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Abstract. Due to their relatively unpredictable characteris-
tics, shallow landslides represent a risk for human infras-
tructures. Multiple shallow landslides can be triggered by
widespread intense precipitation events. The event of Au-
gust 2005 in Switzerland is used in order to propose a risk
model to predict the expected number of landslides based
on the precipitation amounts and lithological units. The spa-
tial distribution of rainfall is characterized by merging data
coming from operational weather radars and a dense network
of rain gauges with an artificial neural network. Lithologies
are grouped into four main units, with similar characteris-
tics. Then, from a landslide inventory containing more than
5000 landslides, a probabilistic relation linking the precipita-
tion amount and the lithology to the number of landslides in
a 1 km2 cell, is derived. In a next step, this relation is used
to randomly redistribute the landslides using Monte Carlo
simulations. The probability for a landslide to reach a build-
ing is assessed using stochastic geometry and the damage
cost is assessed from the estimated mean damage cost us-
ing an exponential distribution to account for the variabil-
ity. Although the model reproduces well the number of land-
slides, the number of affected buildings is underestimated.
This seems to result from the human influence on landslide
occurrence. Such a model might be useful to characterize the
risk resulting from shallow landslides and its variability.

1 Introduction

Shallow landslides often represent a risk for housing, peo-
ple and infrastructures. Compared with deep-seated land-
slides, shallow landslides usually trigger spontaneously, flow
at higher speed and are not likely to affect repeatedly the
same location due to the changes in soil stability conditions
(e.g.van Westen et al., 2006; Corominas and Moya, 2008).
Consequently, most research efforts focus on the prediction
of their exact location and, less frequently, their timing. Sev-
eral methods for the mapping of landslide susceptibility ex-
ist and are based on physical models (e.g.Pack et al., 1998;
Montgomery and Dietrich, 1994; Godt et al., 2008) or sta-
tistical approaches (e.g.Carrara et al., 1991). Since rainfall
has been recognized as being a frequent triggering mecha-
nism (e.g.Wieczorek, 1996), many authors, followingCamp-
bell (1975) andCaine(1980), proposed early-warning sys-
tems based upon criteria of precipitation intensity and du-
ration (e.g.Guzzetti et al., 2008). Other studies also use
the antecedent precipitation as a proxy for considering the
groundwater level preceding the precipitation event (Crozier,
1999; Glade et al., 2000). More direct approaches are based
upon the real-time monitoring of soil moisture (Matsushi and
Matsukura, 2007; Baum and Godt, 2010) or the use of trans-
fer functions to estimate the soil water content from precipi-
tation measurements (Cascini and Versace, 1988; Capparelli
and Versace, 2011; Greco et al., 2013).

Many rainfall-induced large landslide events have
been recognized worldwide, for example in Italy
(Crosta, 1998; Crosta and Frattini, 2003; Crosta and
Dal Negro, 2003; Cardinali et al., 2006; Gullà et al.,
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2008), Spain (Corominas and Moya, 1999), the USA
(Campbell, 1975; Whittaker and McShane, 2012), New
Zealand (Crozier et al., 1980; Glade, 1998; Crozier, 2005),
Taiwan (Yu et al., 2006), the Portuguese island of Madeira
(Nguyen et al., 2013) and in Switzerland (Bollinger et al.,
2000).

Despite the numerous contributions to the physical un-
derstanding of the phenomenon itself (for a broad reference
list, although not up to date, seeDe Vita et al., 1998), stud-
ies on the assessment of landslide risk are less commonly
found in the literature. Examples of quantitative risk analy-
sis (QRA) at regional scale can be found inCardinali et al.
(2002), Remondo et al.(2005) andCatani et al.(2005). How-
ever, these studies provide a mean annual risk with no infor-
mation on the expected distribution of annual costs. More
recently, applications of regional-scale QRA providing ex-
ceedance probabilities were presented inJaiswal et al.(2011)
andGhosh et al.(2012). Although most of the QRA method-
ologies are developed for local or regional scales, some of
them, for exampleCatani et al.(2005), might be generalized
to a larger area.

Switzerland was affected in August 2005 by a rain-
fall event with measured precipitation reaching 324 mm in
6 days. Although floods were the main cause of damage,
more than 5000 landslides were reported (Raetzo and Rickli,
2007). Landslide-induced damage has been estimated by
Hilker et al. (2007) at CHF 92 million (USD 99 million;
debris-flows not included) and represents 4.5 % of the total
damage cost.

As already mentioned byJaboyedoff and Bonnard(2007)
and byRickli et al. (2008), landslide density was highly cor-
related with the total precipitation amount. Following their
ideas, this article proposes a risk model for shallow land-
slides based on the event of August 2005. The input pa-
rameters of the model include a rainfall and a lithological
map. The map of 6 day rainfall accumulations is constructed
by interpolating a high resolution rain gauge network using
weather radar data as external drift. A geotechnical map is
interpreted in order to group different units into 4 main litho-
logical settings. The expected number of landslides is pre-
dicted as a function of rainfall level conditional to the litho-
logical type. A geometrical probability concept is then em-
ployed to predict the potential number of landslides affecting
buildings and the corresponding damage cost.

The paper is structured as follows. Section2 details the
rainfall event of August 2005 in Switzerland both from a
meteorological and lithological viewpoint. Section3explains
the methodology to assess the landslide probability as a func-
tion of rainfall accumulation and lithological context. Sec-
tion 4 presents the risk analysis results in terms of expected
number of landslides, number of affected buildings and asso-
ciated cost. Finally, Sects.5 and6 discuss and conclude the
paper.

2 The rainfall event of August 2005 in Switzerland

2.1 Study area

The study area covers the entire Swiss territory (around
42 000 km2), which extends from the Jura Mountains in the
northwest, to the Alps, in the southeast, through the Molassic
Plateau, where most of the population is concentrated. Spe-
cial attention is given to the location where most of the land-
slides occurred, which is the central part of Switzerland, be-
tween the cities of Bern and Lucerne (Fig.1). Landslides oc-
curred in the tectonic units described below (Trümpy, 1980;
University of Bern and FOWG, 2005a, b), which are listed
along a northwest–southeast direction (perpendicularly to the
geological structures).

– Upper freshwater molasse from middle and early up-
per Miocene (consisting of floodplain sediments in-
cluding puddings, sandstones and silty shales).

– Other types of molasse (narrower areas of upper ma-
rine molasse, lower freshwater molasse and lower ma-
rine molasse, the lower part of this series being in sub-
Alpine position).

– Sub-Alpine flysch.

– Upper Penninic flysch (Schlieren flysch).

– Ultrahelvetic and Helvetic nappes (including Tertiary
shallow marine formations and Cretaceous limestones
from the Wildhorn nappe and Jurassic limestones from
the Axen nappe).

The bedrock is mostly covered by soil (regolith) and loose
materials. Most of these shallow and superficial formations
have not been mapped, except for the cases where the forma-
tion reaches a sufficient extension or thickness to be consid-
ered relevant at the map scale. This is for example the case
of morainic material deposited by the glaciations during the
Quaternary, which is visible at several places, especially on
the plateau (Trümpy, 1980). The properties (e.g. mechanical,
hydrological) of the local soils strongly depend on the under-
lying bedrock.

2.2 Description of the precipitation event

The rainfall event of August 2005 in central and eastern
Switzerland resulted in severe damage due to flooding and
induced slope instabilities (Rotach et al., 2006). The presence
of the Alps played a key role in controlling the spatial
distribution of rainfall due to orographic precipitation en-
hancement processes. Persistent precipitation patterns were
mostly found on the exposed upwind slopes under northerly
and northeasterly flow conditions as studied byForesti and
Pozdnoukhov(2012) andForesti et al.(2012). In particular,
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the assessment of landslide risk are less commonly found in
the literature. Examples of quantitative risk analysis (QRA)
at regional scale can be found in Cardinali et al. (2002), Re-
mondo et al. (2005) or Catani et al. (2005). However, these
studies provide a mean annual risk with no information on
the expected distribution of annual costs. More recently, ap-
plications of regional scale QRA providing exceedance prob-
abilities were presented in Jaiswal et al. (2011) and Ghosh
et al. (2012). Although most of the QRA methodologies are
developed for local or regional scales, some of them, for ex-
ample Catani et al. (2005), might be generalized to a larger
area.

Switzerland was affected in August 2005 by a rain-
fall event with measured precipitation reaching 324 mm
in 6 days. Although floods were the main damage cause,
more than 5000 landslides were reported (Raetzo and Rickli,
2007). Landslide-induced damage has been estimated by
Hilker et al. (2007) at 92 million Swiss francs (USD 99 mil-
lion; debris-flows not included) and represents 4.5 % of the
total damage cost.

As already mentioned by Jaboyedoff and Bonnard (2007)
and by Rickli et al. (2008), landslide density was highly cor-
related with the total precipitation amount. Following their
ideas, this article proposes a risk model for shallow land-
slides based on the event of August 2005. The input pa-
rameters of the model include a rainfall and a lithological
map. The map of 6 day rainfall accumulations is constructed
by interpolating a high resolution rain gauge network using
weather radar data as external drift. A geotechnical map is
interpreted in order to group different units into 4 main litho-
logical settings. The expected number of landslides is pre-
dicted as a function of rainfall level conditional to the litho-
logical type. A geometrical probability concept is then em-
ployed to predict the potential number of landslides affecting
buildings and the corresponding damage cost.

The paper is structured as follows. Section 2 details the
rainfall event of August 2005 in Switzerland both from a me-
teorological and lithological viewpoint. Section 3 explains
the methodology to assess the landslide probability as a func-
tion of rainfall accumulation and lithological context. Sec-
tion 4 presents the risk analysis results in terms of expected
number of landslides, number of affected buildings and asso-
ciated cost. Finally, Sects. 5 and 6 discuss and conclude the
paper.

