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J. Mart ı́nez-Ferńandez1, E. Chuvieco2, and N. Koutsias3

1INIA-CIFOR, Forest Research Centre, Department of Forest Ecology and Genetics, Carretera de La Coruña, Km. 7,5 28040,
Madrid, Spain
2Department of Geography and Geology, University of Alcalá, Calle Colegios 2, 28801 Alcalá de Henares, Spain
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Abstract. Humans are responsible for most forest fires in Eu-
rope, but anthropogenic factors behind these events are still
poorly understood. We tried to identify the driving factors
of human-caused fire occurrence in Spain by applying two
different statistical approaches. Firstly, assuming stationary
processes for the whole country, we created models based
on multiple linear regression and binary logistic regression
to find factors associated with fire density and fire presence,
respectively. Secondly, we used geographically weighted re-
gression (GWR) to better understand and explore the local
and regional variations of those factors behind human-caused
fire occurrence.

The number of human-caused fires occurring within a 25-
yr period (1983–2007) was computed for each of the 7638
Spanish mainland municipalities, creating a binary variable
(fire/no fire) to develop logistic models, and a continuous
variable (fire density) to build standard linear regression
models. A total of 383 657 fires were registered in the study
dataset. The binary logistic model, which estimates the prob-
ability of having/not having a fire, successfully classified
76.4 % of the total observations, while the ordinary least
squares (OLS) regression model explained 53 % of the vari-
ation of the fire density patterns (adjustedR2

= 0.53). Both
approaches confirmed, in addition to forest and climatic vari-
ables, the importance of variables related with agrarian activ-
ities, land abandonment, rural population exodus and devel-
opmental processes as underlying factors of fire occurrence.

For the GWR approach, the explanatory power of the GW
linear model for fire density using an adaptive bandwidth

increased from 53 % to 67 %, while for the GW logistic
model the correctly classified observations improved only
slightly, from 76.4 % to 78.4 %, but significantly according
to the corrected Akaike Information Criterion (AICc), from
3451.19 to 3321.19. The results from GWR indicated a sig-
nificant spatial variation in the local parameter estimates for
all the variables and an important reduction of the autocor-
relation in the residuals of the GW linear model. Despite the
fitting improvement of local models, GW regression, more
than an alternative to “global” or traditional regression mod-
elling, seems to be a valuable complement to explore the non-
stationary relationships between the response variable and
the explanatory variables. The synergy of global and local
modelling provides insights into fire management and policy
and helps further our understanding of the fire problem over
large areas while at the same time recognizing its local char-
acter.

1 Introduction

Human factors are critical to explain fire occurrence world-
wide, but they are particularly relevant in European Mediter-
ranean countries with a long fire history related to tradi-
tional farming activities, as is the case in Spain. It is esti-
mated that more than 90 % of forest fires are caused by peo-
ple in European Mediterranean countries (Leone et al., 2009;
Vélez, 2009; FAO, 2007). Additionally, these areas have ex-
perienced important socioeconomic transformations over the
last few decades, including land abandonment and/or higher
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tourist and urban pressures on the forest areas, which could
imply higher ignition risk. Given the importance of the hu-
man risk, any improvement in the modelling and assessment
of factors that drive human-made ignitions is critical for fire
prevention, planning and management. Also, a better knowl-
edge of the spatial patterns of fire occurrence and their re-
lationships with underlying factors of human risk becomes
a necessity to locate and make prevention efforts more effi-
cient.

It is also necessary to further improve the modelling tech-
niques. In fire occurrence modelling, different statistical and
regression modelling techniques have been applied at sev-
eral temporal and spatial scales, in many cases assuming that
the model parameters are valid and homogeneous for the en-
tire study area from which the data were sampled or, alter-
natively, assuming that the model structure is spatially sta-
tionary, such as the examples in Syphard et al. (2008), Chu-
vieco et al. (2010), Vilar et al. (2010) and Kwak et al. (2012).
However, when large geographical study areas are involved,
it would be more reasonable to find varied rather than con-
stant relationships. For instance, Koutsias et al. (2005, 2010),
when modelling fire densities, observed that the explanatory
power of classical linear regression increased considerably
after assuming varying relationships instead of constant ones.
Their analysis was developed at the provincial level (NUTS-
3) across the European Mediterranean Basin countries (Por-
tugal, Spain, southern France, Italy and Greece) using geo-
graphically seighted regression (GWR), so initiating the use
of GWR in fire modelling studies.

Although interest in accounting for regional variations in
wildfire occurrence factors has been shown recently in some
studies (Moreira et al., 2009; Carmo et al., 2011; Gonzalez-
Olabarria et al., 2011; Padilla and Vega-Garcı́a, 2011; Nunes,
2012), except for Koutsias et al. (2005, 2010), this has only
begun to be addressed very recently by using local geograph-
ically weighted regression (Tulbure et al. 2011; Poudyal et
al., 2012; Avila-Flores et al., 2010; Sá et al., 2011; Rodrigues
and De la Riva, 2012). In our study, similar to those of Kout-
sias et al. (2010) and Sá et al. (2011), GWR is considered
as a complement to the “global” regression modelling ap-
proach, with which it is compared in order to better un-
derstand particular processes at the regional scale, but at
the same time recognizing its own local characteristics and
patterns (Fotheringham et al., 1996, 1997, 2002). The term
“global” is used here to describe a model that refers to a ho-
mogeneous process in which the relationships being mod-
elled are the same everywhere within the study area.

2 Objectives

The work presented here is an extension of previous research
(Mart́ınez et al., 2009) that showed how the rate of human-
caused fires in Spain can be predicted and explained from
socioeconomic and geographic variables, assuming spatially

stationary processes. The overall objective of this new study
is to check, in a quantitative way, if these stationary mod-
els are adequate to properly explain and understand long-
term fire occurrence patterns in a large study area such as the
Spanish peninsular territory. In order to achieve this overall
objective, three improvements have been implemented over
the previous work.

The first concerns the predicted variable. Instead of mod-
elling only the high versus low occurrence, in this paper we
have addressed two aspects of fire occurrence: (i) fire pres-
ence/absence and (ii) fire density, using a longer historical
time period (25 yr versus 13) for both. For these two aspects
we built two predictive “global” models at the national scale
using two “classical” regression approaches: OLS linear re-
gression to explain long-term fire density patterns and, com-
plementarily, a binary logistic model to define the existing
underlying factors behind fire presence and to better under-
stand why in some of the municipalities no fires have been
observed during the studied period. The terms “ordinary” and
“classical” are used here to represent the default regression
model in many statistical software packages, in contrast to
other specific models like GWR.

