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Abstract. The complete assessment of landslide susceptibil-
ity needs uniformly distributed detailed information on the
territory. This information, which is related to the temporal
occurrence of landslide phenomena and their causes, is often
fragmented and heterogeneous. The present study evaluates
the landslide susceptibility map of the Natural Archaeolog-
ical Park of Matera (Southern Italy) (Sassi and area Rupes-
trian Churches sites). The assessment of the degree of “spa-
tial hazard” or “susceptibility” was carried out by the spa-
tial prediction regardless of the return time of the events. The
evaluation model for the susceptibility presented in this paper
is very focused on the use of innovative techniques of artifi-
cial intelligence such as Neural Network, Fuzzy Logic and
Neuro-fuzzy Network. The method described in this paper is
a novel technique based on a neuro-fuzzy system. It is able to
train data like neural network and it is able to shape and con-
trol uncertain and complex systems like a fuzzy system. This
methodology allows us to derive susceptibility maps of the
study area. These data are obtained from thematic maps rep-
resenting the parameters responsible for the instability of the
slopes. The parameters used in the analysis are: plan curva-
ture, elevation (DEM), angle and aspect of the slope, lithol-
ogy, fracture density, kinematic hazard index of planar and
wedge sliding and toppling. Moreover, this method is char-
acterized by the network training which uses a training ma-
trix, consisting of input and outputtraining data, which de-
termine the landslide susceptibility. The neuro-fuzzy method
was integrated to a sensitivity analysis in order to overcome
the uncertainty linked to the used membership functions. The
method was compared to the landslide inventory map and
was validated by applying three methods: a ROC (Receiver
Operating Characteristic) analysis, a confusion matrix and a
SCAI method. The developed neuro-fuzzy method showed a
good performance in the determination of the landslide sus-
ceptibility map.

1 Introduction

Basilicata Region (Southern Italy) is, for geological, geomor-
phological, climatic and seismic reasons, one of the most
landslide prone areas of the Mediterranean basin regions,
which is characterized by landslides of different types, in
which mechanisms of evolution and processes of erosion are
intensity selective (Caniani et al., 2008; Pascale et al., 2010,
2012; Polemio and Sdao, 1996, 1998; Gullà and Sdao, 2001;
De Bari et al., 2011). In some areas of Basilicata, the land-
slides are so intense and widespread that they sometimes
generate serious damage to people and properties. In recent
years, geomorphological studies conducted by the authors
showed that many archaeological sites in Basilicata, espe-
cially those falling in the Apennines areas, are the sign of a
widespread and intense landslide activity, which is affecting
and damaging the valuable testimony of historic and archae-
ological representations. Examples of similar situations can
be found in the archaeological areas of: in the archaeologi-
cal areas of “Rossano di Vaglio” (Sdao and Simeone, 2007),
in “Satriano di Lucania” and in a rupestrian area of Matera,
where many medieval sights are suffering from a serious state
of collapse due to landslides (Sdao et al., 2009; Cotecchia
and Grassi, 1997). Numerous studies can be found in the lit-
erature regarding the assessment of landslide susceptibility.
For example, Oh et al. (2011) applied an adaptive neuro-
fuzzy system (ANFIS) to map the landslide susceptibility
(Oh et al., 2011; Gemitzi et al., 2010; Vahidnia et al., 2010).
Neuro-fuzzy networks are systems which originate from the
union of neural networks and fuzzy inference. The neuro-
fuzzy networks (Masi et al., 2012) are based on fuzzy logic
(Zadeh, 1965). This theory was developed for the first time
in 1965 by Zadeh and it is now used in various sectors. It
was initially constructed to modify the binary logic concept
and to bring it to the human way of thinking. Fuzzy logic
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abandons the bivalence true-false and known paradoxes of
Boolean logic. Fuzzy logic, neural networks and genetic al-
gorithms are artificial intelligence techniques. They are used
in industrial and scientific applications. In particular, adap-
tive fuzzy inference and neural network methods are able to
easily manage the fuzzy rules and to reduce the artifices of
the fuzzy and neural models (Iyatomi and Hagiwara, 2004).
A neuro-fuzzy analysis compared with a neural analysis does
not provide very different results, as evaluated and analyzed
by Vieira et al. (2004). The scientific literature has various
applications of neuro-fuzzy models from the classical man-
agement of humanoid robots that will replace humans in haz-
ardous work, to the medical or service fields (Duško and
Miomir, 2003). Neuro-fuzzy networks have also been used
in the study of solar time series (Attia et al., 2005) and in the
assessment of noise in workplaces (Zaheeruddin, 2006). The
neuro-fuzzy networks have been used to determine and de-
fine a satisfactory method for real-time control of road inter-
sections as well as for technological-industrial applications
(Henry et al., 1998). The seismic events classification has
been addressed with the aid of a neuro-fuzzy network, con-
sidering some specific parameters for each event (Muller et
al., 1998). The daily capacity of a karst aquifer in south-west
France was evaluated by applying a neuro-fuzzy and neural
model; the comparison showed that the neuro-fuzzy model
has a better performance (Kurtulus and Razack, 2010). The
evaluation at the regional scale of groundwater vulnerability
is a problematic issue; thus, several studies have been carried
out to address this problem. In fact, Dixon (2005) evaluated
the vulnerability with a neuro-fuzzy analysis and GIS appli-
cations. The author carried out a sensitivity analysis, which
assessed that the neuro-fuzzy models are sensitive to the form
of fuzzy sets, to the fuzzy set number, to the nature of the
weights of the rules and validation techniques used during
the learning processes. Neuro-fuzzy models are appropriate
for the management of imprecise data on a continental and
regional scale, and they are to be used in a larger framework
of GIS, remote sensing and solute transport modelling with
mechanistic, stochastic and functional models. Other authors
(Tutmez et al., 2006) developed a neuro-fuzzy model for
assessing the water quality in relation to its electrical con-
ductivity. In particular, an adaptive system neuro-fuzzy in-
ference (ANFIS) for the model is the relation between the
main cations dissolved in groundwater and the electrical con-
ductivity used. The ANFIS model overcomes the more tradi-
tional methods of electrical conductivity modelling based on
the total dissolved solids in water. In 2009, Kholghi and Hos-
seini (2009) applied the neuro-fuzzy model and the kriging
method for the water level assessment, in the Qazvin plain
(Iran), in areas where no data were available. The neuro-
fuzzy models manage the uncertainty and lack of data well.
The use of neuro-fuzzy networks in geology revealed to be
advantageous in comparison to neural networks (Caniani et
al., 2008) and fuzzy logic (Ercanoglu and Temiz, 2011; Er-
canoglu and Gokceoglu, 2004) because they can reduce the

