude of the wind speed and the wind
direction. This study, however, is restricted to analysis of the
wind speed, and the wind direction will not be considered.
Hence, the parameter of interest in this study, for which the
Bayesian hierarchical space-time model has been applied, is
the absolute value of the wind speed,W :

W =

√
U2 + V 2. (1)

The temporal resolution of the data is six hours. However,
for the purpose of this study, the monthly maximum wind
speed in each spatial location is analysed, in line with the
analyses reported inVanem et al.(2012c,a). This corresponds
to time series of 540 monthly maxima, corresponding to the
45 yr of data, at each spatial location. It is noted that in the
raw data there are scale factors to be multiplied and offsets to
be added that are different for different months in the ERA-
40 data for wind speed, and care should be taken to always
include the correct factors and offsets. The actual values of
these correction factors and offsets for each month are in-
cluded in the actual data.

The ERA-40 10 m wind speed data have been compared
to satellite and buoy measurements inWallcraft et al.(2009).
Comparison of monthly means indicates good agreement be-
tween the ERA-40 wind speeds and the satellite measure-
ments, with high correlations and low root-mean-square val-
ues for wind speed difference, although ERA-40 tends to un-
derestimate the monthly mean wind speed. Comparison on
shorter time scales, i.e., comparing with daily satellite winds,
reveals larger differences, but it is assumed that the ERA-40
wind speed data for monthly maximum values are reason-
able. Also the KNMI/ERA-40 wave atlas2 states that the 10-
m wind speeds compare quite well with observations. It is
noted that the results from the modelling, presented in this
paper, are conditional on the data and no attempt has been
made to correct possible biases. Therefore, it is reassuring
that the monthly mean 10 m wind speeds from ERA-40 agree
well with satellite data.

Before applying the Bayesian hierarchical space-time
model on the data, a crude data inspection will be car-
ried out and some main features of the raw data pertain-
ing to the selected area will be presented. The highest wind
speed recorded in the monthly maximum data overall is just
above 32 m s−1 and the minimum value in the dataset is
about 8.6 m s−1. The estimation of possible long-term trends
is one of the main motivations for applying the stochas-
tic model, and a very crude approach to see if there are
any likely trends is to fit a straight line to the raw data. In

2http://www.knmi.nl/waveatlas
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Fig. 2. Fitting a straight line to the raw data indicates a negative
trend

Fig. 3. The seasonality of the raw data

0.44 m/s overall throughout the period. It is also interesting265

to observe the seasonality in the raw wind data as illustrated
by Fig. 3, where the spatially averaged data for the first ten
years are shown.

3 The stochastic model

The Bayesian hierarchical space-time model resembles the270

model for significant wave height (Vanem et al., 2012b) and
the spatio-temporal data is indexed in a similar way by two
indices; an index x to denote the spatial location, with x =
1, 2, ..., X = 66 and an index t to denote time (i.e. month),
where t = 1, 2, ..., T = 540, and t= 1 corresponds to Septem-275

ber 1957 and t= T = 540 corresponds to August 2002. The
maximum windiness at location x in month t is expressed by

W (x,t). The structure of the main model will be outlined
below, and a few alternative models that were also explored
will be described. A brief discussion of the prior distribu-280

tions applied to the model parameters will also be given, and
this fully specifies the model. It is noted that the derivation
of the full conditionals used in the Gibbs sampler is com-
pletely analogous to the significant wave height model, and
reference is made to Vanem et al. (2012b) for details; see also285

Natvig and Tvete (2007).
It is emphasized that this model is a stochastic model

rather than a physics-based model and the physical mecha-
nisms in the atmosphere responsible for generating wind are
not explicitly included in the model. It is rather the complex290

stochastic dependence structures, in space and time at vari-
ous scales, in the wind data itself that have been modelled.
However, it is argued that all the physics are undeniably in-
herent in the data, so all the relevant physical mechanisms
are implicitly taken into account by the model, by way of the295

data. Hence, this probabilistic model is proposed as a com-
plement and an alternative to more deterministic, geophysics
based models.

3.1 Main model specification

At the first level, the observation or data equation (eq. 2)300

models the maximum windiness at location x and month t as
a latent (or hidden) process H , corresponding to an under-
lying wind speed process that may normally be construed as
the true process, and some random noise, εW , which may be
construed as measurement error or data uncertainty.305

W (x,t) =H(x,t)+εW (x,t) ∀x,t (2)

It is noted that in eq. 2 and in the following (eqs. 4-8), all
the noise terms in the model are assumed mutually indepen-
dent and independent in space and time, having a zero-mean
Gaussian distribution with some random but identical vari-310

ance. With generic notation, εN
i.i.d∼ N(0,σ2

N ). Furthermore,
all system equations are assumed to apply for all locations
and months (i.e. ∀x,t) as applicable.

The underlying process for monthly maximum windiness
is modelled by the state or system model which is split into315

a time-independent part µ(x), a short-term temporally and
spatially dependent part θ(x,t) and two spatially independent
parts M(t) and T (t) for seasonality and long-term trends,
respectively (eq. 3).

H(x,t) =µ(x)+θ(x,t)+M(t)+T (t) (3)320

The time-independent part is modelled as a first-order
Markov Random Field (MRF), conditional on its nearest
neighbours in all cardinal directions, and with different de-
pendence parameters in lateral and longitudinal direction, as
shown in eq. 4. For the remainder of this paper, the follow-325

ing notation is used for neighbouring locations of x in space:
xD = the location of the nearest grid point in direction D
from x, where D ∈ {N,S,W,E} and N = North, S = South,

Fig. 2. Fitting a straight line to the raw data indicates a negative
trend.

