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Abstract. An evacuation decision for dam breaks is a very
serious issue. A late decision may lead to loss of lives and
properties, but a very early evacuation will incur unneces-
sary expenses. This paper presents a risk-based framework
of dynamic decision making for dam-break emergency man-
agement (DYDEM). The dam-break emergency management
in both time scale and space scale is introduced first to de-
fine the dynamic decision problem. The probability of dam
failure is taken as a stochastic process and estimated using
a time-series analysis method. The flood consequences are
taken as functions of warning time and evaluated with a hu-
man risk analysis model (HURAM) based on Bayesian net-
works. A decision criterion is suggested to decide whether to
evacuate the population at risk (PAR) or to delay the deci-
sion. The optimum time for evacuating the PAR is obtained
by minimizing the expected total loss, which integrates the
time-related probabilities and flood consequences. When a
delayed decision is chosen, the decision making can be up-
dated with available new information. A specific dam-break
case study is presented in a companion paper to illustrate
the application of this framework to complex dam-breaching
problems.

1 Introduction

Dam breaks can cause catastrophic consequences to human
beings. Past dam failure disasters have shown that flood risks
are directly related to the available warning time (the period
from issuing evacuation warning to the arrival moment of a
flood) for evacuation. Despite the benefits of saving human

life and properties, an evacuation decision should be treated
as a very serious issue since it often incurs a large amount
of economic expense at the same time (Frieser, 2004). Be-
fore making an evacuation decision, two problems need to
be considered. Is it necessary to evacuate the population at
risk (PAR)? If yes, then when is the optimal time to evacuate
the PAR? The answers to these problems raise the need for
proper decision-making based on dynamic risk analysis that
considers time effects.

Generally, there are two categories of methods of decision
making for emergency management: deterministic methods
and probabilistic methods. Deterministic methods are those
based on deterministic analysis, experiences and judgment
without explicit consideration of uncertainties. In determin-
istic methods, some critical values (e.g. water level, period
return flood) are often suggested as indices for evacuation
decision-making (Nielsen et al., 1994; Frieser, 2004). Some
guidelines also offer recommendations for decision-making
based on judgments (Urbina and Wolshon, 2003; FEMA,
2004). Deterministic methods are simple to apply. However,
they may not be reasonable as the uncertainties are not stud-
ied.

There are many uncertainties in both the occurrence and
consequences of dam breaks, especially for landslide dam
failures. Landslide dams are formed by rapid deposition of
massive rocks and soils, in which both the geometrical and
mechanical parameters are uncertain. Therefore, probabilis-
tic decision methods are more realistic. BC Hydro (1993),
USBR (1997) and ANCOLD (1998) published life-safety
criteria for dam safety decision making by considering the
relationship of dam failure probability and fatality. Decision
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Table 1.Flood consequences

Category Consequence Influenced by Influenced by Considered
evacuation? warning time? in DYDEM?

Evacuation cost
Initial evacuation cost Yes Increase Yes
GDP interruption by evacuation Yes Increase Yes
Indirect influence Yes Increase No

Flood damage

Immoveable properties No No influence No
Moveable properties Yes Decrease Yes
GDP interruption by flood No No influence No
Environmental damage No No influence No

Loss of life Fatalities Yes Decrease Yes

trees have been frequently used to conduct quantitatively
risk-based decision making in mitigation of various disasters
(Frieser, 2004; Smith et al., 2006; Lindell et al., 2007; Woo,
2008; Liu, 2009). Frieser (2004) and Smith et al. (2006) com-
mented that the evacuation decision for floods can be delayed
in cases with long prediction lead time and large uncertain-
ties. Figure 1 shows a delayed decision tree for a flood dis-
aster. The flood consequences include evacuation costs (C),
flood damage (D), and loss of life (L) as shown in Table 1.
Evacuation costs include initial costs (e.g. costs of transport,
accommodation, food supply, organization and service), in-
terruption of gross domestic product (GDP) due to evacua-
tion, and indirect influences (e.g. influence of the market in
the affected areas). The evacuation costs increase with the
warning time. The indirect influences are difficult to evaluate
and not included in this study. Flood damages include all the
consequences caused by flooding except those to human life.
Some moveable properties such as cars and portable items
can be saved by evacuation. However, immoveable properties
such as houses, GDP interruption and environmental dam-
age cannot be reduced by evacuation. Therefore, those are
not involved in this study. Loss of life is the fatality caused
by flooding. Historical data show that the fatality rate can be
largely reduced by allowing more warning time (DeKay and
McClelland, 1993; Graham, 1999).

The evacuation may be delayed (e.g.tw in Fig. 1) to obtain
information with less uncertainty and to reduce the evacu-
ation costs (C1 < C2), as shown in Fig. 1. As more infor-
mation is collected, the uncertainty in the dam failure prob-
ability, P1, with a delayed decision is smaller than that in
P2 in Fig. 1. However, such delayed evacuation runs the
risk of losing more lives (L1 > l1 > l2) and properties (D1 >

d1 > d2) given less available time for evacuation. A good de-
cision should try to attain a minimum expected total loss.
Time-dependent evacuation decision can be analyzed using a
multi-phase decision tree (Frieser, 2004; Smith et al., 2006).
The probabilistic methods using decision trees are superior to
deterministic methods due to the inclusion of uncertainties.

A premise of using a decision tree in the existing meth-
ods is to assume a predicted time of flooding,tf , as shown in
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Fig. 1. Decision tree for dam-break emergency management (modified from Frieser, 2004) 

 

Fig. 1. Decision tree for dam-break emergency management (mod-
ified from Frieser, 2004).

Fig. 1. Normally,tf is set as a target time (e.g. with enough
lead time to evacuate the people) or the time of the worst
predicted situation (e.g. the highest water level or largest
flood flow rate). This may not be reasonable due to the fact
that a dam-break flood may occur at any future time. There-
fore, decision trees may not be sufficient for dynamic deci-
sion making, since the predicted flood probability should be
a stochastic process instead. The loss of life and properties
could be underestimated if the flood occurs before the pre-
dicted time, and vice versa.