The second innovative aspect of this work is the analysis of
the spatial variations within the fire occurrence models to ex-
plore possible local characteristics and regional patterns. For
this we used GWR, which assumes non-stationary relation-
ships between the explanatory variables and fire occurrence.
Given the large territory of Spain with important climatic and
socioeconomic differences – for example between the north-
ern and the southern regions, the Atlantic and Mediterranean
areas, or between the mountains, the large plains and the river
depressions – we hypothesize that some explicative factors
should show region-specific trends, deviating from global or
national patterns. In addition, we assumed that a unique sta-
tionary model for Spain would be “notably influenced by the
high fire occurrence of the Galicia region (northwest of the
country). This area contains 11 % (850) of all municipalities
in Spain, but 70 % (152 891) of the forest fires, and thus cre-
ates a spatial imbalance in the global model” (Martı́nez et al.,
2009, p. 1251). These obvious premises have scarcely been
tested in Spain using quantitative models. Therefore, to ex-
plore the spatial variability, we focus on the assessment (i)
of variables presenting contradictory signs to the global co-
efficients, (ii) of areas where we observe unusually or unex-
pectedly high or low local coefficients, and (iii) of variables
presenting a positive or negative influence in the model; fi-
nally, (iv) we try to deduce, if possible, the cause of those
spatial patterns.

The third novelty of this paper with respect to our previous
study (Mart́ınez et al., 2009) was the consideration of miss-
ing explanatory environmental variables regarding climate,
vegetation and topography. These structural environmental
variables are essential to enable fire ignition and they are
the basis on which the remaining socioeconomic, historical,
land use and landscape variables interact. Besides, missing
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response variables could be the cause of the unexplained
spatial variations in the model parameters (Fotheringham et
al., 2002; Koutsias et al., 2012). For this reason we have
specifically tried to consider all key explanatory factors, in-
cluding the environmental ones.

The starting point of creating fire occurrence models is to
identify the most critical factors and then define and gather
datasets to generate quantitative models. We identified fac-
tors based on previous literature reviews about fire causes
and fire modelling (Leone et al., 2003, 2009; Martı́nez et al.,
2004, 2009; V́elez, 2009), where the theoretical or expected
relationships between fires and each factor/variable in Spain
and Mediterranean countries were explained. Then, each of
those explanatory factors was measured as a numeric indica-
tor (direct or surrogate) from available datasets.

However, model building in this study is not fully “concep-
tual” because the final variable selection is obtained by semi-
automatic statistical techniques. Besides, this paper does not
intend to build a “mechanistic” or “cause–effect” model that
explains human fire occurrence in the different environments
of Spain. For that objective it would be better to use other
approaches, for example, such as defining different environ-
mental regions or study areas inside Spain and building spe-
cific models for each region, and subsequently comparing
which are the most influential variables for each. Nor do we
intend to analyze the statistical and spatial interactions be-
tween explanatory variables within the global models.

3 Materials and methods

3.1 Study area and fire database

As the dependent variable, the numbers of human-caused
fires occurring within a 25 yr period (1983–2007) were com-
puted for each of the 7638 municipalities of the Spanish
peninsula (487 000 km2) analyzed. This is another improve-
ment over the previous study of Martı́nez et al. (2009) in
which a 13-yr series from 1987 to 2000 was used. These data
were obtained from the Spanish Forest Fire Report Database,
one of the best and longest fire statistics in Europe (Leone et
al., 2009). A total of 383 657 fire events has been gathered
and considered in the database, regardless of their size. A bi-
nary variable (fire/no fire) for each municipality was derived
to develop logistic models, and a continuous variable (fire
density or the total number of fires in the period divided by
the area of each municipality in km2) was estimated to build
linear regression models, in this case selecting only the 6993
municipalities in which one or more fires were registered dur-
ing the study period. Log transformation was applied to con-
vert the original fire density values (Fig. 1c) to approximate
a normal distribution (Fig. 1d), since the original count data
would be more appropriately modelled with Poisson or Neg-
ative Binomial models depending on their variance to mean
ratio (Cardille et al., 2001). The spatial distribution of both

dependent variables is shown in Fig. 1a and b, revealing crit-
ical regions for fire occurrence, especially in the NW of the
country, and also along the Mediterranean coast and in some
mountain ranges in the centre.

In the previous study the dependent variable was defined
as the cumulative number of fires in the studied period di-
vided by the forest area of each municipality. Instead, the
flammable land cover (both vegetation and crops) are here
considered as explanatory variables in order to analyze their
influence and weight inside the models, and not as part of the
dependent variable.

3.2 Independent variables

The independent variables used in the analysis were com-
posed initially by 29 socioeconomic and demographic in-
dicators together with agricultural and land cover statis-
tics compiled in Mart́ınez et al. (2009). The identification
of these variables was based on experts’ interviews, anal-
yses of fire reports and causality statistics, and an exten-
sive literature review. Some of the factors could not be es-
timated directly or from surrogate variables, while some oth-
ers were not available for all the regions. Table 1 in Martı́nez
et al. (2009) lists these variables along with their theoreti-
cal relationships with fire ignition factors and the literature
source, when available. Additionally, for the present study
6 new environmental variables were added referring to to-
pographic characteristics (mean altitude and slope), climatic
indicators (summer temperature and mean annual precipita-
tion obtained from Ninyerola et al. (2005), using the avail-
able station data set with more than 15 and/or 20 yr), and
forest vegetation statistics (total wildland area and the wild-
land area without tree cover, both obtained from the Forest
Map of Spain-MFE50 developed between 1997–2006). Total
wildland area included tree-covered areas (standing forest),
shrublands and grasslands and theoretically this variable is
supposed to be more related to fire presence (binary model).
Wildlands without tree cover only comprise shrublands and
grasslands. We hypothesize that these types of areas are more
strongly correlated with the fire density (linear model). All
35 variables were compiled and calculated at the municipal-
ity level for the peninsular territory of Spain, with the excep-
tion of the region of Navarre, and all of them selected after
checking for multi-collinearity as described also in Martı́nez
et al. (2009, p. 1244).

