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Abstract. A model-based tsunami prediction system has
been developed as part of the French Tsunami Warning Cen-
ter (operational since 1 July 2012). It involves a precomputed
unit source functions database (i.e., a number of tsunami
model runs that are calculated ahead of time and stored). For
the Mediterranean basin, the faults of the unit functions are
placed adjacent to each other, following the discretization of
the main seismogenic faults. An automated composite sce-
narios calculation tool is implemented to allow the simula-
tion of any tsunami propagation scenario (i.e., of any seismic
moment). Uncertainty on the magnitude of the detected event
and inaccuracy of the epicenter location are taken into ac-
count in the composite scenarios calculation. Together with
this forecasting system, another operational tool based on
real time computing is implemented as part of the French
Tsunami Warning Center. This second tsunami simulation
tool takes advantage of multiprocessor approaches and more
realistic seismological parameters, once the focal mechanism
is established. Three examples of historical earthquakes are
presented, providing warning refinement compared to the
rough tsunami risk map given by the model-based decision
matrix.

1 Introduction

Improvements in the availability of sea-level observations
and advances in numerical modeling techniques are increas-
ing the potential for tsunami warnings to be based on nu-
merical model forecasts. Numerical tsunami propagation and
inundation models are well developed, but they present a
challenge to run in real time, partly due to computational

limitations and also a lack of detailed knowledge on the
earthquake rupture parameters.

Within the framework of the French Tsunami Warning
Center (FTWC) that has been operational since 1 July 2012,
these numerical methods are adapted to contribute to future
operational tools to quickly provide, in particular, a map with
uncertainties showing zones in the main axis of energy at
the Mediterranean and NE Atlantic scales (i.e., deep ocean).
For this purpose, a strategy based on a precomputed tsunami
unit source functions database is developed, as source pa-
rameters available a short time after an earthquake occurs
are preliminary and may be somewhat inaccurate. Exist-
ing numerical models are good enough to provide a useful
guidance for warning structures to be quickly disseminated.
When an event occurs, an appropriate variety of offshore
tsunami propagation composite scenarios may be recalled
by combining precomputed propagation solutions (single- or
multisources) through an automatic interface (the precom-
puted propagation solutions being stored as a database of unit
source functions). This approach is intended to provide quick
estimates of tsunami offshore propagation, and help hazard
assessment and evacuation decision-making.

As numerical model accuracy is inherently limited by er-
rors in bathymetry and topography, and as inundation maps
calculation is more complex and expensive in terms of com-
putational time, only tsunami offshore propagation modeling
is included in the forecasting database. Far-field solutions for
moderate earthquakes are less sensitive to spatiotemporal de-
tails of the source (they depend primarily on the magnitude
and location of the epicenter), and allow using a single sparse
bathymetric computation grid for the numerical modeling.
Moreover, working with deep ocean propagation modeling
enables application of only the properties of the linearity
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Fig. 1.Historical tsunamigenic seismicity in western Mediterranean and northeast Atlantic.

of the physics of tsunami generation and propagation in the
ocean (because amplitudes are very small compared to the
wavelength). But a database of precomputed results cannot
contain all possible tsunami events because of too much
variability in the mechanism of tsunamigenic earthquakes.
In principle, an infinite number of tsunami propagation sce-
narios can be constructed by linear combinations of a finite
number of precomputed “basis” scenarios. Such a conserva-
tive approach is chosen, selecting the scenario – or interpola-
tion between several scenarios – with the higher impact. The
whole notion of a precomputed forecasting database also re-
quires a historical earthquake and tsunami database, as well
as an up-to-date seismotectonic database that includes faults
geometry and a zonation based on seismotectonic synthesis
of source zones and tsunamigenic faults.

2 Tsunami hazard in the western Mediterranean and
northeast Atlantic basins

The Azores-Gibraltar fracture zone (NE Atlantic basin) is
the source of the largest earthquakes and tsunamis in west-
ern Europe, such as the 1969 earthquake on the Horseshoe
Abyssal Plain (Mw = 7.8) (Fukao, 1973) and the 1 Novem-
ber 1755 Lisbon earthquake (estimatedMw = 8.5) (Martins
and Mendes Victor, 1990) (Fig. 1). Focal mechanisms of
large earthquakes in this region show the transition from an
extensional regime (strike-slip and normal dip-slip motion)
near to the Azores to a compressional regime (strike-slip and
inverse dip-slip motion) in the east of the Atlantic Ocean

(Gulf of Cádiz) (Zitellini et al., 2009; Stich et al., 2006). Seis-
mic activity and moment tensor solutions of earthquakes in-
dicate that present-day interplate collisional coupling in the
area is most pronounced in western Iberia and the offshore
Atlantic, marked by a NW to N-directed maximum horizon-
tal stress (De Vicente et al., 2008). This is also reflected by
the occurrence of historical and instrumental earthquakes, in
particular by the recent earthquakes that occurred in 1980
(Mw = 6.8), 1997 (Mw = 6.2), 1998 (Mw = 6.2) and 2007
(Mw = 6.3, Mw = 6.1) in the Azores Islands and in 1969
(Mw = 7.8) and 2007 (Mw = 6.1) off the coast of southwest-
ern Portugal (Bezzeghoud et al., 1998). The 1755 Lisbon
earthquake was probably one of the most catastrophic events
to have affected Europe. The earthquake destroyed Lisbon
(seismic intensity of X–XI on the Mercalli scale) and was
accompanied by an ocean-wide tsunami that struck up to the
British Islands and the Lesser Antilles (e.g., Roger et al.,
2010). This tsunami was locally large and destructive, es-
pecially in the Gulf of Cadiz and along the North Atlantic
coasts, resulting in 60 000 casualties in Portugal alone (Bap-
tista et al., 1998).