Fig. 1.Geology and geomorphology map of the site Rupestrian Her-
itage Rich Area of Matera (Basilicata Region, Southern Italy).

uncertainty. In the present study, in fact, the landslide haz-
ard of the Natural Archaeological Park of Matera (Southern
Italy) was assessed by developing an innovative adaptative
neuro-fuzzy inference system, ANFIS.

2 Geological, geomorphological and historical aspects
of the study area

2.1 Geological and geomorphological framework of the
study area

The Matera territory is located between the Apulian fore-
land and Bradanic foredeep. In the study area, at the top
of the foredeep succession, can be found: the “Argille sub-
appennine” formation (lower Pleistocene) and “Calcarenite
di Gravina” formation (lower Pleistocene–upper Pliocene),
lying in discordance on the “Calcare di Altamura” foreland
formation (upper Cretaceous) (Fig. 1). This is a transgressive
geological contact well marked and generally tilted about 8◦–
12◦ towards WNW.

The “Calcare di Altamura” formation (upper Cretaceous)
outcrops in the lower part of the slopes and is character-
ized by SW-dipping depositional surfaces with a dip angle
of about 5◦–10◦. It is constituted by a monotonous succes-
sion of micritic limestone, packstone and wackestone with
abundant marine Rudiste remains. These terrains are gener-
ally well stratified and usually affected by a pervasive frac-
turing.

The “Calcarenite di Gravina” formation (upper Pliocene
– lower Pleistocene) has a medium thickness of about 40 m
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Fig. 2. Location of sliding of rock blocks.

and it is composed of bioclasts and terrigenous limestone
fragments. In this formation, it is possible to distinguish two
members: one litho-clastic with a terrigeneous origin and
a second one bioclastic. This formation is characterized by
SW-dipping depositional surfaces with a low dip angle and it
is hardly fractured. These calcarenites, cemented and thick-
ened at varying degrees, are stratified in beds and layers with
horizontal or slightly tilted positions.

These calcarenites are composed of an intense and
widespread fracturing, generated by families of discontinuity
variously oriented and often intersected between them. The
whole rock settlement is widely affected by evident signs and
geomorphological effects generated by landslides in rock:
such as toppling and sliding blocks (Fig. 2).

In fact, Fig. 2 shows the entire rock settlement affected
by evident signs and geomorphological effects generated by
fast landslides in rock, due to rock falls, toppling and sliding
blocks.

These landslides particularly affect calcarenitic rocks and
are characterized by

– evident detachments with a complex shape, imposed at
cracks or intersections of different structural discontinu-
ities;

– rock blocks in a precarious stability state, delimited by
open discontinuity or collapsed on the slope below;

– accumulate debris generated by the continuous and
rapid morpho-gravitational dynamics characterizing
this area.