This paper presents a new framework of dynamic decision
making for dam-break emergency management (DYDEM) in
both time scale and space scale. The probability of dam fail-
ure is taken as a stochastic process and estimated using a
time-series analysis method. The consequences are taken as
functions of warning time and evaluated with a human risk
analysis model (HURAM) using Bayesian networks (Peng
and Zhang, 2012a, b). A decision criterion is suggested to
decide whether to evacuate the population at risk (PAR) or to
delay the decision. The optimum time for evacuating the PAR
is obtained by minimizing the expected total loss. Finally,
a comparison between two existing methods and the new
framework is made to show the features of this framework.
A specific dam-break case study is presented in a companion
paper (Peng and Zhang, 2013) to illustrate the application
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Fig. 2. Schematic of the dam breaching and warning time Fig. 2.Schematic of the dam breaching and warning time.

of this framework to complex dam-breaching problems. HU-
RAM simulates the evacuation, sheltering and loss of life in a
flood event, which are closely related to the evacuation cost,
flood damage and number of fatalities in this paper. DYDEM
in this paper focuses on dynamic decision making for dam-
break emergency management.

2 Dam-break emergency management

Dam-break emergency management is aimed to minimize
the possible dam-break consequences using primarily non-
structural measures, such as warning, sheltering and evacu-
ation. This section presents the dam-break emergency man-
agement in both time and space scale to define the dynamic
decision making problems.

2.1 In time scale

The prediction lead time (i.e. the duration between the pre-
diction moment and the predicted failure time) of a dam-
break flood is usually on the order of hours or days. Dur-
ing this period emergency management can possibly be im-
plemented to save human lives and properties. The studied
time includes available time and demand time. The avail-
able time is influenced by the dam breaching and flood rout-
ing processes. The concepts of breaching and warning time
are shown in Fig. 2. The demand time for emergency man-
agement can be divided into four phases: (1) hydrological
forecasting, risk assessment and decision making; (2) warn-
ing; (3) response; and (4) evacuation and sheltering (Frieser,
2004), as shown in Fig. 3.

Emergency management starts from the identification of
signs of dam break (e.g. the water level rises to the crest or
cracks in the dam) (Fig. 3). Risk assessment, based on the
hydrological forecasting, must be conducted before the evac-
uation decision making in phase 1. The government must de-
cide the optimal time to evacuate the population at risk (PAR)
if evacuation is finally chosen. It takes time to transmit warn-
ing messages in phase 2. An S-curve for the PAR warned
and the progress of warning is shown in Fig. 3. The warning
transmitting time is defined as the duration between issuing
the warning and the receipt of it. Phase 3 starts at the receipt

Fig. 3.Emergency management of dam breaks in time scale (modi-
fied from Frieser, 2004).

of warning messages by the PAR. The PAR needs time to
confirm the warning messages, prepare for evacuation and
wait for family members. A part of the PAR may evacuate
to safe places as shown in phase 4 of Fig. 3. The rest, ei-
ther refusing to evacuate or having insufficient time, may try
to shelter themselves in relatively safe places (e.g. high rise
buildings) in the flooded areas. After the possible occurrence
of the disaster, people may flee for safe havens. Some of these
might lose their lives, however.

The dam-break emergency management in time scale dis-
plays the sequence of human activities and the population
distributions with time before the flood occurrence. A good
decision should consider not only the available time before
the predicted arrival of the flood, but also the demand time
for each phase and the corresponding population distribution.

2.2 In space scale

The risk analysis of a dam-break event covers a large area
along the river from the catchment upstream of the dam to the
potential flood areas downstream of the dam. In space scale
(Fig. 4), the dam-break emergency management includes five
steps: hydraulic parameter forecasting, dam-break probabil-
ity evaluation, dam breaching simulation, flood routing sim-
ulation and flood consequence evaluation.

Hydraulic parameters such as reservoir volume, inflow rate
and water elevation directly influence the dam safety condi-
tions. These parameters should be treated as stochastic pro-
cesses instead of independent random variables due to the
correlations in time scale.

Failure mode is a key parameter for dam-break probabil-
ity analysis. Most dam failures are caused by either overtop-
ping or piping, with corresponding percentages of 56.0 % and
35.7 %, respectively for man-made earth and rockfill dams
(Xu and Zhang, 2009; Zhang et al., 2009), and 91 % and 8 %,
respectively for landslide dams (Peng and Zhang, 2012c).
Since this study focuses on decision making, only the over-
topping failure mode is considered, which usually suffices
for breached landslide dams. Overtopping occurs when the

www.nat-hazards-earth-syst-sci.net/13/425/2013/ Nat. Hazards Earth Syst. Sci., 13, 425–437, 2013
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Fig. 4. Emergency management of dam breaks in space scale 
Fig. 4.Emergency management of dam breaks in space scale.

reservoir water elevation exceeds the elevation of the dam
crest. The probability of dam failure is closely related to hy-
drological parameters.

The next two components are to simulate the dam breach-
ing process and flood routing downstream of the dam. The
breaching parameters significantly affect the flood conse-
quence downstream. In this study, an empirical model (Peng
and Zhang, 2012c) based on statistical data is used to simu-
late the breaching process when only geometrical parameters
are available, while a physical model, DABA (Chang and
Zhang, 2010), is used when more soil properties are avail-
able (e.g. cohesion and friction angle). The outputs of the
breaching simulation are peak outflow rate, breaching time
and breach size. With the breaching parameters predicted, a
river analysis program, HEC-RAS 4.0, developed by Hydro-
logic Engineering Center (2008), is used to simulate the flood
routing in the river downstream of the dam. Detailed simula-
tions in a specific case will be introduced in the companion
paper (Peng and Zhang, 2013).