The western Mediterranean Sea has also been histori-
cally impacted by tsunamis triggered by earthquakes (Fig. 1).
However, the generated waves were more moderate and/or
less documented than the ones usually reported in the eastern
Mediterranean Sea (great tsunamis in Crete in 365 AD and
1305 AD; e.g., Pirazzoli et al., 1996; Salamon et al., 2007;
Shaw et al., 2008).
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Fig. 2.Simplified fault base used to create segments of 25 km length representing the top edge of each 25×20 km unit source function stored
in the precomputed database (detailed view on the Boumerdès area): (black) thrust faults; (grey) normal faults; (red) strike-slip faults.

Fig. 3. Comparison of the unit source length and width involved
for a given magnitude as a function of the trendlines derived from
Wells and Coppersmith, 1994 (i.e., Eqs. 1 and 2).

In 1887, a strong earthquake in the Genoa Gulf, off Im-
peria (Italy) (magnitude 6.2 to 6.5), triggered an important
tsunami that caused several floodings along the French Riv-
iera, from Antibes to Menton (Scotti et al., 2004; Eva and Ra-
binovitch, 1997). In Italy, the 1908 earthquake and tsunami
in the Messina Straits caused more than 60 000 casualties
and in present-day offers a historical reference for south-
ern Italy (e.g., Tinti et al., 1999). The North Algerian seis-
mically active margin hosts several possibilities of strong
submarine earthquakes able to produce important tsunamis
in the western Mediterranean Sea (Kherroubi et al., 2009),
and the key recent event that recalled earthquake-induced
tsunami awareness in the area occurred in May 2003, af-
ter the Boumerdès-Zemmouri earthquake (magnitude 6.9) in
Algeria, which caused great damage and about 2000 casual-
ties in the epicentral region (Ayadi et al., 2003; Bounif et al.,
2004).

The 2003 earthquake fault, even though characterized by a
moderate magnitude as far as tsunami triggering is concerned
(the tsunami threshold is close to magnitude 6.3 to 6.5),

www.nat-hazards-earth-syst-sci.net/13/2465/2013/ Nat. Hazards Earth Syst. Sci., 13, 2465–2482, 2013



2468 A. Gailler et al.: Simulation systems for tsunami wave propagation forecasting

Fig. 4.Detailed view on the 2003 Boumerdès earthquake and precomputed unit source functions available in the area: (yellow star) epicenter
of the event; (yellow circle) inaccuracy search radius.

was however shallow and dip enough to produce a signifi-
cant sea bottom deformation, which in turn triggered tsunami
waves (Meghraoui et al., 2004). In Algeria, the tsunami ob-
servations were very limited, either because steep subma-
rine slopes do not favor amplification, or because the coastal
areas were simultaneously uplifted due the coseismic de-
formation (Yelles et al., 2004; Delouis et al., 2004), thus
preventing any inundation. But 30 min after the earthquake,
the Balearic Islands were hit by significant tsunami waves
that caused important damage in several harbors, mostly to
small pleasure crafts tied in various harbors in Majorca and
Menorca (Hébert and Alasset, 2003). Limited inundations of
piers or restaurant terraces were very locally observed, for
instance along the southeastern coastline of Majorca. Other
quantitative observations were available through three good
quality tide gauge records in Palma (Majorca), Sant Antoni
and Menorca (Ibiza), which exhibited amplitudes from 0.5
(Palma) to 1.5 m (Sant Antoni) (Alasset et al., 2006). Else-
where in the western Mediterranean, the amplitudes did not
exceed 10 to 60 cm, but significant eddies and sea with-
drawals were reported in several small marinas in southern
France (Sahal et al., 2009).

In the following, this Algerian event is chosen as a test
case example to illustrate the composite scenarios calcula-
tion strategy developed for the western Mediterranean basin
within the framework of the FTWC.

3 Composite scenarios calculation strategy for the
western Mediterranean basin

The calculation strategy is based on three main points:

– The implementation of a precomputed unit source
functions database

– The unit sources aggregation method chosen to obtain
composite scenarios according to the magnitude of the
detected earthquake

– The inclusion of uncertainties on the earthquake pa-
rameters

3.1 Precomputed unit source functions database

The precomputed unit source functions database is modeled
following the western Mediterranean basin seismotectonic
context. The latter being rather complex, especially along
the north Algerian margin, the choice was made to draw a
simplified fault system discretized into unit sources corre-
sponding to the major structural trends of the area. The unit
source database was constructed, thanks to a huge bibliog-
raphy synthesis based on seismicity catalogs, focal mech-
anisms, seismotectonic works (e.g., Pondrelli et al., 2004;
Alvarez-Gomez et al., 2011), seismic reflection profiles (e.g.,
Deverchère et al., 2005), bathy/topo data, satellite imagery,
etc., in order to propose an exhaustive geodynamic frame-
work (extending beyond works such as Lorito et al., 2008 or
Sorensen et al., 2012). Fault traces on map (Fig. 2) thus rep-
resent the top edge of the unit sources. The length (L) and
width (W ) of each unit source are set at 25 km and 20 km,
respectively. Values ofL andW are defined from empirical
relations linkingL andW to the magnitudeMw (Fig. 3).