3.3 Global models using classical regression

Both predictive models, based on OLS and binary logistic
regression, were calculated in SPSS using automatic step-
wise forward procedures for variable selection in combi-
nation with manual modification (i.e. selection using the
“introduce method”). All cases were checked for potential
collinearity problems of the selected variables by calculating
the correlation matrix and applying other common statistical
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Fig. 1.Map and histograms of dependent variables. Spatial distribution of the fire density in the Spanish municipalities with more than 1 event
(A). The log transformation was applied to convert the original values of the dependent variable(C) to an approximate normal distribution
(D). The map(B) shows the spatial distribution of the municipalities without fires used for the binary logistic modelling.

Table 1. Model parameters and sensitivity analysis for ordinary logistic model: ranking of influence of the input variables (the lower the
ranks, the more important).

VARIABLE DESCRIPTION
MODEL PARAMETERS RANKING CRITERIA

Coef.B Std. Coef.B Wald Change in Exp (B) (i) (ii) (iii) (iv) (v) Score
−2 LL

FOR P % Forest and wildland surface 0.034 0.979 160.7 200.84 1.0341 1 1 1 3 7
DIS 50 91 Rural exodus: population decrease 0.021 0.588 89.8 98.27 1.0213 2 2 2 4 13

between 1950 and 1991
ICFSUP P Forest/cultivated land interface area 0.099 0.506 55.0 59.71 1.1044 4 3 3 2 16

NOGESPF Forest area with less management 0.011 0.327 58.1 55.47 1.0116 3 4 4 7 24
and planning over time

P A Mean annual precipitation 0.003 0.687 40.6 48.09 1.0035 6 7 6 1 25
T SU Mean summer temperature 0.158 0.386 37.4 38.58 1.1712 5 6 5 8 26
DIS SAU Decrease in agricultural area 0.012 0.247 23.8 22.09 1.0127 7 5 7 6 32

between 1989 and 1999
CL21 PM CORINE: agriculture but with 0.0149 0.163 7.4 8.59 1.0158 9 9 9 5 40

significant areas of natural vegetation
POT DEN Population potential −0.0002 −0.155 17.7 18.54 1.000 9 8 8 8 9 42

Notes: intersect (constant)= −3.887. Ranking criteria: (i) standardized coefficients; (ii) Wald statistic; (iii) step at which the variable was input into the model in a forward
stepwise automatic procedure; (iv) change in log of likelihood (−2 LL) when the variable was removed from the model; (v) odds ratio or the exponential of the logit coefficientB

(Exp (B)).

Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013 www.nat-hazards-earth-syst-sci.net/13/311/2013/
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tests such as tolerance coefficient, variance inflation factor
(VIF) (Krebs et al., 2012) and eigenvalue analysis (SSTARS,
2012). The regression models were built using the standard-
ized Z-scores for the dependent and independent variables.
Additionally, the normal distribution of residuals and the lack
of systematic patterns were checked for OLS. Clustering of
over and/or under predictions is, for example, evidence that
at least one key explanatory variable is missing. For these
reasons we analyzed the histogram, the scatterplot, the nor-
malQ − Q plot and the residual maps.

To evaluate the influence of individual variables in the
models, several criteria were computed and analyzed glob-
ally: (i) a simple calculation of the standardized coefficients
according to the method of Menard (2010, p. 89); (ii) the t-
statistic and its level of significance, although in the case of
logistic regression we used the Wald statistic; (iii) the step
at which the variable was input into the model; and (iv) the
change in theR2 when the variable was removed from the
model (the greater the change, the more important the vari-
able). In the case of logistic regression, we used the change
in logarithm of likelihood (−2 LL); and (v) the odds ratio or
the exponential of the logit coefficientB (Exp (B)) for the
logistic model case.

3.4 Local models using GWR

To overcome the assumption of stationarity we applied the
GWR approach using the independent variables of global re-
gression, both for the linear and the logistic model. All anal-
yses were implemented within GWR 3.0.1 software for Win-
dows (Fotheringham et al., 2002; Charlton et al., 2003) us-
ing both the adaptive (nearest neighbours) and the fixed (dis-
tance) kernel types, with the minimization of the corrected
Akaike Information Criterion (AICc) being the criterion to
determine the optimal bandwidth size of the kernel func-
tions. This parameter (AICc) was also used to compare the
global OLS or logistic model with the local GWR model. As
a complement, the ANOVA tests the null hypothesis that the
GWR model, in the linear approach, represents no improve-
ment over the global OLS model.

The main output from GWR for each observation point is
a set of parameter estimates (local coefficients for each in-
dependent variable) and associated diagnostics (standard er-
rors, influence index, Cook’s D statistics, localR2 statistic,
and local standard deviation) that can be visualized within
a GIS environment (Charlton and Fotheringham, 2009). De-
tailed analysis of these maps allowed us to better understand
and explore the spatial variability of the explanatory factors,
as localR2 values show the performance of the GWR model
in different areas. Additionally, GWR software includes two
tests to determine whether the local parameter estimates are
significantly stationary or not. Firstly, the variables might ex-
hibit non-stationarity if the inter-quartile range (25 % and
75 % quartiles) of the GWR parameters is greater than±1
standard deviation (SD) of the equivalent global OLS param-

eters (Fotheringham et al., 2002; Wang et al., 2005). Sec-
ondly, significance of the spatial variability in the local pa-
rameter estimates can be examined by a Monte Carlo test, but
only in the case of linear GWR, since this test is not available
for logistic GWR.

Similar to OLS regression, some spatial autocorrelation
statistics for the residuals of the models have been esti-
mated using Moran’s I index of spatial autocorrelation. This
made it possible to explore their spatial structure and identify
whether GWR captured the spatial pattern of the residuals. If
the residuals were autocorrelated then the results of the OLS
regression analysis would violate one of the assumptions of
OLS regression and the regression analysis would be unre-
liable. In the case of logistic regression, we computed the
Average Nearest Neighbour Distance Index (ANND value)
included in ArcGIS Desktop 10 in the Spatial Statistics tool-
box. With an index< 1 the pattern would tend towards clus-
tering, while if> 1 the trend is toward dispersion or compe-
tition. The interval range is from 0 to 2.14. (ArcGIS Desktop
10 Help).