The flood consequences, including evacuation costs, flood
damage and loss of life as shown in Fig. 1, are highly related
to the warning time. Generally, evacuation costs increase and
flood damage and loss of life decrease with more warning
time. The dam-break emergency management should cover
the evolution of the dam-break event in space scale. A proper
decision should take the dam-break probability as a time se-
ries and the consequences as functions of warning time.

3 Framework of dynamic decision making

The framework of dynamic decision making is intended to
make a decision whether to evacuate the population at risk or
to delay the decision; to predict the optimal time to evacuate
the PAR with the minimum expected total loss; and to update
the decision-making with new information when delayed de-
cision is chosen.

Assume a continuous stochastic process of dam-break
probability as shown in Fig. 5. The studied period ranges
from t0 (e.g. the current time) totend (e.g. the moment af-
ter which the risk is not considered). The probability of dam
failure in a short period dt is calculated as

  

f(t)

t

dt

Pre-warning After flood

Issuing 
evacuation 

warning
Possible 

flood

 

 
Fig. 5. Probability of dam-break flood as a continuous stochastic process of time 
 
Fig. 5. Probability of dam-break flood as a continuous stochastic
process of time.

P(t)= f (t)dt (1)

wheref (t) is a continuous stochastic process of dam fail-
ure probability. Given the time of issuing evacuation warn-
ing (t0 ≤ tw ≤ tend) as shown in Fig. 5, the period between
tw and possible flood arrival time (tf) is called the warning
time (Wt ), which is critical for the people at risk to evacuate
to safe places. Warning time equals zero if the possible flood
occurs before the time for evacuating the PAR. Thus,Wt is a
non-negative parameter and given by

Wt = 0, whentf < tw (2)

Wt = tf − tw, whentf ≥ tw (3)

Wt = tend− tw, whentf ≥ tend. (4)

The flood risk, or expected total loss,E(Lt), is the sum of
the expected evacuation costs, flood damage and loss of life,
which are obtained by integrating the product of these three
categories of consequences and their corresponding proba-
bilities along time:

E(Lt)=

∫
L(t)f (t)dt (5)

=

+∞∫
t0

[C(Wt )+D(Wt )+L(Wt )]f (t)dt

=

+∞∫
t0

C(Wt )f (t)dt +

+∞∫
t0

[D(Wt )+L(Wt )]f (t)dt

whereL(t) is the flood consequences or total loss;C(Wt ),
D(Wt )andL(Wt ) are the evacuation cost, flood damage, and
loss of life as functions of warning time, respectively, which
will be presented later in this paper. Considering the defini-
tion ofWt in Eqs. (2) to (4), Eq. (5) can be separated into two
equations:

Nat. Hazards Earth Syst. Sci., 13, 425–437, 2013 www.nat-hazards-earth-syst-sci.net/13/425/2013/



M. Peng and L. M. Zhang: Dynamic decision making for dam-break emergency management – Part 1 429

 

 

 
Fig. 6. Probability of dam-break flood as a discrete stochastic process of time 
 

Fig. 6. Probability of dam-break flood as a discrete stochastic pro-
cess of time.

+∞∫
t0

C(Wt )f (t)dt =

tw∫
t0

C(0)f (t)dt

+

tend∫
tw

C(t − tw)f (t)dt +C(tend− tw)[1−

tend∫
t0

f (t)dt] (6)

+∞∫
t0

[D(Wt )+L(Wt )]f (t)dt =

tw∫
0

[D(0)+L(0)]f (t)dt

+

tend∫
tw

[D(t − tw)+L(t − tw)]f (t)dt + 0. (7)

The last part of Eq. (6) denotes that evacuation costs incur
even if there is no dam failure or if the failure time is beyond
the studied period. The last part of Eq. (7) denotes that the
flood damage and loss of life are not considered if there is no
dam failure in the studied period.

The optimal time to evacuate the PAR is the time to attain
the minimum total loss or the time at which the derivative of
the following function is zero:

Min[E(Lt)] or
dE(Lt)

dtw
= 0. (8)

For a discrete time series as shown in Fig. 6, the probabil-
ity of flooding in the period fromtj−1 to tj is given byP(tj ).
The expected total loss is given by

E(Lt)=

+∞∑
j=1

L(tj )P (tj )

=

+∞∑
j=1

[C(Wt )+D(Wt )+L(Wt )]P(tj ) (9)
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Fig. 7. Flood consequences as functions of time for evacuating the PAR  
Fig. 7. Flood consequences as functions of time for evacuating the
PAR.

=

+∞∑
j=1

C(Wt )P (tj )

+

+∞∑
j=1

[D(Wt )+L(Wt )]P(tj ). (10)

Similarly, considering the definition ofWt in Eqs. (2)–(4),
Eq. (9) can be separated into two equations:

+∞∑
j=1

C(Wt )P (tj )=

w∑
j=1

C(0)P (tj ) (11)

+

N∑
j=w+1

C(tj − tw)P (tj )+C(tend− tw)[1−

N∑
j=0

P(tj )]

+∞∑
j=1

[D(Wt )+L(Wt )]P(tj )=

w∑
j=1

[D(0)+L(0)]P(tj )

+

N∑
j=w+1

[D(tj − tw)+L(tj − tw)]P(tj )+ 0, (12)

where tN = tend. The optimal time to issue the evacua-
tion warning is the time to attain the minimum total loss
[Min(E(Lt)].

Figure 7 shows the flood consequences as functions of the
time for issuing warning (tw). The flood damage and loss
of life increase and the evacuation costs decrease withtw.
Therefore, there is an optimal point (top) for evacuating the
PAR to achieve the minimum expected total loss. The param-
eter,top, is very important in decision making. Iftop is close
to t0, the PAR should be evacuated immediately; iftop = tend,
no evacuation is decided; ift0 > top< tend, the PAR should
be evacuated attop. If it is not in an urgent case, namelytop is
much larger thant0, we may delay the decision to gain more
information to reduce the uncertainties.