The corresponding equations are derived from Wells and
Coppersmith (1994), by fixing a length of 200 km for a mag-
nitudeMw of 8.0:

Mw = 4.135+ 1.679 log10(L) (1)

Mw = 4.159+ 2.160 log10(W). (2)

Figure 3 shows that the choice of 25× 20 km2 unit sources
dimension correlates well with empirical trendlines derived
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from Eqs. (1) and (2), as the combination of an adequate
number of close unit source functions enables one to ob-
tain, for each value of magnitude, rupture zone sizes com-
patible with these relations (e.g., 2 close unit sources giving
a 50× 25 km rupture area size forMw = 7.0, Fig. 3).

For each unit source, a propagation scenario (wave
heights) is calculated on a 2 min bathymetry grid (i.e., deep
ocean modeling only), using the following other rupture zone
parameters:

– 1 m slip (unitary)

– rake regionalized based on the local seismotectonic
history (keeping the most conservative values).

The azimuth is given by the trace of the fault on surface (i.e.,
top edge of rupture zone). The bathymetry grid (number of
cells= 1381× 661) is taken from the General Bathymetric
Chart of the Oceans (GEBCO).

The numerical method used to simulate tsunami propa-
gation from each unit source first allows for the computa-
tion of the initial seafloor perturbation responsible for the
tsunami triggering. In this framework, it consists of the static
elastic dislocation accounting for the coseismic deformation
(Okada, 1985). Then the propagation in the deep ocean is
solved through a finite difference scheme, taking into account
the nonlinear terms of the depth-averaged hydrodynamical
equations, hence under the nondispersive shallow water as-
sumption (wave celerity c being simply given byc =

√
(gh)

where h is the water depth at each grid point) (see Hébert et
al. (2009) for more details on the numerical method).

Each unit source function thus precomputed and stored in
the database represents a tsunami generated by a fictitious
event of magnitudeMw = 6.76 (M0 = 1.75E+19 N m) with
a rectangular rupture zone 25 by 20 km in size and 1 m in slip.
From the northwest Algerian margin towards the Messina
Straits (Sicily), 500 of such unit source functions compose
the precomputed propagation solutions database.

3.2 Composite scenarios calculation

As evoked in the previous section, the number of unit source
functions involved in a composite scenario calculation varies
with the magnitude of the wanted solution (Fig. 3, Table 1).
For example, for a given 7.2 magnitude event, up to 3 unit
sources will be combined.

Each composite scenario thus corresponds to a linear com-
bination of x close unit source functions (x = 1 to 2× 8),
the resulting combined wave heights being multiplied by
an appropriate scaling factorFs. Fs is defined as a func-
tion of the magnitudeMw, exploiting the linearity of the
physics of tsunami generation and propagation in the ocean
(e.g., Titov et al., 2005). Fs calculation strategy is in-
spired from Greenslade et al. (2009) who provide an en-
hanced tsunami forecasting database for the Joint Australian
Tsunami Warning Center. Considering the expression of the

seismic momentM0 as a function of earthquake rupture char-
acteristics, i.e.,M0 = RWLu0 (with R shear modulus and
u0 slip of the rupture), any composite wave heightsHcomp
from an event with seismic momentM0(comp)= FsM0 can be
generated with the same rupture length and width but with
a modified slipu0(comp)= Fsu0. From the linearity of the
physics of tsunami generation and propagation in the ocean,
we can further assume that the wave heights from an event
generated with a slip ofFsu0 areFs times the wave heights
H of an event with identicalL andW , but a slip ofu0:

Hcomp= FsH. (3)

Then the appropriate value forFs is derived from the rela-
tion between magnitudeMw and seismic momentM0 [Mw =

2/3(log10M0 − 9.1)]:

Fs = 103/2(Mw(comp)−Mw). (4)

A summary of the scaling factors thus determined for our
forecasting database is provided in Table 1 (calculation done
with R = 35E+9 N m−2). In each case, the new composite
scenario is scaled from one or the combination of several unit
source functions following the best fits between rupture di-
mensions (L andW ) and the estimated magnitudeMw(comp)
(i.e., Eqs. 1 and 2). For example, in the case of the 2003
Boumerdès earthquake for which the magnitude was esti-
mated atMw = 6.9, the representative composite scenarios
are obtained from either a single unit source function scaled
by 1.61, or the linear combination of two close unit source
functions multiplied by a factor of 0.81. In order to be as
conservative as possible, the composite scenario calculations
also take into account the inaccuracy of the epicenter loca-
tion for the detected event (for instance, set at a 30 km search
radius) and the uncertainty on the associated estimated mag-
nitude. The latter is set at± 0.2 but this value depends on the
azimuthal coverage of the operational seismic network.

3.3 Final composite scenario construction: example
from the Mw = 6.9 2003 Boumerdès event

3.3.1 Inaccuracy of the epicenter location: composite
solutions available within a 30 km search radius

As the inaccuracy of the epicenter must be taken into
account, the following methodology has been chosen:

1. the first stage consists of searching automatically all
the precomputed unit sources localized within a circle
whose center is the estimated epicenter of the detected
event and whose radius is, in this case, set to 30 km
(but configurable). Practically the distance between the
epicenter and the middle of the top edge of each unit
source is used.

In the case of the 2003 Boumerdès earthquake, 7 unit
source functions stored in the precomputed database
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Fig. 5. Composite scenarios calculation process using the test case of the 2003 Boumerdès earthquake (Mw = 6.9, Algeria). (Smallest maps)
maximum wave heights stored as unit source functions (Mw = 6.76) in the precomputed database and involved in this case; (medium maps)
Mw = 6.9 derived composite scenarios solutions from a single unit source (red contour for strike-slip source and black contour for thrust
source) or the combination of the two (green contour for thrust source only); (large map, left) final composite solution forMw = 6.9 from all
medium maps (including inaccuracy of the epicenter location).