Fig. 2, the spatially averaged data are shown with a straight
line fitted to it. It is observed that this line has a negative
slope of−0.0008171 m s−1 per month with an intercept of
18.64 m s−1, corresponding to slightly decreasing monthly
maximum wind speeds of about 0.44 m s−1 overall through-
out the period. It is also interesting to observe the seasonality
in the raw wind data as illustrated by Fig.3, where the spa-
tially averaged data for the first ten years are shown.

3 The stochastic model

The Bayesian hierarchical space-time model resembles the
model for significant wave height (Vanem et al., 2012b)
and the spatiotemporal data is indexed in a similar way by
two indices; an indexx to denote the spatial location, with
x = 1,2, . . ., X = 66 and an indext to denote time (i.e.,
month), wheret = 1,2, . . ., T = 540, andt = 1 corresponds
to September 1957 andt = T = 540 corresponds to Au-
gust 2002. The maximum windiness at locationx in montht

is expressed byW(x, t). The structure of the main model will
be outlined below, and a few alternative models that were
also explored will be described. A brief discussion of the
prior distributions applied to the model parameters will also
be given, and this fully specifies the model. It is noted that the
derivation of the full conditionals used in the Gibbs sampler
is completely analogous to the significant wave height model
and reference is made toVanem et al.(2012b) for details; see
alsoNatvig and Tvete(2007).

It is emphasised that this model is a stochastic model rather
than a physics-based model and the physical mechanisms
in the atmosphere responsible for generating wind are not
explicitly included in the model. It is rather the complex
stochastic dependence structures, in space and time at var-
ious scales, in the wind data itself that have been modelled.
However, it is argued that all the physics are undeniably in-
herent in the data, so all the relevant physical mechanisms
are implicitly taken into account by the model, by way of the
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and months (i.e. ∀x,t) as applicable.

The underlying process for monthly maximum windiness
is modelled by the state or system model which is split into315

a time-independent part µ(x), a short-term temporally and
spatially dependent part θ(x,t) and two spatially independent
parts M(t) and T (t) for seasonality and long-term trends,
respectively (eq. 3).

H(x,t) =µ(x)+θ(x,t)+M(t)+T (t) (3)320

The time-independent part is modelled as a first-order
Markov Random Field (MRF), conditional on its nearest
neighbours in all cardinal directions, and with different de-
pendence parameters in lateral and longitudinal direction, as
shown in eq. 4. For the remainder of this paper, the follow-325

ing notation is used for neighbouring locations of x in space:
xD = the location of the nearest grid point in direction D
from x, where D ∈ {N,S,W,E} and N = North, S = South,

Fig. 3.The seasonality of the raw data.

data. Hence, this probabilistic model is proposed as a com-
plement and an alternative to more deterministic, geophysics
based models.

3.1 Main model specification

At the first level, the observation or data equation (Eq.2)
models the maximum windiness at locationx and montht as
a latent (or hidden) processH , corresponding to an under-
lying wind speed process that may normally be construed as
the true process, and some random noise,εW, which may be
construed as measurement error or data uncertainty.

W(x, t) = H(x, t) + εW(x, t) ∀x, t. (2)

It is noted that in Eq. (2) and in the following (Eqs.4–
8), all the noise terms in the model are assumed mutually
independent and independent in space and time, having a
zero-mean Gaussian distribution with some random but iden-
tical variance. With generic notation,εN

i.i.d
∼ N(0,σ 2

N). Fur-
thermore, all system equations are assumed to apply for all
locations and months (i.e.,∀x, t) as applicable.

The underlying process for monthly maximum windiness
is modelled by the state or system model which is split
into a time-independent partµ(x), a short-term temporally
and spatially dependent partθ(x, t) and two spatially inde-
pendent partsM(t) andT (t) for seasonality and long-term
trends, respectively (Eq.3).

H(x, t) = µ(x) + θ(x, t) + M(t) + T (t) (3)

The time-independent part is modelled as a first-order
Markov Random Field (MRF), conditional on its nearest
neighbours in all cardinal directions, and with different de-
pendence parameters in lateral and longitudinal direction, as
shown in Eq. (4). For the remainder of this paper, the follow-
ing notation is used for neighbouring locations ofx in space:
xD

= the location of the nearest grid point in directionD

from x, whereD ∈{N, S, W, E} and N= North, S= South,
W = West and E= East. Ifx is at the border of the area, the

Nat. Hazards Earth Syst. Sci., 13, 545–557, 2013 www.nat-hazards-earth-syst-sci.net/13/545/2013/



E. Vanem and O. N. Breivik: Bayesian hierarchical modelling of North Atlantic windiness 549

value at the corresponding neighbouring grid point outside
the data area is taken to be zero. Hence, no particular adjust-
ment is made to account for edge effects.

µ(x) = µ0(x) + aφ

{
µ(xN) − µ0(x

N) + µ(xS) − µ0(x
S)

}
+aλ

{
µ(xE) − µ0(x

E) + µ(xW) − µ0(x
W)

}
+εµ(x). (4)

In the equation above,µ0(x) is the Markov Random Field
mean at grid pointx andaφ andaλ are spatial dependence pa-
rameters in lateral (i.e., North–South) and longitudinal (i.e.,
East–West) direction, respectively.σ 2

µ is the homogeneous
Markov Random Field noise variance. The spatially specific
mean,µ0(x), is modelled as having a quadratic form with
an interaction term in latitude and longitude, as shown in
Eq. (5). Lettingm(x) andn(x) denote the longitude and lati-
tude of locationx, respectively, it is assumed that

µ0(x) = µ0,1 + µ0,2m(x) + µ0,3n(x) + µ0,4m(x)2

+µ0,5n(x)2
+ µ0,6m(x)n(x) (5)

The spatiotemporal dynamic termθ(x, t) is modelled as a
vector autoregressive model of order one, conditionally spec-
ified on its nearest neighbours in all cardinal directions, as
shown in Eq. (6).