As time goes on, more information for decision will be
available. The decision with a different initial time (t0) is de-
fined as a stage in which the available information and the

www.nat-hazards-earth-syst-sci.net/13/425/2013/ Nat. Hazards Earth Syst. Sci., 13, 425–437, 2013
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evaluated results may be different. Thus, a dynamic deci-
sion should be a multi-stage decision process, the details of
which will be introduced in the companion paper (Peng and
Zhang, 2013). In each stage, as the information gathered and
its condition of uncertainty is different, the predicted dam-
break probabilities and flood consequences could be differ-
ent. It would be unnecessary to consider the decision making
as a continuous process oft0 since the changes in informa-
tion may be small in a short period. In this framework, the
multi-stage decisions are limited to stages with significant
changes in information, such as a predicted storm, changes
in knowledge on the properties of the dam materials, and im-
plementing major flood control measures. In the multi-stage
decision framework, both the predicted dam-break probabil-
ities and consequences should be updated in each new stage.
This will be illustrated with a specific dam-break case study
in the companion paper (Peng and Zhang, 2013).

It may be debatable to put a price on human life and make
a decision with a minimal expected total loss. However, as
the actual expenditures on risk reduction are finite, it may be
rational to set a value of a life to help rational decision mak-
ing. In this study, a value of the macroeconomic contribution
of a person is used to monetize a human life, which will be
introduced later. From the overview of the dynamic decision
framework, two important components of the framework are
critical: prediction of dam-break probability as a stochastic
process and evaluation of flood consequences as functions of
warning time. These two components will be presented in the
next two sections.

4 Prediction of dam-break probability with time series

4.1 Dam-break probability analysis

As introduced above, only the overtopping failure mode is
discussed in this paper. A dam is assumed to be overtopped
once the reservoir volume exceeds its capacity (Vcr):

Vt > Vcr (13)

whereVt is the reservoir volume at timet . If Vt is a normal
variate with a mean ofMV t and a standard deviation ofσV t ,
the probability of overtopping failure before timet (PO) is
given by

PO(t)= P(Vt > Vcr)= 1−P(Vt ≤ Vcr)

= 1−8(
Vcr −MV t

σV t
) (14)

where8() is the probability function of a standard normal
distribution.

For a discrete variable situation, the probability of overtop-
ping in the period betweent −1t andt , PD(t), is the prob-
ability that the predicted lake volume at timet is larger than
Vcr and the predicted lake volumes before timet (Vt−k1t ,

k ≥ 1) are smaller than or equal toVcr:

PD(t)= P(Vt > Vcr,Vt−1t ≤ Vcr, ...,Vt−k1t ≤ Vcr, ...), (15)

whereVt−k1t denotes all the predicted lake volumes before
time t .

Based on mass conservation, the reservoir volume at time
t , Vt , is given by

Vt = Vt−1t + (Qt −Qot −Qet )1t, (16)

where1t is a time interval, andQt , Qot , andQet are the
inflow rate, outflow rate, and evaporation rate of the reser-
voir at time t , respectively. For a specific dam before over-
topping, the outflow rateQot can be treated as a determinis-
tic variable. The evaporation rate (Qet ) in a short time dur-
ing the emergency management could be ignored. If the in-
flow rate is greater than the outflow rate, thenVt always in-
creases monotonically with time; namely,Vt > Vt−1t and
Vt−1t > Vt −Vt−k1t , k > 1.PD(t) can now be expressed as

PD(t)=

P(Vt > Vcr,Vt−1t ≤ Vcr, ...,Vt−k1t ≤ Vcr, ...) (17)

= P(Vt > Vcr,Vt−1t ≤ Vcr) (18)

= P(Vt−1t ≤ Vcr)−P(Vt ≤ Vcr,Vt−1t ≤ Vcr) (19)

= P(Vt−1t ≤ Vcr)−P(Vt ≤ Vcr) (20)

= [1−PO(t − 1)] − [1−PO(t)] (21)

= PO(t)−PO(t − 1) (22)

From the analysis,Qt is the only stochastic process in es-
timating the reservoir volume at timet , which can be fore-
casted using time series analysis methods. A time series is
a sequence of observations taken sequentially in time. An
intrinsic feature of a time series is that adjacent observa-
tions are dependent (Box et al., 2008). Considering these
time-related dependences is essential for dynamic decision
analysis. The purpose of the time series analysis is to fore-
cast the future values of a time series based on the avail-
able observations. The analysis in this paper is divided into
four steps: model identification, model estimation, model
diagnostic checking and forecasting following Brockwell
and Davis (1996) and Box et al. (2008). Several frequently
used time-series models, model estimation, model diagnostic
checking and forecasting are introduced in the appendices.

4.2 Forecasting dynamic inflow rates and lake volumes

After a time-series model and its model parameters have been
identified as described in the appendices, forecasts of reser-
voir inflow rate can be obtained from the following difference
equation:

xt = ϕ1xt−1 +ϕ2xt−2 + · · · +ϕpxt−p

+ at − θ1at−1 − θ2at−2 − · · · − θqat−q (23)

Nat. Hazards Earth Syst. Sci., 13, 425–437, 2013 www.nat-hazards-earth-syst-sci.net/13/425/2013/
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For example, an AR(2) time series can be forecasted as

x∗
t (1)= ϕ1xt +ϕ2xt−1 (24)

x∗
t (2)= ϕ1x

∗
t (1)+ϕ2xt−1 (25)

x∗
t (l)= ϕ1x

∗
t (l− 1)+ϕ2x

∗
t (l− 2), l=3,4, ... (26)

wherext is the recorded value andx∗
t (l) is the predicted value

with lead timel. Note the expected value ofat is zero asat
follows a normal distribution ofN(0,σ 2

a ).
A time series can also be expressed in a random-shock

form of an infinite series (Box et al., 2008):

xt = at +ψ1at−1 +ψ2at−2 +ψ3at−3 · ··

= at +

∞∑
j=1

ψjaj , (27)

where the coefficientsψjs can be obtained by substituting
Eq. (19) into Eq. (17) and comparing the coefficients ofat in
both sides.