In many cases, along the entire edge of the ravine, it is possi-
ble to observe open discontinuity crests, irrefutable signs of
ongoing morphogenetic dynamics.

These effects, due to planar and wedge rock fall phenom-
ena, are probably caused by stratigraphy, lithological charac-
ters, different cohesion levels, pervasive jointing, and layers
attitude. In order to analyze the fracturing characteristics, the
survey was comprised of a data collection (about 250 mea-
sures) and the descriptions of surface discontinuity charac-
teristics (opening, spacing and fracture condition).

In particular, landslide scarps and detachment are evident
in the central and southern sector of the investigated site.
They are largely present on structural discontinuities with a
high angle oriented about 210◦ N and 300◦ N circumscribing
significant rock blocks.

Recent studies, which used the kinematic stability analysis
(Matheson, 1983, 1989; Hudson and Harrison, 1993) showed
a high susceptibility to the instability of the site (Sdao et al.,
2009). These stability analyses highlighted that:

– the entire site is significantly prone to landslides of
rock wedges and direct toppling, controlled by the
main discontinuity families, with particular reference
to the breaks with attitudes of N 51◦/68◦, N 209◦/69◦,
N 272◦/63◦;

– the areas show that the most marked fall in safety haz-
ards is located in the southern sector of the investigated
site.

The kinematic analysis of the potential instability conditions
of the investigated area was conducted using the method
proposed by Matheson (1983, 1989), and partially revised
by Hudson and Harrison (1993). This is a method of kine-
matic analysis that uses only a few geometric and spatial ar-
rangement parameters can determine the movement of rock
blocks bounded by flat and infinitely continuing discontinu-
ities, without any reference to the producing forces. There-
fore, this type of analysis is integrated by the shear strength
developing along the discontinuity planes, represented by the
friction angle.

The method allows us to identify which families of discon-
tinuity surfaces, characterized by some genetically primary
or secondary parameters, could be potential detachment sur-
faces of the rock blocks. The types of kinematic movements
identified by this analysis are planar sliding, wedge sliding
and tilting of rock blocks.

The potential instability conditions of these areas are also
confirmed by GPS measurements, which were performed on
a network consisting of 10 markers, distributed along the
edge of the ravine and conducted in the period 2002–2004

www.nat-hazards-earth-syst-sci.net/13/395/2013/ Nat. Hazards Earth Syst. Sci., 13, 395–407, 2013
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Fig. 3. “Belvedere delle Chiese Rupestri” of Matera site (Basilicata
Region, southern Italy).

(Sdao et al., 2009). The GPS measurements show that the
major shifts were recorded in the southern portion of the in-
vestigated site.

2.2 Rupestrian evidences of “Parco Archeologico
Storico Naturale delle Chiese Rupestri di Matera”
(Southern Italy)

The historic “Sassi of Matera” and the religious complex of
the “Belvedere Chiese Rupestri” are one of the main me-
dieval settlements of the Matera territory. They run along
steep and rugged carbonate slopes that rise to about 200 m
above the “Gravina” stream of Matera. These slopes oc-
cupy the top shelf of a platform of marine abrasions at 405–
415 m a.s.l.

In this area, there are several archaeological sites: in ad-
dition to numerous caves dug in erodible calcarenitic soil,
many of which have changed the architecture of the rocks
and were intended as places of worship, where some signifi-
cant churches are present (St. Vito, St. Agnese and “Madonna
delle Tre Porte” churchs). These crypts are characterized by
a different state of conservation, with a rather simple archi-
tecture. Well made cave paintings, often degraded, are visible
(Fig. 3).

This habitat was perfect for the socio-economical, reli-
gious and strategic needs of the medieval Lucanian popula-
tion (Fonseca, 1970; Laureano, 1993). People used to make
their houses by excavating the friable Calcarenite of Gravina
(the main lithological type outcropping at the top of Matera’s
Gravina) or by using its natural holes. These important ar-
chaeological sites are often affected by static instability due
to the relative mass movements (Fig. 2).

3 Neuro-fuzzy model

3.1 Neuro-fuzzy networks

Neural networks and fuzzy logic can be inserted into the
large category of soft computing methods. They solve prob-
lems of their domain by using approximating functions. A
neuro-fuzzy model represents the integration of neural net-
works and fuzzy logic and fills the lacunae of both fuzzy
systems and neural networks. Fuzzy neural networks do not
acquire knowledge from the input–output relationships but
need heuristic rules. The advantage of a neuro-fuzzy net-
work compared with a neural network concerns the struc-
ture that can be represented by linguistic rules. The nodes of
the neuro-fuzzy network do not have weights, as in a system
based on neural network. The network training occurs with a
back-propagation algorithm. Adaptive neuro-fuzzy inference
models, ANFIS (Zimmermann, 1991), acquire knowledge of
data by using typical operational algorithms of neural net-
works. The neuro-fuzzy models, in contrast to fuzzy models,
use training data to acquire knowledge of the data to be an-
alyzed (Saad and Halgamuge, 2004). Thus, neuro-fuzzy al-
gorithms allow us to calibrate the membership functions of
fuzzy inference with the training of an artificial neural net-
work. Essentially, they are neural networks structured on five
different levels (Fig. 4). A fuzzy model differs from a neuro-
fuzzy model for training capacity able to automatically gen-
erate the fuzzy rules. The learning process is deemed efficient
when the network solves the problem and when the error is
below a certain threshold.