4 Results

4.1 Classical regression models

After collinearity analysis we decided not to introduce the
variables “slope” and “population occupied in agriculture”
into the regression procedure. Instead, we introduced the
variable “agricultural areas but with significant areas of nat-
ural vegetation”. The stepwise procedure for the binary lo-
gistic regression selected 9 significant variables for the fi-
nal model, which successfully classified 76.4 % of the to-
tal observations using the estimated optimal cut-off point of
0.91, which corresponds to the intersection of the two lines
in which sensitivity and specificity are equal (Vasconcelos et
al., 2001). Among the nine explanatory variables identified
as critical by the analysis, the most important variables were
the forest surface, population decrease and forest-cultivated
land interface. Mean annual precipitation and mean summer
temperature were also relevant (Table 1). The spatial distri-
bution of the residuals (over and under estimations) of the
logistic model (Fig. 2) shows that the spatial pattern of the
errors is not very clear because they are dispersed through
different regions of the country. However, some areas were
error-free, particulary in the north, northwest and some parts
of the centre and west. Most of the errors are underestima-
tions (Table 2) because it was more probable that at least one
fire had occurred during the 25-yr period than for no fires at
all. The Average Nearest Neighbour Distance Index (ANND)
showed the residuals tended towards clustering (0.77) and the
Z-score of−18.6 indicates there is less than a 1 % likelihood
that this clustered pattern could be the result of a random
process.

In the case of OLS regression, the model selected 23 vari-
ables as significant using an automatic stepwise procedure.

www.nat-hazards-earth-syst-sci.net/13/311/2013/ Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013
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Fig. 2.Municipalities where prediction and observation data did not agree; either fire is predicted when it is not observed (overestimated) or
fire is not predicted when it is observed (underestimated). Ordinary logistic regression on the right and GW logistic regression on the left.

Table 2.Residual spatial performance of logistic models using the Average Nearest Neighbour Distance Analysis.

Ordinary Binary logistic model GW Binary Logistic model

Total Over- Under- Total Over- Under-
errors estimated estimated errors estimated estimated

Number of cases 1797 158 1639 1513 170 1343
Nearest neighbour ratio 0.77 0.62 0.74 0.70 0.69 0.66
z-score −18.60 −9.08 −20.20 −22.15 −7.62 −23.89
p-value 0.000 0.000 0.000 0.000 0.000 0.000

To simplify the model we selected the first nine most ex-
planatory, plus three others in positions 11, 15 and 18 (de-
crease in number of owners of agrarian holdings, % owners
of agrarian holdings> 55 yr, and density of agricultural ma-
chinery, respectively) that, in our opinion, included relevant
aspects of agrarian structure, as reported by different regional
studies. Consequently, the final model consisting of 12 vari-
ables (Table 3) explained 53 % of the variation of the depen-
dent variable (adjustedR2

= 0.53). Among these variables,
mean annual precipitation, density of agricultural properties,
mean altitude, population decrease and non tree-covered for-
est surfaces were the most explanatory. For the residuals of
this OLS regression model, the Kolmogorov-Smirnov test
value was low (0.028) but still significant (p = 0.000), show-
ing that the residuals fit the normal curve poorly. However,
as can be observed in the histogram (Fig. 3b), the residuals
with a mean value close to 0 and a SD of 0.99 approximate
acceptably well to the shape of the normal curve. The Nor-
mal Q − Q plot (Fig. 3c) represents the expected values in
a straight line when the data are normally distributed. In this
case, the residuals fit properly except for low observed val-
ues (low fire densities). A clustered pattern can be observed
in the distribution map of the residuals (Fig. 3d) in parts of
the country, although there is no clear systematic pattern. The
over-predicted cases (negative values) were more concen-
trated in some inland areas of the eastern part of the Iberian

Peninsula. Under-prediction was more dispersed with some
areas especially clustered in the NW.

Both models, logistic and OLS, are complex with a high
number of variables, and for some variables the effect of in-
troducing them in the model (measure by the change inR2 or
the change of−2 LL) is very weak, as can be seen in Tables 1
and 3, although still significant. In any case, the high number
of variables in the model was considered in agreement with
the objective of identifying the factors that are more signif-
icant to explain fire risk, rather than obtaining parsimonious
models with very few variables.

4.2 Geographically weighted regression models

The GWR results showed that local models based on GWR
generally fit better than global models based on classical
OLS or logistic regression, while the number of effective pa-
rameters increased considerably from 10 to 29.7 in logistic,
and from 13 to 63.03 or 158.34 for linear models. Based on
the minimization of the corrected Akaike Information Cri-
terion (AICc), the best fixed bandwidth size in the case of
logistic GWR was 219 km (AICc = 3321.19). For the lin-
ear GWR, the best bandwidth size for the fixed mode was
a distance of 154 km (AICc = 5898.6), while for the adaptive
mode it was 5724 nearest neighbours (AICc = 6395.5). Mod-
els like this, with a high number of neighbours, tend to have
a poor fit and present an oversmoothed pattern, as could be

Nat. Hazards Earth Syst. Sci., 13, 311–327, 2013 www.nat-hazards-earth-syst-sci.net/13/311/2013/
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Fig. 3. Residual analysis of the OLS regression model: scatterplots between observed and predicted observations(A), histogram data plots
of the standardized residuals(B), normalQ − Q plot of the standardized residuals(C) and map of the standardized residuals(D).

Table 3. Model parameters and sensitivity analysis for ordinary linear regression model (OLS): ranking of influence of the input variables
(the lower the ranks, the more important).

VARIABLE DESCRIPTION
MODEL PARAMETERS RANKING CRITERIA

Coef.B Std Coef. t Sig. R2 (i) (ii) (iii) (iv) Score
Change

P A Mean annual precipitation 0.0013 0.331 33.5 0.000 0.3041 1 1 1 4
PAR SEXP Agricultural land fragmentation: 0.0020 0.185−16.2 0.000 0.092 2 3 2 2 9

density of agricultural plots
ALT MEAN Mean altitude of municipality −0.0005 −0.178 17.8 0.000 0.046 3 2 3 3 11

DIS 50 91 Rural exodus: population decrease 0.0057 0.161 11.5 0.000 0.0354 6 4 4 18
between 1950 and 1991

DESAR P % Wildlands without tree cover 0.0077 0.147 15.6 0.000 0.0255 4 5 5 19
(mainly shrub and grasslands)

FRAG7× 7 Landscape fragmentation index 0.1810 0.111 15.4 0.000 0.0126 5 6 6 23
using a 7× 7 kernel