Fig. 6.Maximum wave heights obtained for the three final composite scenarios of the same event, taking into account the uncertainty on the
magnitude (± 0.2) (after 3 h of real time propagation).

are within the 30 km search radius (i.e., unit source
functions number 40, 41, 10, 33, 5, 206, 7 in Fig. 4).

2. Considering an estimated magnitude ofMw = 6.9 for
this event, 12 different possible solutions are then
available, following Table 1:

– 7 solutions using the 7 single unit source func-
tions (i.e., whose center is included in the search
radius) withFs = 1.61 (unit source number writ-
ten above)

– 5 solutions using a linear combination of 2 close
unit sources withFs = 0.81 (i.e., combination of

unit sources number 40+ 38, 40+ 10, 10+ 11,
33+ 34 and 33+ 40, Figs. 4 and 5). In this case,
at least one of the combined unit sources is part
of the search radius. The other one can be taken
either inside or outside the search radius, the rule
being that the combination is done only on faults
of the same type (thrust, normal or strike-slip)
and with azimuthal and distance conditions (dis-
tance between faults centers must be in the range
18.5–37.5 km, and maximum azimuth angle is
set to 40◦).
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Fig. 7. Final representation produced by the forecasting system to be delivered to the authorities 8 h after the detection of a tsunamigenic
earthquake. (black circle) 400 km radius warning area around the epicenter defined by the decision matrix; (green zones) area not included
in the western Mediterranean basin.

Fig. 8.Warning map resulting from the “on the fly” tsunami model-
ing, using the source parameters of Yelles et al. (2004). Color scale
same as Fig. 7.

Note that if no unit source is found within a maximum
search radius (i.e., no a priori seismotectonic information
known in the considered area), the process is aborted and
only the map derived from the decision matrix will be pro-
duced.

3.3.2 Combination scheme of the maximum
wave heights

Figure 5 illustrates the automated calculation process devel-
oped to obtain the final composite scenario from the pre-
computed database, taking into account the inaccuracy of
epicenter location (i.e., Boumerdès earthquake) for a given
magnitude (i.e.,Mw = 6.9). Maximum wave heights (Hmax)
are represented after 3 h of propagation.

The automated calculation process can be divided in
3 steps:

1. Search of the unit source functions stored in the pre-
computed database within a 30 km radius from the epi-
center of the event. Smallest contoured maps in Fig. 5
represent theHmax for the 7 precomputed unit source
functions answering this criteria and their 3 closest
neighbors. Each of these propagation simulations cor-
responding to a fictitious magnitude ofMw = 6.76.

2. Composite solutions calculation as a function of the
magnitude of the detected event and of the combi-
nation and scaling parameters of Table 1. Medium
contoured maps show the 12Hmax composite solu-
tions ofMw = 6.9 resulting from the 10 precomputed
unit source functions identified in step 1, with condi-
tions on the fault type and geometry as mentioned in
Sect. 3.3.1.
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Table 1. Scaling factors (Fs) required to produce a composite scenario of magnitudeMw(comp) from the existing 25× 20 km2 unit source
functions in the western Mediterranean basin.

Mw(comp) Nb of unit
sources
involved
(25× 20 km)

LengthL (km) WidthW (km) ExistingMw Fs

6.5 1 25 20 6.76 0.40
6.6 1 25 20 6.76 0.57
6.7 1 25 20 6.76 0.81
6.8 1 25 20 6.76 1.14
6.8 2 50 20 6.96 0.57
6.9 1 25 20 6.76 1.61
6.9 2 50 20 6.96 0.81
7.0 2 50 20 6.96 1.14
7.1 2 50 20 6.96 1.61
7.2 2 50 20 6.96 2.27
7.2 3 75 20 7.08 1.51
7.3 3 75 20 7.36 2.14
7.3 2× 4 100 40 7.08 0.80
7.4 3 75 20 7.36 3.02
7.4 2× 4 100 40 7.08 1.13
7.5 2× 4 100 40 7.36 1.60
7.6 2× 4 100 40 7.36 2.26
7.6 2× 4 125 40 7.43 1.81
7.7 2× 4 100 40 7.36 3.19
7.7 2× 5 125 40 7.43 2.55
7.8 2× 5 125 40 7.43 3.61
7.8 2× 6 150 40 7.48 3.00
7.9 2× 6 150 40 7.48 4.24
7.9 2× 7 175 40 7.53 3.64
8.0 2× 8 200 40 7.56 4.50

3. Final compositeHmax calculation (large map in Fig. 5,
left side) as the maximum wave heights from the
12 solutions of step 2 at each grid node. This final
composite scenario corresponds to the sameMw = 6.9
event, including the inaccuracy of the epicenter loca-
tion (being the most conservative).

3.4 Final composite solutions with uncertainty on
the magnitude

As the source parameters available a short time after an earth-
quake occurs are preliminary and somewhat inaccurate, an
uncertainty on the estimated magnitude of the detected event
must be taken into account. Thus, the choice has been made
to proceed, forMw −0.2 andMw + 0.2, to the same calcula-
tion process as the one depicted in Fig. 5 and Sect. 3.3.2. That
means that, for the same event, 3 final composite scenarios
are produced (respectively representative ofMw, Mw − 0.2
andMw +0.2), each one including the inaccuracy of the epi-
center location.

For the 2003 Boumerdès earthquake, this implies the ad-
ditional calculation for magnitudesMw = 6.7 and 7.1, with

corresponding combination and scaling parameters of Ta-
ble 1 (Fig. 6).

