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Abstract. Landslide early warning systems (EWSs) have toWyllie and Mah, 2004; Cornforth, 2005; Vaciago et al.,
be implemented in areas with large risk for populations or in-2011). However, classical countermeasures, such as modifi-
frastructures when classical structural remediation measuresations of mass distributions or water regimes, are often too
cannot be set up. This paper aims to gather experiences axpensive or difficult, if not impossible, when dealing with
existing landslide EWSs, with a special focus on practicalcomplex instabilities of large volumes (Crosta and Agliardi,
requirements (e.g., alarm threshold values have to take int@003; Blikra, 2012).
account the smallest detectable signal levels of deployed sen- In such situations, other types of mitigations have to be
sors before being established) and specific issues when degterformed in order to decrease the risk, mainly imposed on
ing with system implementations. Within the framework of human lives. A proper measure is to reduce the number of ex-
the SafeLand European project, a questionnaire was sent fposed people by implementing reliable landslide early warn-
about one-hundred institutions in charge of landslide man-ing systems (EWSs) that are capable of alerting and evacu-
agement. Finally, we interpreted answers from experts beating populations based on the monitoring of stability condi-
longing to 14 operational units related to 23 monitored land-tions of the landslide (e.g., parameter values exceeding estab-
slides. Although no standard requirements exist for designiished thresholds). Indeed, EWSs are defined by the United
ing and operating EWSSs, this review highlights some keyNations as “the set of capacities needed to generate and dis-
elements, such as the importance of pre-investigation workseminate timely and meaningful warning information to en-
the redundancy and robustness of monitoring systems, thable individuals, communities and organizations threatened
establishment of different scenarios adapted to gradual inby a hazard to prepare and to act appropriately and in suf-
creasing of alert levels, and the necessity of confidence anéicient time to reduce the possibility of harm or loss” (UN-
trust between local populations and scientists. Moreover, itISDR, 2009). Efficient landslide EWSs require four major
also confirms the need to improve our capabilities for failureelements that have to be well integrated: (1) risk assess-
forecasting, monitoring techniques and integration of waterment, (2) phenomenon monitoring and forecasting, (3) warn-
processes into landslide conceptual models. ing communication and alert dissemination, and (4) local re-
sponse aptitudes (UN-ISDR, 2009).
These elements have been described in detail in many pa-
) pers, and useful concepts and recommendations can be ex-
1 Introduction tracted, such as in (1) Turner and Schuster (1996) or Fell
. . . et al. (2005) for hazard and risk assessments, (2) Stumpf et
Landslides are frequent phenomena in many natural environy, (2011), Michoud et al. (2012) or Tofani (2013) for moni-

ments, anqr:imidigtli(og measrl;lres ought to fbe implylgment ring techniques, (3) Saito (1969), Fukuzono (1990), Crosta
In areas with high risk due to the presence of populations or, , Agliardi (2003) or Meyer et al. (2012) for slope fail-

infrastructures. Structural remediation measures have beeﬂre and flow initiation forecasts and (4) Basher (2006) or

extensively used for reducing and even eliminating the haZ'Dash and Gladwin (2007) for alerts and associated social
ard (Piteau and Peckover, 1978; Holtz and Schuster, 1996;
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processes. Furthermore, some papers describe how to inte- Questions were focused on practical considerations and
grate all tasks together (Angeli et al., 2000; Lacasse andpecific requirements, such as technical challenges in in-
Nadim, 2009). For shallow landslides and debris flows, astalling and maintaining the EWSs. In addition, it was also
huge effort has been performed in order to develop com-oriented towards understanding advantages and disadvan-
plete and efficient EWSs at regional scales; they are based aiages and revealing the potential lack of existing techniques
rainfall intensity forecasting, soil moisture content and/or an-to propose directions that current research should follow.
tecedent water index, etc. (Keefer et al., 1987; Aleotti, 2004; In order to maximize the number of potential answers,
Baum and Godt, 2010; Jakob et al., 2012; Mercogliano etthe questionnaire has been designed to be as short, user-
al., 2013). Nevertheless, it seems that there are only few refriendly and simple as possible (Lapointe et al., 2010). In-
views dealing with practical considerations and specific re-deed, it mainly contained a list of closed questions with pre-
quirements in order to implement reliable single landslideestablished answers clickable in checkboxes. Moreover, a
EWSs that are site-related. few open questions were also kept in order to leave the com-
For this purpose, the SafeLand project (2009-2012) piler free to provide any further considerations and points of
funded by the European Commission in the 7th Frameworkview, especially about:
Programme (Grant Agreement No. 226479), intended to de-
velop generic risk management tools and strategies for land-
slides. Thus, one of its main objectives has been to pro-
vide guidelines that would facilitate the establishmentof new  — how actual EWSs could be improved.
EWSs and increase the quality of existing systems (Bazin,

2012; Intrieri et al., 2013). Consequently, the first step of this - . . :
study was to gather experiences from existing EWS strategie ponsibility for several landslides, and the questionnaire was
erefore designed to fit systems that monitor multiple sites

and expert judgments. In this way, we prepared a four-pag ) . . .
questionnaire that has been filled by 15 institutions in chargeas well as single lanaslides. The questionnaire was then com-

of 24 landslide EWSs. Primary analyses were first presenteg"e{j into a Portable Documer_lt Format (pdf) document, one
of the most standard formats, in order to ensure that everyone