Generally, a neuro-fuzzy network model is characterized
by a five-level network. The nodes of the first layer incor-
porate the membership functions associated with the fuzzy
term. The nodes of the second level, however, incorporate the
antecedents of the fuzzy rules. Within these nodes the “AND”
logical operation is performed between active inputs.

In the third level, moreover, each node calculates the de-
gree of satisfaction of each rule and returns a weighted term
which enters as input in the corresponding node of the next
level. The nodes of the fourth layer incorporate the conse-
quent rules. Each node accepts, in input, the first level vari-
ables and the corresponding weight that comes from the pre-
vious level. Finally, the fifth nodes perform the sum of all
inputs and returns the final output of the system.

The neuro-fuzzy network is also a fuzzy based approach.
The definition of membership function and “if-then-else”
rules are the basis of the network. A membership function as-
sociates a value (usually numeric) to the degree of member-
ship. The real number that represents the membership degree
[µ(x)] assumes value 0 when the element does not belong to
the set, and value 1 when it entirely belongs to the set. The
membership functions should be defined in order to be able
to realistically describe the phenomenon to be modelled. In
the membership function definition it is necessary to satis-
factorily represent the phenomenon trend and to identify the

Nat. Hazards Earth Syst. Sci., 13, 395–407, 2013 www.nat-hazards-earth-syst-sci.net/13/395/2013/
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Fig. 4.Architecture of a neuro-fuzzy network.

values of the parameters and the degree of freedom of each
curve.

The fuzzy rules are a way to relate a description of a phe-
nomenon in linguistic terms with an action to be performed,
expressed in linguistic terms. They are a representations of
logical inferences made on compositions of fuzzy proposi-
tions. The rules are composed of an antecedent and a conse-
quent, which can be constituted by any combination of fuzzy
propositions. However, in most applications, they are in con-
junction with each other. Thus the rules are represented in
this form:

if (X is LX) and (Y is LY) and . . . and (Z is LZ) then (U is
LU),

whereX,Y,Z are variables called linguistic,LX,LY,LZ

are names of fuzzy sets for that variables andU is the fuzzy
output andLU is the fuzzy set of the output.

3.2 Neuro-fuzzy model for the landslide susceptibility
evaluation

3.2.1 Landslide inventory map and definition of the
predisposing factors

In order, to develop a method for the assessment of the land-
slide susceptibility, the definition of the predisposing factors
for the landslides is crucial.

The calculations of the stability conditions of a slope and
thus of its level of susceptibility require the acquisition of
qualitative and quantitative parameters: geological, hydroge-
ological, geomorphological and mechanical properties of the
lithotypes. Input parameters, which are used to evaluate sus-
ceptibility, represent the causes or factors affecting the distri-
bution of landslides in the area under study (Soeters and Van
Westen, 1996; Ermini et al., 2005; Catani et al., 2005; Er-
canoglu, 2005, 2011). The parameters utilized in the analysis
are variables which have an influence on the landslide hazard
and can be nominal or numeric (Caniani et al., 2008; Catani
et al., 2005; Ercanoglu, 2005). In this study, we chose to rep-
resent each variable with a sequence of binary numbers, in
order to avoid the introduction of diverse types of variables.
For this reason, both nominal and numeric variables were
subdivided into appropriate classes, defined on the basis of

the influence that they exert on landslide mechanisms, and
expressed in the interval [0;1].

The methodology applied in this study is based on the
well-known principle of “today and past are keys to the fu-
ture” (Ercanoglu and Gokceoglu, 2004), which is the funda-
mental principle of landslide susceptibility mapping studies.
The characteristics of the existing landslides are indispens-
able to evaluate the possible areas of future landslides. A
detailed landslide inventory map of the study area (Fig. 1)
was realized in a 1: 8000 scale with the interpretation of
aerial photographs acquired in 2010 and with extensive field
studies carried out in 2012. In the study area, a total of
113 landslides were identified. According to the classifica-
tion of Varnes (1978), the dominant types of failure are: ro-
tational slide, translational slide (Fig. 2), rock fall, toppling,
planar and wedge failure. The properties of the landslides
are recorded on a standard landslide inventory data sheet
but the main purpose of this study was the mapping of the
boundaries of the landslides. The areas between the crest and
the zone of depletion of the landslides are mapped. All the
used landslide features were obtained from digital parameter
maps, as we discuss in the following paragraphs.