The deep ocean maximum wave heights thus produced
from the forecast system are then transposed into a nondi-
mensional warning color code by a simple normalization
of the 3Hmax provided by the corresponding final com-
posite scenarios using a fixed factor (Fig. 6). They can be
interpreted as the most likely scenario and its minimal and
maximal bounds, and express the tsunami warning in deep
ocean, being as conservative as possible in terms of source
parameters. These non-dimensional representations are pro-
duced within 5 min (once the first earthquake parameters are
known), together with the map given by the decision matrix
(with the same non-dimensional scale) (Fig. 7) and corre-
spond to the final output of the system.

The map obtained from the decision matrix is established
from the detected event magnitude and the distance between
coasts and the epicenter (Table 2). It offers a rough represen-
tation of the tsunami warning at the basin scale, whether the
3 maps coming from the precomputed unit source functions
database add refinement by looking at the source directivity;

Nat. Hazards Earth Syst. Sci., 13, 2465–2482, 2013 www.nat-hazards-earth-syst-sci.net/13/2465/2013/
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Fig. 9. Geographical location of tsunami sources and fault parameters regionalization compiled by the Joint Research Centre for Tsunami
Assessment Modeling System (Annunziato, 2007) in Portugal (L. Matias, personal communication, 2010). GC, GF and AZ represent Gulf
of Cadiz, Gloria Fault and Azores zones, respectively. Each dot represents the center of a source location for which 5 earthquake magnitudes
scenarios are stored in the precomputed database.

Table 2.Decision matrix for the western Mediterranean and NE Atlantic basins.

Mediterranenean Basin
Depth Location Mw Tsunami Potential Type of Bulletin Warning to specify

Local Regional Basin wide

< 100 km Offshore orDc <= 40 km 5.5 to 6.0 Weak potential of local Tsunami Information Advisory Information Information
< 100 km [Dc = distance to the coast] 6.0 to 6.5 Potential of destructive local tsunami Advisory Watch Advisory Information
< 100 km Offshore orDc <= 100 km 6.5 to 7.0 Potential of destructive regional Tsunami Watch Watch Watch Advisory
< 100 km Offshore orDc <= 100 km >= 7.0 Potential of destructive Tsunami in the whole basin Watch Watch Watch Watch
>= 100 km Offshore orDc <= 100 km >= 5.5 Nil Information Information Information Information

Atlantic Basin
Depth Location Mw Tsunami Potential Type of Bulletin Warning to specify

Local Regional Basin wide

< 100 km Offshore orDc <= 40 km 5.5 to 6.5 Weak potential of local Tsunami Information Advisory Information Information
< 100 km [Dc = distance to the coast] 6.5 to 7.0 Potential of local Tsunami Information Advisory Information Information
< 100 km Offshore orDc <= 100 km 7.0 to 7.5 Potential of destructive local tsunami Advisory Watch Advisory Information
< 100 km Offshore orDc <= 100 km 7.5 to 7.9 Potential of destructive regional Tsunami Watch Watch Watch Advisory
< 100 km Offshore orDc <= 100 km >= 7.9 Potential of destructive regional Tsunami in the whole basin Watch Watch Watch Watch
>= 100 km Offshore orDc <= 100 km >= 5.5 Nil Information Information Information Information

www.nat-hazards-earth-syst-sci.net/13/2465/2013/ Nat. Hazards Earth Syst. Sci., 13, 2465–2482, 2013
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Fig. 10.Location of the epicenter of the 1908 Messina earthquake
(green star), superimposed on the simplified fault base of 25 km
length segments for the Sicily–Calabria region. Each blue segment
(with a black dot in its middle) represents the top edge of each
25×20 km unit source function stored in the precomputed database.

the main axis of tsunami energy clearly highlights more fo-
cused warning sectors.

In the case of the 2003 Boumerdès earthquake, the red
zone of “tsunami watch” is defined by the decision matrix as
a 400 km radius circle around the event epicenter. The most
likely composite scenario shows a refinement of this red zone
towards the Balearic coasts especially, and the western Sar-
dinia coasts locally. Within the framework of the FTWC, the
forecasting system will be triggered automatically as soon as
a potential tsunamigenic event is detected.

3.5 Comparison with “on the fly” tsunami modeling

Together with the forecasting system, another operational
tool based on real time computing is implemented as part
of the French Tsunami Warning Center. This second tsunami
simulation tool in deep ocean relies on the same numerical
method, but takes advantage of multiprocessor approaches
and more realistic seismological parameters, once the focal
mechanism is established.

Both simulation systems thus provide wave heights infor-
mation at the basin scale only (i.e., does not take into account
the coastal response to tsunami arrival), which means evalu-
ations against tide gage observations are unsuitable. Evalu-
ation of the forecasting system products and the real time

computing ones is done through an intercomparison between
both.

In the following, calculations based on the real time com-
puting are done using fault parameters derived from seismo-
logical studies on the considered historical events.

The coseismic deformation of the 2003 Boumerdès earth-
quake has been widely studied (e.g., Semmane et al., 2005;
Meghraoui et al., 2004; Yelles et al., 2004), being among the
largest events to occur in the western Mediterranean over
the past 25 yr. For the comparison, we choose to use the
source parameters proposed by Yelles et al. (2004), whose
characteristics are a reverse rectangular fault plane of 32 km
length by 14 km width. The azimuth, dip, rake and slip values
are N60◦, 42◦ S, 84◦ and 1.8 m, respectively. The epicenter
depth is set at 8.7 km (i.e., rupture does not reach the surface).

Considering a shear modulus ofR = 35E+9 N m−2, this
source corresponds to an event of seismic momentM0 =

2.82E+19 N.m (i.e.,Mw = 6.9). The numerical modeling is
then run on the same 2 min bathymetry grid as the one used
in the forecasting system, and the resulting computed max-
imum wave heights are transposed in the conventional non-
dimensional warning scale depicted previously (Fig. 8).

