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Abstract. In past decades theoretical studies have been car-
ried out with the double aim of improving knowledge of the
main characteristics of the rogue wave and of attempting
to predict its sudden appearance. We have tried to generate
rogue waves in a water wave tank, using a symmetric spec-
trum (Akhmediev et al., 2011a) as input on the wave maker.

The next step has been to apply a theoretical model to
the amplitude envelope of these waves. After some consid-
erations we agreed the best model to be an analog of the
Ginzburg–Landau equation.

1 Introduction

Recently, many rogue waves have been reported to be the
main cause of shipping incidents at sea. One of the main
characteristics of rogue waves is their elusiveness: they ap-
pear unexpectedly and disappear in the same way. Some
authors (Zakharov et al., 2010) are attempting to discover
the probability of their appearances as well as studying
the mechanism of their formation. Similarly, more recently,
some researchers (Bitner-Gregersen and Toffoli, 2012) have
studied the probability of occurrence of rogue waves.

Generated waves were clearly rogue waves with a ratio
(maximum wave height / significant wave height) of 2.33 and
a kurtosis of 4.77 (Janssen, 2003 and Onorato et al., 2005).
These results were already presented (Lechuga, 2012). Simi-
lar waves (in the pattern aspect, but without being extreme
waves) were described as crossing waves in a water tank
(Shemer and Kit, 1988). Other researchers (Pelinovsky et al.,
2005) have studied the relationship between the experiment
data and mechanisms of generation of rogue waves. Toffoli
et al. (2011) have also studied crossing seas as a mechanism
of generation of rogue waves. In order to model the resulting
waves, we use an analog of the Ginzburg–Landau equation.

We know that the Ginzburg–Landau model is related to some
regular structures on the surface of a liquid and also in plas-
mas, electric and magnetic fields, and other media. Another
important aspect of the model is that the solutions are invari-
ants with respect to the translation group.

The main aim of this paper is to draw conclusions from the
model and make comparisons with the measured waves in the
water tank. The nonlinear structure of waves and their regu-
larity make the use of the Ginzburg–Landau model suitable
for the amplitude envelope of generated waves in the tank,
thus giving us a powerful tool to compare with the results of
our experiment.

2 Experiment

In order to reproduce waves in maritime reality, we normally
use a Jonswap spectrum. However, when we use a more sym-
metric spectrum, either in shallow or in deep water, the en-
ergy concentrates itself and something similar to rogue waves
happens. Controlling wave maker parameters, we can gener-
ate this kind of breather; its description is the main aim of
this paper. A picture of our facility appears in Fig. 1, with
the wave maker to the right. The wave tank has the follow-
ing dimensions: 36.0 m long, 6.5 m wide and 1.5 m deep. In
this tank we built a semi-submerged structure with a length
of 10.5 m simulating a dike of 409.5 m. The wave maker is
the piston-flap type with a rank of 0.80 m, an MTS control
system and NRC (Canada) GEDAP application with active
absorption of reflexions. There are three wave sensors, one
close to the wave maker, another below the footbridge that
appears in Fig. 1, and a third close to the submerged struc-
ture, also shown in Fig. 1. Only the wave sensor close to the
wave maker has slight differences with the measurement of
the others. The shape of the waves is shown in Fig. 5. The
waveform is preserved throughout the tank except for the
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Fig. 1.Water wave tank.

 

Fig. 2. Details of the wave maker with the double structure to pre-
vent the appearance of vibrations.

perturbation produced in crossing the structure (see Fig. 5).
The basic wave group is formed by three waves whose char-
acteristics are shown in Table 1. We must take into consider-
ation that our experiment, related to our study here, belongs
to the deep water range.

As the main objective of our job was the generation of
rogue waves, we will not dwell on other aspects related to
the structure itself; however, we will point out that this dike
has had to be built in Aviles Harbour in the north of Spain
(Cantabrian Sea). On the right (see Fig. 1) is the wave maker.
To eliminate transversal vibrations and so reproduce waves
more accurately, the wave maker has a double structure as
shown in Fig. 2.

We were trying different wave conditions, among them
some waves generated with a density spectrum that has a
strong symmetry (see the graphic in Fig. 3) and whose char-
acteristics are shown in Figs. 4 and 5. The main aim of this
truncated bimodal spectrum (following Akhmediev et al.,
2011a) was to generate well-separated big waves with 5 or
6 small waves between them. There was an evident energy
concentration similar to the one observed in photonic crys-

 
Fig. 3.Power density spectrum.

tal fiber in optical experiments. In our case the wave front
is at right angles to the wave propagation, and accordingly
Fig. 4 represents a wave profile. The observable energy con-
centration indicates that they can be considered rogue waves,
at least from the statistical point of view. For instance, the
ratio maximum height to significant height is between 2 and
2.33, and the kurtosis is between 4.77 and 9.83, far from the
value of 3 of the Gaussian seas. Of course they are determin-
istic waves and therefore outside of the modulation instabil-
ity mechanism and, also, they are almost symmetrical. For
the same reasons the statistical values are included only for
comparison purposes. Nevertheless their shape is similar to
some waves reported as rogue waves (Fig. 6).