In Bazin (2012). This paper therefore aims to present the re; ould open and read it. Finally, each user had the possibility

sults of experiences of those European and North Americaif°" .
: : : . . to include some supplementary material such as extra text
landslide EWSs, focusing on implementation requirements o
and maps with his answer.

and potential practical issues of importance for landslide spe- The questionnaire is available in the Supplement
cialists dealing with risk management. a PP '

— advantages, limitations and upcoming improvements
of current monitoring systems;

In practice, units in charge of EWSs often have the re-

2 Design of the questionnaire 3 Results and interpretations

. . . The questionnaire was sent and spread in June 2011 to about
As a part of the SafeLand project, a screening study was in- T . .
. . one-hundred institutions in charge of landslide hazard and

tended to gather information about the state of the technolo-. :
: o : : . risk management. These Asian, European and North Amer-
gies and existing strategies for the establishment of landslide

. . : . ican institutions were identified within the professional net-
EWSs. A four-page questionnaire was compiled to illustrate ; - .
work of SafeLand’s participants, national experts and col-

the wide spectra of monitoring and integrated platforms, ano‘eagues in the landslide scientific community. The list was

FO merge actual l_<now|edge and.expertjgdgments. from eX'Stélso completed by reviewing EWS publications, conferences
ing systems. It aimed to collect information about:

on landslides and also by looking for internet websites. Fi-
operational units in charge of the EWS; nally, in autumn 2011, we received answers from experts be-
longing to 15 operational units from 9 different countries and
monitored landslide settings and consequences of pasilated to 24 landslides, i.e., 23 site-specific landslides and 1
events (if any); regional EWS. Among them, 21 systems are in operation, 1
is under construction and 2 have been stopped. Table 1 sums
up the list of institutions (and investigated landslides) that
monitoring parameters, thresholds and sensors; answered the questionnaire. Some slope movements are well
known within the landslide community, such as the land-
warnings, communication and decision-making pro- slides of Aknes in Norway (Blikra, 2008, 2012; Oppikofer et
cesses. al., 2009; Jaboyedoff et al., 2011), Ancona (Cotecchia, 2006;
Cardellini, 2011) and Ruinon in Italy (Agliardi et al., 2001,
Crosta and Agliardi, 2003; Tarchi et al., 2003), Turtle Moun-
tain in Canada (Terzaghi, 1950; Cruden and Krahn, 1973;
Benko and Stead, 1998; Froese and Moreno, 2011) and Vall-
cebre in Spain (Gili et al., 2000; Corominas and Santacana,

pre-investigations used to design the EWSs;
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Fig. 1. Type of landslide materials and slopes involved in this study. Erosion ~ Human  Tectonic Earthquake Rainfall Snowmelt Intrinsic
activity & dynamics

The total number is over 23, due to multiple possible settings.

Permafrost

Fig. 2. Triggering mechanisms involved for the 23 reported instabil-
2003; Corominas et al., 2005). On the other hand, the Hongties and grouped according to Terzaghi's (1950) agents. The total
Kong Engineering Office provided the only response deal-can be over 23 (and 100 %), since the reported studies can be af-
ing with a regional EWS for shallow landslides (Hong Kong fected by more than one triggering mechanism.
Slope Safety, 2012); this case is not included hereafter, since
many questions were not designed and thus not applicabl . .
for regional systems and also since this singular experiencg"2 Landslide settings
is too dlffere_nt from_t_he other 14 _operatlonal units and '[he|r3.2'1 Hazard
23 related site-specific case studies.

_Although 23 answers do not have a high statistical sig-The second part of the questionnaire relates to the context
nificance, interesting practical trends can still be extractedsf the 23 monitored instabilities, their previous displacement
from the dataset, especially since some of them are amongijyities and their potential consequences. It includes a wide
the most studied landslides worldwide, and valuable exPe”‘range of phenomena (Fig. 1) mostly related to natural slopes,
ences have thus been accumulated for many years. from small rockfalls of less than 10%to large rockslides of
more than 50 million i, or regional debris flows and earth
slides. Moreover, landslide events had already occurred for
20 of them.

3.1 Unitsin charge of the EWSs

The first part of the questionnaire relates to the functioning The studied instability cri inly tri dbvint
of operational units. The 14 reported institutions in charge . ' ¢ Studied Instability crises areé mainly triggered by inten-

of site-specific landslide monitoring and/or EWSs operate>''© rainfall (Fig. 2). Snowmelt and permafrost, human activ-

mostly at national and regional level; however, two thirds of ities, erosion processes, tectonic activities, or even their in-
them are also responsible for monitoring other natural pro_t.rlnsm.dynlam(ljcsHarl? tf;ehother trlgg;znng mec(j:hdanlsms Some-
cesses such as weather conditions, volcanoes and/or earti?'€s INvolved. Halt o the events happene ue to a com-
quakes. These units employ especially for their EWSs be- ination of several factors. Furthermore, classifying trigger-

tween 0 (monitoring carried out by universities) and 15 peo-ing factors according to .the four p.hysical agents r'e.sponsi—
ple (IPGP — Martinique). All these institutions are financed ble for slope destabilizations described by Terzaghi in 1950

by public funds, except one that receives additional pri-(i'e" material transport, tectonic stresses, water and weight of

vate resources. On average, they need about EUR 175 Ooﬂope-forming.m_aterial), water is surely the most important
per year to operate, with a minimum of EUR 60000 for a agent, destabilizing more than 87 % of the slopes (Fig. 2).