2 The rainfall event of August 2005 in Switzerland

2.1 Study area

The study area covers the entire Swiss territory (around
42 000 km2), which extends from the Jura mountains in the
North-West, to the Alps, in the South-East, through the Mo-
lassic Plateau, where most of the population is concentrated.
Special attention is given to the location where most of the
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Fig. 1. Number of landslides in 1 km2 cells (after Raetzo and Rickli,
2007). White circles represents the Berner Oberland and Entlebuch
regions (hillshade: © Swisstopo).

landslides occurred, which is the central part of Switzerland,
between the cities of Bern and Lucerne (Fig. 1). Landslides
occurred in the tectonic units described below (Trümpy,
1980; University of Bern and FOWG, 2005a,b), which are
listed along a northwest-southeast direction (perpendicularly
to the geological structures):

– Upper Freshwater Molasse from Middle and early Up-
per Miocene (consisting of floodplains sediments in-
cluding puddings, sandstones and silty shales).

– Other types of Molasse (narrower areas of Upper Ma-
rine Molasse, Lower Freshwater Molasse and Lower
Marine Molasse, the lower part of this series being in
Subalpine position).

– Subalpine Flysch.

– Upper Penninic Flysch (Schlieren Flysch).

– Ultrahelvetic and Helvetic Nappes (including tertiary
shallow marine formations and Cretaceous Limestones
from the Wildhorn nappe and Jurassic Limestones from
the Axen nappe).

Soils (regolith) and loose materials cover most of the time
the bedrock. Most of these shallow and superficial forma-
tions have not been mapped, except for the cases where the
formation reaches a sufficient extension or thickness to be
considered relevant at the map scale. This is for example the
case of morainic material deposited by the glaciations during
the Quaternary, which is visible at several places, especially
on the Plateau (Trümpy, 1980). The properties (e.g. mechan-
ical, hydrological) of the local soils strongly depend on the
underlying bedrock.

Fig. 1. Number of landslides in 1 km2 cells (afterRaetzo and
Rickli, 2007). White circles represent the Berner Oberland and
Entlebuch regions (hillshade:© Swisstopo).

the stratiform precipitation was locally enhanced by smaller-
scale orographic features leading to persistent initiation and
enhancement of the embedded convection.

The most intense period of the event was observed be-
tween 21 and 22 August. Driven by cyclonic conditions
during the first day, the moist air from the Mediterranean
Sea circumvented the Austrian Alps and started approaching
slightly crosswise the northern slopes of the Swiss Alps from
the east. The atmospheric flow gradually turned from east-
erly to northerly conditions during the second day. The re-
duced supply of air moisture was compensated by a stronger
upslope rainfall enhancement which extended the duration
of precipitation. The return period for 48 h rainfall accumu-
lations largely exceeded 100 yr at several weather stations
mostly located in the Berner Oberland (Rotach et al., 2006).
It is worth mentioning that the uncertainty of this estimation
is quite important as an event of such intensity was never ob-
served in the past at the considered weather stations.

2.3 Landslide inventory

As a consequence of this extreme rainfall event, many shal-
low landslides were triggered, mainly in the Entlebuch part
of Lucerne canton and in the Bern canton. Some deep-seated
landslides were observed as well and are mainly located far-
ther southeast. A landslide inventory has been collected by
Raetzo and Rickli(2007) from cantonal authorities’ infor-
mation and contains 5756 landslides. Although some addi-
tional attributes such as the exact timing have been regis-
tered for some of the landslides, we only dispose of the
version provided in the above publication and, as a result,
we only know the approximate location. However, the Fed-
eral Office of the Environment (FOEN) also provides to
the cantonal authorities a tool to register the events (FOEN,
2012). An extract of this database has been provided by the
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2.2 Description of the precipitation event

The rainfall event of August 2005 in central and eastern
Switzerland resulted in severe damage due to flooding and
induced slope instabilities (Rotach et al., 2006). The presence
of the Alps played a key role in controlling the spatial
distribution of rainfall due to orographic precipitation en-
hancement processes. Persistent precipitation patterns were
mostly found on the exposed upwind slopes under northerly
and north-easterly flow conditions as studied by Foresti and
Pozdnoukhov (2012a) and Foresti et al. (2012b). In partic-
ular, the stratiform precipitation was locally enhanced by
smaller scale orographic features leading to persistent initia-
tion and enhancement of the embedded convection.

The most intense period of the event was observed be-
tween 21 and 22 August. Driven by cyclonic conditions
during the first day, the moist air from the Mediterranean
sea circumvented the Austrian Alps and started approaching
slightly crosswise the northern slopes of the Swiss Alps from
the east. The mesoscale flows gradually turned from east-
erly to northerly conditions during the second day. The re-
duced supply of air moisture was compensated by a stronger
upslope rainfall enhancement which extended the duration
of precipitation. The return period for 48 h rainfall accumu-
lations largely exceeded 100 yr at several weather stations
mostly located in the Berner Oberland (Rotach et al., 2006).
It is worth mentioning that the uncertainty of this estimation
is quite important as an event of such intensity was never ob-
served in the past at the considered weather stations.

2.3 Landslide inventory

As a consequence of this extreme rainfall event, many shal-
low landslides were triggered, mainly in the Entlebuch part
of Lucerne canton and in the Bern canton. Some deep-seated
landslides were observed as well and are mainly located far-
ther south-east. A landslide inventory has been collected by
Raetzo and Rickli (2007) from cantonal authorities informa-
tion and contains 5756 landslides. Although some additional
attributes such as the exact timing have been registered for
some of the landslides, we only dispose of the version pro-
vided in the above publication and, as a result, we only know
the approximate location. However, the Federal Office of the
Environment (FOEN) also provides to the cantonal authori-
ties a tool to register the events (FOEN, 2012). An extract of
this database has been provided by the FOEN, but contains
less landslides than the one built by Raetzo and Rickli (2007),
since some of the cantons report every landslide, whereas
others only report one point for each set of close landslides.
The uncertainty about the location of landslides complicates
the analysis of their geological context.

Statistics on the landslides can be found in Raetzo and
Rickli (2007) and in Rickli et al. (2008) and investigations
on specific sites in Mueller and Loew (2009) and von Ruette
et al. (2011). The travel distance of shallow landslides has
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Fig. 2. Relative and cumulative frequency of the distance travelled
by 148 landslides (Raetzo and Rickli, 2007).

been analyzed for 148 cases and ranges from a few meters
up to 500 m (Raetzo and Rickli, 2007). Around 75 % of the
landslides traveled less than 100 m and 90 % less than 200 m
(Fig. 2).

2.4 Damage

According to the Swiss Federal Institute for Forest, Snow and
Landscape Research WSL, the 2005 event has been the most
costly since the beginning of the collection of damage data
in 1972, with a total damage cost estimated at 1.83 billion
Swiss francs (around USD 2 billion). On the other hand, in
spite of being the most important event recorded, other years
have been equally or more damaging regarding landslides in
the past 40 yr (Hilker et al., 2009; WSL, 2012).

Hilker et al. (2009) divided the damage values into three
categories according to the cause, namely floods, debris
flows and landslides (including mud-flows). Landslides rep-
resent around 4.5 % of the total cost and affected private
properties (22 %, CHF 16.3 million) and public infrastruc-
tures (88 %, CHF 75.6 million) (Hilker et al., 2007). Private
damage includes damage to buildings as well as furnitures,
vehicles, other property damage and loss of profits. Compar-
atively, public damage includes damage to waterways, roads
(except small ones), railways, farming and forests. In addi-
tion to economic consequences, six casualties are to be de-
plored.

3 Risk modelling methodology

3.1 Introduction

Risk is defined by Einstein (1988) as :

Risk = hazard× potential worth of loss (1)

Where the hazard is the “probability that a particular dan-
ger occurs in a given period of time” and the potential worth

Fig. 2. Relative and cumulative frequency of the distance travelled
by 148 landslides (Raetzo and Rickli, 2007).

FOEN, but contains less landslides than the one built by
Raetzo and Rickli(2007), since some of the cantons report
every landslide, whereas others only report one point for each
set of close landslides. The uncertainty about the location of
landslides complicates the analysis of their geological con-
text.

Statistics on the landslides can be found inRaetzo and
Rickli (2007) and inRickli et al. (2008) and investigations
on specific sites inMueller and Loew(2009) andvon Ruette
et al. (2011). The travel distance of shallow landslides has
been analysed for 148 cases and ranges from a few metres
up to 500 m (Raetzo and Rickli, 2007). Around 75 % of the
landslides travelled less than 100 m and 90 % less than 200 m
(Fig. 2).

2.4 Damage

According to the Swiss Federal Institute for Forest, Snow and
Landscape Research WSL, the 2005 event has been the most
costly since the beginning of the collection of damage data
in 1972, with a total damage cost estimated at CHF 1.83 bil-
lion (around USD 2 billion). On the other hand, in spite of
being the most important event recorded, other years have
been equally or more damaging regarding landslides in the
past 40 yr (Hilker et al., 2009; WSL, 2012).

Hilker et al. (2009) divided the damage values into three
categories according to the cause, namely floods, debris
flows and landslides (including mudflows). Landslides rep-
resent around 4.5 % of the total cost and affected private
properties (22 %, CHF 16.3 million) and public infrastruc-
tures (88 %, CHF 75.6 million) (Hilker et al., 2007). Private
damage includes damage to buildings as well as furniture,
vehicles, other property damage and loss of profits. Compar-
atively, public damage includes damage to waterways, roads
(except small ones), railways, farming and forests. In addi-
tion to economic consequences, six casualties are to be de-
plored.
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3 Risk modelling methodology

3.1 Introduction

Risk is defined byEinstein(1988) as

Risk= hazard× potential worth of loss, (1)

where thehazard is the “probability that a particular dan-
ger occurs in a given period of time” and the potential worth
of loss characterizes the estimated potential loss caused by
an event of given intensity, which depends on the economic
value and vulnerability of the object. We prefer to define haz-
ard in terms of frequency, rather than in terms of probability
since we are dealing with events that can be considered as
repetitive over a large area (van Westen et al., 2006). Indeed,
if the events are repetitive,Kaplan (1997) suggests to use
the frequency rather than the probability (or the frequency
expressed as a probability distribution), which is also more
rigorous since risk is expressed in terms of cost per year.