Several authors (Catani et al., 2005; Ermini et al., 2005;
Ercanoglu, 2005, 2011; Pereira et al., 2012) studied vari-
ous input parameters. In this study, nine factors were se-
lected (Fig. 5): lithology, elevation, plane curvature, angle
and aspect of the slope, fracture density, kinematic haz-
ard index of planar and wedge sliding and toppling. Con-
tours and survey base points, which have an elevation value,
were extracted from the topographic map. A digital elevation
model (DEM) was constructed by using the inverse distance
weighting (IDW) method of interpolation with 3× 3 m res-
olution. Slope angle, slope aspect, and plan curvature were
extracted from DEM.

The accuracy of DEM was quantitatively verified on the
basis of several field-surveyed points, by using GPS and total
station points.

The Kinematic hazard index (Casagli and Pini, 1993) uses
kinematic criteria and allows us the estimation of a dimen-
sionless index (kinematic hazard ratio) for each possible
mechanism of the movement of blocks. The kinematic hazard
ratio index is expressed by the ratio of the number of poles
or intersections that satisfy the kinematic conditions of insta-
bility and the total number of poles acquired. These indices
are defined as follows:

CSP=
NSP

N
(%), (1)

whereCSP is the kinematic danger index for the planar slid-
ing, NSP is the number of poles which satisfy the kinematic
conditions of instability andN is the total number of poles;

CSC =
NSC

N
(%), (2)

whereCSC is the index of kinematic hazard for the wedge
sliding,NSC is the number of intersections which satisfy the
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Fig. 5. Flow chart of the developed neuro-fuzzy model for the land-
slide susceptibility assessment.

kinematic conditions of instability, whileN is the total num-
ber of intersections between the identified discontinuities;

CRD =
NRD

N
×

IRD

I
(%), (3)

whereCRD is the kinematic danger index for direct tipping,
NRD is the number of poles which satisfy the kinematic con-
ditions of instability,N is the total number of poles. RD is
the number of intersections which satisfy the kinematic con-
ditions of instability, whileI is the total number of intersec-
tions.

These indices, whether the sample spatial arrangement
data is significantly large, provide, on the basis of the kine-
matic boundary conditions, an estimation of the relative
probability, and therefore of the relative hazard that a given
movement mechanism occurs at a given point of the slope.

The size of pixels of the landslide inventory map and all
the maps of parameter was chosen as 3× 3 m (136 columns
and 302 rows, i.e. 41 072 pixels) and the working scale was
selected as 1: 500.

3.2.2 Methodology for the landslide susceptibility
assessment

The prediction model for the landslide susceptibility evalua-
tion of the Natural Archaeological Park of Matera (Southern
Italy) is based on an Adaptive Neural Network-based Fuzzy
Inference System (ANFIS). This model allows us to train the
network starting with a training matrix. We have classified
the input parameters in the neuro-fuzzy model as kinematic,
topographic and litho-structural parameters. The neuro-fuzzy
model for the susceptibility assessment is characterized by
sub-groups in order to reduce the computational burden. We
have determined the three indices by applying fuzzy logic in

Fig. 6. Flow chart of the input and output data of the neuro-fuzzy
model for the evaluation of landslide susceptibility.

each subgroup (Figs. 5 and 6): kinematic index, topographic
index and litho-structural index (Fig. 7). These three indices
represent the input data to the neuro-fuzzy model. The kine-
matic index identifies the potential of ignition of landslides
and contains kinematic hazard index of planar and wedge
sliding and toppling. The topographic index is related to the
slopes morphology and is characterized by slope angle, el-
evation and plan curvature. The litho-structural index, how-
ever, considers the lithology and the fracture density (Candan
et al., 2004). The network training was performed through
a matrix consisting of input parameters and a single output
value, i.e. the landslide susceptibility index. The input in-
dexes were determined by fuzzy approach (kinematic index,
litho-structural index and topographic index). At this point of
the analysis, in the neuro-fuzzy model the membership func-
tions were defined. We overcame the subjective selection of
the membership functions (Fig. 8) by combining the neuro-
fuzzy model with a sensitivity analysis, which was used as a
decision tool for the selection of the most appropriate mem-
bership functions. It consists in running several simulations
in which from time to time these functions are changed. The
results obtained from the simulations were subjected to a sta-
tistical analysis which allowed us to perform a validation be-
tween simulation output data and real information taken from
the landslide inventory map (Oh et al., 2011). The sensitiv-
ity analysis (Caniani et al., 2010) revealed itself to be a valid
solution to reduce the subjectivity.