Czech office in charge of 10 landslides and a maximum of3 22 Risk
EUR 500000 for theCentro di Monitoraggio Geologico of

the ARPA Lombardién charge of 24 single landslides. How- - As introduced before, remediation measures have to be con-
ever, annual operational costs are highly dependent on thgjgered when there is an unacceptable risk. Indeed, as shown
different living standards in each country and also on howin Fig. 3, these 23 landslides are directly threatening infras-
the unitis organized; moreover, the funding for replacing andirctures such as roads or railways (for 20 of them), build-
implementing new monitoring systems can highly changeings (for 14 of them) and human lives (for 12 of them).
from year to year. This highly changing budget and resourcesyioreover, 8 of them could even lead to significant indi-
from year to year can be a reason why only 7 institutions anvect consequences, such as tsunami induced by rockslides
swered this question. (Blikra, 2008, 2012; L'Heureux et al., 2011) or outbursts
resulting from landslide dam failures (Costa and Schuster,
1988; Korup, 2002). In the past, the 20 reported landslides
that are now active or dormant (cf. the classification of
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Table 1. Exhaustive list of the monitored landslides and their related operational units that answered the questionnaire during summer 2011.

Country Operational unit

Monitored landslide

Canada Alberta Geological Survey

University of Laval

Turtle Mountain
Gascon Rockslifle

Czech Republic  Geo-Tools unnameé
National Park Bohemian Switzerland Hren8ko
France Service de Restauration des Terrains en Montagne La Yalette
Institut de Physique du Globe de Paris a la Martinique PrécheurRiver
China Geotechnical Engineering Office Entire Hong Kong provirice
Italy Ancona Monitoring Center Ancofta
Centro di Monitoraggio Geologico — ARPA Lombardia  Ruiffon
Servizio Geologico Aosta Becca di Ndha
Bosmattd
Cherva?
Citrin
La Saxé&
Vollein?
Universita degli Studi di Firenze Torgiovannétto
Norway Aknes/Tafjord Early warning Centre AkRes
Hegguraksla
Jetta?
Manner?
Nebbet Monitoring Center Nebbet Mount&in
Slovakia State Geological Institute of Diunyz Stur Okoligne
Velka Causa
Spain Universitat Politécnica de Catalunya Vallcébre

a system in operatior?. system under constructiohstopped systen. results not included in this study.

25 - Mountain in 1903 buried more than 70 citizens of the village
of Frank during their sleep (McConnell and Brock, 1904). In
1934, the Hegguraksla rockslide indirectly killed 40 people
due to the landslide-induced tsunami that destroyed several
villages along the fjord with a wave reaching a maximum
height of 62 ma.s.l. (Kaldhol and Kolderup, 1936; Bugge,
1937).

For 10 of the reported landslides, some physical mitigation
works were performed to prevent new catastrophic events,
such as retaining basins for debris flows or retaining walls for
Fig. 3. Number of landslides that are endangering buildings, trans-m(:kfaIIS when the context allowed it. Moreover, revision of

portation infrastructures and people, and creating indirect risks orthe land-use plans has been |mpIement§d in the haz_ard zones
even other issues. The total number is over 23, because cons&f)@r almost 75% of the reported landslides, essentially up-
quences of a landslide can affect more than a single target. dating land-use restrictions and construction norms for new
inhabitants and infrastructures to reduce the number of ele-
ments at risk, their vulnerability and/or the population expo-
on.

20 A

15 A

20
14
12
1 8
. 1
4 . . . . - .

Other

10

Buildings Infrastructures People Indirect risks

Cruden and Varnes, 1996) produced considerable econom%ItI
losses that are difficult to quantify (even if estimated at about
EUR 400 million by their operational units). Furthermore, 3-2.3 Pre-investigations for EWSs

they had important social consequences, destroying roads

and villages, isolating populations and even killing more The third part of the questionnaire was related to investiga-
than 110 people. For example, the rock avalanche at Turtléions performed before the design of the monitoring systems.
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Teere erieron Surprisingly, hydrogeological conditions are only investi-
sertera s ertera gated for half of the cases (mainly piezometers and/or rain
= 1 gauges). It contrasts with the fact that in the 2nd part of the

25 3 criteria . . . . . -
o i % guestionnaire, water is considered as a physical destabiliz-
s st i, ing agent for 87 % of the reported instabilities (Fig. 2), and
15 13 % . . .
1 u groundwater conditions are also required for reliable land-
° . slide models. For example, Bonnard and Steiger (2012) ad-
® - vise a minimum of two years of water-table monitoring be-
Geology and Surface Hydrogeology Geotechnical ~Geotechnical ~Geophysical Modeling fOre deSIQnIng any dralnage SyStemS
geomorphology movements insitutest  inlabstest  data Finally, it is also important to note the common use of a
Fig. 4. Inventory of investigations performed before designing the multi-criteria approach. Thus, as seen in Fig. 4, operational

23 reported EWSs performed and percentage of total number otNits have designed their EWS on 4 types of criteria and even
criteria investigated per site. The total number of investigations ismore in 69 % of the cases. The use of only one criterion is a

over 23, because 86 % of the landslides required more than one typ@€ethod used for 14 % of the cases, and this is mostly imple-
of criterion. mented for cases where debris flows are triggered by heavy
precipitations.