θ(x, t) = b0θ(x, t − 1) + bNθ(xN , t − 1) + bEθ(xE, t − 1)

+bSθ(xS, t − 1) + bWθ(xW, t − 1) + εθ (x, t) (6)

The seasonal component is modelled as a combination of
an annual and a semi-annual seasonal contribution, where the
seasonal contribution is assumed independent of space, see
Eq. (7). The period of the seasonal cycle is one year, soω =
2π
12 for monthly maximum data, and both the first and second
harmonics are included.

M(t) = ccos(ωt) + d sin(ωt)

+f cos(2ωt) + g sin(2ωt) + εm(t) (7)

The long-term trend is modelled as a simple Gaussian pro-
cess with a linear trend, as shown in Eq. (8), and is perhaps
the component of most interest in this study.

T (t) = γ t + εT (t). (8)

3.2 Alternative models

Two model alternatives have also been explored in this study.
First, a model where the trend component has been removed
is applied, and this model is simply identical to the model
in Eqs. (2) and (3) with T (t) = 0 and all other components
unchanged, as presented in Eq. (9)

W(x, t) = H(x, t) + εW(x, t)

= µ(x) + θ(x, t) + M(t) + εW(x, t). (9)

This model would then explain the data under the assump-
tion of no trend.

Another model alternative that is introduced in order to
account for possible heteroscedastic features of the data and
possible stronger trends in the extremes compared to the
means is to take the logarithmic transformation of the data.
By taking this log-transform, the model effectively changes
into the model in Eq. (10), whereH(x, t) is still modelled as
in Eqs. (3)–(8), see alsoVanem et al.(2012d).

Y (x, t) = lnW(x, t) = H(x, t) + εY (x, t). (10)

An equivalent representation of this model alternative on
the original scale is

W(x, t) = eµ(x)eθ(x,t)eM(t)eT (t)eεY (x,t) (11)

where now the contributions from the individual components
to the wind speed have become multiplicative factors rather
than additive contributions. This gives a different interpreta-
tion of the model components.

In principle, there are some identifiability problems with
respect to the two temporal noise termsεm andεT and there
is no way for the model to distribute the temporal noise be-
tween these two terms. It turns out that when both terms
are included in the model, the temporal noise is evenly dis-
tributed between the two terms, and it should be acknowl-
edged that this is somewhat arbitrary. One way around this
is to merge the termsM(t) andT (t) into a joint temporal
term with only one temporal noise term. However, it turns
out that doing this does not really influence the overall re-
sults and the identifiability problems seem to be isolated to
the two noise terms. The other model parameters and, hence,
the model results do not seem to be sensitive to these differ-
ences. Hence, for the purpose of this study only results from
the model with two noise terms are reported. Similar con-
clusions were also arrived at for the significant wave height
model, and inVanem et al.(2012b,d) results for both alter-
natives were presented.

3.3 Prior distributions

In Bayesian hierarchical models, uncertainties of the model
parameters are included in the model by way of prior dis-
tributions. Thus, specifying prior distributions for all model
parameters completes the specification of the model. The pri-
ors adopted in this study are summarised in Table1, and
the rationale for assigning these priors are similar as for the
significant wave height model, as discussed inVanem et al.
(2012b). IG(α,β) denotes the inverse gamma distribution
with parametersα andβ andN(µ,σ 2) denotes the Gaussian
distribution with meanµ and varianceσ 2.

It is noted that the final results are not very strongly de-
pendent on the particular hyper-parameters in the prior dis-
tributions, and this is reasonable in light of the large amount
of data; priors tend to become asymptotically irrelevant as
the amount of data increases. A few simulations have also
been run with non-informative priors on the noise variances,
but the overall results did not seem to be notably affected by
this.
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Table 1.Prior distributions for the model parameters.

Parameters Prior distributions

σ2
W,σ2

µ,σ2
θ ,σ2

m andσ2
T

IG (3, 2)
aφ,aλ N(0.2,0.25)
b0,bN,bS,bE andbW N(0.2,0.25)
µ0,i for i = 2, . . . ,6 N(0,9)

µ0,1 N(20,9)

c,d,f,g N(0,4)

γ N(0,0.1)

θ(x,0), ∀x N(0,15)

4 MCMC simulations

Letting 2 denote the model parameters, the model as spec-
ified above is essentially on the form of a product of an ob-
servation model,f (W |H,2), a state modelf (H |2) and a
parameter modelf (2):

f (W,H,2) = f (W |H,2)f (H |2)f (2). (12)

Now, the conditional model of the latent process and the
model parameters given the data, referred to as the posterior
distribution, can be found from Bayes’ theorem,

f (H,2|W) =
f (W |H,2)f (H |2)f (2)

f (W)
(13)

and it is from this posterior distribution all inference and pre-
dictions on the processH and the parameters2 are made.
The high dimension of2 makes this posterior distribution
difficult to compute analytically, but using Markov chain
Monte Carlo (MCMC) methods it is possible to simulate
samples from it. In order to simulate from the model in
this study, Markov chains are constructed using the Gibbs
sampler with additional Metropolis-Hastings steps for the
aφ andaλ parameters. The Gibbs sampler requires the full
conditionals for all the parameters involved, and since the
model has been specified conditionally these are mostly quite
straightforward to derive (Vanem et al., 2012b). The pseudo-
distribution of the(aφ,aλ)-pair was used as proposal for
the Metropolis-Hastings step, as explained inVanem et al.
(2012b).