Zero up-crossing wave height has these values before and
after the maximum wave (Table 1).

Table 1 represents the same results of Fig. 6, but comput-
ing the wave height of the three more relevant waves. Fig-
ure 6 shows a kind of zoom of the result of one of the wave
sensors in time.

It is to be pointed out that the group so generated shows a
conspicuous “three sister system”.

3 Theoretical background

The Ginzburg–Landau equation has proved very useful for
modeling the generated waves because it appears related to
some regular structures on the surface of a liquid, as is the
case in this experiment.

Following Danilov, Maslov and Volosov (1988), a special
type of the Ginzburg–Landau equation can be represented as
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Fig. 4.Wave train profile. Axes have different units. For caption see
Fig. 8.

 

Fig. 5. Generated waves. Two big waves and small waves between
them.

Table 1.Free wave surface close to the maximum wave. A group of
3 waves is noticeable.

Number Wave Height Comments
(meters)

1 1.1427
2 0.6610
3 3.2961
4 13.2299 Maximum height
5 3.2958

 

Fig. 6. Maximum wave height. One big wave accompanied by two
smaller waves.

δu

δt
− iσε2 δ2u

δx2
+ u − ihu · −iu |u|

2
+ iσu = 0, (1)

u =

√
σ

2
(U + iU), (2)

U = U1

(x

ε

√
σ
)
, (3)

U1 = −

√
2

cosh( x
√

σ
ε

)
. (4)

Though the steady solution only depends onx, it is necessary
to use the complete GL Eq. (1) because we have to account
for the real and imaginary parts of the solution.

As the solution of the equation is invariant to the transla-
tion group, we can repeat the number of separated waves as
much as to reproduce our number of crests with our specific
wave length.
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whereL is the wavelength. Eq. (1) is dimensionless, and tak-
ing into account that it was not derived by water waves, the
parameters have to be thought out for the new situation.
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Fig. 7.Solution of the Ginzburg–Landau equation.

For instance, the solution for three well-separated waves
is like this (see Fig. 7). In the plotted solution the ordinate
and abscissa are dimensionless. The parameters that govern
the equation areσ andε: σ is involved in the amplitude of u
(real part) and in its “peakedness”, andε in the wave peaked-
ness. In Fig. 7, the parameter values areσ = 1 andε = 0.5
(“peakedness” here does not have the precise meaning that it
would in technical literature).

It is important to point out that with the two parameters we
can adjust the solution of the Ginzburg–Landau equation to
our generated waves. The steady solution of the GL equation
only depends of the variablex, but you have to start with
Eq. (1) to account for the real and imaginary parts that to-
gether provide the solution.

4 Wave envelope

In order to compare our experiment data with the solution of
the Ginzburg–Landau equation, we proceed to find the am-
plitude envelope of our wave train, and to perform this we
use the Hilbert transform (see Fig. 8).

This envelope (in profile) is similar to the Akhmediev
breathers generated in optical fiber (Akhmediev et al.,
2011b). The energy concentration in a few waves as well as
the vanishing of intermediate waves between them is remark-
able. The difference with the Akhmediev breathers is that in
our case the system is bidimensional (plane crests at right an-
gles to the wave propagation), whereas the former is clearly
tridimensonal. However, the comparison of both profiles is
relevant.

The structure of the amplitude envelope is easily modeled
by the Ginzburg–Landau equation presented above, and there
is no better model for this controlled experiment. The rea-
son for that is to be found in two characteristics of the equa-
tion, i.e., its nonlinear structure and the regularity of the so-
lutions. In our case the value of the parametersσ , ε andL

areσ = 0.029,ε = 0.085 andL = 4.8. Taking these values,
the solution of the GL equation fits reasonably well with the

 
Fig. 8. Amplitude envelope (in black) of the wave train. The hori-
zontal axis (abscissa) is in units of our wave tank. The ordinate units
are in the scale of the model (1:39).

envelope of the generated waves. Alternatively we can con-
sider the steady solution as dimensional, withσ andε both
in squared meters andL in meters.

5 Conclusions

In some cases, a symmetric density spectrum could be a very
powerful tool to use to generate extreme waves or rogue
waves to check maritime structures. Though the procedure
is a deterministic one, we can use it to get a greater concen-
tration of the energy with higher and more separated waves
for a given significant wave height.

The nonlinear structure of such waves and their regular-
ity make the use of the Ginzburg–Landau equation suitable
for modeling the amplitude envelope of the generated waves,
giving us another way of controlling the results of our exper-
iment.
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