The methodology described hereafter is a partial risk cal-
culation. Indeed, a single precipitation event is used as an in-
put, which does not allow accounting for the temporal com-
ponent of the hazard. However, the hazard is considered by
its spatial aspect. In a first phase, the spatial distribution of
the total rainfall accumulation is estimated using data from a
dense network of rain gauges and 3 additional operational C-
band weather radars (Sect.3.2). The second phase studies the
statistical distribution of landslides as a function of precip-
itation accumulation and lithological type (Sect.3.3) and is
used to estimate the probability of landsliding in 1 km× 1 km
cells given the occurrence of the precipitation event. These
first steps do not however completely consider the spatial as-
pects of the hazard. Indeed, the exact location as well as the
propagation probability are virtually assessed using princi-
ples of stochastic geometry, and represent the probability of
buildings to be affected by circular landslides within a given
cell. The potential worth of loss is then assessed by using
the estimation of the mean cost of the event and by artifi-
cially adding a variability accounting for the diversity of the
element at risk values and vulnerabilities, as well as the land-
slide intensities (see Sect.3.4).

3.2 Spatial analysis of rainfall

MeteoSwiss operates an automatic network of 76 weather
stations and a dense network of additional 363 rain gauges.
The automatic network measures rainfall with a temporal res-
olution of 10 min while the second only reports daily accu-
mulations from 05:40 to 05:40 UTC of the next calendar day.
An additional network of 3 C-band radars is used to mea-
sure precipitation with higher spatial resolution. The opera-
tional radar data processing chain for quantitative precipita-
tion estimation (QPE) at MeteoSwiss includes the removal of
ground clutter, correction for the vertical profile of reflectiv-
ity in connection with the bright band effect, climatological

rain gauge adjustment, the interpolation from polar coordi-
nates to a Cartesian grid, and the use of a fixed climatological
Z–R relationship (refer toGermann et al., 2006, for more de-
tails). A geostatistical method for real-time adjustment with
rain gauges was only recently implemented bySideris et al.
(2013). For long-term evaluation of the radar QPE accuracy
against rain gauges refer toGabella et al.(2005). The radar
QPE product used in this paper is a 1 km×1 km grid of the
rainfall accumulation during the period 18–23 August 2005.

Despite these corrections, the product still contains resid-
ual ground clutter and biases due to the blockage of low level
radar beams, particularly in the inner Alpine valleys. To par-
tially account for these issues, an artificial neural network
was applied to blend the radar-based QPE map with the rain
gauge rainfall accumulations. A 3-H-1 multiLayer percep-
tron (MLP) was trained to predict the rainfall amount ob-
served at the rain gauges as a function of 3 variables: the
geographical location represented by the Swiss easting and
northing coordinates and the radar QPE product which acts
as an external drift. The geographical coordinates account
for the observed biases between rain gauges and radar-based
QPE, which show a significant spatial dependence. A con-
jugate gradient algorithm was employed to train the net-
work. A low number of hidden neuronsH = 6 was cho-
sen to obtain a smooth representation of the spatial rain-
fall biases. The optimal model was selected by minimiz-
ing the leave-one-out cross-validation root-mean-square er-
ror (RMSE). A randomly sampled test set of 137 stations
was kept to evaluate the expected prediction RMSE, which is
of 25.3 mm. No quantitative assessment of the performance
of the MLP model against geostatistical approaches (e.g.
Sideris et al., 2013) was carried out. Some preliminary com-
parisons with kriging with external drift and additional de-
tails on the MLP model are reported inForesti et al.(2010).
The regularized MLP solution is a smooth compromise be-
tween the radar and rain gauge measurements. This allows
being robust to local radar overestimations due to ground
clutter and the different sampling volume of radar and rain
gauge measurements. The Machine Learning Office software
was used for the computations (Kanevski et al., 2009).

Figure3 illustrates the spatial analysis of the rainfall ac-
cumulation from 18 to 23 August 2005. The highest accu-
mulations are observed on the northern slope of the Alps,
in particular along a line from the Berner Oberland to the
mountain range of Saentis. The spatial distribution of land-
slides is strongly correlated to the spatial distribution of rain-
fall amounts. The remaining unexplained spatial variability
is due especially to the local geological and morphological
settings, which control the sensitivity of the soil to the input
rainfall.

3.3 Landslide distribution

In order to improve the georeferencing of the landslide local-
ization extracted fromRaetzo and Rickli(2007), the StorMe
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Fig. 3. Total rainfall accumulation from 18 to 23 August 2005 [mm]
estimated by MLP. Dots represent the stations used for the interpo-
lation. The dashed area (Berner Oberland) and the triangle (Saentis)
correspond to the end points of a line segment representing the re-
gions with the highest rainfall accumulation.

database (FOEN, 2012) has been used as a reference. The
points known to correspond to multiple landslide events in
the latter database have been removed. The remaining points
are then supposed to correspond to a subset of the first land-
slide map. As a result, each point of the StorMe database
should have its equivalent in the landslide map. The distance
from each point of the StorMe database to its nearest neigh-
bour in the landslide inventory has then been reduced by op-
timizing 2 scale and 2 position factors affecting the coordi-
nates of the points in the landslide inventory. For the opti-
mization, the median distance was preferred to another pa-
rameter, such as the RMSE, in order to ignore potentially
remaining points corresponding to multiple landslides. The
median distance obtained after optimization is 104 m. To be
consistent with the precipitation map, the landslide points
have been transformed into a raster grid with a resolution
of 1 km×1 km, by counting the number of landslides in each
cell (Fig.1).

To establish a predictive relation linking the precipitation
amounts and the lithological type to the landslide probability,
a categorical lithological information should be coded into a
set of variables describing the presence of a given litholog-
ical type into a cell. For this purpose, the geotechnical map
of Switzerland has been used (SGTK, 2012). This map com-
bines the shape of the 1: 500 000 geological map (Univer-
sity of Bern and FOWG, 2005b) with the attributes of the
four 1 : 200 000 geotechnical maps (De Quervain and Frey,
1963, 1965, 1967; De Quervain and Hofmänner, 1964). The
purpose of the latter maps is to transmit the geological in-
formation relevant for non-geologists involved in different
activities dealing with the ground, especially for civil engi-
neering. The map has been simplified into 4 units, loosely

Fig. 4. Probabilistic lithological maps showing the proportion of
each lithological unit. Values range from green (lithological group
slightly present) to blue, whereas white means that the lithologi-
cal group is non-existent in the cell;(A) limestone formations (LF);
(B) crystalline formations (CF),(C) flysch, loose material (except
moraine), marls and claystones (FLMC),(D) molasse and moraine
(MM) and (E) total. In map(E), white tones mark the absence
of lithological formations (i.e. lakes, glaciers) and other countries,
while green tones depict their partial presence within the model cell,
which occurs when the cumulative proportion of the 4 units is be-
low 1.

based on the 6 units used byRickli et al. (2008) to assess the
landslide density distribution of the event:

– limestone formations (LF),

– crystalline formations (CF),

– flysch, loose material (except moraine), marls and
claystones (FLMC),

– molasse and moraine (MM).

The vector map is transformed into 4 raster maps display-
ing the proportion covered by the lithological groups in each
cell (Fig. 4a–d). These products do not allow to relate di-
rectly each landslide to only one lithological unit. Therefore,
in order to take into account the uncertainty on the lithology
involved in each landslide, a stochastic strategy is employed.
A lithology is randomly assigned to each cell according to
the initial lithological proportions. This is achieved by sam-
pling a random variable 0<= u <= 1 and comparing it to
the cumulative probability distribution of lithology classes
(Fig.5). This operation is performed several times to average
the results.
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Fig. 5. Schematic transformation of the vector geotechnical map
into 4 grids containing the proportion of each lithology individually
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iteration by choosing a random number 0≤ u≤ 1. In this example,
if u= 0.5, the second geology would be assigned, since 0.1< u <
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Fig. 6. Cumulative distribution of the spatial precipitation amounts.
Dots show the limits of the six classes and are rounded to the upper
value.

map in terms of the number of landslides per km2, since the
cumulated value of the lithological grids is the surface, in
km2, of land.

The precipitation field has been divided into 6 classes to
have a sufficient number of landslides in each class while
being enough discriminative in terms of precipitation levels.
As visible on Fig. 6, the histogram is highly skewed and only
10 % of Switzerland exceeds 200 mm of rain.

Figure 7 summarizes the data processing workflow. The
output of the model is a cumulative distribution of the ex-
pected number of landslide given the geology and the pre-
cipitation amount. To allow a generalization of these results,
gamma distributions were fitted to the data by minimizing the

RMSE between the observed and modelled distributions in
order to model the number of landslides as a function of pre-
cipitation amount. The 2 parameter form of the gamma cu-
mulative distribution function is given by (Johnson and Kotz,
1970) :

F (x) =
1

βαΓ(α)

x∫
0

t(α−1)e−
t
β dt (2)

Where α is the shape parameter, β is the scale parameter
and Γ(x) is the generalized form of the factorial function,
such as Γ(x) = (x−1)! if x is a positive integer. The gamma
function is defined as:

Γ(x) =

∞∫
0

e−ttx−1dt (3)

Since the gamma distribution is a continuous distribution
whose domain is 0→∞, it is not exactly suitable to fit dis-
crete data, especially as the most frequent number of land-
slide is expected to be x= 0 and as F (x= 0) is null, what-
ever the values of α and β. As a workaround for these issues,
the distribution has been virtually modified as follows, to ex-
tend the definition domain from −1→∞:

F (x) =
1

βαΓ(α)

x+1∫
0

t(α−1)e−
t
β dt (4)

This modification is virtual since the distributions fitting is
made by shifting the x values, i.e. by using the value F (x=
0) for x= 1, which is easier than modifying the function.
The consequences of this modification are discussed below.

To estimate the models predictive ability, a second part
consists in using the distribution of the landslide number ac-
cording to the precipitation class and lithology previously
assessed to simulate different potential consequences of the
precipitation event using a Monte-Carlo approach. This step
illustrates the uncertainty of the model on the consequences
of a given precipitation event. Indeed, since we consider that
the landslides are controlled only by the precipitation and the
lithology, this step gives the variability resulting from this
simplification. The workflow of this step is given in Fig. 8.
Both the raw distributions and the gamma distributions are
used.

Since gamma parameters have been fitted with shifted val-
ues, the unmodified inverse distribution will overestimate the
number of landslides. However, as the gamma distribution
is continuous and as we need to obtain the number of land-
slides in integers, the results of the inverse function for a
given quantile can be rounded down to be consistent with
the original data. Matlab® was used to iteratively derive the
Gamma cumulative distribution as there is not analytical so-
lution (Johnson and Kotz, 1970).