The MCMC simulations performed in this study used a
burn-in period of 100 000 samples and a batch size of 20
(i.e., keeping every 20th sample after the burn-in period) cor-
responding to a total of 120 000 simulations to obtain a col-
lection of 1000 samples of the multi-dimensional parame-
ter vector. The Metropolis-Hastings steps were repeated six
times to obtain an overall acceptance rate of about 70 %.
The burn-in period is much longer than what was used for
the significant wave height model, and it ensures that the
Markov chain converges. The assumption that the chain con-
verges within the burn-in period is confirmed by trace plots
and a few control runs. A simulation according to these
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conditionals for all the parameters involved, and since the
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distribution of the (aφ,aλ)-pair was used as proposal for
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collection of 1000 samples of the multi-dimensional param-
eter vector. The Metropolis-Hastings steps were repeated six
times to obtain an overall acceptance rate of about 70%. The

Fig. 4. Normal probability plot of the residuals

burn-in period is much longer than what was used for the sig-
nificant wave height model, and it ensures that the Markov460

chain converges. The assumption that the chain converges
within the burn-in period is confirmed by trace plots and a
few control runs. A simulation according to these specifica-
tions completes in about 5 hours on a computer with an Intel
Core i5-2500 CPU @ 3.30 GHz processor. .465

A normal probability plot of the residuals is investigated
in order to check the main model assumption of normality at
the observation level, and this is shown in Fig. 4. This indi-
cates that the assumption is reasonable. The figure shows the
residuals for the main model with a linear trend, but normal470

probability plots of the residuals for the model without trend
and also for the model applied to log-transformed data look
equally reasonable.

5 Results

In this section, the results for the different model alternatives475

and pertaining to the different model components will be re-
ported. The estimated marginal posterior distributions (mean
and standard deviation) are presented in the table in the ap-
pendix (table A1). It is noted that the parameter estimates
for the log-transformed data are not directly comparable to480

the estimates pertaining to the original model.

5.1 Results from the main model

First, the results for the various components for the main
model, including a linear long-term trend component will be
presented. Overall, this model seems to perform well and485

the results appear stable; running a few control simulations
provides very similar results.

Fig. 4.Normal probability plot of the residuals.

specifications completes in about 5 h on a computer with an
Intel Core i5-2500 CPU @ 3.30 GHz processor.

A normal probability plot of the residuals is investigated
in order to check the main model assumption of normality at
the observation level, and this is shown in Fig.4. This indi-
cates that the assumption is reasonable. The figure shows the
residuals for the main model with a linear trend, but normal
probability plots of the residuals for the model without trend
and also for the model applied to log-transformed data look
equally reasonable.

5 Results

In this section, the results for the different model alterna-
tives and pertaining to the different model components will
be reported. The estimated marginal posterior distributions
(mean and standard deviation) are presented in the table in
Appendix A (Table A1). It is noted that the parameter esti-
mates for the log-transformed data are not directly compara-
ble to the estimates pertaining to the original model.

5.1 Results from the main model

First, the results for the various components for the main
model, including a linear long-term trend component will be
presented. Overall, this model seems to perform well and the
results appear stable; running a few control simulations pro-
vides very similar results.

5.1.1 Spatial component

The parametersµ0,· together withaφ andaλ determine the
contribution from the time-independent spatial fieldµ(x).
Over the area, the mean of this contribution varies between
17.0 and 19.2 m s−1 and this component, thus, explains some
of the spatial variation in the wind speed data. The mean es-
timated posterior fieldµ(x) is illustrated in Fig.5 and it is
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Fig. 5. The spatial field µ(x)

5.1.1 Spatial component

The parameters µ0,· together with aφ and aλ determine the
contribution from the time-independent spatial field µ(x).490

Over the area, the mean of this contribution varies between
17.0 and 19.2 m/s and this component thus explains some
of the spatial variation in the wind speed data. The mean
estimated posterior field µ(x) is illustrated in Fig. 5 and it
is observed that there is variability in both north-south and495

in east-west directions, with generally higher wind speeds to
the east and the north of the area.

5.1.2 Short-term dynamic component

The space-time dynamic component θ(x,t) is described by
the b· parameters, and the mean of this component is found500

to vary between -1.63 to 1.88 m/s over all times (except t
= 0) and locations. Hence, a notable part of the variability
of wind speeds are captured by this component. The mean
contribution of this component, averaged over all times, are
zero, meaning that this component is stationary over long505

time scales as it should, not contributing to the long-term
trend part of the model.

5.1.3 Seasonal component

The estimated seasonal contribution according to the model
is illustrated in Fig. 6, and it is seen that this captures the510

seasonal characteristics of the raw data quite well. It is noted
that the figure only shows the seasonal contributin for the
first ten years, but the contribution is valid for the complete
time span of the data, and all data have been used in esti-
mating the seasonal contribution. The seasonal component515

was modelled as a combination of an annual and a semi-
annual part and is described by the parameters c,d,f and
g. The estimated parameters correspond to a first harmonic

Fig. 6. The posterior mean seasonal contribution

with mean amplitudeA1 =
√
c2 +d2≈ 3.5m/s and a second

harmonic with mean amplitude A2 =
√
f2 +g2≈ 0.48 m/s520

corresponding to a seasonal contribution varying between 3.0
m/s in February and about -3.9 m/s in August. It is observed
that the annual contribution is dominating, but the contri-
bution from the semi-annual component is not negligible.
The mean sampled seasonal contributionM(t) has an overall525

minimum of -4.66 and a maximum of 4.75 m/s.