The warning map obtained with this “on the fly” simula-
tion is clearly consistent with the ones derived from the pre-
computed database of unit source functions (Fig. 7). In terms
of risk assessment, it takes place between the “minimal com-
posite scenario” and the “most likely composite scenario”,
but being closer to the latter. The same tsunami watch sectors
(red zones) are highlighted, i.e., Balearic coasts and western
Sardinia coasts locally. This evaluation shows that the fore-
casting system provides coherent tsunami warning informa-
tion.

4 Composite scenarios calculation strategy for the NE
Atlantic basin

The calculation strategy is based on the three main points as
for the western Mediterranean basin (see Sect. 3), the ma-
jor difference being the precomputed unit source function
database construction.

For the NE Atlantic basin, a definition of source parame-
ters for the generation of tsunamis along the Azores Gibral-
tar plate boundary has been compiled already by the Joint
Research Centre for Tsunami Assessment Modeling System
(Annunziato, 2007) in Portugal (named TAT/JRC; L. Ma-
tias, personal communication, 2010). To ensure coherency
between neighboring national tsunami warning centers, the
same geographical locations of tsunami sources were used
(e.g., Matias et al., 2013). The Azores-Gibraltar transform
zone is thus divided into several boxes in which all sources
have the same fault parameters (derived from the historical
focal mechanisms that would generate the worst tsunami sce-
narios) (Fig. 9, top). The sources mesh used to create the
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Fig. 11. (a)Result of the composite scenarios calculation process (i.e., model-based tsunami prediction system): final representation destined
for the French authorities using the test case of the 1908 Messina earthquake (Ms = 7.1, Sicily). Black circle: 400 km radius area around
the epicenter (decision matrix parameter).(b) Warning map resulting from “on the fly” tsunami modeling (source parameters of Tinti et al.,
1999)

precomputed unit tsunami scenarios stored for this area is
shown in Fig. 9 (bottom).

Compared to the western Mediterranean database, which
has 1 earthquake magnitude ofMw = 6.76 at each source lo-
cation (see Sect. 3, Fig. 2, Table 3), the NE Atlantic sce-
nario database has 5 earthquake magnitudes ofMw = 6.5,
7.0, 7.5, 8.0, and 8.5 at each source location (Table 3), all
calculated over 12 h of real time propagation on a same 2 min
bathymetry grid (number of cells= 3181× 4021) taken from
the General Bathymetric Chart of the Oceans (GEBCO).
The rupture area parameters (length, width, slip) are fixed
for each magnitude and based on the parameters used by
the TAT/JRC in Portugal, which were derived from em-
pirical relationships and from historical seismicity. For the
Atlantic unit sources database within the French tsunami
warning center, the choice was made to favor an averaged
seismogenic zone along the Azores-Gibraltar transform zone

that does not exceed 55 km width for a 8.5 magnitude (Ta-
ble 3).

When an event occurs, the wanted solution is obtained by
scaling the precomputed source scenario to the closest in
magnitude. The maximum wave heights given by the pre-
computed scenario involved are multiplied by a given scaling
factor to produce the new arbitrary scenario (Table 4).

Uncertainty on the magnitude and inaccuracy of the epi-
center location are taken into account the same way as for
the western Mediterranean basin:
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Fig. 12. (a)Location of the epicenter of the El Asnam earthquake of 10 October 1980 (red square), from Roger et al. (2011). (yellow squares)
tide gauges that recorded the tsunami; (red dots) local seismicity (USGS data, 1973 to present); (solid black curves) theoretical tsunami travel
times for a source located offshore El Asnam area; (blue squares) 1954 Orleansville earthquake and 1928 and 1934 events.(b) Simplified
fault base of 25 km length segments for the western Algerian margin, the Alboran Sea and the SE Spanish coasts. Each blue segment (with a
black dot in its middle) represents the top edge of each 25× 20 km unit source function stored in the precomputed database.

Table 3.Source parameters of the scenarios stored in the pre-computed database. 1 (top) for the western Mediterranean basin: 1 earthquake
magnitude ofMw = 6.76 at each source location (bottom) for the NE Atlantic basin: 5 earthquake magnitudes ofMw = 6.5, 7.0, 7.5, 8.0,
and 8.5 at 4 each source location.

R = 35E+09

L (km) W (km) surface km2) slip (m) Mo (N.m) Mw (calculated)
25 20 500 1 1.75E+19 6.76

R = 45E+09

Mw (reference) L (km) W (km) surface (km2) slip (m) Mo (N.m) Mw(calculated)

6.5 20 10 200 0.8 7.20E+18 6.50
7 50 20 1000 1 4.50E+19 7.04
7.5 100 35 3500 1.4 2.21E+20 7.50
8 200 45 9000 3.5 1.42E+21 8.03
8.5 370 55 20 350 7.8 7.14E+21 8.50
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Fig. 13. (a)Warning map resulting from “on the fly” tsunami modeling using the source parameters of Roger et al. (2007) for the 1980
El Asnam earthquake (Mw = 7.3, Algeria).(b) Result of the composite scenarios calculation process: final representation destined for the
French authorities using the test case of the 1980 El Asnam earthquake. Black circle: 400 km radius area around the epicenter (decision
matrix parameter).

– for the inaccuracy of the epicenter, a search is automat-
ically conducted of all the precomputed unit sources
localized within a circle whose center is the estimated
epicenter of the detected event and whose radius is,
in this case, set to 30 km (but configurable). Each of
the precomputed scenarios responding to the criteria
is scaled by the appropriate factor, and the final solu-
tion corresponds to the maximum of all new arbitrary
scenarios thus calculated.