Several issues are usually investigated in order to get a sufz 5 Monitoring systems
ficient understanding of the unstable systems, which is re-

quired for designing a proper and pertinent monitoring net-3 3 1 gensor network
work (Fig. 4).

The most investigated criteria are obviously the landslideTne fourth part of the questionnaire relates to instruments
geology and the geomorphology (for 19 of them), completeda g sensors used to monitor the instabilities. Two of our part-
by surface movement data (for 14 of them). Indeed, 9e0yers monitoring fragmental rockfall events, reported diffi-
logical and geomorphological studies are crucial for under-cyties in filling this section table to us because of its pdf
standing unstable slope behavior and for providing relevanormat: the following interpretations are thus based on the
conceptual models. This includes mapping of landslide fea;iher 21 case studies. Figure 6 displays the different types of
tures (e.g., main and minor scarps, open fractures, surfaces ghserved parameters and Fig. 7 sums up the different setup
rupture and compression zones) and evidence of recent aggnsors, Detailed theoretical and technical aspects on all

tivities. Furthermore, investigating surface and sub-surfacgpese |andslide monitoring sensors are developed in Stumpf
displacements is often crucial for making reliable landslide g 4. (2011) and Michoud et al. (2012).

conceptual models. The coupling of geological, ggomorpho- The large majority of the EWSs is based on the moni-

logical and displacement maps is an important foundationyying of surface and sub-surface displacements (for 18 of
for designing monitoring networks and sensor locations. Théhem), certainly because they show direct evidence of active
monitoring network of the Norwegian rockslide in Mannen geformations. In order to measure movements, half of the
(Fig. 5) illustrates how a monitoring network can be de- netyorks are based on extensometers and/or Global Naviga-
signed, with in-place instrumentations in the_ accessible Uption satellite Systems (GNSS); crackmeters and inclinome-
per areas close to the open fractures, and with ground-basqgs are also frequently used. These sensors deliver reliable
remote-sensing techniques to cope Wlth I.ess accessible |°V‘{‘?fata and are robust and cheap (except for GNSS). Regard-
parts. Moreover, sub-surface monitoring in deep boreholes '$hg GNSS, even if antennas and receivers are more expen-
performed at two accessible localities in order to fulfill the gjye than other systems and the data processing more compli-
Norwegian requirements for EWSs. ~ cated, they have the major advantage that they provide 3-D
_In addition, numerical models are computed for 14 insta- gigp|acement information. Other techniques such as ground-
bilities in order to (1) determine stability factors and (2) map pased interferometric radar (GB-InSAR), total station, laser,
potential run-out areas of rockfalls, rock avalanches, de; tjjimeters are less used. Up to now they were considered
bris flows, as well as rockslide-induced tsunamis. There+q pe expensive as well as to create some difficulties related
fore, simulation models are essential for identifying ex- 15 setup and data processing in comparison with other meth-
posed populations and infrastructures. Geophysical measurgyys Fyrthermore, some instruments such as crackmeters or
ments (mainly seismic refraction and electrical resistivity) gg_|nSAR may become fragile in harsh environments, and

and geotechnical in situ tests (such as standard Or coneé Pefpod protection (against heavy rainfall, snow load or snow
etration tests) are performed in approximately 50 % of theCreep for example) has to be considered to protect them.

cases, providing useful complementary information on sub-g_syrface monitoring in boreholes is common in some of
surface conditions. Geotechnical in-lab tests are usually lesg,o largest and more complex landslides, and is used in 6 of
employed than other criteria. the reported cases. Several of the landslide monitoring sys-

tems have now changed the instrumentation from traditional
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INSAR system is placed in the valley below. Two deep boreholes are instrumented by 120 m-long DMS columns. Open fractures and slide
scars were identified and mapped during previous field investigations. Theoretical and technical details of those techniques are developed ir
Stumpf et al. (2011) and Michoud et al. (2012).