5.1.4 Long-term trend component

The long-term trend contribution is perhaps the one of most
interest, and a linear trend was assumed in the main model.
The linear trend in the model is determined by the parame-530

ter γ and the mean posterior γ is estimated to -0.000345 m/s
per month. This corresponds to an overall decrease of about
0.19 m/s over the whole period which is slightly less than the
straight line fitted to the raw data in Fig. 2. The estimated
mean long-term trend together with a 90% credible interval535

of the mean are illustrated in Fig. 7. The estimated trend
corresponds to a mean decrease of about 19 cm/s with a 90%
credible interval ranging from negative to positive trends in
the monthly maximum wind speed over the whole period.
Hence, even though the data indicate that there might be a540

slight decreasing trend in the wind data no statistically sig-
nificant trend in the wind speed is estimated by the model.

5.2 Results from alternative models

Two alternative models were also tried out, one without a545

long-term trend and one on the log-transformed data. The
estimated posterior distributions of these simulations are also
included in table A1, and the results will be briefly presented
in the following.
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theb· parameters, and the mean of this component is found
to vary between−1.63 to 1.88 m s−1 over all times (except
t = 0) and locations. Hence, a notable part of the variability
of wind speeds are captured by this component. The mean
contribution of this component, averaged over all times, are
zero, meaning that this component is stationary over long
time scales as it should, not contributing to the long-term
trend part of the model.

5.1.3 Seasonal component

The estimated seasonal contribution according to the model
is illustrated in Fig.6, and it is seen that this captures the
seasonal characteristics of the raw data quite well. It is noted
that the figure only shows the seasonal contribution for the
first ten years, but the contribution is valid for the com-
plete time span of the data, and all data have been used
in estimating the seasonal contribution. The seasonal com-
ponent was modelled as a combination of an annual and a
semi-annual part and is described by the parametersc,d,f

andg. The estimated parameters correspond to a first har-
monic with mean amplitudeA1 =
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c2 + d2 ≈ 3.5 m s−1 and

a second harmonic with mean amplitudeA2 =
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0.48 m s−1 corresponding to a seasonal contribution varying
between 3.0 m s−1 in February and about−3.9 m s−1 in Au-
gust. It is observed that the annual contribution is dominat-
ing, but the contribution from the semi-annual component
is not negligible. The mean sampled seasonal contribution
M(t) has an overall minimum of−4.66 and a maximum of
4.75 m s−1.
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interest, and a linear trend was assumed in the main model.
The linear trend in the model is determined by the parame-530

ter γ and the mean posterior γ is estimated to -0.000345 m/s
per month. This corresponds to an overall decrease of about
0.19 m/s over the whole period which is slightly less than the
straight line fitted to the raw data in Fig. 2. The estimated
mean long-term trend together with a 90% credible interval535

of the mean are illustrated in Fig. 7. The estimated trend
corresponds to a mean decrease of about 19 cm/s with a 90%
credible interval ranging from negative to positive trends in
the monthly maximum wind speed over the whole period.
Hence, even though the data indicate that there might be a540

slight decreasing trend in the wind data no statistically sig-
nificant trend in the wind speed is estimated by the model.
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Fig. 7. The posterior mean long-term trend component with 90%
credible interval of γt; green line corresponds to no trend.

Fig. 8. Results from the model without trend; the mean spatial field
and seasonal contribution

5.2.1 Without trend550

The model was also tried without any long-term trends (i.e.
by letting T(t) = 0), and apart from the absence of any
trends, the results were very similar to the results from the
main model. The values of the estimated spatial field are
comparable, although perhaps slightly lower, without any555

trend, with values ranging from 17.0 to 19.0 m/s, which
seems reasonable. The contributions from the short-term dy-
namic (mean≈ 0.00 m/s and ranging from -1.67 to 1.92 m/s)
and seasonal (ranging from -3.9 to 3.0 m/s)) components are
very similar, as can also be seen from comparing the esti-560

mates in table A1. The estimated mean spatial field and sea-
sonal contribution are illustrated in Fig. 8. The fact that the
models with a linear trend and without any trend are simi-
lar is not surprising, especially since the model with a trend
component failed to identify a statistically significant trend.565

Hence, for all practical purposes the models can be regarded
as identical.

Fig. 9. Results from the model with log-transform of the data: spa-
tial field and seasonal factor

5.2.2 With a logarithmic data transformation

When the model was run with a logarithmic transformation
of the data, the results are not directly comparable but similar570

main features are identified. The estimated mean spatial field
now varies between 16.9 and 19.1 m/s, with the contributions
from the short-term dynamic, seasonal and long-term trend
parts now being multiplicative factors. The estimated spa-
tial field and the seasonal contribution are illustrated in Fig.575

9. The estimated seasonal contribution varies between fac-
tors of 0.80 for calm seasons and 1.2 for windy seasons. The
mean factor reflecting the contribution from the short-term
dynamic component, E

[
eθ(x,t)

]
varies between 0.79 and 1.2

for all locations and times except t=0. It is noted that the fig-580

ures display the results on the re-transformed original scale,
and bias corrections have been applied when necessary, see
e.g. Vanem et al. (2012d); Ferguson (1986); Beauchamp and
Olson (1973); Stow et al. (2006) for more details.