As at is an identically distributed stochastic process,
N(0,σ 2

a ), the standard deviation ofxt , is calculated as

σ 2
[xt (l)] = (1+ψ2

1 +ψ2
2 + ...+ψ2

l−1)σ
2
a (28)

whereσa is estimated as

σ 2
a =

1

n− 1

n∑
1

a2
t (29)

in whichat can be obtained using Eq. (A11).
According to Eq. (15), the reservoir volumeVt can be ex-

pressed as a function of the inflow rate,xt :

Vt −Vt−1t = (xt +µQ−Qot )1t, (30)

whereQt = xt +µQ, andµQ is the mean value ofQt . Let
us set

vt =
Vt

1t
andvt−i=

Vt−i1t

1t
. (31)

Thenvt is given by

xt = vt − vt−1 − (µQ−Qot ). (32)

Takext as a AP(2) model for example again; namely

xt = ϕ1xt−1 +ϕ2xt−2 + at . (33)

Writing Eq. (24) at timest , t−1 andt−2 and substituting
these equations forxt , xt−1 andxt−2 into Eq. (25),vt can be
expressed as

vt = (1+ϕ1)vt−1 − (ϕ1 −ϕ2)vt−2 −ϕ2vt−3 (34)

+ (1−ϕ1 −ϕ2)µQ− (QOt −ϕ1QOt−1 −ϕ2QOt−2)+ at .

Set

CQ = (1−ϕ1−ϕ2)µQ− (QOt −ϕ1QOt−1 −ϕ2QOt−2). (35)

Then the means ofvt can be forecasted as

v∗
t (1)= (1+ϕ1)vt − (ϕ1 −ϕ2)vt−1 −ϕ2vt−2 +CQ (36)

v∗
t (2)= (1+ϕ1)v

∗
t (1)− (ϕ1 −ϕ2)vt −ϕ2vt−1 +CQ (37)

v∗
t (3)= (1+ϕ1)v

∗
t (2)(ϕ1 −ϕ2)v

∗
t (1)−ϕ2vt +CQ (38)

v∗
t (l)= (1+ϕ1)v

∗
t (l− 1)(ϕ1 −ϕ2)v

∗
t (l− 2)

−ϕ2v
∗
t (l− 2)+CQ l=4,5, ... (39)

wherevt is the recorded value andv∗
t (l) is the predicted value

with lead timel.
The standard deviation ofvt andVt can be obtained fol-

lowing the method as shown in Eqs. (20) and (21). With the
means and standard deviations ofVt , the probabilities of dam
failure as a time series can be predicted with Eqs. (14) and
(16). The details of the method will be demonstrated with
a dam-break case study in the companion paper (Peng and
Zhang, 2013).

5 Evaluation of the consequences of dam breaks

The flood consequences are closely related to evacuation,
sheltering, and loss of life. Before evaluating the conse-
quences, HURAM (Peng and Zhang, 2012a, b) is used to
simulate these three processes.

5.1 Human risk analysis

HURAM incorporates 14 parameters (e.g. time of a day,
warning time, water depth, building damage, evacuation, and
sheltering) and their inter-relationships in a systematic struc-
ture by using Bayesian networks. Figure 8 shows the frame-
work of HURAM, which can be divided into four compo-
nents: evacuation, sheltering, flood severity, and loss of life.

An evacuation is assumed successful when the available
time is larger than the demand time:

Wt +Rt > Tt + St +Et (40)

whereWt = warning time, which is the sum of lead time
(the duration between issuing warning and the start of the
breaching) and flood routing time (the time for the flood
routing from the dam site to the studied area);Rt = flood
rise time, which is the time for the flood water level to rise
to the peak level (Dp) whenDp < 1.5 m or to 1.5 m when
Dp ≥ 1.5 m;Tt = warning transmitting time, which is the du-
ration from issuing the warning to the receipt by the people at
risk; St = response time, which is the time for people to con-
firm the warning, prepare for evacuation and wait for family
members;Et = evacuation time, which is the time for people
to move to safe places (Frieser, 2004; Jonkman, 2007). The
fatality rate of the evacuated people is set as zero. The people
who have not evacuated are called exposed population. The
details of determining each parameter are described by Peng
and Zhang (2012a, b).

www.nat-hazards-earth-syst-sci.net/13/425/2013/ Nat. Hazards Earth Syst. Sci., 13, 425–437, 2013



432 M. Peng and L. M. Zhang: Dynamic decision making for dam-break emergency management – Part 1

 

 
 

Fig. 8. The framework of HURAM Fig. 8.The framework of HURAM.

The exposed people are assumed to take shelter at the top
of buildings. A successful sheltering also requires that the
available time is longer than the demand time (Wt+Rt > Tt+

St ). Et is not needed in Eq. (29) for sheltering. The people
who have sheltered in the buildings are not absolutely safe,
depending on building damage and building inundation as
shown in Fig. 8.

Flood severity is a parameter to evaluate the flood strength
and the resistance of the buildings. Flood severity is di-
vided into four levels: safe, low, medium and high, depend-
ing on the building damage and building inundation. Build-
ing damage is determined according to the criteria of RESC-
DAM (2000) as shown in Table 2. The whole building is
fully inundated if the water depth is greater than the height of
the building. Based on the concepts of building damage and
building inundation, the flood severity in this study is defined
in a matrix form in Table 3.

The loss of life in each flood severity zone is obtained with
separate methods. In a safe zone, where no flood has arrived
and the buildings are stable, the fatality rate is set as zero.
In a high severity zone, as the buildings are either fully in-
undated or totally damaged, the fatality is very high. Histor-
ical records show that the average fatality rate in high sever-
ity zones is 0.91 (Peng and Zhang, 2012a). Jonkman (2007)
found that a logarithmic function fits the relationship be-
tween fatality rate and water depth well. Thus, the fatality
rates in medium and low severity zones are assumed to fol-
low lognormal functions of water depth (h). Based on re-
sults of regression analysis, the means and standard devi-
ations of ln(h) are 1.65 and 0.56 for medium flood sever-
ity and 3.38 and 1.19 for low flood severity, respectively
(Peng and Zhang, 2012a). For example, the fatality rate of

the non-evacuated people in a low flood severity area (the
buildings are neither seriously damaged nor fully inundated)
is 10 % if the water depth is 6.4 m.