Fig. 5. Schematic transformation of the vector geotechnical map
into 4 grids containing the proportion of each lithology individually
and, then, into 4 grids which give, for each cell, the lithological
units’ cumulative distribution. A lithology is assigned at each model
iteration by choosing a random number 0≤ u ≤ 1. In this example,
if u = 0.5, the second geology would be assigned, since 0.1 < u <

0.7.

Cells that contain water (lakes or glaciers) or that are lo-
cated on the Swiss border have a cumulative value below 1,
since the lithology polygons only cover a fraction of the sur-
face (Fig.4e). As a result, if the random valueu is above
their total cumulated value, they are not taken into account
in the iteration. To build the probabilistic relation, the total
number of landslides considered might then be lower than
the actual number of landslides. To account for this effect,
the landslide map is divided by the cumulated value of the
lithological grids. This operation actually expresses the land-
slide map in terms of the number of landslides per km2, since
the cumulated value of the lithological grids is the surface of
land (in km2).

The precipitation field has been divided into 6 classes to
have a sufficient number of landslides in each class while
being enough discriminative in terms of precipitation levels.
As visible in Fig.6, the histogram is highly skewed and only
10 % of Switzerland exceeds 200 mm of rain.

Figure 7 summarizes the data processing workflow. The
output of the model is a cumulative distribution of the ex-
pected number of landslide given the geology and the pre-
cipitation amount. To allow a generalization of these results,
gamma distributions were fitted to the data by minimizing the
RMSE between the observed and modelled distributions in
order to model the number of landslides as a function of pre-
cipitation amount. The 2 parameter form of the gamma cu-
mulative distribution function is given by (Johnson and Kotz,
1970)
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Fig. 6. Cumulative distribution of the spatial precipitation amounts.
Dots show the limits of the six classes and are rounded to the upper
value.

map in terms of the number of landslides per km2, since the
cumulated value of the lithological grids is the surface, in
km2, of land.

The precipitation field has been divided into 6 classes to
have a sufficient number of landslides in each class while
being enough discriminative in terms of precipitation levels.
As visible on Fig. 6, the histogram is highly skewed and only
10 % of Switzerland exceeds 200 mm of rain.

Figure 7 summarizes the data processing workflow. The
output of the model is a cumulative distribution of the ex-
pected number of landslide given the geology and the pre-
cipitation amount. To allow a generalization of these results,
gamma distributions were fitted to the data by minimizing the

RMSE between the observed and modelled distributions in
order to model the number of landslides as a function of pre-
cipitation amount. The 2 parameter form of the gamma cu-
mulative distribution function is given by (Johnson and Kotz,
1970) :

F (x) =
1

βαΓ(α)

x∫
0

t(α−1)e−
t
β dt (2)

Where α is the shape parameter, β is the scale parameter
and Γ(x) is the generalized form of the factorial function,
such as Γ(x) = (x−1)! if x is a positive integer. The gamma
function is defined as:

Γ(x) =

∞∫
0

e−ttx−1dt (3)

Since the gamma distribution is a continuous distribution
whose domain is 0→∞, it is not exactly suitable to fit dis-
crete data, especially as the most frequent number of land-
slide is expected to be x= 0 and as F (x= 0) is null, what-
ever the values of α and β. As a workaround for these issues,
the distribution has been virtually modified as follows, to ex-
tend the definition domain from −1→∞:

F (x) =
1

βαΓ(α)

x+1∫
0

t(α−1)e−
t
β dt (4)

This modification is virtual since the distributions fitting is
made by shifting the x values, i.e. by using the value F (x=
0) for x= 1, which is easier than modifying the function.
The consequences of this modification are discussed below.

To estimate the models predictive ability, a second part
consists in using the distribution of the landslide number ac-
cording to the precipitation class and lithology previously
assessed to simulate different potential consequences of the
precipitation event using a Monte-Carlo approach. This step
illustrates the uncertainty of the model on the consequences
of a given precipitation event. Indeed, since we consider that
the landslides are controlled only by the precipitation and the
lithology, this step gives the variability resulting from this
simplification. The workflow of this step is given in Fig. 8.
Both the raw distributions and the gamma distributions are
used.

Since gamma parameters have been fitted with shifted val-
ues, the unmodified inverse distribution will overestimate the
number of landslides. However, as the gamma distribution
is continuous and as we need to obtain the number of land-
slides in integers, the results of the inverse function for a
given quantile can be rounded down to be consistent with
the original data. Matlab® was used to iteratively derive the
Gamma cumulative distribution as there is not analytical so-
lution (Johnson and Kotz, 1970).

Fig. 6.Cumulative distribution of the spatial precipitation amounts.
Dots show the limits of the 6 classes and are rounded to the upper
value.

F(x) =
1

βα0(α)

x∫
0

t (α−1)e
−

t
β dt, (2)

whereα is the shape parameter,β is the scale parameter and
0(x) is the generalized form of the factorial function, such as
0(x) = (x−1)! if x is a positive integer. The gamma function
is defined as

0(x) =

∞∫
0

e−t tx−1dt. (3)

Since the gamma distribution is a continuous distribution
whose domain is 0→ ∞, it is not exactly suitable to fit dis-
crete data, especially as the most frequent number of land-
slides is expected to bex = 0 and asF(x = 0) is null, what-
ever the values ofα andβ. As a workaround for these issues,
the distribution has been virtually modified to extend the def-
inition domain from−1 → ∞ as:

F(x) =
1

βα0(α)

x+1∫
0

t (α−1)e
−

t
β dt. (4)

This modification is virtual since the distributions’ fitting
is made by shifting thex values, i.e. by using the value
F(x = 0) for x = 1, which is easier than modifying the func-
tion. The consequences of this modification are discussed be-
low.

To estimate the predictive ability of the model, a second
part consists in using the distribution of the number of land-
slides according to the precipitation class and lithology pre-
viously assessed to simulate different potential consequences
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Fig. 7. Flow diagram showing the assessment methodology used
to obtain the cumulative frequency of the number of landslides per
lithological unit and precipitation class.
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Fig. 9. Left: Buffon’s clean tile problem (modified from Mathai,
1999). The probability for the coin to touch the limit of the tile is
given by the ratio between the dashed square (area= (l− d)2) and
the plain square (area= l2). Right: The probability for a circular
landslide of diameter d to reach a house is given by the ratio of the
buildings expanded with a d/2 buffer (a) with the total area (A).

3.4 Impact assessment

The impact assessment consists of two main steps, which are
evaluating how many buildings will be reached and estimat-
ing an associated cost.

In order to assess the number of affected buildings, ge-
ometrical probabilities are used. The concept used in this
model is inspired from Buffon’s clean tile problem, which
consists of calculating the probability for a coin to fall on the
crack separating two tiles of a paved ground (Mathai, 1999;
Weisstein, 2013). For square tiles, the probability that a cir-
cular coin of diameter d falls completely inside a square of
side l (with l > d), is given by the ratio of a square of side
l−d with the tile of side l. The smaller square corresponds to
the tile eroded by a buffer of size d/2 (Fig. 9, left). Therefore,
the probability for the coin to fall on the crack is the ratio of
the area between the two squares (l2−(l−d)2) and the bigger
square. Buffon also investigated the ”needle problem”, which
consists of calculating the probability that a needle falling on
a ground made of infinite parallel strips of equal width falls
on one of the lines (Mathai, 1999). In contrast, the falling
object is, in the needle problem, not only characterized by
the position of its center, but also by its orientation. As a re-
sult, dilating the lines by a buffer is not suitable to solve the
problem and Buffon’s solution cannot be straightforwardly
extended to other objects than the straight lines.

To assess the conditional probability for a landslide to
reach a building, the coin of Buffon’s problem is replaced
with circular landslides of diameter d, and the cracks be-
tween the tiles are replaced with the actual buildings (Fig. 9,
right). Therefore, adding a buffer of a distance d/2 to the
buildings allows to compare the area covered by the ex-
panded buildings with the total area, which corresponds to
the conditional probability for a landslide to reach a building.
At this step, it is considered that the landslide has the same
probability to occur anywhere inside the considered area.

Fig. 7. Flow diagram showing the assessment methodology used
to obtain the cumulative frequency of the number of landslides per
lithological unit and precipitation class.

of the precipitation event using a Monte Carlo approach. This
step illustrates the uncertainty of the model on the conse-
quences of a given precipitation event. Indeed, since we con-
sider that the landslides are controlled only by the precipita-
tion and the lithology, this step gives the variability resulting
from this simplification. The workflow of this step is given
in Fig. 8. Both the raw distributions and the gamma distribu-
tions are used.

Since gamma parameters have been fitted with shifted val-
ues, the unmodified inverse distribution will overestimate the
number of landslides. However, as the gamma distribution
is continuous and as we need to obtain the number of land-
slides in integers, the results of the inverse function for a
given quantile can be rounded down to be consistent with
the original data. Matlab® was used to iteratively derive the
gamma cumulative distribution as there is not analytical so-
lution (Johnson and Kotz, 1970).

3.4 Impact assessment

The impact assessment consists of two main steps, which are
evaluating how many buildings will be reached and estimat-
ing an associated cost.

In order to assess the number of affected buildings, ge-
ometrical probabilities are used. The concept used in this
model is inspired from Buffon’s clean tile problem, which
consists of calculating the probability for a coin to fall on the
crack separating two tiles of a paved ground (Mathai, 1999;
Weisstein, 2013). For square tiles, the probability that a cir-
cular coin of diameterd falls completely inside a square of
side l (with l > d), is given by the ratio of a square of side
l−d with the tile of sidel. The smaller square corresponds to
the tile eroded by a buffer of sized/2 (Fig.9, left). Therefore,
the probability for the coin to fall on the crack is the ratio of
the area between the plain and the dashed lines(l2−(l−d)2)
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1999). The probability for the coin to touch the limit of the tile is
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landslide of diameter d to reach a house is given by the ratio of the
buildings expanded with a d/2 buffer (a) with the total area (A).

3.4 Impact assessment

The impact assessment consists of two main steps, which are
evaluating how many buildings will be reached and estimat-
ing an associated cost.