The estimated long-term trend factor is illustrated in Fig.585

10. The mean long-term trend is found to be decreasing but
the 90% credible interval ranges from decreasing to increas-
ing trends. The mean estimated trend for the whole period
corresponds to a factor of 0.98. The 90% credible interval for
the expected trend factor ranges from 0.94 to 1.02, hence the590

decreasing trend is not significant at the 90% level. For a typ-
ical monthly maximum wind speed of about 18 m/s the esti-
mated mean trend corresponds to a decrease of about 36 cm/s
over the whole period, but for more extreme wind speeds,
say 30 m/s, the trend factor corresponds to a decrease of 60595

cm/s. Hence, the model on the log-transformed data yields
larger trends for extremes compared to averages.

Comparing the results from the model for log-transformed
data to the results pertaining to the original data, it is ob-
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Fig. 7. The posterior mean long-term trend component with 90 %
credible interval ofγ t ; green line corresponds to no trend.

5.1.4 Long-term trend component

The long-term trend contribution is perhaps the one of most
interest, and a linear trend was assumed in the main model.
The linear trend in the model is determined by the parameter
γ and the mean posteriorγ is estimated to−0.000345 m s−1

per month. This corresponds to an overall decrease of about
0.19 m s−1 over the whole period which is slightly less than
the straight line fitted to the raw data in Fig.2. The estimated
mean long-term trend together with a 90 % credible interval
of the mean are illustrated in Fig.7. The estimated trend cor-
responds to a mean decrease of about 19 cm s−1 with a 90 %
credible interval ranging from negative to positive trends in
the monthly maximum wind speed over the whole period.
Hence, even though the data indicate that there might be a
slight decreasing trend in the wind data no statistically sig-
nificant trend in the wind speed is estimated by the model.
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Fig. 8.Results from the model without trend; the mean spatial field and seasonal contribution.

5.2 Results from alternative models

Two alternative models were also tried out, one without a
long-term trend and one on the log-transformed data. The
estimated posterior distributions of these simulations are also
included in Table A1, and the results will be briefly presented
in the following.

5.2.1 Without trend

The model was also tried without any long-term trends (i.e.,
by letting T (t) = 0), and apart from the absence of any
trends, the results were very similar to the results from the
main model. The values of the estimated spatial field are
comparable, although perhaps slightly lower, without any
trend, with values ranging from 17.0 to 19.0 m s−1, which
seems reasonable. The contributions from the short-term
dynamic (mean≈ 0.00 m s−1 and ranging from−1.67 to
1.92 m s−1) and seasonal (ranging from−3.9 to 3.0 m s−1))
components are very similar, as can also be seen from com-
paring the estimates in Table A1. The estimated mean spatial
field and seasonal contribution are illustrated in Fig.8. The
fact that the models with a linear trend and without any trend
are similar is not surprising, especially since the model with
a trend component failed to identify a statistically significant
trend. Hence, for all practical purposes the models can be
regarded as identical.

5.2.2 With a logarithmic data transformation

When the model was run with a logarithmic transformation
of the data, the results are not directly comparable, but sim-
ilar main features are identified. The estimated mean spatial
field now varies between 16.9 and 19.1 m s−1, with the con-
tributions from the short-term dynamic, seasonal and long-
term trend parts now being multiplicative factors. The esti-
mated spatial field and the seasonal contribution are illus-
trated in Fig.9. The estimated seasonal contribution varies

between factors of 0.80 for calm seasons and 1.2 for windy
seasons. The mean factor reflecting the contribution from
the short-term dynamic component,E

[
eθ(x,t)

]
varies be-

tween 0.79 and 1.2 for all locations and times exceptt = 0.
It is noted that the figures display the results on the re-
transformed original scale, and bias corrections have been
applied when necessary, see e.g.,Vanem et al.(2012d); Fer-
guson(1986); Beauchamp and Olson(1973); Stow et al.
(2006) for more details.

The estimated long-term trend factor is illustrated in
Fig. 10. The mean long-term trend is found to be decreas-
ing, but the 90 % credible interval ranges from decreasing to
increasing trends. The mean estimated trend for the whole
period corresponds to a factor of 0.98. The 90 % credible
interval for the expected trend factor ranges from 0.94 to
1.02, hence, the decreasing trend is not significant at the
90 % level. For a typical monthly maximum wind speed of
about 18 m s−1 the estimated mean trend corresponds to a
decrease of about 36 cm s−1 over the whole period, but for
more extreme wind speeds, say 30 m s−1, the trend factor
corresponds to a decrease of 60 cm s−1. Hence, the model
on the log-transformed data yields larger trends for extremes
compared to averages.

Comparing the results from the model for log-transformed
data to the results pertaining to the original data, it is ob-
served that a slightly more decreasing mean trend is esti-
mated, but both models fail to identify any significant trends.
Hence, the results generally agree. It is questionable whether
the log-transform represents an improvement, and the results
indicate that the original model might perform better. For ex-
ample, short-term prediction losses are smaller for the origi-
nal model.