2 | " interferometry (INSAR) techniques as well. Even if it does
not provide real-time data and de facto cannot be used for
15 14 operative early warnings, it is a useful approach to under-
stand and update the landslide dynamics using images from
10 9 space agencies’ archives. Moreover, Spaceborne INSAR can
s be helpful during pre-investigation work and can also pro-
51 vide EWSs with complementary information. Indeed, an
. . ,;l overview of the regional stability in the neighborhood of
Displacements i Water levels . Weather . Geophysical ' Sediment ' the monitored Slopes is important in many cases, since large
properties volumes landslides as sackungs are able to destabilize small moni-
. ) tored landslides inside the large deformed masses (Agliardi
Fig. 6. Inventory of monitored parameter types for the 21 reported etal., 2001).

monitoring networks. The total number is over 21, because more

than one parameter is monitored for 15 of the landslides. In addition to displacement data, meteorological parame-

ters are crucial to be monitored, since rainfall, snowmelt and
permafrost are considered as a triggering factor for 20 (87 %)
f the instabilities (Fig. 2). Meteorological parameters are
(t%us very frequently measured (in 14 EWSSs) as well as wa-
6er table levels and water discharge in streams (in 9 EWSs);
indeed, rain gauges are included in half of the monitoring
networks, and piezometers and temperature gauges in 7 of

manual inclinometric probe measurements to automatic an
long columns, such as the DMS system (Lovisolo et al.,
2003), consisting of a large number of sensors managing t
monitor continuous sequences.

It is also interesting to note that the Turtle Mountain and
Aknes instabilities are monitored using spaceborne radthem'

Nat. Hazards Earth Syst. Sci., 13, 2652673 2013 www.nat-hazards-earth-syst-sci.net/13/2659/2013/
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Fig. 7. Inventory of the different techniques used for the 21 reported monitoring networks in order to measure surface and sub-surface
displacements (in orange), water and groundwater table levels (in dark blue), weather conditions (in light blue), geophysical properties
(in red) and available sediment volumes (in light green). Theoretical and technical details of those techniques are developed in Stumpf et

al. (2011) and Michoud et al. (2012).

10 - Redundancy is important in EWSs (Figs. 8 and 9). This
is particularly evident for robust monitoring networks that
measure displacements and groundwater. For example, in the
6 - Aknes instability, displacements are monitored by 8 instru-
ment types: 8 crackmeters, 8 GNSS antennas, 2 laser devices,
2.9 1 ground-based radar, 3 extensometers, 1 total station cou-

2] 18 e pled with 30 prisms, 2 surface tiltmeters and 3 deep bore-

Lo . VLT Lt holes instrumentated with inclinometers and water-pressure
JL ] | . , T b

‘ ‘ ‘ measurement cells (DMS columns). It allows one to (1) mon-
Displacements  Water levels Weather Geophysical Sediment . . . . .
properties volumes itor several sectors with different dynamics and displacement
_ o _ _ rates on the surface and the sub-surface, (2) discriminate un-
Fig. 8. Minimum, mean and maximum instrument types used t0 ywanted false alarms coming from large noise or one defec-
monitor each parameter (when it is done) per landslide. tive sensor and (3) have instruments fed by several power
supply and data communication lines. On the contrary, only

. . pne meteorological station (e.g., with rainfall, temperature,
Near-surface geophysical methods have been considerab g/ - ! . .
now depth or humidity gauges) is usually installed to moni-

improved during the last two decades, and their uses fof " . : .
L A . . tor weather conditions, since landslides are usually confined
landslide investigation purposes have been reviewed in Jong- . . - "
0 small areas with relatively similar conditions.

mans and Garambois (2007). Nevertheless, geophysical ap- ; .
o . . In conclusion, based on the experiences of the reported
plications for operational EWSs are still under development.

(Spillman et al., 2007; Roth, 2012; Mainsant et al., 2012;mstitutior]s in charge_ of IaanIide EWSs, a good monitoring
Navratil et al., 2013), largely explaining why they are applied network is characterized by:
for only 5 of the 21 reported case studies. 1. simplicity;

An EWS implemented in debris and earthflow source ar-
eas also monitors the volume of available sediments that can 2
be mobilized in case of heavy rainfall, using gauges that mea- 3. presence of multiple sensors;
sure the sediment heights in order to be able to forecast po-
tential event intensities. 4

. robustness;

. power and communication lines backups (detailed in
Sect. 3.3.2).

www.nat-hazards-earth-syst-sci.net/13/2659/2013/ Nat. Hazards Earth Syst. Sci., 13, 265973 2013
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Fig. 9. Minimum, mean and maximum number of sensors of each type per landslide, when used, in order to monitor surface and sub-surface
displacements (in orange), water and groundwater table levels (in dark blue), weather conditions (in light blue), geophysical properties
(in red) and available sediment volumes (in light green). Theoretical and technical details of those techniques are developed in Stumpf et
al. (2011) and Michoud et al. (2012).

The following characteristics are also important for the for experts’ periodic checks and automatic data transmission
choice of instrumentation: to operational units based on Internet protocols. Regarding
the 23 reported sites, two thirds of monitoring networks are

1. implication for understanding the landslide evolution; equipped with power supplies, communication lines and sys-

2. hiah lif _ tems backups for monitoring sensors and for operational cen-
- high life expectancy; ters, in order to ensure continuous data measurement, trans-

3. robustness: mission and analysis.