In order to assess the number of affected buildings, ge-
ometrical probabilities are used. The concept used in this
model is inspired from Buffon’s clean tile problem, which
consists of calculating the probability for a coin to fall on the
crack separating two tiles of a paved ground (Mathai, 1999;
Weisstein, 2013). For square tiles, the probability that a cir-
cular coin of diameter d falls completely inside a square of
side l (with l > d), is given by the ratio of a square of side
l−d with the tile of side l. The smaller square corresponds to
the tile eroded by a buffer of size d/2 (Fig. 9, left). Therefore,
the probability for the coin to fall on the crack is the ratio of
the area between the two squares (l2−(l−d)2) and the bigger
square. Buffon also investigated the ”needle problem”, which
consists of calculating the probability that a needle falling on
a ground made of infinite parallel strips of equal width falls
on one of the lines (Mathai, 1999). In contrast, the falling
object is, in the needle problem, not only characterized by
the position of its center, but also by its orientation. As a re-
sult, dilating the lines by a buffer is not suitable to solve the
problem and Buffon’s solution cannot be straightforwardly
extended to other objects than the straight lines.

To assess the conditional probability for a landslide to
reach a building, the coin of Buffon’s problem is replaced
with circular landslides of diameter d, and the cracks be-
tween the tiles are replaced with the actual buildings (Fig. 9,
right). Therefore, adding a buffer of a distance d/2 to the
buildings allows to compare the area covered by the ex-
panded buildings with the total area, which corresponds to
the conditional probability for a landslide to reach a building.
At this step, it is considered that the landslide has the same
probability to occur anywhere inside the considered area.

Fig. 8. Flow diagram showing the assessment methodology used to
obtain the number of affected buildings.

and the area of the bigger square. Buffon also investigated the
“needle problem”, which consists of calculating the probabil-
ity that a needle falling on a ground made of infinite parallel
strips of equal width falls on one of the lines (Mathai, 1999).
In contrast, the falling object is, in the needle problem, not
only characterized by the position of its centre, but also by
its orientation. As a result, dilating the lines by a buffer is not
suitable to solve the problem and Buffon’s solution cannot be
straightforwardly extended to other objects than the straight
lines.

To assess the conditional probability for a landslide to
reach a building, the coin of Buffon’s problem is replaced
with circular landslides of diameterd, and the cracks be-
tween the tiles are replaced with the actual buildings (Fig.9,
right). Therefore, adding a buffer of a distanced/2 to the
buildings allows one to compare the area covered by the ex-
panded buildings with the total area, which corresponds to
the conditional probability for a landslide to reach a building.
At this step, it is considered that the landslide has the same
probability to occur anywhere inside the considered area.

Assuming circular landslides is a simplification which
might have consequences on the model, since, as illustrated
by the needle problem, an elongated shape is more likely to
affect the buildings. Moreover, the shape of the landslides is
expected to be elongated. As a consequence, the circle di-
ameter is set to 200 m in order to completely include 90 %
of the landslides, since the distance measure corresponds to
the largest dimension (Fig.2), i.e. the length of the landslide.
This diameter results in an overestimation of the landslide
surface, but it takes indirectly into account the landslide ge-
ometry and provides a slightly pessimistic risk estimation in
terms of the number of affected buildings. Thus, a 100 m
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Fig. 9. Left: Buffon’s clean tile problem (modified from Mathai,
1999). The probability for the coin to touch the limit of the tile is
given by the ratio between the dashed square (area= (l− d)2) and
the plain square (area= l2). Right: The probability for a circular
landslide of diameter d to reach a house is given by the ratio of the
buildings expanded with a d/2 buffer (a) with the total area (A).

3.4 Impact assessment

The impact assessment consists of two main steps, which are
evaluating how many buildings will be reached and estimat-
ing an associated cost.

In order to assess the number of affected buildings, ge-
ometrical probabilities are used. The concept used in this
model is inspired from Buffon’s clean tile problem, which
consists of calculating the probability for a coin to fall on the
crack separating two tiles of a paved ground (Mathai, 1999;
Weisstein, 2013). For square tiles, the probability that a cir-
cular coin of diameter d falls completely inside a square of
side l (with l > d), is given by the ratio of a square of side
l−d with the tile of side l. The smaller square corresponds to
the tile eroded by a buffer of size d/2 (Fig. 9, left). Therefore,
the probability for the coin to fall on the crack is the ratio of
the area between the two squares (l2−(l−d)2) and the bigger
square. Buffon also investigated the ”needle problem”, which
consists of calculating the probability that a needle falling on
a ground made of infinite parallel strips of equal width falls
on one of the lines (Mathai, 1999). In contrast, the falling
object is, in the needle problem, not only characterized by
the position of its center, but also by its orientation. As a re-
sult, dilating the lines by a buffer is not suitable to solve the
problem and Buffon’s solution cannot be straightforwardly
extended to other objects than the straight lines.

To assess the conditional probability for a landslide to
reach a building, the coin of Buffon’s problem is replaced
with circular landslides of diameter d, and the cracks be-
tween the tiles are replaced with the actual buildings (Fig. 9,
right). Therefore, adding a buffer of a distance d/2 to the
buildings allows to compare the area covered by the ex-
panded buildings with the total area, which corresponds to
the conditional probability for a landslide to reach a building.
At this step, it is considered that the landslide has the same
probability to occur anywhere inside the considered area.

Fig. 9. Left: Buffon’s clean tile problem (modified fromMathai,
1999). The probability for the coin to touch the limit of the tile is
given by the ratio between the dashed square (area= (l − d)2) and
the plain square (area= l2). Right: The probability for a circular
landslide of diameterd to reach a house is given by the ratio of the
buildings expanded with ad/2 buffer (a) with the total area (A).

buffer has been added to the 1 814 667 buildings extracted
from the vectorized landscape model of Switzerland (Vec-
tor25, ©swisstopo). Then, the total surface has been com-
pared with each cell surface to obtain the impact probability.
It has to be mentioned that impact is only considered with a
Boolean approach, which means that a landslide can affect a
building or not, but the potential for one landslide to affect
several buildings is not considered. It should also be noted
that the buffers are made before cutting shapes into cells in
order to take into account the possibility for a landslide oc-
curring in a given cell to reach a house located close to the
border of an adjacent cell.

However, a shallow landslide preliminary hazard map ex-
ists at Switzerland scale (Geotest et al., 2006) and provides
a global area where shallow landslides can occur, including
both the initiation and propagation zones. This map is based
on a global analysis in two steps: first the stability is assessed
using an infinite slope analysis (model SLIDISP,Liener
et al., 1996), then propagation prone areas are assessed with
a model adapted from debris flow (model SLIDESIM, based
on Gamma, 2000). The final version of this map combines
both areas without further attributes. Thanks to this map a
small modification is made to the impact probability. If a
landslide occurs in a cell where the hazard map exists, it is
considered that the landslide will occur inside the area cov-
ered by the hazard map. Therefore, the ratioa/A described
in Fig. 9 becomes(a ∈ S)/S, whereS is the surface covered
by the hazard map. The impact probability map including
this modification is given in Fig.10. The hazard map has
however not been used yet to assess the location of the land-
slides, but a usage of this map for the landslide distribution
has to be considered. Indeed, only 8 landslides (0.14 %) were
located in cells with no hazard according to the map and 133
(2.31 %) were located within cells where less than 10 % of
the surface is covered by the hazard map. This tends to in-
dicate that this preliminary hazard map is realistic, but since
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Assuming circular landslides is a simplification which
might have consequences on the model, since, as illustrated
by the needle problem, an elongated shape is more likely to
affect the buildings. Moreover, the shape of the landslides is
expected to be elongated. As a consequence, the circle di-
ameter is set to 200 m in order to completely include 90 %
of the landslides, since the distance measure correspond to
the largest dimension (Fig. 2), i.e. the length of the landslide.
This diameter results in an overestimation of the landslide
surface, but it takes indirectly into account the landslide ge-
ometry and provides a slightly pessimistic risk estimation in
terms of the number of affected buildings. Thus, a 100 m
buffer has been added to the 1 814 667 buildings extracted
from the vectorized landscape model of Switzerland (Vec-
tor25, © swisstopo). Then, the total surface has been com-
pared with each cell surface to obtain the impact probability.
It has to be mentioned that impact is only considered with
a boolean approach, which means that a landslide can affect
a building or not, but the potential for one landslide to affect
several buildings is not considered. It should also be noted
that the buffers are made before cutting shapes into cells in
order to take into account the possibility for a landslide oc-
curring in a given cell to reach a house located close to the
border of an adjacent cell.

However, a shallow landslide preliminary hazard map ex-
ists at Switzerland scale (Geotest et al., 2006) and provides
a global area where shallow landslides can occur, including
both the initiation and propagation zones. This map is based
on a global analysis in two steps: first the stability is assessed
using a infinite slope analysis (model SLIDISP, Liener et al.,
1996), then propagation prone areas are assessed with a
model adapted from debris-flow (model SLIDESIM, based
on Gamma, 2000). The final version of this map combines
both areas without further attributes. Thanks to this map a
small modification is made to the impact probability. If a
landslide occurs in a cell where the hazard map exists, it is
considered that the landslide will occur inside the area cov-
ered by the hazard map. Therefore, the ratio a/A described
in Fig. 9 becomes (a ∈ S)/S, where S is the surface covered
by the hazard map. The impact probability map including this
modification is given in Fig. 10. The hazard map has however
not been used yet to assess the location of the landslides, but
a usage of this map for the landslide distribution has to be
considered. Indeed, only 8 landslides (0.14%) were located
in cells with no hazard according to the map and 133 (2.31%)
were located within cells where less than 10% of the surface
is covered by the hazard map. This tends to indicate that this
preliminary hazard map is realistic, but since there is an un-
certainty on the landslide locations, an in depth analysis of
the landslide locations with regard to the hazard map cannot
be made.