5.3 Results pertaining to another ocean area

It seems obvious that the identified increase in significant
wave height cannot be explained by the absence of any
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Fig. 9.Results from the model with log-transform of the data: spatial field and seasonal factorE. Vanem and O. N. Breivik: Bayesian hierarchical modelling of North Atlantic windiness 9

Fig. 10. The estimated trend factor for the log-transformed data,
with 90% credible interval
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vestigated area will be analysed. The spatial resolution and615

temporal span is the same as for the initial area. The coor-
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from 345◦ to 357.5◦ west, corresponding to a grid with 5 ×
6 = 30 grid points north of Iceland. The lowest and highest
values for monthly maximum wind speed in this area are 6.8620

and 30.5 m/s respectively, somewhat less than for the area
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The results for the new area look reasonable for the spa-
tial field, the short-term spatio-temporal part and the seasonal
component. The mean spatial field varies between 13.9 and625

16.6 m/s over the area with a mean contribution of 15.7 m/s;
the short-term dynamic part θ(x,t) varies between -3.69 m/s
and 3.53 m/s with a mean of about zero m/s over the area and
entire period; the seasonal contribution varies between -4.47
and 2.93 m/s. The results for the spatial field and the sea-630

sonal contribution are illustrated in Fig. 11. It is interesting
to observe that the model picks up a significantly positive
long-term trend when applied to this area north of Iceland.
The estimated trend is illustrated in Fig. 12, and the mean
estimated trend corresponds to an increase in monthly maxi-635
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increase or even a slightdecrease(although not statistically
significant) in wind speed over the area. Hence, the increas-
ing significant wave height might be a result of increased
swell from increased windiness in other areas. In order to
investigate this, another area to the north of the initially in-
vestigated area is analysed. The spatial resolution and tempo-
ral span are the same as for the initial area. The coordinates
of this other area are from 67.5◦ to 77.5◦ N and from 345◦ to
357.5◦ W, corresponding to a grid with 5×6 = 30 grid points
north of Iceland. The lowest and highest values for monthly
maximum wind speed in this area are 6.8 and 30.5 m s−1, re-
spectively, somewhat less than for the area initially studied.

The results for the new area look reasonable for the spa-
tial field, the short-term spatiotemporal part and the sea-
sonal component. The mean spatial field varies between 13.9
and 16.6 m s−1 over the area with a mean contribution of
15.7 m s−1; the short-term dynamic partθ(x, t) varies be-
tween −3.69 m s−1 and 3.53 m s−1 with a mean of about

zero m s−1 over the area and entire period; the seasonal con-
tribution varies between−4.47 and 2.93 m s−1. The results
for the spatial field and the seasonal contribution are illus-
trated in Fig.11.

It is interesting to observe that the model picks up a sig-
nificantly positive long-term trend when applied to this area
north of Iceland. The estimated trend is illustrated in Fig.12,
and the mean estimated trend corresponds to an increase
in monthly maximum wind speed of about 0.75 m s−1 over
the period. The 90 % credible interval of the expected trend
ranges from 0.37 to 1.1 m s−1 and is, hence, entirely positive.
Therefore, even though there seems to have been an insignif-
icant decrease in wind speeds in the area first investigated,
this area more north seems to have experienced an overall in-
crease in wind speeds. It is noted, however, that even though
the increase was found to be statistically significant, an in-
crease of 0.75 m s−1 is not necessarily practically significant
with respect to wave generation and the effects on the signif-
icant wave height.

6 Discussion

The Bayesian hierarchical space-time model applied to
monthly maximum wind speeds over an area in the mid-
latitude North Atlantic has identified a possible slightly neg-
ative trend for the initial area in the North Atlantic, albeit not
statistically significant. When significant wave height data
were modelled with a similar model for the same area, an
increase in monthly maximum significant wave height was
discovered, and the results from the analysis of the wind data
indicate that this increase is not due to increased wind sea. If
the increases in significant wave height are to be explained
by increased wind sea, it would necessarily need to be ac-
companied by an increase in local wind speeds.

The increase in significant wave height could then be
explained by increased swell, i.e., remains of wind sea
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Fig. 11.Results from the model applied to an alternative area: spatial field and seasonal factor.
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generated by wind forces outside the area and propagated
into the area that has been analysed. This assumption is
substantiated by the results obtained when the wind speed
model was applied to an area further north. For this area, a
significant increase of monthly maximum wind speeds was
detected which would possibly lead to increased wind sea
in this alternative area. This increased wind sea could then
possibly propagate as increased swell to the initial area and
explain, at least partly, the observed increase in significant
wave height here. It should be noted, however, that only wind
speeds have been analysed and the direction of swell propa-
gation would obviously be highly dependent on wind direc-
tion.

The absence of a long-term trend (or possibly a slight de-
creasing trend) in windiness in one area together with an in-
crease in windiness in an area further north indicate that there
might have been a change in the main storm tracks, with
storm tracks generally moving more to the north. This would

be in agreement with other studies that have described such
an effect, i.e., that the storm tracks have experienced a pole-
ward shift as a result of climate change, see e.g.,Yin (2005);
Gastineau and Soden(2009); Bender et al.(2012). Such a
poleward shift of storm tracks is associated with a poleward
shift in surface winds, which would be in agreement with the
results presented herein.Bader et al.(2011) presents a review
of recent studies and states that an observed poleward shift of
mid-latitude storms is the most agreed on result. Hence, it is
reassuring that the Bayesian hierarchical space-time model
arrives at similar results and is able to pick up this signal in
the data.

It is noted that this model only analyses the trend in the
monthly maximum wind speed, and this alone might not be
a sufficient measure of the wave generating forces. If, for ex-
ample, the duration of extreme wind speeds increases this
would lead to larger waves even without an increase in the
wind speed itself. Such effects would not be picked up by the
model when applied to monthly maximum wind speeds. An-
other effect could be the frequencies of strong winds. If there
are not sufficiently long calm periods between storms for the
sea to quiet down, waves could aggregate to larger heights
even without higher wind velocities. Possibly, increasing fre-
quencies and prolonged duration of storms would not neces-
sarily be reflected in the monthly maximum wind speed data
and further analyses would be needed to look into this. This
is left for further study. Furthermore, the wind direction is
important for wave generation, and wind directions have not
been analysed in the present study. A possible extension of
the model could be to include wind direction as well as mag-
nitude. It is also assumed that possible effects of changes in
fetch due to Arctic ice reduction is negligible.