4. price; 3.3.3 Alarms

5. level of real-time data; The fifth and last part of the questionnaire is focused on the

6. noise level of the sensors way to use monitored data, establishing alarms and associ-

ated responses to protect endangered populations and infras-

On the other hand, a system is limited if it is based only ontructures.
surface displacements and if it can be damaged by weather Threshold values for alarm messages are normally based
conditions and/or landslide events themselves before sendn the evaluation of different sensors and an expert in-
ing data or alarms to the operational center. Present monilerPretation of the stability conditions, mainly during the
toring networks can still be improved by a better integration Pré-investigation work (Blikra, 2008; Froese and Moreno,
and near real-time compilation of all monitoring data, for ex- 2011). Because they are direct evidence of activity, almost
ample by coupling displacements with weather conditions,a" threshold parameters are based on displacement glata _(for
groundwater and/or seismic activities. 13 of the 15 reported answers), sometimes coupled with rain-
fall data (for 6 cases). More rarely, 2 earthslides in Slovakia
3.3.2 Power and data management networks use the groundwater table level monitored by piezometers as
a threshold parameter.
The principle of redundancy is also important for power and Figure 10 highlights essential characteristics for the estab-
data management networks, as shown in detail in Froesishment of alarm procedures. In order to limit false alarms,
and Moreno (2011). Those networks supply monitoring sen-threshold values are based on multiple identical devices
sors with electricity, and allow manual remote data accessand/or several redundant types of sensor for 19 of the EWSs.
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alarms from the monitoring network to the operational unit and per-

centage of number of techniques used simultaneously for the 23
reported monitoring networks. The total number is above 23, since
39 % of the monitoring networks use more than one technique.

Fig. 10. Inventory of the essential characteristics of alarm proce-
dures for the 23 reported monitoring networks.

Curiously however, only 9 of the threshold values take tech-
nical sensor limitations such as the smallest detectable signgirable 2). The execution of these strategies requires close
and noise levels into account before establishing them, evegollaboration between the operational units and local and/or
if it allows the alarm’s reliability to be increased. Further- regional authorities. Rigorous protocols have to be estab-
more, several levels of alarms (such as Table 2) have beelished in order to clearly define the roles and responsibilities
established for one third of the reported systems. of each institution according to the alert levels; a detailed ex-
As soon as a threshold value is reached by a predefinedmple of the Turtle Mountain Monitoring Project protocols
number of sensors, 22 of the 23 monitoring networks autos illustrated in Moreno and Froese (2009). The flowchart
matically send an alarm message to an operator on céll.24 is a common representation that gives an evident checklist
The most used communication technique is largely an autoreviewing necessary procedures, as shown for instance in
matic SMS sent to cellular operators and is too rarely coupledig. 12.
with other redundant systems such as emails or voice phone The design of decision-making processes should take care
messages (Fig. 11). These alarms prompt the person on dutf legislation and cultural issues, as well as of the preroga-
to inspect the monitored data. Moreover, direct field obser-tives of the involved agencies. Three fourths of the reported
vations are possible in many cases to get additional informastrategies have been designed by the operational units, with
tion about the stability conditions, especially during critical the help for about one third of them from local authori-
stages, by checking visible changes such as local activitieies and/or regional and governmental institutions (Fig. 13).
(e.g., sliding and/or falls) within the whole landslide area. Moreover, the procedures have almost all been reviewed by
Finally, according to expert judgments based on the moni-operational checklists (in 16 cases), completed in 8 cases by
tored data and these field observations, procedures to manueviews from external groups.
ally cancel alarms have been established for two thirds of the

reported case studies. 3.4.2 Alert broadcasts

3.4 Dealing with populations When circumstances require the evacuation of local popula-
tions, the most used communication vectors to inform peo-

3.4.1 Decision-making processes ple are radio, siren and SMS, coupled sometimes with tele-

phone and television (Fig. 14); however, normal evacuation
Tailored strategies have to be adopted depending on the landpproaches by policemen walking door-to-door are also im-
slide state of activity, and two thirds of the reported EWSs portant routines. Websites and e-mails are rarely used, since
have established different thresholds for different scenariosit is not sure that they manage to reach the population in
For example, th&Emergency Preparedness Centre in Strandatime for imminent danger. Regarding the closing of road sec-
established gradual alert postures based on different threshions, the most frequent system is simple traffic lights that
old values and expert evaluations, leading to appropriate reean actually be completed by policemen. According to our
sponses such as the evacuation of endangered populatioaility to predict in advance the time to slope failure or to
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Table 2. Example from the Emergency Preparedness Centre in Stranda (Norway) of gradual alert levels based on different threshold values
and expert evaluations leading to planned responses (modified from Blikra et al., 2007).