The model for the landslide susceptibility evaluation was
implemented in Matlab (MathWorks). The Matlab code al-
lows us: to draw the training matrix, to define the member-
ship functions and their respective classes, and to assign the
epochs number, i.e. the iteration number. The Matlab ANFIS
function consists of four phases:

– initialization, which is defined by the function “gen-
fis1”, where the membership functions are defined;

– training, which is used to train the network and is iden-
tified by the ANFIS function;

– testing, which allows us to evaluate the error of training;

– the “evalfis” function, which determines the values of
the environmental risk related to site data.

The parameters were implemented in raster format and
they were converted into text files for processing. The

Nat. Hazards Earth Syst. Sci., 13, 395–407, 2013 www.nat-hazards-earth-syst-sci.net/13/395/2013/
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Fig. 7. Input data to the neuro-fuzzy model for the landslide susceptibility assessment:(a) kinematic index map,(b) topographic index map
and(c) litho-structural index map.

neuro-fuzzy model was constructed by assigning a training
matrix, a epoch number equal to 100 and the type of mem-
bership functions in the various schemes. The training matrix
was used to train the network and was created by combining
all the parameters characterizing the landslide susceptibility.
The matrix is characterized by the input parameters and one
output, the landslide susceptibility, which varies from zero to
one.

3.2.3 Methodology for the model validation

The application of the neuro-fuzzy model is divided into
two steps: the training phase, in which a random selection
of landslide sites was carried out and the weights were cal-
culated, and the validation procedure, in which the obtained
susceptibility map was verified with the inventory map. The
validation of the landslide susceptibility analysis was carried
out by using landslide sites which were not used during the
first modelling phase.

The validation phase of the model has two primary objec-
tives:

– to decide whether the model is sufficiently accurate for
the landslide susceptibility evaluation, by comparing the
results with the landslide inventory map;

– to determine a neuro-fuzzy scheme which is the most
able to represent the slope instability.

The landslide susceptibility analysis was performed using
various fuzzy operators, and the analysis results were val-
idated using statistical methods: “Receiver operating char-
acteristics” (ROC) method, confusion matrix (Hanley and
McNeil, 1983; Zweig and Campbell, 1993; Beguerı̀a, 2006;
Fawcett, 2006) and SCAI (Seed Cell Area Indexes) (Suzen
and Doyuran, 2004) method. ROC method is a methodol-
ogy created during World War II to analyze radar images
and to study the signal/noise ratio. ROC analysis is an ex-
tremely versatile statistical method, used in various fields of
science, including medicine (Lusted, 1971). ROC analysis
(Bottarelli and Parodi, 2003) links the probability of getting
a true-positive result for landslide sites to the probability of
obtaining a false positive result in the class of sites which
are not in landslides (Fawcett, 2006; Conforti et al., 2012;
Lucà et al., 2011). The analysis was conducted comparing
the results of the landslide susceptibility derived from eight
neuro-fuzzy schemes and the landslide inventory map. The
ROC analysis was carried out by overlapping the landslide
susceptibility obtained with the neuro-fuzzy network and the
landslide inventory map (Pereira et al., 2012). It visualizes
a classifier performance in order to select the proper deci-
sion threshold and provides a probability of detection versus
a probability of false alarm curve (Fawcett, 2006). The ROC
curves are equivalent to prediction and success-rate curves
proposed by Chung and Fabbri (2003). The area under the
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Figure 8. Membership functions of neuro-fuzzy model. 3 

4 

Fig. 8. Membership functions of neuro-fuzzy model.

ROC curve (AUC) represents a fundamental parameter for
the evaluation of the test performance (Swets, 1998). It is a
measure of the accuracy which is independent on the preva-
lence (pure accuracy). The area is a measure of discrimina-
tion, i.e. the ability of the technique to classify the pixels cor-
rectly. This threshold-independent measure of discrimination
between both classes takes values between 0.5 (no discrimi-
nation) and 1 (perfect discrimination). Therefore, the closer
the ROC plot is to the upper left corner, the higher the overall
accuracy of the test is. An area of 1 represents a perfect test
and an area of 0.5 represents a worthless test. This procedure
allows us to verify if the proportion of true positives is supe-
rior to that of false positives. A rough guide for knowing the
accuracy of a classifier is 0.5–0.6 for a fail, 0.6–0.7 for poor,
0.7–0.8 for fair, 0.8–0.9 for good, and 0.9–1 for excellent.

A confusion matrix, other statistical method to validation
model, provides the accuracy of the obtained classification.
The confusion matrix was calculated by comparing the loca-
tion and class of each ground truth pixel with the correspond-
ing location and class in the obtained classified image. The
overall accuracy was calculated by summing the number of
pixels classified correctly and dividing it by the total number
of pixels.