The estimation of the associated cost is more complicated
as the value of the buildings is not known. This information
could be obtained from the buildings insurance for 19 over
26 cantons for which a public insurance exists and is manda-

1
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Fig. 10. Impact probability map displaying the conditional proba-
bility for a 100 m radius circular landslide to affect a house for each
cell of the model. Dots corresponds to the cities visible in Fig. 1
(hillshade: © Swisstopo).

tory. However, a suitable vulnerability curve linking the land-
slide intensity, characterized by parameters such as depth or
area, to the damage rate, is difficult to assess. The lack of
knowledge on the precise landslide characteristics and lo-
cation as well as the inherent variability of the elements at
risk complicates even more the assessment of the vulnera-
bility (Galli and Guzzetti, 2007). Therefore, in order to keep
the precision of the model consistent with the previous step,
we chose not to use a value and a vulnerability curve to as-
sess the damage cost, but to assess it directly from the 2005
event mean damage cost. This cost is estimated by divid-
ing the total damage cost induced by landslides to private
infrastructures (CHF 16.3 million) by the expected number
of affected buildings. The latter is obtained by summing over
all grid cells the product between the number of landslides
(Fig. 1) and the impact probability (Fig. 10). This approach
results in 2260 affected buildings, implying a mean cost x̄ of
CHF 7211 per building. No uncertainty is considered on this
parameter.

It is apparent that damage costs are varying. Therefore, to
reproduce a possible distribution of costs, a statistical dis-
tribution is chosen. Thus, the expected damage cost x for
a given building is assumed to follow an exponential distri-
bution with probability density function (e.g. Ross, 2010):

f(x) =

{
λexp(−λx), x≥ 0
0, x < 0

. (5)

The distribution is only defined in terms of its first moment
1/λ, which is equal to x̄, namely the expected mean damage
cost per building assumed for the 2005 event.

The generation of exponential variates is obtained by sam-
pling from the quantile distribution, which is given by the
inverse function of the exponential cumulative distribution

Fig. 10. Impact probability map displaying the conditional proba-
bility for a 100 m radius circular landslide to affect a house for each
cell of the model. Dots correspond to the cities visible in Fig.1
(hillshade:©Swisstopo).

there is an uncertainty on the landslide locations, an in depth
analysis of the landslide locations with regard to the hazard
map cannot be made.

The estimation of the associated cost is more complicated
as the value of the buildings is not known. This information
could be obtained from the buildings’ insurances for 19 of
26 cantons, for which a public insurance exists and is manda-
tory. However, a suitable vulnerability curve linking the land-
slide intensity, characterized by parameters such as depth or
area, to the damage rate, is difficult to assess. The lack of
knowledge on the precise landslide characteristics and lo-
cation as well as the inherent variability of the elements at
risk complicates even more the assessment of the vulnera-
bility (Galli and Guzzetti, 2007). Therefore, in order to keep
the precision of the model consistent with the previous step,
we chose not to use a value and a vulnerability curve to as-
sess the damage cost, but to assess it directly from the 2005
event mean damage cost. This cost is estimated by divid-
ing the total damage cost induced by landslides to private
infrastructures (CHF 16.3 million) by the expected number
of affected buildings. The latter is obtained by summing over
all grid cells the product between the number of landslides
(Fig. 1) and the impact probability (Fig.10). This approach
results in 2260 affected buildings, implying a mean costx of
CHF 7211 per building. No uncertainty is considered for this
parameter.

It is apparent that damage costs are varying. Therefore, to
reproduce a possible distribution of costs, a statistical dis-
tribution is chosen. Thus, the expected damage costx for a
given building is assumed to follow an exponential distribu-
tion with probability density function (e.g.Ross, 2010) as

f (x) =

{
λexp(−λx), x ≥ 0
0, x < 0

. (5)
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Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precipitation amounts are not always visible
because of the low number of landslides. Note that scales are different. Numbers between brackets are respectively the number of landslides
in the cells and the number of cells in the class, averaged over the iterations.

Table 1. Fitted parameters of the gamma distribution.

Precipitation LF CF FLMC MM
[mm] α β RMSE α β RMSE α β RMSE α β RMSE

0–100 – – – – – – – – – – – –
100–130 0.149 0.666 1.77E-05 – – – 0.112 0.643 9.56E-05 0.042 1.148 1.94E-04
130–160 0.255 0.685 6.28E-05 0.118 0.012 0.00E+00 0.144 1.245 7.19E-04 0.059 3.632 1.72E-03
160–190 0.127 1.570 2.44E-04 0.052 1.195 3.54E-04 0.159 2.421 1.26E-03 0.193 5.798 2.14E-03
190–220 0.139 2.962 3.28E-03 0.279 0.775 4.60E-04 0.242 3.077 2.45E-03 0.282 6.835 6.65E-03
220–321 0.108 8.846 3.57E-03 0.118 0.012 0.00E+00 0.290 5.133 3.18E-03 0.566 4.653 3.71E-03
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Fig. 12. Fitted parameters for α and β of the gamma distribution.
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Fig. 13. Mean modelled number of landslides with the gamma func-
tions. No color is displayed on the cells that never contain land-
slides.

Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precipitation amounts are not always visible
because of the low number of landslides. Note that scales are different. Numbers between brackets are respectively the number of landslides
in the cells and the number of cells in the class, averaged over the iterations.

The distribution is only defined in terms of its first moment
1/λ, which is equal tox, namely the expected mean damage
cost per building assumed for the 2005 event.

The generation of exponential variates is obtained by sam-
pling from the quantile distribution, which is given by the
inverse function of the exponential cumulative distribution
as

F−1(u) = x = −
ln(1− u)

λ
, (6)

whereu is a uniformly distributed random number between 0
and 1. The exponentially distributed damage cost is sampled
for each case of impact identified by the model.

The fat-tailed nature of the exponential distribution allows
obtaining a more realistic estimate of the damage costs than
a normal or triangular distribution and does not need the esti-
mation of the second moment characterizing the variance of
the distribution. The latter is a useful feature as the statistical
distribution of the damage costs per building is not known
in our particular case. The log-normal distribution also has
heavy tails and was successfully used to model the cost as-
sociated to floods (Merz et al., 2004). However, due to the
larger number of degrees of freedom, it is also not suitable
for our application.

4 Results

The statistical distribution of landslides as a function of pre-
cipitation amount and lithological group is given in Fig.11
and results from 10 000 iterations of the model. The prob-
ability to observe a given number of landslides in a given

lithological group is a monotonically increasing function of
the precipitation amount. CF show a very little susceptibility
to landslides compared to the other groups as evidenced by
the low number of observed landslides. With similar precip-
itation amount, MM formations tend to have a higher prob-
ability to contain at least one landslide than FLMC or LF.
However this relation is less evident for a larger number of
landslides.

Table 1 shows the fitted values of the gamma distribu-
tion (missing data denotes that the fitting did not converge in
the allowed number of iterations), whereas Fig.12 displays
these values graphically. CF have to be considered with cau-
tion because of the low number of samples. Theα parameter
(shape), characterizes the central location of the distribution,
while the β parameter (scale) characterizes its dispersion.
A general increase in bothα andβ parameters with precipi-
tation amount can be observed, although some values are not
following the general linear trend. This is especially the case
for α for LF and forβ for the highest precipitation class.

The general increase of both parameters is a desirable
property and is in accordance with our prior expectations. In
fact, increasing precipitation amounts increase the expected
number of landslides (represented byα) and the dispersion of
the distribution (represented byβ). Higherβ values are rep-
resentative of heavy tails, which means that the probability of
observing a high number of landslides rises with increasing
precipitation amount.

The spatial distribution of the number of landslides was
computed following the procedure described in Fig.8 using
both the raw data and the gamma fits and performing 10 000
iterations for each. However, since gamma distributions have
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Table 1.Fitted parameters of the gamma distribution.

Precipitation LF CF FLMC MM

[mm] α β RMSE α β RMSE α β RMSE α β RMSE

0–100 – – – – – – – – – – – –
100–130 0.149 0.666 1.77×10−5 – – – 0.112 0.643 9.56×10−5 0.042 1.148 1.94×10−4

130–160 0.255 0.685 6.28×10−5 0.118 0.012 0.00 0.144 1.245 7.19×10−4 0.059 3.632 1.72×10−3

160–190 0.127 1.570 2.44×10−4 0.052 1.195 3.54×10−4 0.159 2.421 1.26×10−3 0.193 5.798 2.14×10−3

190–220 0.139 2.962 3.28×10−3 0.279 0.775 4.60×10−4 0.242 3.077 2.45×10−3 0.282 6.835 6.65×10−3

220–321 0.108 8.846 3.57×10−3 0.118 0.012 0.00 0.290 5.133 3.18×10−3 0.566 4.653 3.71×10−3
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Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precipitation amounts are not always visible
because of the low number of landslides. Note that scales are different. Numbers between brackets are respectively the number of landslides
in the cells and the number of cells in the class, averaged over the iterations.

Table 1. Fitted parameters of the gamma distribution.

Precipitation LF CF FLMC MM
[mm] α β RMSE α β RMSE α β RMSE α β RMSE

0–100 – – – – – – – – – – – –
100–130 0.149 0.666 1.77E-05 – – – 0.112 0.643 9.56E-05 0.042 1.148 1.94E-04
130–160 0.255 0.685 6.28E-05 0.118 0.012 0.00E+00 0.144 1.245 7.19E-04 0.059 3.632 1.72E-03
160–190 0.127 1.570 2.44E-04 0.052 1.195 3.54E-04 0.159 2.421 1.26E-03 0.193 5.798 2.14E-03
190–220 0.139 2.962 3.28E-03 0.279 0.775 4.60E-04 0.242 3.077 2.45E-03 0.282 6.835 6.65E-03
220–321 0.108 8.846 3.57E-03 0.118 0.012 0.00E+00 0.290 5.133 3.18E-03 0.566 4.653 3.71E-03
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Fig. 12. Fitted parameters for α and β of the gamma distribution.
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Fig. 13. Mean modelled number of landslides with the gamma func-
tions. No color is displayed on the cells that never contain land-
slides.Fig. 12.Fitted parameters forα andβ of the gamma distribution.

not been fitted for some of the precipitation classes, raw
data have been used instead of gamma distributions when
not available. The mean modelled number of landslides with
gamma fits is given in Fig.13and is very similar to the mean
number of landslides modelled with raw data (not shown).
The spatial pattern is relatively similar to the spatial distri-
bution of rainfall amounts, with two remarkable differences.
First, the relation between precipitation amount and num-
ber of landslides is not linear, which implies that areas with
low precipitation amounts show a null to very low number
of landslides. The second difference is due to the sharp ge-
ographical transitions between the lithological units, which
lead to sharp transitions in the modelled number of land-
slides. An illustrative example occurs when moving from the
MM formations to the CF, which strongly reduces the num-
ber of landslides (see Fig.4). These results seem to be in
good agreement with the observed distribution of landslides
(Fig. 1).