Velocities Alarm level Activities Response

[mm day 1] and alarms

0.1-0.5 Level 1 — Green Minor seasonal variations Technical maintenance
Normal situation No alarm EPC staff

0.5-2 Level 2 — Blue Important seasonal fluctuations for indi-Increase frequency of data review and
Awareness vidual and multiple sensors comparison of different sensors

Values< excess thresholds for Level 2 EPC staff

2-5 Level 3 — Yellow Increased displacement velocity, seen oo continuous reviews and field survey

Increase awareness  several individual sensors Geo-expert team at EPC full time

Values< excess thresholds for Level 3  Inform police and emergency prepared-
ness teams in municipalities

5-10 Level 4 — Orange Acceleration in displacement velocity Increase preparedness, continuous data
High hazard observed on multiple sensors analysis
Values< excess thresholds for Level 4  Alert municipalities to stand prepared for
evacuation
>10 Level 5 - Red Further acceleration Evacuation
Critical situation Values >excess thresholds for Level 4

flow initiation (Fukuzono, 1990; Crosta and Agliardi, 2003;  Finally, a last point is also clear: monitoring centers are in
Baum and Godt, 2010; Federico et al., 2012; Meyer et al.charge of sensitive and complex data. Indeed, even if they are
2012) and the stakes of each site, reaction times after warrall partially or totally financed by public funds, two thirds of
ing are from 10 min to close roads, as in Torgiovanetto, tothe institutions still do not provide free and easy access to
72 h to evacuate populations, as for Norwegian rockslides. data for anyone. It can be also a question about letting the
Prior to real evacuations, operational units and local unitspublic have access to raw data that can be difficult to interpret
have imperatively to ensure that the public has been well in-due to noise in the sensor measurements. Although not com-
formed about the adopted strategies, in order to guarantemunicating the monitored data could make local people sus-
that the plan comes together with proper cooperation and bepicious, incorrect readings could also certainly lead to ma-
havior of the local populations (as detailed in Sect. 3.4.3). Injor misunderstandings and unnecessary concerns (Mileti and
addition, evacuation exercises, which have been performe&orensen, 1990). Therefore, the right communication level is
once or twice for 12 reported case studies, have recentlylifficult to reach.
turned out to be necessary for testing the efficiency of es-
tablished plans and procedures (Moreno and Froese, 2009)3.5 Practical challenges

3.4.3 Risk communications The last part of the questionnaire relates to practical chal-
lenges encountered during the design, the construction and

The trust of local populations in EWSs and proper risk per-the maintenance of the EWSs (Fig. 16). Most of them (20)
ception are fundamental to the success of an EWS (Dash ari§lated some problems during the installation and the main-
Gladwin, 2007), since cooperative and collective actions ardenance of the sensors. Indeed, more than half of the instru-
required in case of alerts. Due to socio-cultural heritagesmentation deals with harsh weather and site conditions, suf-
fair judgments need openness, involvement and good consufering from heavy rainfall, ice, thick snow cover, avalanches,
tation processes. Ostrom (1998) further recommends facedind, etc. On the other hand, funding and human resources
to-face communication. It provides the best positive effectsare sources of problems for less than one third of the EWSs.
on cooperative tasks, allowing, among other things, the ex- Of the 8 participating countries, only Norway legislated
change of mutual commitments and the assurance of propetn EWS in order to define the roles of institutions in charge
expectations of population behaviors in case of evacuation®f landslide EWSs and to direct them (technical require-
for instance. For half of the reported cases, the informationments in the Norwegian building codes). In addition, Slo-
is given thanks to public meetings, reports, as well as webvakia produced a guideline about general strategies to adopt
sites (Fig. 15). Other solutions, such as newspapers, are stiind Canada is on the way (Couture et al., 2012). As a conse-
anecdotal. No answers referred to any information providedduence, the operational units in charge of EWSs have to look
by TV programs. Good risk communication also means thaffor scientific and practical support from other expert groups
public meetings have to be organized to inform and con-@nd/or international experience.

sult local populations during and/or after every round of the

decision-making process.
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' MONITORING ' l strategies in case of alerts and percentage of number of institutions
EARLY WARNING involved together for the 23 reported EWSs. The total number is
MANAGER above 22, because 36 % of the strategies have been designed by
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AND MAJOR
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j&} Fig. 14. Inventory of the different ways used to issue the alerts to
local populations and percentage of number of communication de-

FIRE TRAFFIC CviL LAW vices coupled for the 13 reported answers got from questionnaires.

DEPARTMENT POLICE PROTECTION ENFORCEMENT . R .

The total number of communication vectors for alerts is over 13,

\\H ..// because 38 % of the systems use more than one type of device.

l EVACUATION AND SAFETY =
tools (e.g., as in Tofani et al., 2013); they are indeed more

Fig. 12. Flowchart of the protocol that has to be followed in case of yser-friendly to fill by respondents (maximizing the number
alarm in Ancona, ltaly (modified after Cardellini, 2011). of potential answers as shown in Lapointe et al., 2010) and
also to analyze afterwards. Although the small number of an-
. . . swers does not have a high statistical significance, several of
4 Discussions and conclusions the reported EWSs are among the most studied landslides in