– the uncertainty on the magnitude is considered through
the production of 3 final composite scenarios (respec-
tively representative ofMw, Mw − 0.2 andMw + 0.2),
each one including the inaccuracy on the epicenter lo-
cation.

5 Results obtained for other historical
tsunamigenic events

5.1 Example of the 1908 Messina earthquake
(Ms = 7.1, Sicily)

The Messina (Sicily) earthquake of 1908, with an estimated
seismic moment ofMo = 5.1019 N m, is the largest event to
have hit the Italian coasts during the last century (e.g., Tinti
et al., 1999; Amoruso et al., 2002, 2006). An estimated to-
tal of 60 000 people were killed and extensive damage was
recorded in Sicily and Calabria. The earthquake was fol-
lowed by a tsunami that started with a large withdrawal along
the whole Messina Straits. Then a flooding of the coast was
observed in some villages with maximum run-up of up to
12 m. Three main negative waves and subsequent inundation
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Fig. 14.Location of the 1969 Gorringe earthquake (blue star) superimposed on the simplified source location for the precomputed tsunami
scenarios along the Azores-Gibraltar transform zone, taken from the TAT/JRC source definition in this area (L. Matias, personal communi-
cation, 2010)

were reported in many places, and the water waves entered
200 m inland locally (Platania, 1909).

The simplified fault network (25 km length segments) used
to create the precomputed unit tsunami scenarios stored
for this area is shown in Fig. 10 (derived from the seis-
motectonic context of the area). Each unit source func-
tions in the database corresponds to a tsunami propagation
solution over 3 h of real time propagation triggered by a
Mo = 1.75E+19 N m earthquake. The composite scenarios
calculation tool is run with uncertainties of± 0.2 on the mag-
nitude of the event and a 30 km radius for uncertainties of
the epicenter location. Following the adopted scaling strat-
egy (Table 1), the calculation is done thusly:

– for magnitude 7.1 (most likely composite scenario)
with combinations of 2 unit source functions multi-
plied byFs = 1.61

– for magnitude 6.9 (minimal composite scenario) with
both 1 unit source function multiplied byFs = 1.81,
and combinations of 2 unit source functions multiplied
by Fs = 0.81

– for magnitude 7.3 (maximal composite scenario)
with both combinations of 3 unit source functions

multiplied by Fs = 2.14, and combinations of 2× 4
unit source functions multiplied byFs = 0.80

The final mosaic representation is depicted in Fig. 11a. The
different maps of the tsunami exposure obtained (Fig. 11a,
top right and both bottom panels) bring about a refinement
compared to the tsunami warning derived from the decision
matrix (Fig. 11a, top left; Table 2).

Keeping in mind that even if the calculation process is
chosen to be as conservative as possible, the simulation
clearly illustrates that the tsunami risk is lowered compared
to the information given by the decision matrix. The areas of
tsunami watch are focused along the Sicilian and Calabrian
coasts, and the tsunami advisory zones spread throughout the
Tyrrhenian Sea up to the eastern coasts of Sardinia and Cor-
sica.

The modeling resulting from the real time tsunami simula-
tion tool, using Tinti et al. (1999) source parameters, is close
to the maximal composite scenario obtained (Fig. 11b).

These warning maps highlight tsunami warning zones that
are consistent with areas impacted by the 1908 Messina
tsunami.
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Fig. 15. (a)Result of the model-based tsunami prediction system: final representation destined for the French authorities using the test case
of the 1969 Gorringe earthquake (Mw = 7.8, Atlantic). Black circle: 1000 km radius area around the epicenter (decision matrix parameter).
(b) Warning map resulting from “on the fly” tsunami modeling using the source parameters of Grandin et al. (2007).

5.2 Example of the 1980 El Asnam earthquake
(Ms = 7.3, Algeria)

The El Asnam (Algeria) earthquake of 10 October 1980 with
an estimated magnitudeMs = 7.3 is one of the most de-
structive earthquakes recorded in northern Africa and more
largely in the western Mediterranean basin. Although lo-
cated inland (Fig. 12a), it is known to have been followed
by a small tsunami recorded on several tide gauges along the
southeastern Spanish coast (Roger et al., 2011).

The simplified fault network (25 km length segments) used
to create the precomputed unit tsunami scenarios stored
for this area is shown in Fig. 12b (derived from the seis-
motectonic context of the area). Each unit source func-
tions in the database corresponds to a tsunami propagation
solution over 3 h of real time propagation triggered by a
Mo = 1.75E+19 N m earthquake. The composite scenarios
calculation tool is run with uncertainties of± 0.2 on the mag-
nitude of the event and of 30 km radius for the epicenter lo-
cation. Following the adopted scaling strategy (Table 1), the
calculation is done thusly:

– for magnitude 7.3 (most likely composite scenario)
with both combinations of 3 unit source functions mul-
tiplied by Fs = 2.14, and combinations of 2× 4 unit
source functions multiplied byFs = 0.80

– for magnitude 7.1 (minimal composite scenario) with
combinations of 2 unit source functions multiplied by
Fs = 1.61

– for magnitude 7.5 (maximal composite scenario) with
combinations of 2× 4 unit source functions multiplied
by Fs = 1.60

The final mosaic representation is depicted in Fig. 13b. The
different maps of the tsunami exposure obtained (Fig. 13b,
top right-bottom) bring about a refinement compared to the
tsunami warning derived from the decision matrix (Fig. 13b,
top left; Table 2). The modeling resulting from the real time
tsunami simulation tool, using Roger et al. (2011) source pa-
rameters, is close to the minimal composite scenario obtained
(Fig. 13a), due to the fact that the earthquake occurred in-
land. Keeping in mind that the calculation process is chosen
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Table 4. Scaling factors (Fs) required to produce a new arbitrary
scenario of MagnitudeMw(comp) from the existingMw = 6.5, 7.0,
7.5, 8.0 and 8.5 unit source functions in the NE Atlantic basin.