ENTSIN M Density of human settlements 0.0024 0.081 7.8 0.000 0.0087 7 7 7 28
ROAD DEN Density of roads 0.0003 0.074 7.4 0.000 0.0058 8 8 8 32
IUF DEN Urban/forest interface density 0.0005 0.059 6.2 0.000 0.0039 10 9 9 37
DIS TIT Decrease in number of owners −0.0022 −0.056 −6.2 0.000 0.002 10 9 10 10 39

of agrarian holdings 89–99
MAQUIN D Density of agricultural machinery 0.0088 0.034 4.2 0.00003 0.00112 11 11 11 45
TIT 55 P Rural ageing: % owners of agrarian 0.0026 0.035 3.1 0.00195 0.00111 12 12 12 47

holdings> 55 yr

Note: intersect (constant)= −1.2073. Ranking criteria: (i) standardized coefficients; (ii)t statistic; (iii) step at which the variable was input into the model in a forward
stepwise automatic procedure; (iv) change in theR2 when the variable was removed from the model.
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Fig. 4.Model fitting maps: local squaredR for GW lineal (left) and GW logistic (right).

observed in the resulting maps. For that reason, we finally
selected a kernel size of 1300 nearest neighbours, which
showed a better fit (AICc = 5063.72) when trying to better
capture the regional variations within the country, avoiding
both over- and under- smoothing. In relation to the adap-
tive kernel, the manually chosen value of 1300 nearest neigh-
bours approximately represents the number of municipalities
of two contiguous average regions in Spain. Regarding the
fixed kernel of 154 km defined automatically by statistical
criteria for GWR software, this is also considered appropri-
ate to capture regional variations, since the mean area of the
Spanish regions (autonomous communities) is 34 524 km2

(e.g. Catalonia or Extremadura), which corresponds to a cir-
cle of about 145 to 160 km radius.

Comparing the fitting of the OLS and GWR models, the
GWR logistic model, using a fixed bandwidth of 219 km,
correctly classified 78.4 % of the observations compared to
76.4 % of the ordinary logistic regression. This improvement
is not as high as expected, but it is significant as the deviance
(−2 LL) improved from 3431.2 to 3261.4 and the AICc from
3451.2 to 3321.19. The optimal cut-off point for the classi-
fication of this GW logistic model according to the graph
of sensitivity versus specificity is 0.90. For the linear ap-
proach, the explanatory power of the OLS model increased
from 53 % to 67 % in the case of the adaptive mode, using a
bandwidth of 1300 nearest neighbours, and 62 % in the case
of the fixed mode using a bandwidth of 154 km. The adaptive
mode gave slightly better results, as indicated by the coeffi-
cient of determination with a 14 % improvement, while in the
case of logistic GWR it was only 2 %. The AICc enhanced
considerably using GWR (from 7440.3 to 5063.7). The F-
value of the ANOVA test suggests that the GWR model is a
significant improvement on the global OLS model in Spain,
at a confidence level less than 0.01 (99 %), for both fixed and
adaptive models.

Figure 4 shows localR2 values for GW linear and GW
logistic models indicating the areas where the predictions of
the models are better. In both cases, best fits were found in the
northwest and some eastern areas of the Mediterranean coast

where there is usually high fire occurrence (check Fig. 1a).
However, these maps are too oversmoothed in capturing lo-
cal variations, especially in the logistic GWR model. The
trend of the residuals of the logistic model towards cluster-
ing did not significantly decrease from the ordinary model to
the GWR model according to the Average Nearest Neighbour
Distance Analysis (Table 2), and there was only a minor im-
provement, especially in the overestimation errors. Although
in the GW logistic model there were fewer errors, the spatial
distribution was very similar to the ordinary logistic model
(Fig. 2). Also, analysis of the linear GW regression model
residuals revealed similar characteristics to the global OLS
model, with a mean value of 0.01 and a SD of 0.51, accept-
ably following the shape of the normal curve (Fig. 5b). The
Kolmogorov-Smirnov test value was low (0.03) but still sig-
nificant (p = 0.000), showing that the normal fit was poor.
The residuals fitted properly except for low fire density val-
ues according to the normalQ − Q plot (Fig. 5c). However,
the scatterplot was more compact along the tendency line and
the standardized residual map (Fig. 5d) showed a more dis-
persed distribution through the study area in comparison to
the OLS model (Fig. 3d), without any evident systematic pat-
tern. These analyses indicated a slightly better performance
of the GWR model.

4.3 Regional and local variations

The results of the Monte Carlo test on the local estimates
pointed out a significant spatial variation (at 0.1 % signifi-
cance level) in the local parameter estimates for all the vari-
ables of both linear GWR models (fixed and adaptive). Be-
sides, all variables in the linear and logistic models showed
evidence of spatial variability (non-stationarity) across the
study area since the inter-quartile range (25 % and 75 % quar-
tiles) of the GWR parameters was greater than± 1 SD of the
equivalent global OLS parameters.

Local coefficient estimates for each explanatory variable
are presented in Fig. 6 for logistic GWR, and in Fig. 7 for
adaptive linear GWR. Negative coefficients are represented
by cold colours (green to blue) and positive coefficients with
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Fig. 5. Residual analysis of the GW linear regression model: scatterplots between observed and predicted observations(A), histogram data
plots of the standardized residuals(B), normalQ − Q plot of the standardized residuals(C), and map of the standardized residuals(D).

warm colours (orange to red). The objective of these maps is
to explore the spatial variability and to understand better lo-
cal and regional variations of the fire occurrence causal fac-
tors in Spain, developed in the discussion section.

4.4 Spatial autocorrelation of residuals

Spatial correlograms of the residuals of the linear models
(Fig. 8) show that there is significant spatial autocorrelation
of the residuals of the OLS regression model up to a distance
of 600 km, while for the residuals of the GWR model the au-
tocorrelation has been reduced significantly but still exists in
relative short lag distances, up to approximately 110 km (Ta-
ble 4). Less structured residuals have been observed in other
studies dealing with GWR (Koutsias et al., 2010), indicating
that although the method does not directly address spatial au-
tocorrelation issues (Jetz et al., 2005), it provides a solution
to the problem of spatially autocorrelated errors (Propastin
and Kappas, 2008).

5 Discussion

In both regression modelling approaches there were impor-
tant variables related with land and population abandonment,

agrarian activities, or development processes, in addition to
forest properties and climatic variables. However, only two
variables, precipitation and population decrease, were com-
mon between the two approaches, indicating different under-
lying mechanisms for fire presence and for fire density at
the community level. In this discussion we analyze the most
important explanatory variables for each model and explore
their spatial variations according to GWR local parameters
(Figs. 6 and 7). Some variables presented high variability in
explaining the dependent variable, occasionally even being
contradictory to the global coefficients.