5.2 Modifications to HURAM

HURAM is implemented in Hugin Lite (Hugin Expert A/S,
2004), which is a program for the analysis of Bayesian net-
works. Hugin Lite is powerful for the analysis of Bayesian
networks involving discrete variables or continuous normal
variates. However, in the dynamic decision making frame-
work (DYDEM), the parameters are not limited to these two
types. Thus, the calculations for flood consequence in DY-
DEM are coded in Visual Basic in Microsoft Excel with
Monte Carlo simulations instead of in Hugin Lite. The mod-
ifications are summarized as follows, and details of the HU-
RAM model are described by Peng and Zhang (2012a, b):

1. In HURAM, the parameter of time of day, with the
states of 08:00–17:00, 17:00–22:00 and 22:00–08:00,
is considered in the evacuation and sheltering compo-
nents. In each state of time of day, the distributions of
warning transmitting time (Tt ), response time (St ) and
evacuation time (Et ) are different. These can be handled
as the lead time in HURAM is on the order of minutes
to hours (the lead time is often in one state of time of a
day). However, in DYDEM, the lead time for decision
making is often on the order of days. The distributions
of Tt , St andEt would be complicated if the time of
day is considered. Thus, the effect of time of day is not
considered in DYDEM.

2. In HURAM, the warning transmitting distributions are
W (3.5, 0.6),W (2.0, 0.5), andW (1.3, 0.7) for times of a
day of 08:00–17:00, 17:00–22:00 and 22:00–08:00, re-
spectively. HereW(a, b) denotes a Weibull distribution
with coefficientsa andb:

Pt = 1− exp(−atb). (41)

In DYDEM, we useW (1.3, 0.7) only for convenience
and safety.W (1.3, 0.7) is suggested for moderately
rapid warning by Lindell et al. (2002).

3. The response time distribution is assumed asW (4, 1)
for emergent dam break situations in HURAM, with
a mean value of 15 min and a standard deviation of
15 min. However, for decision making in DYDEM, the
response time should be much longer as people need
time to evacuate properties and prepare to live outside of
their homes for several days. A distribution ofW (0.085,
2.55) is used according to practices of hurricane evacu-
ation (Lindell et al., 2004).

5.3 Estimation of the flood consequences

The evacuation cost consists of initial costs and GDP inter-
ruption. The initial costs (Ci) are the expenses for evacuating
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Table 2.Recommended damage parameters for building structures (after RESCDAM, 2000).

Building type Partial damage Major damage

Unanchored wood-framed DV≥ 2 m2 s−1 DV ≥ 3 m2 s−1

Anchored wood-framed DV≥ 3 m2 s−1 DV ≥ 7 m2 s−1

Masonry, concrete and brick DV≥ 3 m2 s−1 andV ≥ 2 m s−1 DV ≥ 7 m2 s−1 andV ≥ 2 m s−1

Table 3.Flood severity matrix.

Building inundation Story inundation
Building damage

Slight damage Partial damage Major damage

Partially inundated
Not inundated Safe Safe Medium severity
Partially inundated Low severity Low severity Medium severity

Fully inundated Medium severity Medium severity High severity
Fully inundated Fully inundated Medium severity High severity High severity

and arranging the people at risk and necessary services (e.g.
security and medical care). The initial costs are generally
proportional to the number of people to be evacuated and the
time interrupted (warning time):

Ci = cPeva(PAR)(Wt + 3) (42)

wherec is the expense per person per day (e.g. RMB 60 or
US$ 9.5 per person per day);Peva is the proportion of the
people evacuated, which is estimated using the modified HU-
RAM; Wt is the warning time in days. The 3-day time is
taken as the minimal period of time between the predicted
moment of flooding and the return of the residents (Frieser,
2004). The GDP interruption (CGDP) is calculated as

CGDP =
GDPP

365
(PAR)(Wt + 4) (43)

where GDPP is the average GDP per person in the flood area.
It is expected that economic sectors need time to restart their
business (Frieser, 2004). Therefore, a duration of 4 days is
added to the warning time. Thus the evacuation costs (C) are
given by

C = Ci +CGDP. (44)

The flood damage (D) is limited to the moveable properties
in this study. The moveable properties are generally propor-
tional to the number of people who have neither evacuated
nor sheltered in safe zones:

D = (1−Peva)(1−Psafe)(PAR)αIp (45)

wherePsafe is the ratio of the people taking shelter in safe
zones;α is the proportion of properties that can be trans-
ferred (0.1 is assumed);Ip is the property of each person,
which is taken as the cumulative net income (i.e. income mi-
nus spending) per person:

Ip = (I − S)n (46)

whereI andS are the average income and spending per per-
son;n is the average working period per person (e.g. 20 yr).

Despite ethical considerations, a human life has to be mea-
sured for evacuation decision making. Jonkman (2007) re-
viewed approaches of evaluating the human life. A method
with macroeconomic considerations is chosen in this study
(Van Manen and Vrijling, 1996, quoted by Jonkman, 2007).
In this method, the value of a human life (VL) is given as
the product of GDP per person (GDPP) and the average
longevity (L):

VL = (GDPp)L. (47)

For example, the GDPP andL in Mianyang, China, are
RMB 13 745 and 75 yr in 2008 (Mianyang Bureau of Statis-
tics, 2009). Thus, the value of one person in 2010 in China
is RMB 1.03 million. The monetized loss of life (ML) is then
calculated as

ML = VL(LOL) (48)

where LOL is the loss of life predicted with HURAM as a
function of warning time. AsPeva, Psafeand LOL can be pre-
dicted as functions of warning time with HURAM, the three
categories of flood consequences are expressed as functions
of warning time.