Mw (comp) Mw (comp) Fs

6.3 6.5 0.50
6.4 6.5 0.71
6.5 6.5 1.00
6.6 6.5 1.41
6.7 6.5 2.00
6.8 7 0.50
6.9 7 0.71

7 7 1.00
7.1 7 1.41
7.2 7 2.00
7.3 7.5 0.50
7.4 7.5 0.71
7.5 7.5 1.00
7.6 7.5 1.41
7.7 7.5 2.00
7.8 8 0.50
7.9 8 0.71

8 8 1.00
8.1 8 1.41
8.2 8 2.00
8.3 8.5 0.50
8.4 8.5 0.71
8.5 8.5 1.00
8.6 8.5 1.41
8.7 8.5 2.00
8.8 8.5 2.82
8.9 8.5 3.98

as conservative as possible, the simulation clearly illustrates
that although an earthquake occurs about 50 km inland, the
tsunami risk exists. The tsunami triggered by the 1980 El
Asnam earthquake has in fact been observed in the Spanish
ports located in the red area defined by our simulation: sea-
level variations were recorded by the tide-gauges of Alicante,
Cartagena, Almeria, Malaga and Algeciras. In Alicante, the
inner breakwater mareogram showed the highest historical
amplitude of oscillations (peak to trough) of 48 cm (Roger et
al., 2011).

5.3 Example of the 1969 Gorringe earthquake
(Mw = 7.8, Gorringe bank)

The Gorringe earthquake of 28 February 1969 (Mw ∼ 7.8)
was located to the southwest of Gorringe Bank beneath the
Horseshoe Abyssal Plain. It occurred on a fault without pro-
nounced preexisting topography, although the focal mecha-
nism showed reverse displacement with a minor strike-slip
component (N35W striking fault plane with dip angle of
∼ 52◦) (e.g., Grandin et al., 2007). Sea-level variations were
recorded on several tide gage stations in Portugal (up to
1.14 m), Morocco and Spain.

The sources mesh used to create the precomputed unit
tsunami scenarios stored for this area is shown in Fig. 14. The
scenarios database has 5 earthquake magnitudes (Mw = 6.5,
7.0, 7.5, 8.0, 8.5) at each source location, and corresponds to
tsunami propagation solutions over 18 h of real time propa-
gation. The composite scenarios calculation tool is run with
uncertainties of± 0.2 on the magnitude of the event and of
30 km radius for the epicenter location.

Following the adopted scaling strategy (Table 4), the cal-
culation is done thusly:

– for magnitude 7.8 (most likely composite scenario)
with theMw = 8.0 unit source function multiplied by
Fs = 0.50

– for magnitude 7.6 (minimal composite scenario) with
theMw = 7.5 unit source function multiplied byFs =

1.41

– for magnitude 8.0 (maximal composite scenario) with
theMw = 8.0 unit source function multiplied byFs =

1.0

The final mosaic representation is depicted in Fig. 15a.
The results obtained for the maps of the tsunami exposure
(Fig. 15a, top right and both bottom panels) show that the
watch area is globally much more stretched than the 1000 km
area defined by the decision matrix (Fig. 15a, top left; Table
2).

The modeling resulting from the real time tsunami sim-
ulation tool, using Grandin et al. (2007) source parameters,
are consistent with the model-based tsunami prediction sys-
tem products, close to the most likely composite scenario ob-
tained (Fig. 15b).

6 Conclusions

Improvements in the availability of sea-level observations
and advances in numerical modeling techniques are increas-
ing the potential for tsunami warnings to be based on numer-
ical model forecasts. Numerical tsunami propagation and in-
undation models are well developed, but they present a chal-
lenge to run in real time, partly due to computational limi-
tations and also due to a lack of detailed knowledge on the
earthquake rupture parameters.

A first generation model-based tsunami prediction system
is developed as part of the French Tsunami Warning Cen-
ter, operational since mid 2012. It involves a precomputed
unit source functions database (i.e., a number of tsunami
model runs that are calculated ahead of time and stored).
For the Mediterranean basin, the faults of the unit func-
tions are placed adjacent to each other, following the dis-
cretization of the main seismogenic faults. An automated
composite scenarios calculation tool is implemented to al-
low the simulation of any tsunami propagation scenario (i.e.,
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of any seismic moment). Uncertainty on the magnitude of
the detected event and inaccuracy of the epicenter location
are taken into account in the composite scenarios calcula-
tion. For one tsunamigenic event, the tool produces 3 warn-
ing maps (i.e., most likely, minimum and maximum scenar-
ios) together with the rough decision matrix representation.
A non-dimensional coded representation is chosen to show
zones in the main axis of energy at the basin scale. This fore-
cast system provides warning refinement compared to the
rough tsunami risk map given by the decision matrix.

Together with this forecasting system, another opera-
tional tool based on real time computing is implemented
as part of the French Tsunami Warning Center. This sec-
ond tsunami simulation tool takes advantage of multipro-
cessor approaches and more realistic seismological param-
eters, once the focal mechanism is established. Examples us-
ing 3 historical tsunamigenic earthquakes illustrate the good
correlation between the results obtained and the two tools.
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