5.1 Driving factors of long-term fire presence

The percentage of wildland area was the most important fac-
tor to discriminate non fire-prone from fire-prone municipal-
ities (defined as those in which at least one fire was observed
during the 25-yr period studied). This is reasonable since the
probability of fire ignition and spread was very low in places
with a very low percentage of forest and natural cover, as
fuels are very scarce or non-existing. The influence of this
variable was higher in the south of the country, as observed in
Fig. 6. Another important variable was forest–cultivated land
interface (ICFSUPP), which is related to agricultural activ-
ities where fire is frequently used in arable and crop lands,
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Fig. 6. Local coefficients for GW binary logistic model using a fixed bandwidth of 219 km. Negative coefficients are mapped with cold
colours (green) and positive with warm colours (orange to red). Variable names and their descriptions are in Table 1.

Table 4.Moran’s Index Summary for different band distances on the Linear GWR residuals.

Threshold Distance 90 km 100 km 105 km 110 km 120 km 154 km

Moran’s Index 0.007316 0.003598 0.001945 0.00088−0.00041 −0.00021
Expected Index −0.000143 −0.000143 −0.000143 −0.00014 −0.000143 −0.00014
z-score 8.939 4.95545 2.898472 1.48896 −0.421 −0.125
p-value 0.000 0.000001 0.00375 0.13650 0.674 0.900
residual pattern interpretation clustered clustered clustered random random random

very close to or intermixed with forest areas. This variable
was less relevant in the Iberian Mountain System and Ebro
River Depression. The importance of the forest–agriculture
interface (FAI) in forest fires in Spain was observed in pre-
vious studies (Martı́nez et al., 2009, Ortega et al., 2012;
Gonzalez-Olabarrı́a et al., 2012), which found that the land-
scapes most vulnerable to fire were those with fine-grained
forest–agriculture mixtures or mosaics, where the human-

caused fires were more intense than homogeneous and non-
fragmented landscapes.

Variables DIS50 91 (population decrease between 1950
and 1991) and DISSAU (decrease in agricultural area be-
tween 1989 and 1999) were positively correlated with the
occurrence of at least one fire event. Both variables can be
associated with abandonment of land and traditional activi-
ties and the movement of population from rural and moun-
tainous areas to lowlands and urban areas. A consequence of
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Fig. 7. Local coefficients for adaptive GWR linear model using a bandwidth of 1300 nearest neighbours. Negative coefficients are mapped
with cold colours (green to blue) and positive with warm colours (orange to red). Variable names and their descriptions are in Table 3.

land abandonment is fuel build-up. Instead, according to the
positive correlations observed for these variables, in munic-
ipalities with population reduction and land abandonment,
fires were expected in cases where the decrease is lower.
Under this demographic and social context, areas maintain-
ing a relatively higher agricultural population are more fire
prone. This is an example of the contradictory types of rela-

tionships between the explanatory and response variables in
wildfire occurrence modelling. According to the local coef-
ficient maps in the NW, the occurrence of at least one fire is
more closely associated to the population presence than the
rural exodus or land abandonment (DIS50 91), while in the
south, the presence of agricultural land (DISSAU) is more
influential (Fig. 6).
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Fig. 8.Spatial correlograms of the residuals of the OLS linear regression (left) and GWR regression modelling (right).

Population and agricultural area decrease are also closely
related with the population potential (POTDEN), a similar
concept of population density or human presence, which is
further associated with the probability of fire ignition and
area burned. This has a positive influence in many studies
(Cardille et al., 2001; Maingi and Henry, 2007; Romero-
Calcerrada, 2008; Catry et al., 2009; Sebastian-Lopez et al.,
2008; Mart́ınez et al., 2009; Marques et al., 2011; Nunes,
2012) or a negative relationship for some areas in other stud-
ies (Narayanaraj and Wimberly, 2012; Sá et al., 2011). Addi-
tionally, the previously mentioned variables were also related
with the CORINE land use class “agriculture but with signif-
icant areas of natural vegetation” (CL21 PM), showing that
fire occurrence was more likely in municipalities where agri-
cultural and forest areas are intermixed, similar to what has
been reported by Ortega et al. (2012). Recently, when try-
ing to explain the extreme 2007 fires in the Greek Pelopon-
nese, Koutsias et al. (2012) observed that the CORINE land
cover category “agricultural land, highly interspersed with
significant areas of natural vegetation” was the most affected
by fire, reflecting the encroachment of natural vegetation in
abandoned fields and also recent patterns of evolution in the
wildland–rural interface where agricultural land is increas-
ingly intermixed with natural vegetation.

Together with land abandonment and population decrease,
the economic value of lands and forests was identified as a
factor of human-caused fires due to a decreasing involve-
ment in conservation and land management by the remain-
ing rural population. In this sense, the NOGESPF variable
in the model was positively correlated with fire occurrence.
This variable measures the percentage of forest surface with
less management, control and planning over time, which in
Spain is the private forest land, land belonging to local au-
thorities with free use, consortiums and neighbouring forests.
All these kinds of properties have a generally worse conser-
vation and protection status than national, regional or public
forest. Local coefficients for this variable were positive in
the Mediterranean coast and negative in the NW. Padilla and
Vega-Garcia (2011) found that several variables related to
forest ownership (private, public and communal areas) were
significant for the northern ecoregions of Spain.

Finally, climatic variables were also found to be relevant
factors to explain fire occurrence. Mean summer tempera-
ture and mean annual precipitation are important factors, es-
pecially in the warmer areas of the E and SE. Many studies
(Shyphard et al., 2008; Drever et al., 2008; Vilar et al., 2010;
Padilla and Vega-Garcı́a et al., 2011; Oliveira et al., 2012,
Sá et al., 2011; Narayarnaraj and Wimberly, 2012; Nunes,
2012) selected several climatic variables as very significant
in their fire models – some related to precipitation, such as
fire-season and off-season precipitation, precipitation sea-
sonality, soil water storage and soil moisture anomaly – and
others related to temperature, especially the maximum tem-
perature in the driest season.

5.2 Driving factors of long-term fire density

Summer temperature was not a significant factor to explain
fire density in linear regression, unlike in the logistic model
(fire/no fire incidence). However, the mean annual precipita-
tion was the most important factor to explain forest fire den-
sity (Table 3). Local coefficients for this variable were posi-
tive across almost the entire country, especially in the SE and
some parts of the inland west, which may be related to the
impact of rainfall on fuel availability, particularly in the dry
SE regions of Spain. The exception was observed in the NE
and central Pyrenees (negative local coefficients) where rain-
fall occurs also in the summer and therefore the fire season
tends to be shorter, although this also happens in other parts
of the country where positive coefficients are found. Oliveira
et al. (2012) pointed out that the most important variables re-
lated with fire density distribution in the EUMed region were
off-season precipitation (positive influence related to vegeta-
tion growth and fuel accumulation) and fire season precipi-
tation, with a negative relationship limiting fire ignition and
spread. Śa et al. (2011) indicate that in the drier areas of sub-
Saharan Africa there is a positive relationship between fire
incidence and soil water, which is important for vegetation
growth.