4.1 Impact assessment

Although the number of landslides is reproduced, the ex-
pected number of hit buildings is almost never reached in
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Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precipitation amounts are not always visible
because of the low number of landslides. Note that scales are different. Numbers between brackets are respectively the number of landslides
in the cells and the number of cells in the class, averaged over the iterations.

Table 1. Fitted parameters of the gamma distribution.

Precipitation LF CF FLMC MM
[mm] α β RMSE α β RMSE α β RMSE α β RMSE

0–100 – – – – – – – – – – – –
100–130 0.149 0.666 1.77E-05 – – – 0.112 0.643 9.56E-05 0.042 1.148 1.94E-04
130–160 0.255 0.685 6.28E-05 0.118 0.012 0.00E+00 0.144 1.245 7.19E-04 0.059 3.632 1.72E-03
160–190 0.127 1.570 2.44E-04 0.052 1.195 3.54E-04 0.159 2.421 1.26E-03 0.193 5.798 2.14E-03
190–220 0.139 2.962 3.28E-03 0.279 0.775 4.60E-04 0.242 3.077 2.45E-03 0.282 6.835 6.65E-03
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Fig. 12. Fitted parameters for α and β of the gamma distribution.
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Fig. 13. Mean modelled number of landslides with the gamma func-
tions. No color is displayed on the cells that never contain land-
slides.

Fig. 13.Mean modelled number of landslides with the gamma func-
tions. No colour is displayed on the cells that never contain land-
slides.

the simulations (Fig.14). Indeed, the expected number of
affected buildings for the event is 2260, whereas the simu-
lations return a mean of 1689.5 for raw data and 1665.8 for
gamma fits. As a consequence, the damage amount is not
reached either since it is derived from the latter. It is not yet
clear why the observed total number of hit buildings is under-
estimated by the model. One possible reason could be that the
landslide localization is highly correlated with the location of
the buildings. To test this hypothesis, we compared the im-
pact probability of cells within which landslides actually oc-
curred to the impact probability of cells in which landslides
were modelled (the impact probability is taken into account
n times if the number of landslidesn in the cell is greater
than 1, for both curves). This comparison indicates that the
modelled landslides tend to occur in cells with lower impact
probability than the actual landslides (Fig.15).

5 Discussion

The landslide model presented in this paper only consid-
ers precipitation amounts and geology as input parameters.
However, other variables such as terrain slope, soil thickness

Nat. Hazards Earth Syst. Sci., 13, 3169–3184, 2013 www.nat-hazards-earth-syst-sci.net/13/3169/2013/



P. Nicolet et al.: Shallow landslide’s stochastic risk modelling 3179P. Nicolet et al.: Shallow landslides stochastic risk modelling 11

5000 5200 5400 5600 5800 6000 6200 6400 6600
0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

Number of modeled landslides in iteration

 

 

Raw data: x̄ =5752.5
Gamma fit: x̄ =5646.2

1200 1400 1600 1800 2000 2200 2400
0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

Number of hit buildings

 

 

Raw data: x̄ =1689.5
Gamma fit: x̄ =1665.8

9 10 11 12 13 14 15 16 17
0

0.2

0.4

0.6

0.8

1

Cu
m

ul
at

iv
e 

fr
eq

ue
nc

y

Damage amount [million CHF]

 

 

Raw data: x̄ =12.2
Gamma fit: x̄ =12

Fig. 14. Number of landslides, number of hit buildings and damage
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Fig. 15. Comparison of the impact probability of the cells where
landslides occurred and where landslides have been modelled (if
n > 1 landslide occurs in a cell, the impact probability of the cell
is considered n times). As a comparison, the distribution over all
Switzerland is shown, as well as the results for the existing haz-
ard map (weighted by the surface of the cell included in the hazard
map).

lution variables. As a consequence, the 1 km×1 km resolu-
tion model only gives information about the large scale pre-
conditioning factors for landslide generation. Smaller scale
features may affect the process of landslide triggering in
a significant way and should be taken into account if this
kind of model was used at a higher resolution. Furthermore,
this model is based only on one single event and should be
compared with other similar rainfall events. In particular, it
should be compared with similar events producing landslides
in different geological settings, to validate the aggregation of
the different lithologies into four main units. Indeed, land-
slides susceptibility might be different in Jura limestones
than in Prealpine limestones, for example. Lithological in-
formation is also very coarse at the working scale and local
variations could affect the susceptibility. Furthermore, shal-
low landslides are sensitive to the properties of the soil layer,
for which generally no map exists.

The annual probability to overcome a given total damage
cost could be assessed by analysing different precipitation
events, which are weighted based on their frequency of oc-
currence (return period). This step is essential in order to ob-
tain a mean annual cost as well as an exceedance probability
curve. One possibility to generate a large number of rainfall
fields to appropriately represent the full risk estimation could
be based on design storms (Seed et al., 1999). Stochastic
rainfall fields could be generated according to a given return
period and be used to simulate the spatial distribution of land-
slides under extreme rainfall conditions. Attempts have been
made to use a return period in order to predict landslide trig-
gering but, they were mainly performed at local scale (e.g.
Iida, 1999; D’Odorico et al., 2005; Iida, 2004; Tarolli et al.,
2011) and would therefore not be suitable for a larger area,
since the spatial variability is not taken into account. On the
other hand, the spatial distribution of rainfall by means of
data with a smaller time step (in this case satellite data) has
been used for early-warning (e.g. Apip et al., 2010), but as far
as we know, is has not been used as a starting point to simu-
late potential future events. However, for precipitation events
with long return periods, the uncertainty on the frequency is
rather high, as mentioned in section 2.3 for this event. This
would add an uncertainty on the risk analysis.

Another issue concerns the landslide timing. We used the
precipitation amount of the whole event (6 days) as a pre-
dictor for landslide occurrence. But, shallow-landslides are
known to be sensitive to the intensity and duration of the
rainfall, as well as to the hyetograph shape (D’Odorico et al.,
2005). There are two main reasons for this simplification.
The first is the lack of data on the exact timing of land-
slides, which does not allow analyzing the temporal precip-
itation pattern preceding their triggering. The second reason
is due to the uncertainty of the radar QPE product, which is
higher when used to analyze rainfall time series at high tem-
poral resolutions, for instance hourly or 10 min accumula-
tions. The spatial distribution of QPE accuracy can still be af-
fected by some residual ground clutter, which overestimates

Fig. 14.Number of landslides, number of hit buildings and damage
amount calculated from raw data and gamma fits. Mean valuex for
each line is displayed on the graph, whereas black lines correspond
to the data of the event or the expected number of affected buildings.
10 000 iterations have been computed.

and permeability contrast, for example, play a key role in
shallow landslide generation. These variables are either hard
to measure over a large domain, e.g. the soil thickness, or
show spatial variability at extents which are smaller than
1 km×1 km resolution, e.g. the terrain slope. Additionally,
the uncertainty of the landslide inventory does not allow
matching the location of the landslide with such high res-
olution variables. As a consequence, the 1 km×1 km reso-
lution model only gives information about the large-scale
pre-conditioning factors for landslide generation. Smaller-
scale features may affect the process of landslide trigger-
ing in a significant way and should be taken into account
to extend this kind of model to a higher resolution. Fur-
thermore, this model is based only on one single event and
should be compared with other similar rainfall events. In
particular, it should be compared with similar events pro-
ducing landslides in different geological settings, to validate
the aggregation of the different lithologies into four main
units. Indeed, landslide susceptibility might be different in
Jura limestones than in pre-Alpine limestones, for example.
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is considered n times). As a comparison, the distribution over all
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ard map (weighted by the surface of the cell included in the hazard
map).

lution variables. As a consequence, the 1 km×1 km resolu-
tion model only gives information about the large scale pre-
conditioning factors for landslide generation. Smaller scale
features may affect the process of landslide triggering in
a significant way and should be taken into account if this
kind of model was used at a higher resolution. Furthermore,
this model is based only on one single event and should be
compared with other similar rainfall events. In particular, it
should be compared with similar events producing landslides
in different geological settings, to validate the aggregation of
the different lithologies into four main units. Indeed, land-
slides susceptibility might be different in Jura limestones
than in Prealpine limestones, for example. Lithological in-
formation is also very coarse at the working scale and local
variations could affect the susceptibility. Furthermore, shal-
low landslides are sensitive to the properties of the soil layer,
for which generally no map exists.

The annual probability to overcome a given total damage
cost could be assessed by analysing different precipitation
events, which are weighted based on their frequency of oc-
currence (return period). This step is essential in order to ob-
tain a mean annual cost as well as an exceedance probability
curve. One possibility to generate a large number of rainfall
fields to appropriately represent the full risk estimation could
be based on design storms (Seed et al., 1999). Stochastic
rainfall fields could be generated according to a given return
period and be used to simulate the spatial distribution of land-
slides under extreme rainfall conditions. Attempts have been
made to use a return period in order to predict landslide trig-
gering but, they were mainly performed at local scale (e.g.
Iida, 1999; D’Odorico et al., 2005; Iida, 2004; Tarolli et al.,
2011) and would therefore not be suitable for a larger area,
since the spatial variability is not taken into account. On the
other hand, the spatial distribution of rainfall by means of
data with a smaller time step (in this case satellite data) has
been used for early-warning (e.g. Apip et al., 2010), but as far
as we know, is has not been used as a starting point to simu-
late potential future events. However, for precipitation events
with long return periods, the uncertainty on the frequency is
rather high, as mentioned in section 2.3 for this event. This
would add an uncertainty on the risk analysis.