Finally, to further assess the consistency of the model, the
seed cell area index (SCAI) of Suzen and Doyuran (2004)
was computed as follows:

SCAI = (4)
Areal extent of susceptibility classes (%)

LDZ of the training and testing set in each susceptibility class (% ).

The logic behind SCAI lies in the correct classification of
landslide pixels within a very conservative areal extent, and it
is expected that the high and very high susceptibility classes
should have very small SCAI values, and that low and very
low susceptibility classes should have higher SCAI values
(Kincal et al., 2009). In this context, the susceptibility area
percent values are divided by the landslide pixels percent val-
ues. The resulting values are the SCAI densities of landslide
pixels among the landslide susceptibility classes.

4 Results of the landslide susceptibility mapping by
using the neuro-fuzzy model

The neuro-fuzzy model was applied to the portion of the
area of the Matera Municipality (Basilicata Region, South-
ern Italy) where the landslide inventory map is available. The
landslide susceptibility was assessed by examining various
environmental factors by using fuzzy membership functions,
as described in Sect. 3.2. The conditioning parameters re-
sponsible for the instability of the slopes and the fuzzy mem-
bership functions were determined. In order to validate the
results of the methodology for the assessment of the landslide
susceptibility, a landslide inventory map was created for the
study area, which comprised 113 landslides. The landslides
were located by using aerial photographs; field checks con-
firmed the accuracy of these locations.

Landslide pixels and an equal number of non-landslide
pixels were randomly selected for the generation of the land-
slide susceptibility map (50 %) and for validation purposes
(50 %). The results obtained from the simulations identify a
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Figure 9.  Model validation with ROC curves. 2 
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Fig. 9.Model validation with ROC curves.

landslide susceptibility map with an index variable between 0
and 1. This index has been obtained from topographic, litho-
structural and kinematic indexes (Figs. 5, 6 and 7). These
indexes were obtained by performing an initial fuzzy analy-
sis on the descriptor parameters of the instability of the area
(Figs. 5 and 7). Subsequently these indexes were used in the
neuro-fuzzy model in order to calculate the landslide sus-
ceptibility of the Natural Archaeological Park of Matera, as
described in Fig. 6. The output of the Matlab neuro-fuzzy
model have been subsequently spatially represented in a GIS
software. The maps are represented with the same number of
classes, for a congruous comparison of data.

The results emerging from the neuro-fuzzy model are ex-
pressed by a landslide susceptibility index variable between
0 and 1. This index has been later reclassified by using the
Natural Break method (Jenks, 1977) (Fig. 10) in order to ob-
tain the susceptibility map of the study area (Fig. 11), which

classifies the stability of the study area into five susceptibility
classes that range from stable to unstable.

The susceptibility classes are no susceptibility, low,
medium, high, and very high susceptibility (Fig. 12). Ac-
cording to this map, 5.3 % of the study area is classified as
very high susceptible, 6.9 % as high susceptible, 28.7 % as
medium susceptible, 29.0 % as low susceptible and 30.1 %
as no susceptible areas.

High and very high susceptibilities, which cover about
15.4 % of the study area, represent the south-western por-
tions of the study area. This result is in accordance with the
concentration on this area of more than 61 % of the land-
slide mapped. In addition, the calcarenitic rocks, which are
intensively fractured and are characterized by steep slopes
(more than 30◦ in average), were found to be the more prone
to instability. On the contrary, low and very low landslide
susceptibilities, which cover about 59.1 % of the study area,
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Fig. 10.Class subdivision of the susceptibility map with the Natural
Breaks method.

Fig. 11.Overlay of the susceptibility map (with Dsig membership
function) and the landslide inventory map.

occur where slope ranges between 0◦ and 10◦ (flat or gently
sloping land surfaces). The comparison between the suscep-
tibility map and the landslides inventory map (Fig. 11) shows
that more than of 86 % of the overall landslides data set were
correctly classified (Table 1).

Fig. 12. Pixel percentage of susceptibility map classified into five
levels: no susceptibility, low, medium, high, and very high.

5 Validation and accuracy analysis of the neuro-fuzzy
model

Results obtained from the statistical analysis are shown in
Fig. 9a,. . . , h.

The ROC method allowed us to identify the most valid
neuro-fuzzy model and the one which returns results similar
to reality (landslide inventory map). The best model gave the
value of AUC> 0.8.

The ROC curve analysis identified that the best result is
obtained from the neuro-fuzzy model in which we considered
the Gauss (Fig. 9c) and the Dsig (Fig. 9f) membership func-
tions. This is demonstrated by the performance of the ROC
curve and by the area subtended to curves. The most accu-
rate result (AUC= 0.85) is obtained by applying the model
which is characterized by the Dsig membership function.