It has already been emphasised that even though the gov-
erning physics are not explicitly included in the model pre-
sented in this study it is undeniably incorporated in the model
by way of the data. The Bayesian hierarchical model is a
purely probabilistic model and as such it is different from
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Table A1. Posterior marginal distributions (mean; standard deviation).

Main model No trend Log-transform Alternative area

γ −0.00034; 0.084 – −4.9× 10−5; 4.8× 10−5 0.0014; 0.00042
µ0,1 20; 3.0 20; 3.0 3.1; 2.0 20; 5.2
µ0,2 −0.41; 0.13 −0.42; 0.13 −0.026; 0.076 −0.56; 0.37
µ0,3 2.6; 0.77 2.7; 0.79 0.16; 0.45 2.9; 2.3
µ0,4 0.00093; 0.00033 0.00094; 0.00034 5.1× 10−5; 0.00019 0.0012; 0.0010
µ0,5 −0.010; 0.0047 −0.011; 0.0047 −0.00089; 0.0024 −0.012; 0.0076
µ0,6 −0.0043; 0.0019 −0.0044; 0.0020 −0.00018; 0.0010 −0.0038; 0.0062
aφ 0.17; 0.080 0.17; 0.082 0.12; 0.079 0.14; 0.093
aλ 0.29; 0.084 0.28; 0.089 0.13; 0.081 0.19; 0.11
c −2.7; 0.078 −2.7; 0.077 −0.15; 0.011 −3.0; 0.094
d 2.2; 0.078 2.2; 0.076 0.12; 0.012 2.1; 0.095
f −0.0037; 0.078 −0.0078; 0.073 −0.0023; 0.011 −0.13; 0.093
g 0.48; 0.078 0.48; 0.073 0.035; 0.010 0.80; 0.093
b0 0.30; 0.016 0.30; 0.016 0.018; 0.0048 0.20; 0.018
bN 0.056; 0.020 0.051; 0.021 0.010; 0.0055 0.84; 0.040
bE 0.24; 0.018 0.24; 0.017 0.012; 0.0048 0.20; 0.019
bS −0.14; 0.027 −0.15; 0.030 −0.0011; 0.0052 −0.041; 0.010
bW 0.26; 0.019 0.26; 0.017 0.018; 0.0048 0.16; 0.016
σ2

W 3.2; 0.030 3.2; 0.031 0.0057; 0.00015 2.7; 0.032
σ2
µ 0.11; 0.022 0.11; 0.022 0.062; 0.011 0.25; 0.063

σ2
θ 0.25; 0.018 0.26; 0.017 0.0057: 0.00015 0.055; 0.0073

σ2
m 0.77; 0.25 1.5; 0.090 0.017; 0.0013 1.2; 0.47

σ2
T

0.72; 0.24 – 0.017; 0.0013 1.0; 0.46

many meteorological and geophysical models based on de-
terministic relationships such as the Navier-Stokes equations
for describing the climate and the atmospheric circulation
and for projecting climate change. Physical models remain
the primary approach for investigating the impacts of cli-
mate change and ensemble studies are carried out in order
to quantify uncertainties, where different climate models and
small perturbations of the initial conditions give different re-
sults. However, it has been acknowledged that there are no-
table statistical challenges related climate change projections
based on such ensemble studies, see e.g.,Tebaldi and Knutti
(2007); Stephenson et al.(2012); Collins et al.(2012). The
models presented in this paper offer an alternative approach
to modelling the impacts of climate change on the wind cli-
mate with a more direct approach to modelling of uncertain-
ties, and it should rather be regarded as a complement to the
efforts made in developing physical models than a competi-
tor.

7 Conclusions

This paper has presented a Bayesian hierarchical spatiotem-
poral model for 10 m wind speeds over an area in the North
Atlantic ocean. Overall, the model seems to perform well in
capturing the dominating spatial and temporal dependence
structures in the wind speed data. Hence, this paper sug-
gests this modelling framework as an alternative to physical

models for analysing environmental processes such as wind
speed in space and time.

A similar model has previously been applied to extreme
wave climate over the same area and identified inter alia, in-
creasing trends in the monthly maximum significant wave
height. Previous studies have also demonstrated that such in-
creasing trends may have an impact on ship structural loads
and that it, therefore, represents an additional hazard to ship
operations. The results from the wind speed models do not
suggest any corresponding increases in the monthly maxi-
mum wind speeds. On the contrary, a slight decreasing trend
was estimated although this was not statistically significant.
Hence, the results indicate that the roughening of the wave
climate could not be explained by increases in locally gener-
ated wind sea. Possibly, the increased significant wave height
can be explained by increased swell in the area. The monthly
maximum wind speed was also analysed for another ocean
area further north and in this area a significant positive trend
in the 10 m wind speed was identified. These results agree
with various previous studies that suggest that the North At-
lantic storm tracks shift polewards due to a warming climate
and could also explain, at least partly, an increase in swell
in the original area. Thus, the results presented in this paper
suggest that the observed increased significant wave height
might be mostly due to increased swell.
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Appendix A

Posterior distributions

The estimated marginal posterior distributions for all the
model parameters for the different simulations are presented
in Table A1, in terms of estimated mean and standard devia-
tions.
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