6 Dynamic decision making and comparison with
existing methods

With the predicted dam-break probabilities as a time series
and the flood consequences as functions of warning time, the
expected total loss can be calculated with Eq. (5) for con-
tinuous time series and Eq. (9) for discrete time series. The
optimal time to evacuate the PAR is obtained by attaining the
minimum expected total loss as shown in Fig. 7. The deci-
sion can be updated when additional information is available
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Table 4.Comparison of decision-making methods for dam break floods.

Model Frieser (2004) Smith et al. (2006) Peng and Zhang (2013)

Decision method Multi-phased decision tree Multi-phased decision tree Combine time series and Bayesian
networks

Probability prediction Statistic regression Monte Carlo simulation with assumed
distributions

Time series

Evacuation simulation Based on statistical data Assumed as linear function of warning
time

Monte Carlo simulation with parameters
from statistical data

Evaluation of evacuation cost Based on statistic data A constant value HURAM based on Bayesian networks
Evaluation of flood damage Based on statistic data A constant value HURAM based on Bayesian networks
Prediction of loss of life A constant fatality rate A constant fatality rate HURAM based on Bayesian networks
Value of human life Macroeconomic approach A constant value Macroeconomic approach

to reduce the uncertainties in the model parameters. These
will be presented with a specific dam-break case study in the
companion paper (Peng and Zhang, 2013).

Frieser (2004) and Smith et al. (2006) published decision-
making methods for floods with multi-phase decision trees,
which are extended from the two-phase decision tree shown
in Fig. 1. The time of possible flood occurrence is set as a
target time (e.g. with enough lead time to evacuate the peo-
ple) or the time achieving the worst predicted situation (e.g.
highest water level or largest flood flow rate). The minimum
expected total loss in each phase is obtained by comparing
those in all alternatives. The optimal time to evacuate the
PAR is the time achieving the minimum expected total loss.

Table 4 shows a comparison of these two methods and DY-
DEM. Compared to the existing methods with decision trees,
the dynamic decision framework suggested in this paper has
several distinct features:

1. The framework takes the dam-failure probability as a
time series and the flood consequences as functions of
warning time. The time effects on both dam-break prob-
ability and consequence are sufficiently considered.

2. Decision trees have a premise of a fixed occurrence
time, which may not be reasonable, as the probability
of disaster occurrence is a stochastic process. The loss
of life and properties may be underestimated if the flood
occurs before the predicted moment, and vice versa. The
dam-failure probability is simulated as a time series in
DYDEM, in which the dam may break at any future
time with a certain probability.

3. A successful evacuation can be attained when the avail-
able time (i.e. the sum of warning time and flood rise
time) is more than the demanded time (i.e. the sum of
warning transmitting time, response time and evacua-
tion time). The parameter distributions are based on ex-
cising models and statistical data. Monte Carlo simu-
lation is used to simulate the evacuation process with
these parameter distributions.

4. The human risk or loss of life, which is complex and of-
ten assumed as constant values in the existing methods,

is simulated with HURAM based on Bayesian net-
works. Fourteen uncertain parameters and their inter-
relationships are considered in this model.

5. Flood consequences, including evacuation cost, flood
damage and loss of life, are closely related to evacua-
tion rate (the proportion of the people evacuated), shel-
tering rate (the proportion of the people sheltered) and
fatality rate (the proportion of the people who die). The
processes of evacuation, sheltering and loss of life are
simulated in HURAM with a Bayesian network.

7 Conclusions

Evacuation can save human life and properties but incurs
costs at the same time. This paper presents a new framework
of dynamic decision making for dam-break emergency man-
agement. The following conclusions can be drawn:

1. The new framework presented in this paper takes the
dam-failure probability as a time series and the flood
consequences as functions of warning time. The as-
sumption of a fixed flood occurrence time in a tradi-
tional decision tree can be relaxed.

2. Overtopping failure occurs when the reservoir water
volume exceeds the capacity. The inflow rates and reser-
voir volumes are considered as stochastic processes and
forecasted using time series in four steps: model iden-
tification, model estimation, model diagnostic checking
and forecasting. The probability of overtopping failure
is predicted using the forecasted mean values and stan-
dard deviations of the reservoir volume.

3. The consequences of dam-break floods include evacua-
tion costs, flood damage and loss of life. The three cate-
gories of flood consequences can be calculated as func-
tions of evacuation rate, sheltering rate and loss of life.
These three parameters can be predicted with HURAM,
which is a model for simulating human–flood interac-
tions using Bayesian networks. A program is coded in
Visual Basic in Microsoft Excel for this purpose.
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4. The total risk given a warning time is calculated consid-
ering the probability of dam failure, evacuation costs,
flood damage and loss of life, and the optimal warn-
ing time to achieve a minimum total loss can be deter-
mined. The PAR needs to be evacuated immediately if
the calculated optimal warning time is close to the ini-
tial time (t0); no warning is needed if the calculated op-
timal warning time is equal to the end of the study pe-
riod (tend); the PAR should be evacuated at the optimal
time (top) with the minimum expected total loss iftop
is betweent0 and tend. The decision can be delayed to
collect more information and reduce the uncertainties in
the information. A delayed decision analysis can be per-
formed with the updated information in this framework.
A specific dam-break case study will be presented in the
companion paper.