The density of agricultural properties (PARSEXP)
was positively related to fire occurrence, suggesting that
highly partitioned agricultural properties increased the
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human-caused ignition risk. In combination with the vari-
able “density of agricultural machinery” (MAQUIND), this
indicates that, the higher the number of properties and ma-
chines, the more likely conflicts and negligence become. Fire
is one of the preferred tools to eliminate stubble, weeds,
field margins, hedges and shrubs, and to reclaim abandoned
lands (Leone et al., 2003), especially in areas where agricul-
tural parcel density is very high and irregularly distributed
in space. In Spain, more than 20 % of the fires that occurred
within the 25-yr period (1980–2004) were caused by inten-
tional or negligent agricultural burnings and other burnings
of shrublands to regrow or maintain pastures for livestock,
although the importance of these causes could be far greater,
and actually estimated at 45 % (Leone et al., 2009; Kout-
sias et al., 2010). In addition, as explained in Martı́nez et
al. (2009, p. 1248), in many cases mechanization implies a
willingness to obtain more space and land for cultivation,
and fires are one of the tools to achieve it. Also, more in-
tensive agricultural activity, promoted by mechanization over
time, may increase the need to burn more stubble, agricul-
tural residues and prunings, as well as a higher number of
ignitions produced by accidental sparks deriving from en-
gine operation. Similar agriculture related variables have also
been used in other fire modelling studies (Sebastian-Lopez
et al., 2008; Catry et al., 2009). According to the spatial dis-
tribution of the local coefficients, we identified areas where
the expected direction in relation to high fire density exhib-
ited opposite trends to the global model. This is the case of
variable PARSEXP in the Valencia Region and the northern
plateau (especially in the “Ribera del Duero” region), where
local negative coefficients were found. Both areas have high
fragmentation of small-holdings both in irrigated and in rain-
fed arable land agriculture, but they have few forested ar-
eas and a landscape with less wildland–agrarian mosaics.
However these areas present high and positive coefficients
for variable agricultural machinery. Instead, in the eastern
Cantabrian regions (Basque Country and Cantabria) and the
Guadalquivir depression in the SW, variables MAQUIND
(agricultural machinery) and TIT55 P (percentage of old
owners of agrarian holdings) showed the opposite trends. In
some of these humid Atlantic environments of the north, live-
stock and forestry are more important than agriculture. The
southwestern Guadalquivir area presented one of the low-
est indices in the number of agricultural machines compared
with other irrigated areas of the country.

The mean municipality altitude (ALTMEAN) variable
was the third most explanatory in the model. The global coef-
ficient and most of the local coefficients throughout the coun-
try were negative, so at lower altitudes more fire densities
were expected, especially in the central part of the country
and the eastern coast. However, we observed a positive influ-
ence across the entire S of the country and in the NW (Gali-
cia). Coefficients were neutral (close to 0) in the N of Aragon
and the central Pyrenees in the upper mountains. Other stud-
ies showed that elevation presents contrasting relationships

with fire occurrence. Some studies found a positive influence
(Catry et al., 2009; Marques et al., 2011) as a consequence
of pastoral burns (renovation of pastures for livestock) or a
higher frequency of lightning in higher altitudes (Vazquez
and Moreno, 1998; Narayanaraj and Wimberly, 2012), while
other studies found a negative correlation (Vasconcelos et al.,
2001; Sebastian-Lopez et al., 2008; Gonzalez-Olabarrı́a et
al., 2012; Vilar et al., 2010; Padilla and Vega-Garcia, 2011),
suggesting that lower elevations tend to be the more xeric
places, with dryer fuels and less productivity. However, fuel
dry-out is probably a function of the temporal distribution of
precipitation, which in the Mediterranean area is very high
in summer due to the seasonal drought. In addition, when
altitude increases, the vegetation loading tends to decrease
with more unburnable areas appearing (rocks, sparse vege-
tation, ice, etc.) although only over a certain height. Unlike
lightning-caused fires, Narayanaraj and Wimberly (2012) de-
tected a negative association between elevation and slope and
human-caused fires in a mountain area of Washington State.
Similarly, Vilar et al. (2010) found a less intense land use
at high elevations in the Madrid Region. In some regions of
Spain, as in other parts of the world, population, roads and
some land uses responsible for the higher number of ignitions
are concentrated in coastal areas, decreasing with increasing
elevation (Badia-Perpinya and Pallares-Barbera, 2006). The
same conclusions about how topography reflects the loca-
tions of human activities in relation to fire ignitions are indi-
cated for a region of China by Xu et al. (2006), showing that
the anthropogenic factors are closely related to fires when al-
titudes of forests are lower than 900 m. However, at higher
elevations their influence is much lower. In other studies the
topography effect has been related with fires, using variables
related with roughness or terrain shape index (Dickson et al.,
2006, Nunes, 2012; Padilla and Vega-Garcia, 2011; Naraya-
naraj and Wimberly, 2012).

As in the logistic model, population decrease between
1950 and 1991 (DIS50 91) was found to be a relevant ex-
planatory variable. Besides, the inclusion in the model of
DIS TIT (decrease of the number of owners of agrarian hold-
ings 89–99) reinforces the idea of the relationship between
land abandonment and rural exodus, with a high fire risk
(Hill et al., 2008; Nunes, 2012). The local coefficient maps
of these two variables portrayed two patterns: (1) on one
hand, in the east of the country, fires are related to population
abandonment and rural exodus, with the resulting accumula-
tion of fuels, but at the same time there is some maintenance
of agricultural activities related to fires because the variable
DIS TIT correlates positively with fire density; and (2), in
contrast to this trend, the western region, particularly in the
NW, DIS 50 91 has positive correlation with fires, indicating
a further influence of the population presence on fires. How-
ever, in these western areas, DISTIT correlates negatively
to fires, so if agricultural land owners decline and agricul-
tural activities are abandoned, fires tend to be more frequent,
mainly because of greater fuel accumulation. In addition, in
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this NW area (Galicia), which is the most fire affected region,
we found strong positive coefficients with the variable ageing
agricultural population (TIT55 P), because in this region the
older population is the more accustomed to use fire in farm-
ing works, as they did in their youth (V́elez, 2009). This vari-
able also suggests the impact of the land abandonment pro-
cess in increasing fire frequency. A similar trend was also ob-
served by Nunes (2012) in Portugal, where the ageing index
correlates negatively with the density of the population and
is positively associated with agricultural land abandonment.
The same process has been pointed out for the Mediterranean
European Basin using the difference of the youth index be-
tween 1990 and 1960 (Koutsias et al., 2010) as a proxy.