The validation of the susceptibility map obtained with the
Dsig membership function was also performed using a con-
fusion matrix. The results of the neuro-fuzzy model have an
overall accuracy of 87 %. The observed and predicted accu-
racy are shown in Table 1. The predicted accuracy is a mea-
sure indicating the probability that the classifier has labelled
an image pixel into Class A when the ground truth is Class A.
The results reported in Table 1 show that predicted accuracy
is 79 % for landslide cells and 95 % for non-landslide cells.
The overall predicted accuracy is 87 %.

Finally, to further assess the consistency of the model, the
landslide susceptibility analyses obtained by Dsig member-
ship function were also validated using the SCAI method
proposed by Suzen and Doyuran (2004). In this context, the
percentages of susceptibility are divided by the percentages
of landslide cells in order to develop the SCAI density of
landslides for the classes (Table 2). The SCAI values show
that the generated maps are generally accurate because the
high and very high susceptibility classes have very low SCAI
values, whereas the SCAI values of the very low and low sus-
ceptibility classes are very high.
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Table 1.Confusion matrix of the testing data set (cut-off value: 0.5).

Observed predicted % correct

Landslide Non-occurrence
cells landslide cells

Landslide cells 1078 287 79
Non-occurrence landslide cells 67 1271 95
Overall accuracy 87

Table 2. Area percentage of the susceptibility classes in the map. Landslide cells training set and landslide cells testing set falling in each
susceptibility class and SCAI values.

Susceptibility Susceptibility Area Landslide cells % Landslide cells All landslide SCAI
values class (%) training set (%) testing set (%) cells (%)

0–0.0085 Very low 30.1 8.4 4.2 6.4 4.7
0.0085–0.13 Low 29.3 31.5 13.6 23.5 1.24
0.13–0.53 Moderate 28.4 39.4 17.8 29.5 0.96
0.53–0.66 High 6.9 10.6 27.4 18.3 0.38
0.66–1 Very high 5.3 10.1 37.0 22.4 0.24

6 Conclusions

The landslide susceptibility assessment is a recurring impor-
tant topic in the geological and geomorphological fields; the
main aim of the proposed procedure is to act as a support
in planning decisions. The literature proposes different qual-
itative and quantitative methods. The choice of the method
to be applied depends on the degree of precision and detail
that we need to obtain from the model. In some cases, the
artificial intelligence techniques allow us to overcome the
problems related to the high number of parameters and their
uncertainty. The assessment of the susceptibility of the area
under study was achieved by adopting a mixed model based
on the application of statistical methods integrated into com-
putational neuro-fuzzy systems (ANFIS), in order to reduce
the degree of subjectivity. It is fast and economical and it is
applicable to different problems including the study of terri-
tory landslides. The present study applied this technique in a
Rupestrian Heritage Rich Area of Matera.

A landslide database of the study area was compiled by
field and air photo studies. In the study area, a total of
113 landslides were identified. The dominant mode of fail-
ure is rotational slide, rock fall, toppling, planar and wedge
failure. The landslide predisposing factors considered were
lithology, elevation, plane curvature, angle and aspect of the
slope, fracture density, kinematic hazard index of planar and
wedge sliding and toppling. The validation process was per-
formed with a confusion matrix, the ROC analysis and the
SCAI method. The ROC analysis was a valid tool to iden-
tify the best result emerging from the simulations charac-
terized by different fuzzy membership functions. The ROC
analysis provides the AUC values that express the model ac-

curacy, by comparing the landslide inventory map and the
landslide susceptibility map obtained from the neuro-fuzzy
model. The Dsig membership function was identified as the
function which gives the optimal landslide susceptibility map
obtained with the neuro-fuzzy model (AUC= 0.85).

The validation procedure, which was carried out on a test-
ing data set, confirmed the effectiveness (AUC of the ROC
curve: 0.90) of the developed model to predict landslide.
Also, the result of validation shows an overall accuracy of
the 87 % with the 91 % of all landslide cells testing set cor-
rectly classified. These results suggest a good performance
of the used method. The validation procedure, which was
performed by using another testing data set, confirmed the
effectiveness of the model to predict landslides; in fact, the
confusion matrix shows an overall accuracy of 87 % with the
79 % of the landslide testing set correctly classified. The pre-
dictive power was further confirmed by the very low SCAI
values in the highest susceptibility classes.

We conclude, after the previous considerations, that the
developed neuro-fuzzy system can be a relatively simple an-
swer to the resolution of complex problems such as those re-
garding the assessment of landslide susceptibility. Moreover,
the developed neuro-fuzzy model showed to be an objective
methodology thanks to its integration with sensitivity analy-
sis.
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