Another issue concerns the landslide timing. We used the
precipitation amount of the whole event (6 days) as a pre-
dictor for landslide occurrence. But, shallow-landslides are
known to be sensitive to the intensity and duration of the
rainfall, as well as to the hyetograph shape (D’Odorico et al.,
2005). There are two main reasons for this simplification.
The first is the lack of data on the exact timing of land-
slides, which does not allow analyzing the temporal precip-
itation pattern preceding their triggering. The second reason
is due to the uncertainty of the radar QPE product, which is
higher when used to analyze rainfall time series at high tem-
poral resolutions, for instance hourly or 10 min accumula-
tions. The spatial distribution of QPE accuracy can still be af-
fected by some residual ground clutter, which overestimates

Fig. 15. Comparison of the impact probability of the cells where
landslides occurred and where landslides have been modelled (if
n > 1 landslides occur in a cell, the impact probability of the cell
is consideredn times). As a comparison, the distribution over all
of Switzerland is shown, as well as the results for the existing haz-
ard map (weighted by the surface of the cell included in the hazard
map).

Lithological information is also very coarse at the working
scale and local variations could affect the susceptibility. Fur-
thermore, shallow landslides are sensitive to the properties of
the soil layer, for which generally no map exists.

The annual probability to exceed a given total damage cost
could be assessed by analysing different precipitation events,
which are weighted based on their frequency of occurrence
(return period). This step is essential in order to obtain a
mean annual cost as well as an exceedance probability curve.
One possibility to generate a large number of rainfall fields
to appropriately represent the full risk estimation could be
based on design storms (Seed et al., 1999). Stochastic rainfall
fields could be generated according to a given return period
and be used to simulate the spatial distribution of landslides
under extreme rainfall conditions. Attempts have been made
to use a return period in order to predict landslide trigger-
ing, but they were mainly performed at local scale (e.g.Iida,
1999; D’Odorico et al., 2005; Iida, 2004; Tarolli et al., 2011)
and would therefore not be suitable for a larger area, since
the spatial variability is not taken into account. However, the
spatial distribution of rainfall by means of data with a smaller
time step (in this case satellite data) has been used for early
warning (e.g.Apip et al., 2010), but as far as we know, it has
not been used as a starting point to simulate potential future
events. Furthermore, for precipitation events with long re-
turn periods, the uncertainty on the frequency is rather high,
as mentioned in Sect.2.3 for this event. This would add un-
certainty to the risk analysis.

Another issue concerns the landslide timing. We used the
precipitation amount of the whole event (6 days) as a pre-
dictor for landslide occurrence. But, shallow landslides are
known to be sensitive to the intensity and duration of the
rainfall, as well as to the hyetograph shape (D’Odorico et al.,
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2005). There are two main reasons for this simplification.
The first is the lack of data on the exact timing of landslides,
which does not allow the analysis of the temporal precipi-
tation pattern preceding their triggering. The second reason
is due to the uncertainty of the radar QPE product, which is
higher when used to analyse rainfall time series at high tem-
poral resolutions, for instance hourly or 10 min accumula-
tions. The spatial distribution of QPE accuracy can still be af-
fected by some residual ground clutter, which overestimates
the true rainfall amount, and by the blockage of low level
beams, which leads to the underestimation of ground rainfall
due to using only the beams aloft.Wüest et al.(2010) present
a method to obtain hourly precipitation fields by disaggre-
gating the daily rain gauge measurements with higher reso-
lution radar fields. If the timing of landslide occurrence was
known, this dataset would be a valuable source of informa-
tion. However, the product is not accompanied by uncertainty
estimates. A possible solution could involve the generation
of stochastic ensembles to represent the uncertainty of the
radar QPE product with respect to the automatic network of
76 meteorological stations. This approach was recently im-
plemented at MeteoSwiss (Germann et al., 2009) and could
be a smart alternative to integrate ensembles of precipitation
fields together with ensembles of lithological types into the
landslide model.

When it comes to the damage cost assessment, due to the
lack of information on the number of affected buildings and
corresponding distribution of costs, a few important assump-
tions were made. The total number of affected buildings was
estimated by means of an impact probability and this number
was used to obtain a mean cost per hit building. The number
of hit buildings is an uncertain estimation since it depends on
the exact location of the landslides inside the cell. Indeed, we
consider the probability of landsliding to be uniform within
a grid cell, or within the hazard zone if it exists in the cell
(which is the case in most of the cells in which landslides
actually occurred). For the latter case, it takes partly into ac-
count the position of each element inside the cell, in particu-
lar the position of the slopes that might fail relatively to the
buildings. However, since the hazard map is only indicative,
no distinction is made between low hazard area and high haz-
ard area. As a result, if buildings are located relatively more
on low hazard area, our estimation of the number of affected
buildings would be too high and, as a consequence, the mean
price would be too low.

The distribution of costs was assumed to be exponential,
which has a desirable long-tail property and is completely
defined by its mean value. Despite being only defined in
terms of the average costs, the obtained variability is sup-
posed to adequately represent the reality. Nevertheless, with
a mean cost of CHF 7211 per building, the probability to
overcome CHF 500 000 is almost null (8× 10−31, i.e. one
case over 1× 1030). Since the mean price of a building is
around CHF 1 million, this value is quite low as we know
that at least one – but probably more – building has been

destroyed. This could be the result of a too high number of
affected buildings (since they have been estimated), which
reduces the mean damage cost, or an indication of the need
for using a distribution of damages with a fatter tail. How-
ever, this confirms the fact that a distribution with a fat tail is
suitable. Nevertheless, since the damage cost varies indepen-
dently for each affected house and since the number of af-
fected houses is relatively high in the simulations, the effect
of varying the individual damage costs is attenuated when
summing over all of Switzerland. Another problem concerns
the absence of data about the type of damage. Therefore, we
assumed that all of the private costs are related to buildings.
This simplification is not an issue as long as the cost is re-
lated to objects located close to or inside the buildings (e.g.
furniture, parked cars), but is more problematic, for exam-
ple, for costs related to loss of profits. However, we suppose
that the vast majority is related to buildings. As a result, this
model could be improved considerably if the type of damage
was known. Thus, the damage assessment part has to be con-
sidered more as an example than as a reference for further
vulnerability assessment.

Regarding the total number of landslides, hit buildings and
the amount of damage in each simulation, the variability of
the results follows more or less a normal or a log-normal
distribution (Fig.14). This distribution reflects the uncer-
tainty induced by the lack of knowledge in the assessment
of the consequences of a given precipitation event. Since the
model is based on the observed landslides, to redistribute the
landslides and assess the consequences, the number of mod-
elled landslides using raw data is logically centred around
the observed value. Gamma fit results tend, however, to be
slightly lower than using raw data. When it comes to the
number of hit buildings, the expected value is hardly ever
reproduced. Since the same concept of impact probability,
with the same buffer value, is used to assess the expected
number of hit buildings of the 2005 event and of the simula-
tion results, this should not be observed. By comparing the
impact probability of the cells in which landslides occurred
with those of the cells in which the landslides were mod-
elled, we can observe that the cells in which landslides oc-
curred have higher impact probability. Different hypotheses
can be made in order to explain this effect. First, we might
have neglected an important parameter for the localization of
landslides which would be correlated to the built areas such
as the repartition of the forested and non-forested areas, re-
distributing then the landslides in less populated areas. This
seems however to be in contradiction with the fact the grid
cells covered by the preliminary hazard map have a lower
impact probability than the ones where landslides occurred
or than the cells of the entire Swiss territory (Fig.15). A
second interpretation could be related to the quality of the
inventory, which would be more complete in urbanized ar-
eas. Correcting for this effect would imply a greater total
number of landslides, with more landslides on areas with
low impact probability. The third one, which seems to us
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the most probable, would be that the urbanization tends to
increase the susceptibility. Indeed, human activities can con-
tribute to landslides, acting directly as a trigger or indirectly
by destabilizing the slope, according to the classification of
Michoud et al.(2011). Since, the trigger of the 2005 event
is undeniably the rain, human activities could have played
a role only as destabilizing factors. Examples of landslides
triggered by rain events on slopes destabilized by the mod-
ification of pore pressure induced by pipe leaks have been
observed in Switzerland, in Les Diablerets (Jaboyedoff and
Bonnard, 2007) and in Lutzenberg (Valley et al., 2004). This
second example is especially interesting since the landslide
occurred within an event involving hundreds of landslides
and debris flows, and since this particular landslide would
not have occurred, thanks to the authors, without the pipe
leak. Besides modifying pore pressure, pipe leaks can also
destabilize slopes by weakening clay minerals (Preuth et al.,
2010). In addition, the degradation of an old canalization net-
work led to a landslide in 1930 in La Fouvrière hill in Lyon
(France), killing 39 persons (Allix , 1930; Albenque, 1931).
It would therefore be wise to include a parameter linked to
the buildings to take account of this effect.

All things considered, the model makes simplifications in
order to assess the risk for a large area rather than to be pre-
cise at local scale. Indeed, the lack of knowledge and data at
the sub-grid scale is balanced by the use of stochastic simu-
lations, which allows one to obtain a probabilistic model for
landslide occurrence and associated cost.

Such kind of model might be useful to provide a rapid
damage estimation following a precipitation event. Indeed,
after a widespread event, the time needed by the insurance to
process all claims is rather long and the exact consequences
might need several months, even years to be known. Apply-
ing this model quickly after the event could provide a rough
estimation of the damage costs. In a second step, modelling
precipitation events assigned to a frequency could make pos-
sible the calculation of exceedance probability curves. De-
velopments are also ongoing to assess the consequences of a
landslide event for a road network with comparable models
(Taylor et al., 2013).

6 Conclusions

This article proposes a model to assess the risk due to shallow
landslides for a large region using the data from the rainfall
event of 2005 in Switzerland. The first step assesses the dis-
tribution of landslides with regard to precipitation and lithol-
ogy. Then the landslides are redistributed in a second step
according to the relation obtained. Damage cost is obtained
by means of an impact probability, which gives the probabil-
ity, if a landslide occurs, that it reaches a building.

Some improvements have to be made to the model, to cor-
roborate the relation obtained, and to improve the assessment
of the impact probability, as well as the distribution of costs.

Moreover, the human influence on landslide susceptibility
has to be evaluated carefully in a further step, since it ap-
pears that the landslide locations are highly correlated with
the buildings. This observation tends to indicate that the hu-
man influence on slope stability is substantial. Further devel-
opments are also conceivable to complete the risk analysis by
simulating stochastic rainfall events characterized by a given
frequency and to analyse the consequences. This would re-
sult in a complete risk analysis able to provide the temporal
distribution of damage costs.
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