Two of the variables relate fires to forestry and landscape
features. Thus, more fires were found in landscapes with a
large percentage of shrublands and grasslands (DESARP),
especially in the Cantabrian Mountains and N coast where
there are numerous pastoral fires to create, maintain, or re-
grow pastures for livestock (Moreira et al., 2011). Many stud-
ies have confirmed that shrubland is one of the most fire af-
fected land cover types (Nunes et al., 2005; Sebastian-López
et al., 2008; Catry et al., 2009; Moreira et al., 2009; Bajocco
and Ricotta, 2008; Nunes, 2012; Oliveira et al., 2012) due to
a combination of factors: “a higher rate of fire spread, a larger
frequency of ignitions (e.g. to create pastures) and a lower
fire fighting priority” (Marques et al., 2011, p. 783). In sub-
Saharan Africa the herbaceous vegetation proportion is the
variable best related with fire incidence (Sá et al., 2012). On
the other hand, more fire density was found in Spanish land-
scapes with high fragmentation (FRAG7× 7), especially in
the three main river depressions where agriculture dominates
(Duero, Ebro and Guadalquivir) and where there is less forest
cover. Heterogeneous and interspersed patterns composed by
spatially separated patches with different land uses presents
higher ignition frequencies (Ortega et al., 2012; Ruiz-Mirazo
et al., 2012).

Finally, two variables were related, in general, to human
presence and accessibility. Road density (ROADDEN), the
same as road distance, has very often been found to be related
to human accidental or negligent fires (Cardille et al., 2001;
Vasconcellos et al., 2001; Badia-Perpinya and Pallares-
Barbera, 2006; Yang et al., 2007; Romero-Calcerrada et
al., 2008; Mart́ınez et al., 2009; Catry et al., 2009; Vi-
lar et al., 2010; Padilla and Vega-Garcı́a, 2011; Gonzalez-
Olabarria, 2012; Oliveira et al., 2012; Narayanaraj and Wim-
berly, 2012), as well the density and distance to human set-
tlement (ENTSINM). Specifically, the risk appeared to be
higher in the urban–forest interface (IUFDEN) zone (Badia-
Perpinya and Pallares-Barbera, 2006; Syphard et al., 2007;
Catry et al., 2009; Martı́nez et al., 2009; Romero-Calcerrada
et al., 2010; Vilar et al., 2010; Gonzalez-Olabarrı́a et al.,
2012; Narayanaraj and Wimberly, 2012) where population
and human infrastructure facilities are in contact, close to or
disseminated throughout the forested zones, especially in the
vicinity of large cities and tourist resorts (Viegas et al., 2003).

According to the spatial distribution of the local coefficients
of these variables, it might be surprising to find high coef-
ficients in areas where the values of these variables are low,
such as in the southern part of Central Spain and in the in-
land mountains of the south, where a low population density,
few population centres and scarce wildland–urban interfaces
are found. However, these few places with higher densities of
human activities seem to tend to bias the model and therefore
seem to be decisive for the fire occurrence in those areas.

6 Conclusions

In this study we built two complementary models which
cover the whole range of the human-caused fire occurrence
in Spain during a 25 yr period. The first model tries to pre-
dict and explain fire densities, and the second fire pres-
ence/absence. The most influential variables for both mod-
els are related to agrarian activities, land abandonment, ru-
ral exodus and development processes. Additionally, specific
traits of vegetation, climatology and topography have also
been very important, since they affect the initial conditions
enabling fire incidence. The inclusion of these environmental
variables results in an improvement over the previous model
(Mart́ınez et al., 2009), on which this study is based.

Relevant differences between both models are found be-
cause only two explanatory variables are common: mean
annual precipitation and population decrease. Potentially
flammable land cover types (total wildland area and agri-
cultural/forest interfaces and mosaics) and the mean sum-
mer temperature are the main specific variables for the fire
presence model. Instead, agricultural fragmentation, eleva-
tion, shrublands and grasslands, along with human structures
(roads, settlements, etc.) and other rural indicators are spe-
cific variables for the fire density model.

However, these stationary models and global regression
approaches seem to be insufficient to appropriately explain
the underlying fire factors, because all variables selected
showed significant spatial variations at the regional or lo-
cal scale according to the GWR model. Nevertheless, only
some of them present, in fact, very high variability or con-
tradictory relationships with the response variable and/or the
global trends. For example, the density and fragmentation of
agricultural plots has a negative relationship with fires in re-
gions with low forest areas and less wildland–agrarian mo-
saics, as along the E coast in the Valencia Region and the
eastern part of the northern plateau (Ribera de Duero), and
both areas are characterized by having small-holdings of irri-
gated agriculture and also rain-fed arable lands. Also, precip-
itation, decrease in owners of agrarian holdings, population
entities or the urban–forest interface present unexpectedly
high regression coefficients in areas where those variables
have low original values. Thus, although precipitation seems
to be a very important factor to model fire densities in the dri-
est areas of the country, it is not that relevant in other areas
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with more rainfall availability. Similarly, the percentage of
forest and wildland area has a higher influence in the S of the
country, which is drier and with less vegetation as compared
to the N. Another interesting pattern is observed between the
E and the W–NW where population presence seems to have
a further influence on fires, although at the same time im-
portant land abandonment processes are observed. In the E,
instead, fires seem directly more related to population aban-
donment and rural exodus, but also to agricultural activities,
though to a lesser degree. Finally, lower altitude seems more
related with the fire density along the eastern coast and in the
central part of the country, unlike the pattern observed in the
S and NW where higher altitudes present more fire risk. In
the upper mountains of the Central Pyrenees this relation is
neutral.

This analysis is another contribution to the field of fire
management and fire risk assessment in the Mediterranean
countries, which quantitatively and spatially demonstrated
the importance of considering regional variations and local
modelling as a complement to global and stationary models
in order to better understand the fire problem over large study
areas.
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