Appendix A

Time series models for forecasting inflow rate

A stationary time series, which is one with its mean and
variance independent of time, can usually be simulated as
a mixed autoregressive–moving average (ARMA) model. In
an ARMA model, a time-related variablext can be expressed
as a finite, linear aggregate of previous values of the time se-
ries and random shocks,at , at−1,. . . ,at−q .

xt = ϕ1xt−1 +ϕ2xt−2 + · · · +ϕpxt−p + at

− θ1at−1 − θ2at−2 − · · · − θqat−q (A1)

in which ϕi andθi are the coefficients of the ARMA(p,q)
model to be quantified. A random shock,at , is an indepen-
dently and identically distributed (IID) stochastic process.
Normally at can be assumed as a normal distribution with
a mean value of zero,N(0,σ 2

a ).
If a time series is not a stationary model, it can often be

transferred to a stationary one by differentiating it (Box et
al., 2008). A difference equation1xt is defined as

1xt = xt − xt−1 (A2)

and1dxt as

1dxt =1d−1xt −1
d−1xt−1. (A3)

If xt can be transferred to a stationary time seriesωt with
difference equation, namely,

ωt =1dxt = ϕ1ωt−1 +ϕ2ωt−2 + · · ·+

ϕpωt−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q , (A4)

thenxt is called an autoregressive integrated moving average
time series, or ARIMA (p,d,q). Actually, ARMA (p,q) is
a special case of ARIMA (p,d,q) with d = 0.

For an ARMA(p,q)model as shown in Eq. (A1), ifq = 0,
then

xt = ϕ1xt−1 +ϕ2xt−2 + · · · +ϕpxt−p + at (A5)

is called anautoregressivemodel of orderp, or AR(p) for
short. If thep = 0 in an ARMA(p,q) model, thenxt can be
expressed as a finite weighted sum ofat , at−1,. . . ,at−q :

xt = at − θ1at−1 − θ2at−2 − · · · − θqat−q , (A6)

and is called amoving averagemodel of orderq, or MA(q)
for short.

A1 Model identification

The objective of model identification is to find a suitable time
series model with orders (p,d,q) to simulate the observa-
tions of a time series. For a given observed time series, the
first step is to check whether it is stationary or not. If it is
non-stationary, we need to transform it using Eq. (A3) until
it becomes a stationary time series. The symptom of a non-
stationary time series is that the autocorrelation functionρk
at time lagk will not die out quickly and will fall off slowly
and nearly linearly with the increase ofk (Box et al., 2008).
The autocorrelation function,ρk, is given by

ρk =
γk

γ0
(A7)

whereγ is called aautocovarianceat time lagk and given
by

γk = cov[xt ,xt+k] = E[(xt −µ)(xt+k −µ)]. (A8)

For a given time series of inflow rate,x1, x2, . . .xN , the
estimate ofγk is given by

γ ∗

k =
1

N

N−k∑
t=1

[(xt − x̄)(xt+k − x̄)] k=0,1, ...,N−1, (A9)

wherex̄ is the average value of the observations ofxt .
Another important parameter for a time series is its partial

autocorrelation functionϕkk. Thej -th autocorrelation func-
tion ρj can be described as an autoregressive function as

ρj = ϕk1ρj−1 +ϕk2ρj−2 + · · ·ϕk(k−1)ρj−k+1

+ϕkkρj−k j=1,2, ...,k (A10)

where the last coefficientϕkk is called a “partial autocorrela-
tion function”.ϕkk can be estimated using a recursive formu-
las (Durbin, 1960; Box et al., 2008).

The model identification for a stationary time series is to
find the model type [AR(p), MA(q) or ARMA(p, q)] and
the corresponding order (i.e.p andq). According to Box et
al. (2008), one feature of AR(p) is that the autocorrelation
functionρk tails off, while its partial autocorrelation function
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Table A1. Identification of time series.

Model Equation Behaviour ofρk Behaviour ofϕkk

AR(p) xt = ϕ1xt−1 + · · ·ϕpxt−p + at Tail off Cut off atϕpp
MA(q) xt = at − θ1at−1 − ...θqat−q Cut off atρq Tail off
ARMA(p, q) xt = ϕ1xt−1 + · · ·ϕpxt−p + at −

θ1at−1 − · · ·θqat−q

Tail off Tail off

 

(a) 

 

 
(b) 

 
 
Fig. A1. Parameters of an assumed time series: (a) autocorrelation function, (b) partial 
autocorrelation function 

Fig. A1. Parameters of an assumed time series:(a) autocorrelation
function,(b) partial autocorrelation function.

ϕkk has a cutoff after lagp. Conversely, for MA(q), the auto-
correlation functionρk cuts off after lagp, while its autocor-
relation functionϕkk tails off. If bothρk andϕkk tail off, then
a mixed process is suggested as shown in Table A1. For ex-
ample, the autocorrelation function (ρk) and partial autocor-
relation function (ϕkk) of an assumed time series are shown
in Fig. A1. Asρk has a cutoff after lag 1 andϕkk tails off, the
time series can be assumed as Ma(1). The assumption needs
to be tested, which will be introduced later.

A2 Model estimation and diagnostic checking

An ARMA(p,q) time series, shown in Eq. (A1), has (p+

q + 1) parameters, namely,ϕ1, ...,ϕp, θ1, ...,θq , andσa . The
objective of model estimation is to find proper parameters to
fit the observations of the time series. The error of a ARMA
(p, q) time series at timet is expressed as

at = xt −ϕ1xt−1 −ϕ2xt−2 − · · · −ϕpxt−p

+ θ1at−1 + θ2at−2 + · · · + θqat−q . (A11)

The least squares method is used to find parametersϕi andθi
for achieving the least sum of the squares ofat :

Min[

n∑
t=1

a2
t (ϕi,θi)], i=1,2, ...,n. (A12)

This can be implemented using a solver in Microsoft Ex-
cel.

After obtaining the parameters, the next step is to conduct
model diagnostic checking to make sure the assumed model
is suitable. Box et al. (2008) show that the equation

n

K∑
k=1

[ρ∗

k (a)]
2 (A13)

approximately follows aχ2(K −p− q) distribution, where
ρ∗

k (a) is the estimated autocorrelation function ofat , which
is defined in Eqs. (A7) and (A8). The model can be checked
through aχ2 goodness-of-fit test at a confidence level (e.g.
5 % or 10 %).
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