Western countries. They have also accumulated high-quality

This paper aims to present some reflections for implementing!mowledge after many constructive studies and experiments;

site-specific landslide EWSs, focusing on specific reqUire'valuable results and future recommendation can thus be ex
ments and practical issues based on current ongoing expe-

riences. A questionnaire on these purposes was created a r(?_l?fe(:;rgrrg ;h:zfai'ézsra requirements for desianing and op-
sent to about one-hundred institutions in charge of landslide rating EWSs. Actuall Weqcannot rovide soﬁjtior?s o allp
management. About one fourth of the requests received a 9 ' Y. P

answer. One reason could be the lack of availability of thquestions, since every sit_uation Is “”‘q‘.‘e* d_epending on_land-
persons in charge. Another reason could be the questions—'IIde hazard and ”Sl.( se_ttmgs, local "?9'5"”‘_“0”3 and ava|lab_le
naire format (a pdf file including questions and tables sent SSOUICes. .SUCh guidelines are prov@ed n a comprehensive
by emails), even if it seemed to be easily accessible for ev_report (Ba_zm, 2012.)' l\!evertheles_;, this review based on cur-
erybody. Several institutions indeed reported difficulties in re nt experiences highlights SpeC'f'C reqwrements and poten-
filling some parts of the questionnaire to us, and had to printtlal practical issues that operational units would have to take

it to write answers by hand. For future investigations, we'mo consideration when designing their system:
would recommend the use of interactive web-based survey
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Fig. 16. Inventory of practical challenges met by the 23 reported
EWSs. The total number of challenges is over 23, because EWSs
usually encountered more than one issue during their life cycles.
Fig. 15. Inventory of communication vectors used to inform local

populations for the 23 reported EWSs. The total number of vec-

tors is over 23, because several institutions communicated in several (Bichler et al., 2004; Travelletti et al., 2012; Michoud
ways. et al., 2013). Sensors and their data processing are un-
dergoing fast development (Tofani et al., 2012), get-
ting to the continuous integration of GB-INSAR data

Public Public Public Newspapers Others
reports meetings websites

— itis crucial to acquire a proper understanding of insta- (Casagli et al., 2010; Chantry et al., 2013; Montserrat
bilities through hazard and risk pre-investigations, and et al., 2013), LIDAR data (Riegl, 2013) and geophys-
to constantly update landslide conceptual models with ical measurements (Mainsant et al., 2012; Navratil et
the newer monitored data of EWSs; al., 2013) to monitor landslides. Due to this fast evolu-

tion, monitoring systems have to be regularly updated,
having once again an impact on EWS deployments and
maintenance costs (Froese, 2013).

— redundancy, simplicity, robustness, communication
and power supply backups are necessary for a reliable
monitoring system. This should support a near real-

time interpretation of the stability conditions by ex-  _ | aqdition to technical limitations, this survey also

perts; highlights some EWS conceptual issues. For instance,
it seems there is a lack of investigations into hy-
drological factors in landslide processes, since water
is involved in about 86 % of slope destabilizations
and/or landslide triggering, but is investigated with
rain gauges or piezometers for only half of the cases.

— the establishment of different scenarios adapted to
gradual increasing of alert levels based on reliable
landslide models is important. Procedures should
clearly define the role and the responsibilities of all
involved institutions. Alerts should be as quick and as

direct as possible; — Moreover, an important challenge is to improve the

reliability and pertinence of automatic alarms in the
future. Surprisingly, about half of the reported sys-
tems did not take into consideration technical sen-
sor limitations before establishing threshold values,
even if it would surely decrease the frequency of false

— public meetings for properly informing and consult-
ing local populations are important in order to ensure
a trust atmosphere and appropriate behavior of people
in case of alert.

Nevertheless, some EWSs are limited by theoretical and alarms. In addition, recent research is focused on fail-
practical issues that are currently being investigated: ure forecasting and/or flow initiations by looking for
mass movement indicators (Béret al., 2012) such as

— First, operational units also underline that, most of the precursory displacements (Abellan et al., 2010; Fed-
time, monitoring networks are located in harsh con- erico et al., 2012), changes in slope rheological set-
ditions and therefore that it is difficult to install and tings (Mainsant et al., 2013), strain rates (Jaboyedoff
maintain sensors. This point emphasizes the impor- etal., 2012), or hydrological conditions (Abellan et al.,
tance for manufacturers to improve long-term sensor 2013; Mercogliano et al., 2013).
robustness and for operational units to ensure a proper
maintenance budget. We can also add that a recent workshop (“The 1st Interna-

tional Workshop on Warning Criteria for Actives Slides”),
— EWSs could be significantly improved by current re- held in Courmayeur, Italy, during the review process of this
search, focusing on a better near real-time integrafpaper (10-12 June 2013), showed one additional issue. After
tion of monitoring data from different sensor types a decade of service, it indeed seems that some EWSs need to
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be redeployed because of low activity of the landslides andBaum, R. L. and Godt, J. W.: Early warning of rainfall-induced shal-

budget issues. This leads to learning how to go from expen- low landslides and debris flows in the USA, Landslides, 7, 259-

sive and complex EWS to simpler and cheaper monitoring 272, 2010.

systems (Troisi and Negro, 2013; Froese, 2013). Bazin, S (Ed.): SafeLand del?verable 4.8.:.Guidelines for andslide
Finally, the collected feedback and experiences, in addi- Menitoring and early warning systems in Europe — Design and

tion to current research, will therefore contribute to modify- ~ "equired technology, European Project SafeLand, Grant Agree-

ing and improving existing and future EWS strategies. ;nfgtol\llg' 226479, 153 pp., availablelattp:/wwiw.safeland-fp?.

Benko, B. and Stead, D.: The Frank Slide: A reexamination of the
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